
The Annals of Applied Probability
2003, Vol. 13, No. 1, 140–180

A STOCHASTIC PARTICLE METHOD WITH RANDOM WEIGHTS
FOR THE COMPUTATION OF STATISTICAL SOLUTIONS OF

MCKEAN–VLASOV EQUATIONS

BY DENIS TALAY AND OLIVIER VAILLANT

INRIA

We are interested in statistical solutions of McKean–Vlasov–Fokker–
Planck equations. An example of motivation is the Navier–Stokes equation
for the vorticity of a two-dimensional incompressible fluid flow. We propose
an original and efficient numerical method to compute moments of such
solutions. It is a stochastic particle method with random weights. These
weights are defined through nonparametric estimators of a regression
function and convey the uncertainty on the initial condition of the considered
equation. We prove an existence and uniqueness result for a class of nonlinear
stochastic differential equations (SDEs), and we study the relationship
between these nonlinear SDEs and statistical solutions of the corresponding
McKean–Vlasov equations. This result forms the foundation of our stochastic
particle method where we estimate the convergence rate in terms of the
numerical parameters: the number of simulated particles and the time
discretization step.

1. Introduction. Partial differential equations (PDEs) with random initial
conditions are possible models for some complex physical phenomena such as
turbulence (see, e.g., Monin and Yaglom [21] and Vishik and Fursikov [28]). They
also can express a lack of information on the initial state of a system, as in weather
forecasting (see Chorin, Kast and Kupferman [6]) where data are collected from a
finite and relatively small number of meteorological stations. Of course, there are
many functions fitting such a finite set of values; therefore, sparse data often lead
to statistical models.

In both cases, one can only simulate mean quantities over the set of initial
conditions of the model. However, it is often difficult to estimate the accuracy
of usual related numerical methods such as closure models (see, e.g., Fox [13],
Mohammadi and Pironneau [20] and Vishik and Fursikov [28]). Following a quite
different approach, we propose here an original stochastic particle method with
random weights to compute

〈M1(t), f 〉L2(R) := E

∫
R

p(t, x,ω)f (x) dx,(1)

where f is a given test function and p(t, x,ω) is the solution of a McKean–Vlasov
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equation with random initial condition. Our motivation comes from the fact that the
viscous Burgers equation and the two-dimensional incompressible Navier–Stokes
equation for the vorticity belong to the class of McKean–Vlasov equations and
thus have a probabilistic interpretation in terms of stochastic particle systems (see,
e.g., Sznitman [22]).

We now fix some notation and consider the McKean–Vlasov equation

∂p

∂t
(t, x,ω) = − ∂

∂x

(
ub(t, x,ω)p(t, x,ω)

)

+ 1

2

∂2

∂x2

((
uσ (t, x,ω)

)2
p(t, x,ω)

)
,

p(0, x,ω) = p0(x,ω),(2)

ub(t, x,ω) :=
∫

R

b(x, y)p(t, y,ω) dy,

uσ (t, x,ω) :=
∫

R

σ(x, y)p(t, y,ω)dy,

where b and σ are smooth and bounded functions from R
2 to R. For technical

reasons we thereafter suppose that the possible initial conditions of (2) are
parametrized by realizations θ(ω) of a real-valued random variable θ with law ν

concentrated on a closed interval of R, say [−1,1].
The paper is organized as follows:

First, we briefly outline the theory of statistical solutions of an evolution
problem, especially the notion of moments of a statistical solution, and we
present some known results on the two-dimensional incompressible Navier–Stokes
equation. We then study statistical solutions of the model problem (2) and their
moments. In particular, we show that the identity (1) defines the first moment of
the statistical solution of (2).

Second, we prove an original probabilistic interpretation of the moments. To
this end, we prove the following result, which is interesting in itself. Consider the
nonlinear stochastic differential equation




dXt = E
[
b(x,Xt) | θ] ∣∣x=Xt

dt + E
[
σ(x,Xt) | θ] ∣∣x=Xt

dWt, t ≤ T ,

(X0, θ) with law
[
�(a)

]
(x) dx ν(da),

θ random variable independent of W.

Under appropriate hypotheses on the kernels b and σ , we show that this equation
has a unique weak solution, and we describe the relationship between this solution
and the moment defined in (1).
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Third, we develop the following stochastic particle method:

X
i,N

(k+1)�t = X
i,N

k�t +
N∑

j=1

αij b
(
X

i,N

k�t ,X
j,N

k�t

)
�t

+
N∑

j=1

αijσ
(
X

i,N

k�t ,X
j,N

k�t

)(
Wi

(k+1)�t − Wi
k�t

)
,

X
i,N

0 = Xi
0,

where the Wi· , 1 ≤ i ≤ N are independent real Brownian motions. The weights αij

are defined from nonparametric estimators of the functions ub and uσ . We show
that

〈M1(t), f 〉L2(R) � 1

N

N∑
i=1

f
(
X

i,N

t

)
.

Finally, we prove estimates on the convergence rate of the above approximation
in terms of the number N of simulated particles and the time discretization step �t .

REMARK 1.1. Admittedly, our technical assumptions on the functions b

and σ exclude the singular interaction kernels corresponding to the Burgers and
Navier–Stokes equations: our results will hopefully be extended to these singular
kernels in the future.

A summary of the results of this paper has appeared in [26].

NOTATION. For k ∈ N, Ck
b (Rn) is the set of functions from R

n to R whose
partial derivatives up to order k are continuous and uniformly bounded over R

n.
E is the expectation operator under the law PW of a real-valued Brownian

motion W· and, for any probability measure ν on [−1,1], E
ν is the expectation

operator under the product measure PW ⊗ ν.
C, C(T ) are strictly positive real constants that can change from line to line.

2. Statistical solution of a Cauchy problem: application to the model
equation (2). In this section, we define the notion of statistical solution and of
moments of such a solution. We give assumptions under which a statistical solution
and moments exist for (2).

The notion of statistical solution was first proposed by Hopf [17] to describe
turbulence. This approach has then been studied by several authors, in particular,
Foias [10], Foias and Temam [11, 12], and Vishik and Fursikov [28]. A somewhat
different notion of statistical solution has been studied by Carraro and Duchon [4]
(see also the references therein) for the inviscid Burgers equation.
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Consider an evolution equation on a strip [0, T ] × R
n, n ≤ 3:

du

dt
+ Au = 0,

(3)
u|t=0 = u0 ∈ L2(Rn),

where u0 is a random variable with law µ.

DEFINITION 2.1 (Vishik and Fursikov [28], page 87). The Cauchy prob-
lem (3) is said to have a “low Reynolds number” by analogy with fluid mechan-
ics if, for each initial condition u0 in the support of µ, (3) has a unique solution
Su0 ∈ C([0, T ],L2(Rn)). In this case, the statistical solution of (3) with initial
condition µ is the probability measure on L2(0, T ;L2(Rn)) defined by

m := µ ◦ S−1.

REMARK 2.2. The notion of statistical solution may be defined in a more
general setting (see [28], Definition 1.1, page 122). Indeed, the Cauchy problem (3)
may have a statistical solution even if it does not have a low Reynolds number, but
we do not consider this situation here.

Suppose now that (3) has a statistical solution m whose marginal, or spatial
statistical solution, at time t satisfies

for some integer k ≥ 1,

∫
L2(Rn)

‖u‖k
L2(Rn)

mt (du) < +∞.(4)

In particular, if k = 1, we assume that the mean energy at time t is finite. For any
p ≤ k, consider the linear form on L2(p) := ⊗pL2(Rn) defined by

Fp :φ ∈ L2(p) �→
∫
L2(Rn)

〈
p⊗ u,φ

〉
L2(p)

mt (du).

By the Cauchy–Schwarz inequality and assumption (4), the application Fp is
continuous. Hence, by the Riesz representation theorem, there exists a unique
element Mp(t) ∈ L2(p) such that

∀p ≤ k, ∀φ ∈ L2(p),

〈Mp(t),φ〉L2(p) =
∫
L2(Rn)

〈
p⊗ u,φ

〉
L2(p)

mt (du).
(5)

By definition, Mp(t) is the pth moment of the measure mt .
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We now illustrate these notions in the particular case of the Navier–Stokes
equation:

∂tω(t, x,ω0) = −∇ · (u(t, x,ω0)ω(t, x,ω0)
) + σ 2

2
�ω(t, x,ω0),

u = K ∗ ω where K(y) = 1

2π |y|2 (−y2, y1),

ω(0, x,ω0) = ω0(x).

(6)

If the law µ of the initial condition of (6) is concentrated on L1(R2)∩L∞
c (R2) [i.e.,

the subspace of L1(R2)∩L∞(R2) of functions with compact support], Constantin
and Wu [9] have shown that (6) has a unique statistical solution with initial
condition µ. Moreover, if µ is concentrated on a closed ball of L1(R2)∩L∞

c (R2),
the spatial correlations of the velocity u are related to moments (see Vaillant [27]):∫

ui (t, x,ω0)µ(dω0) = 〈M1(t),Ki (x − ·)〉L2(R2), i = 1,2

(mean velocity),

1
2

∫
u2(t, x,ω0)µ(dω0) = 1

2 〈M2(t),K(x − ·) · K(x − ·)〉L2(R2)⊗L2(R2)

(mean kinetic energy).

This representation mainly explains our interest in simulating moments.
We now turn to the statistical study of the model equation (2). Remember that

the uncertainty on initial conditions of (2) is supposed to come from a random
parameter θ with law ν. Admittedly, this assumption is quite restrictive from
a physical point of view. Nevertheless, it is very useful for numerical reasons:
generally, the law of the random initial condition of (2) is a measure on an infinite-
dimensional functional space; the parametrization allows us to reduce it to the law
of a finite-dimensional random variable.

From now on, we denote by � the one-to-one application assigning to any
parameter a ∈ [−1,1] an initial condition �(a) := p0(·, a).

We now prove that the model problem (2) has a low Reynolds number in the
sense of Definition 2.1. This is a straightforward consequence of the following
proposition.

PROPOSITION 2.3. Suppose that

(H1) ∃ ε ∈]0,1[ such that

b ∈ C2+ε
b (R2), σ ∈ C2+ε

b (R2) and,

(7)
for any (x, y) ∈ R

2, σ (x, y) ≥ σ∗ > 0,
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where, for k ∈ N, Ck+ε
b (Rn) denotes Hölder spaces of functions (see, e.g., [18]).

In particular, there exists a strictly positive constant L such that

∀ (x, y, z, u) ∈ R
4,

|b(x, y) − b(z,u)| + |σ(x, y) − σ(z,u)| ≤ L(|x − z| + |y − u|).(8)

Suppose also that the function � satisfies:
(H2) �([−1 , 1]) ⊂ C2+ε

b (R)∩W 2,1(R) and �([−1 , 1]) is a set of probability
density functions;

(H3) � is Lipschitz continuous for the norm in L1(R);
(H4) � is such that

sup
a∈[−1,1]

‖p0(·, a)‖W 2,1(R) < +∞.

Then, for any a ∈ [−1,1], the equation

∂p(t, x, a)

∂t
= − ∂

∂x

(
ub(t, x, a)p(t, x, a)

)

+ 1

2

∂2

∂x2

((
uσ (t, x, a)

)2
p(t, x, a)

)
,

p(0, x, a) = p0(x, a),(9)

ub(t, x, a) :=
∫

R

b(x, y)p(t, y, a) dy,

uσ (t, x, a) :=
∫

R

σ(x, y)p(t, y, a) dy,

has a unique solution in the set of probability densities, and this solution satisfies

p(·, ·, a) =: (S ◦ �)(a) ∈ C
1,2+ε
b

([0, T ] × R
) ∩ C

([0, T ],L2(R)
)
,

where C
1,2+ε
b ([0, T ] × R) is the set of functions from [0, T ] × R to R of class C1

in time and C2+ε
b in space.

PROOF. As functions b and σ are Lipschitz continuous and bounded, there
is a unique solution P to the nonlinear martingale problem with coefficients∫

b(x, y)Pt (dy) and
∫

σ(x, y)Pt (dy) and initial condition p0(x, a) dx (see Sznit-
man [22]). Moreover, any density p(t, ·, a) solution to (9) is the density of Yt(a),
where the process (Yt (a))t∈[0,T ] satisfies the following stochastic differential equa-
tion: 



dYt(a) =
(∫

R

b(x, y)p(t, y, a) dy

)∣∣∣∣
x=Yt (a)

dt

+
(∫

R

σ
(
x, y

)
p(t, y, a) dy

)∣∣∣∣
x=Yt (a)

dWt,

Y0(a) with law
[
�(a)

]
(x) dx.
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Thus, p(t, ·, a) is also the density of Xt(a), where the process (Xt (a))t∈[0,T ]
satisfies the following nonlinear SDE:{

dXt(a) = E
(
b(x,Xt (a)

)∣∣
x=Xt(a) dt + E

(
σ(x,Xt (a)

)∣∣
x=Xt(a) dWt,

X0(a) with law
[
�(a)

]
(x) dx.

(10)

Then the uniqueness of P implies the uniqueness of the density solution of (9).
Moreover, from (10), the functions ub and uσ satisfy

ub(t, x, a) = Eb
(
x,Xt (a)

)
, uσ (t, x, a) = Eσ

(
x,Xt (a)

)
.(11)

Using equalities (11) and hypothesis (7), one easily checks that the functions ub

and uσ are of class C2
b in x. They are also Hölder continuous of order 1/2 in t .

Indeed, for any (s, t, x, a) ∈ [0, T ]2 × R × [−1,1],

E|Xt(a) − Xs(a)|2 ≤ 2E

{∫ t

s
Eb

(
x,Xτ (a)

)
dτ

}2

+ 2E

{∫ t

s
Eσ

(
x,Xτ (a)

)
dWτ

}2

,

≤ 2‖b‖2
L∞(R2)

|t − s|2 + 2‖σ‖2
L∞(R2)

|t − s|.
Hence, as b and σ are Lipschitz functions,

|ub(t, x, a) − ub(s, x, a)| + |uσ (t, x, a) − uσ (s, x, a)|
= ∣∣Eb

(
x,Xt (a)

) − Eb
(
x,Xs(a)

)∣∣
+ ∣∣Eσ

(
x,Xt (a)

) − Eσ
(
x,Xs(a)

)∣∣,
≤ LE|Xt(a) − Xs(a)|
≤ L

√
2T ‖b‖2

L∞(R2)
+ 2‖σ‖2

L∞(R2)

√|t − s|.
Then, as �(a) ∈ C2+ε

b (R), Theorem 5.1.9 in Lunardi [18] shows that (9) has a

unique solution in C
1,2+ε
b ([0, T ] × R). We can then define the operator

S : �([−1,1]) → C
1,2+ε
b

([0, T ] × R
)
,

p0 = �(a) �→ Sp0 := p(·, ·, a).
(12)

Moreover, observe that �([−1,1]) ∈ Cb(R) ∩ W 2,1(R) ⊂ L1(R) ∩ L∞(R) ⊂
L2(R). Then, owing to assumption (7), the Fokker–Planck equation (9) has a
unique solution in C([0, T ];L2(R)) (see, e.g., Cessenat et al. [5], page 89), and

S ◦ �
([−1,1]) ⊂ C

1,2+ε
b

([0, T ] × R
) ∩ C

([0, T ];L2(R)
)
. �

Before turning our attention to the question of moments of the statistical
solution, we state and prove a technical regularity result which will be needed
in the proof of Lemma A.1.
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PROPOSITION 2.4. Under the hypotheses of Proposition 2.3, the mapping

a ∈ [−1,1] �→ (S ◦ �)(a) ∈ L∞([0, T ];L1(R)
)

is Lipschitz continuous.

PROOF. We sketch the proof in Vaillant [27]. Choose a1, a2 ∈ [−1,1] and, for
i = 1 or 2, set

pi
t = p(T − t, ·, ai),

ui
b(t) =

∫
R

b(·, y)pi
t (y) dy, vi

σ (t) = 1
2

(∫
R

σ(x, y)pi
t (y) dy

)2

,

Li
t = vi

σ (t)∂2
xx + (

2∂xv
i
σ (t) − ui

b(t)
)
∂x,

ki
t = ∂xu

i
b(t) − ∂2

xxv
i
σ (t),

Ft = (
v1
σ (t) − v2

σ (t)
)
∂2
xxp

1
t

+ {(
u2

b(t) − u1
b(t)

) + 2
(
∂xv

1
σ (t) − ∂xv

2
σ (t)

)}
∂xp

1
t(13)

+ {
∂xu

2
b − ∂xu

1
b + ∂2

xxv
1
σ (t) − ∂2

xxv
2
σ (t)

}
p1

t .

Apply the Feynman–Kac formula to (9): for any (t, x) ∈ [0, T ] × R,

pi
t (x) = E

{
pi

0
(
X

i,t,x
T

)
exp

(
−

∫ T

t
ki
θ

(
X

i,t,x
θ

)
dθ

)}
,(14)

qt (x) := p2
t (x) − p1

t (x)

= E

{(
p2

0
(
X

2,t,x
T

) − p1
0
(
X

2,t,x
T

))
exp

(
−

∫ T

t
k2
θ

(
X

2,t,x
θ

)
dθ

)}

− E

{∫ T

t
Fs

(
X2,t,x

s

)
exp

(
−

∫ s

t
k2
θ

(
X

2,t,x
θ

)
dθ

)
ds

}
,

(15)

where Xi,t,x· is the Markov process whose infinitesimal generator is Li
t and such

that X
i,t,x
t = x a.s. Moreover, as b ∈ C2

b(R2), for α ∈ {0,1,2} and i = 1 or 2,

‖ui
b(t)‖L∞(R) =

∥∥∥∥∂α
x

∫
R

σ(·, y)pi
t (y) dy

∥∥∥∥
L∞(R)

≤ ‖∂α
x σ‖L∞(R2).

Similarly,

sup
t∈[0,T ]

‖∂α
x vi

t ‖L∞(R) < +∞, sup
t∈[0,T ]

‖∂α
x ui

t‖L∞(R) < +∞,

‖∂α
x v1

σ (t) − ∂α
x v2

σ (t)‖L∞(R) + ‖∂α
x u1

b(t) − ∂α
x u2

b(t)‖L∞(R)

≤ C‖qt‖L1(R),

|Ft(x)| ≤ C‖qt‖L1(R)

(|p1
t (x)| + |∂xp

1
t (x)| + |∂2

xxp
1
t (x)|).

(16)
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In view of these bounds and of equality (15), we deduce∫
R

|qt(x)|dx

≤ C(T )

∫
R

{
E
∣∣p2

0
(
X

2,t,x
T

)− p1
0
(
X

2,t,x
T

)∣∣ + ∫ T

t
E
∣∣Fs

(
X2,t,x

s

)∣∣ds

}
dx(17)

=: C(T )
(
A(t) + B(t)

)
.

Moreover, owing to hypothesis (7), we have already observed that the functions
ub and uσ are of class C2

b in x and Hölder continuous of order 1/2 in t .
Hence, the density (s, y, t, x) of the law of Xt,x

s is exponentially bounded (see
Friedman [14], page 139–150):

∀σ > ‖σ‖L∞(R2), ∃C0 > 0, (s, y, t, x) ≤ C0√
s − t

exp
(
− (x − y)2

2σ(s − t)

)
.(18)

In view of inequalities (16), the constant C0 can be chosen uniform in a ∈ [−1,1].
Thus, we have∫

R

E
∣∣p2

0
(
X

2,t,x
T

) − p1
0
(
X

2,t,x
T

)∣∣dx

=
∫

R

∫
R

|qT (y)|(T, y, t, x) dy dx

≤
∫

R

{
|qT (y)|

∫
R

C0√
T − t

exp
(
− (x − y)2

2σ(T − t)

)
dx

}
dy

≤ C

∫
R

|qT (y)|dy.

Thus

A(t) ≤ C‖p2
0 − p1

0‖L1(R).(19)

Before estimating B(t), observe that the hypotheses (H1) and (H2) ensure that, for
any a ∈ [−1,1], the solution p(·, ·, a) to (9) belongs to C([0, T ],W 2,1(R)) (see
Cannarsa and Vespri [3]). Moreover, from the Feynman–Kac formula (14) and
inequality (18), one easily shows that

sup
a∈[−1,1]

(
sup

t∈[0,T ]
‖p(t, ·, a)‖L1(R)

)
< +∞.

Then observe that ∂xp(t, ·, a) and ∂2
xxp(t, ·, a) satisfy PDEs similar to (9) so that,

repeating the same kind of arguments and using hypothesis (H4), one can show
that

sup
a∈[−1,1]

(
sup

t∈[0,T ]
‖p(t, ·, a)‖W 2,1(R)

)
< +∞.(20)
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We can now estimate B(t) in the same way than A(t). Indeed, using (18) and the
third line of (16), one has∫

R

(∫ T

t
E
∣∣Fs

(
Xt,x

s

)∣∣ds

)
dx

≤ C

∫
R

∫ T

t
‖qs‖L1(R)

∫
R

2∑
i=0

|∂i
yp

1
t (y)| 1√

s − t
exp

(
−(x − y)2

σ(s − t)

)
dx dy

= C

∫ T

t
‖qs‖L1(R)

∫
R

2∑
i=0

|∂i
yp

1
t (y)|

{∫
R

1√
s − t

exp
(
−(x − y)2

σ(s − t)

)
dx

}
dy ds

≤ C

∫ T

t
‖qs‖L1(R)

∫
R

2∑
i=0

|∂i
yp

1
t (y)|dy ds

≤ C sup
t∈[0,T ]

‖p1
t ‖W 2,1(R)

∫ T

t
‖qs‖L1(R) ds

≤ C sup
a∈[−1,1]

(
sup

t∈[0,T ]
‖p(t, ·, a)‖W 2,1(R)

)∫ T

t
‖qs‖L1(R) ds.

We now use property (20) and get that, for any t ∈ [0, T ],
‖p(t, ·, a1) − p(t, ·, a2)‖L1(R)

≤ C

(
‖p2

0 − p1
0‖L1(R

) +
∫ t

0
‖p(s, ·, a1) − p(s, ·, a2)‖L1(R) ds

)
.

Finally, we deduce from the previous inequality that

‖S ◦ �(a1) − S ◦ �(a2)‖L∞([0,T ],L1(R))

= sup
t∈[0,T ]

‖p(t, ·, a1) − p(t, ·, a2)‖L1(R)

≤ C‖�(a2) − �(a1)‖L1(R)

+ C

∫ T

0
‖S ◦ �(a1) − S ◦ �(a2)‖L∞([0, t],L1(R)) dt.

The Lipschitz continuity of S ◦ � then follows from the Gronwall lemma and the
Lipschitz continuity of the function �. �

REMARK 2.5. In the preceding proof, the main step is the proof of inequal-
ity (20). This inequality is easy to get if the kernel σ is constant, as in the case of
the Burgers or the vorticity equations. Indeed, in that case, we can write (9) in an
integral form:

p(t, x, a) = Gt ∗ p0(x, a) −
∫ t

0
Gt−s ∗ ∂x

(
ub(s, x, a)p(s, x, a)

)
ds,
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where

Gt(x) = (2πσ 2t)−1 exp
(
− x2

2σ 2t

)
is the heat kernel. By classical properties of Gt and inequalities (16), it is then easy
to deduce that

‖p(t, ·, a1) − p(t, ·, a2)‖L1(R2) ≤ C(T )‖p0(·, a1) − p0(·, a2)‖L1(R2).

In view of Definition 2.1 and Proposition 2.3, the unique statistical solution of (2)
with initial condition µ = ν ◦ �−1 is

m := µ ◦ S−1 = ν ◦ (S ◦ �)−1.(21)

The following proposition gives conditions under which the time marginals of the
measure m has moments up to order k.

PROPOSITION 2.6. Assume that the hypotheses of Proposition 2.3 hold.
Assume also that the measure ν and the function � satisfy

∃k ∈ N,

∫ 1

−1
‖�(a)‖k

L2(R)
ν(da) < +∞.(22)

Then, for any t ∈ [0, T ], the measure mt := µ ◦ St has moments up to order k.

PROOF. We need to prove that the measure mt satisfies condition (4); that is,∫
L2(R)

‖p‖k
L2(R)

mt (dp) < +∞.

By the definition of mt , one has∫
L2(R)

‖p‖k
L2(R)

mt (dp) =
∫
L2(R)

‖p‖k
L2(R)

(
ν ◦ (St ◦ �)−1)(dp)

=
∫ 1

−1
‖(St ◦ �)(a)‖k

L2(R)
ν(da).

As in the proof of Lemma 2.4, the solution (St ◦ �)(a) to (9) satisfies a Feynman–
Kac formula, from which inequalities (16) and (18) easily lead to

‖(St ◦ �)(a)‖L2(R) ≤ C‖�(a)‖L2(R).

The result follows from assumption (22). �

In view of (5), the first moment of the measure mt is then defined by

∀f ∈ L2(R), 〈M1(t), f 〉L2(R) =
∫

R

〈Stp0, f 〉
L2

(
R

)µ(dp0)

=
∫ 1

−1
〈St ◦ �(a), f 〉L2(R)ν(da).

(23)

To develop an approximation method of the moments, we now prove a probabilis-
tic representation of these moments.
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3. A probabilistic representation of the moments. Our objective is now to
give a probabilistic representation of the moments of the statistical solution of (2)
in order to be able to approximate these moments by a stochastic particle method.
For the sake of simplicity, we limit ourselves to considering the first moment. The
extension to moments of higher order is straightforward (see Corollary 3.4).

Remember that, for any a ∈ [−1,1], the solution (St ◦�)(a) of (9) is the density
of the random variable Xt(a), where X·(a) is the weak solution of the stochastic
differential equation (10). Hence, for any bounded and measurable function f ,

〈(St ◦ �)(a), f 〉L2(R) = Ef
(
Xt(a)

)
,

and we have

〈M1(t), f 〉L2(R) =
∫ 1

−1
〈(St ◦ �)(a), f 〉L2(R)ν(da),

=
∫ 1

−1
Ef

(
Xt(a)

)
ν(da).

This representation suggests the following naive method of simulation:

1. Consider N1 realizations al,1 ≤ l ≤ N1, of a random variable θ with law ν.
2. For each initial parameter al , consider N2 i.i.d. random variables Xi

0(al), with
common law [�(al)](x) dx, and define the particle system

dX
i,N2
t (al) = 1

N2

N2∑
j=1

b
(
X

i,N2
t (al),X

j,N2
t (al)

)
dt

+ 1

N2

N2∑
j=1

σ
(
X

i,N2
t (al),X

j,N2
t (al)

)
dWi

t ,

X
i,N2
0 (al) = Xi

0(al) for all 1 ≤ i ≤ N2.

(24)

Then

Ef
(
Xt(al)

) � 1

N2

N2∑
i=1

f
(
X

i,N2
t (al)

)
.(25)

This latter approximation is understood in the following sense: the measure-
valued process 1/N2

∑N2
i=1 δ

X
i,N2· converges in law to δPX·(al ) as N2 tends to ∞.

This type of convergence is known as the propagation of chaos. We refer to
Méléard [19] or Sznitman [22] for further details.

We finally get

〈M1(t), f 〉L2(R) � 1

N1

N1∑
l=1

1

N2

N2∑
i=1

f
(
X

i,N2
t (al)

)
.(26)
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This approximation is numerically very expensive as it requires N1 × N2

simulations of paths of stochastic processes. The method with a much lower cost
which is developed in Section 4 relies on the construction of a stochastic process
whose marginal laws are equal to [(St ◦ �)(a)](x) dx ⊗ ν(da). In view of (10)
and (11), a natural candidate is the weak solution (if it exists) of the following
stochastic differential equation:


dXt = ub(t,Xt , θ) dt + uσ (t,Xt , θ) dWt,

∀A ∈ B
(
R × [−1,1]), P

(
(X0, θ) ∈ A

) =
∫
A

[
�(a)

]
(x) dx ν(da),

θ random variable independent of W,

(27)

where the functions ub and uσ are the coefficients of (9). However, we cannot
deduce a numerical method from (27). Indeed, we cannot simulate the solution
of (27) since we do not know the coefficients ub(t, x, a) and uσ (t, x, a) without
solving (9). To overcome this problem, we will observe that, for any function
g ∈ Cb(C([0, T ],R),R),

E
νg(X·) =

∫ 1

−1
Eg

(
X·(a)

)
ν(da),(28)

where X·(a) is the solution of (10) (see Theorem 3.1). From this property, we will
prove that X· is the unique solution of the nonlinear SDE


dXt = E

[
b(x,Xt ) | θ]∣∣x=Xt

dt + E
[
σ(x,Xt) | θ

]∣∣
x=Xt

dWt, t ≤ T,

(X0, θ) with law
[
�(a)

]
(x) dx ν(da),

θ random variable independent of W

(29)

(see Theorem 3.2). We now prove our conjectures.

THEOREM 3.1. Suppose that the hypotheses of Proposition 2.3 hold. Then:

(i) the stochastic differential equation (27) has a unique weak solution;
(ii) for any function g ∈ Cb(C([0, T ],R),R),

E
νg(X·) =

∫ 1

−1
Eg

(
X·(a)

)
ν(da),(30)

where X·(a) is the solution of (10) and, if PW stands for the law of the Brownian
motion W·, E

ν is the expectation operator under the product measure PW ⊗ ν.

PROOF. We first need to check that the mapping a ∈ [−1,1] �→ Eg(X·(a)) is
Lebesgue measurable. It is actually continuous, as proven in Lemma A.1 whose
proof is given in the Appendix. �



A STOCHASTIC PARTICLE METHOD FOR STATISTICAL SOLUTIONS 153

PROOF OF (i). Observe that (27) can be rewritten as


dXt = ub(t,Xt , θt ) dt + uσ (t,Xt , θt ) dWt,

dθt = 0,

∀A ∈ B
(
R × [−1,1]), P

(
(X0, θ0) ∈ A

) =
∫
A

[
�(a)

]
(x) dx ν(da).

(31)

In the proof of Proposition 2.3, we have shown that hypothesis (7) ensures
that the functions ub and uσ are Hölder continuous in t . Similarly, one easily
checks that hypothesis (8) implies boundedness and Lipschitz continuity in x of
ub(t, x, a) and uσ (t, x, a). Finally, Lemma 2.4 ensures that ub and uσ also are
Lipschitz continuous in a. Thus, (31) and, of course, (27), has a unique solution in
law. �

PROOF OF (ii). We first fix some notation.

• E = C([0, T ],R × [−1,1]) and (yt ) is the canonical process on E.
• For each a ∈ [−1,1], c·(a) denotes the constant application t ∈ [0, T ] �→ a.
• For each a ∈ [−1,1] and any function φ ∈ C2(R), we set

La
t φ(x) = ub(t, x, a)φ′(x) + 1

2u2
σ (t, x, a)φ′′(x),(32)

and, for each function ψ ∈ C2(R × [−1,1]),
Atψ(x, a) = (

La
t ψ(·, a)

)
(x).(33)

Observe that At is the infinitesimal generator of the Markov process (X·, θ·),
unique solution in law of (31). In other words, the law of (X·, θ·) is the unique
solution of the martingale problem associated with operator At , which is the only
probability measure P

ν on E satisfying the following properties:

(a) P
ν ◦ y(0)−1 = [�(a)](x) dx ⊗ ν(da);

(b) for any function ψ ∈ C2
b (R × [−1,1]), the process M·(ψ,A), defined by

Mt(ψ,A) = ψ
(
y(t)

) − ψ
(
y(0)

) −
∫ t

0
Asψ

(
y(s)

)
ds(34)

is a P
ν -martingale.

By uniqueness, equality (30) will thus be proved if we show that the probability
measure Q, defined by

∀g ∈ Cb

(
C
([0, T ],R × [−1,1]),R

)
,

(35)

〈Q, g〉 :=
∫ 1

−1
Eg

(
X·(a), c·(a)

)
ν(da),

also satisfies properties (a) and (b).
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By definition of the process X·(a), the solution of (10), Q obviously satisfies
property (a). Now let p ∈ N, h ∈ Cb((R × [−1,1])p), ψ ∈ C2(R × [−1,1]) and
(t1, . . . , tp, s, t) ∈ [0, T ]p , such that

0 ≤ t1 ≤ · · · ≤ tp ≤ s ≤ t.

To show that Q satisfies property (b), it is sufficient to check that

E
Q[

h
(
y(t1), . . . , y(tp)

)(
Mt(ψ,A) − Ms(ψ,A)

)] = 0.

Observe that La· is the infinitesimal generator of the process X·(a). Thus, applying
Itô’s formula to the function ψ and using definitions (33) and (35), we get

E
Q[

h
(
y(t1), . . . , y(tp)

)(
Mt(ψ,A) − Ms(ψ,A)

)]
=

∫ 1

−1
E

[
h
((

Xt1(a), a
)
, . . . ,

(
Xtp (a), a

))

×
∫ t

s
uσ

(
τ,Xτ (a), a

)
∂xψ

(
τ,Xτ (a), a

)
dWτ

]
ν(da)

= 0

since uσ is a bounded function. �

We now identify the solution of (27) as the unique solution of a nonlinear SDE,
which will allow us to develop our stochastic particle method. This is the main
result of this section.

THEOREM 3.2. Suppose that the hypotheses of Proposition 2.3 hold. Then
there exists a unique weak solution to the SDE (29), where (t, x) �→ E[b(x,Xt ) | θ]
and (t, x) �→ E[σ(x,Xt ) | θ] stand for continuous modifications of the conditional
expectation processes. Moreover, the law of the solution is PX·(a) ⊗ ν(da), where
X·(a) is the unique weak solution of (10).

PROOF. The existence of a solution results from Theorem 3.1, since equali-
ties (11) and (28) imply that

ub(t, x, a) = E
[
b(x,Xt ) | θ = a

]
, uσ (t, x, a) = E

[
σ(x,Xt ) | θ = a

]
,(36)

and that continuous modifications of (E[b(x,Xt ) | θ]) and (E[σ(x,Xt ) | θ]) exist
in view of the Kolmogorov–Centsov criterion.

The uniqueness of a solution is an easy consequence of Theorem 3.1. �

REMARK 3.3. Equation (29) reduces to the classical nonlinear stochastic
differential equation (10) when ν is a Dirac measure.



A STOCHASTIC PARTICLE METHOD FOR STATISTICAL SOLUTIONS 155

Finally, in view of definition (5), a straightforward consequence of Theo-
rems 3.1 and 3.2 is that moments of a statistical solution of the McKean–Vlasov
equation (2) have the following probabilistic representation:

COROLLARY 3.4. Suppose that the hypotheses of Proposition 2.6 hold. Let
(Xi· , 1 ≤ i ≤ k) be independent copies of the processes X· solution of (29). Then,
for any continuous and bounded fonction f ∈ L2(k) = ⊗k L2(R),

〈Mk(t), f 〉L2(k) = E
νf (X1

t , . . . ,X
k
t ).(37)

4. Approximation of the moments: the stochastic particle method. We
now use the nonlinear SDE (29) to construct a particle system (Xi,N· , 1 ≤ i ≤ N),
which coincides with the system (24) when ν is a Dirac measure and such that

E
ν

∣∣∣∣∣〈M1(t), f 〉L2(R) − 1

N

N∑
i=1

f (X
i,N
t )

∣∣∣∣∣ −→
N→+∞0.(38)

First, consider the case where ν is a Dirac measure in a point a ∈ [−1,1]. The
SDE (29) reduces to (10), which is the limit equation for the particle system (24).
Formally, this system can be constructed from the SDE (10) as follows: consider
N independent copies (Xi·(a), 1 ≤ i ≤ N) of the solution of (10) and replace the
coefficients of this equation by estimates gotten from a Monte Carlo method:

E
[
b
(
x,Xt (a)

)] � 1

N

N∑
i=1

b
(
x,Xi

t (a)
)
,

E
[
σ
(
x,Xt (a)

)] � 1

N

N∑
i=1

σ
(
x,Xi

t (a)
)
.

To simulate the SDE (29), we generalize this method: we replace coefficients
E[b(x,Xt ) | θ = a] and E[σ(x,Xt ) | θ = a] by estimates constructed with
N independent copies (Xi

t , θ
i), 1 ≤ i ≤ N , of the pair (Xt , θ). There is an

extensive literature about such estimators of regression functions: we refer, for
example, to Chu and Marron [7] Hardle [15], Hardle, Kerkyacharian, Picard and
Tsybakov [16], or Benveniste et al. [1]. We consider in this article the following
kernel estimators:

• If the measure ν is discrete, that is, ν = ∑M
�=1 p�δa�

, we consider the regresso-
gram estimator (see, e.g., Bouleau and Lépingle [2]):

E
[
b(x,Xt ) | θ = a�

] �
N∑

i=1

I(θ i = a�)∑N
k=1 I(θk = a�)

b(x,Xi
t ).(39)
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• If the measure ν has a density, we consider the two following estimators:
The Nadaraya–Watson estimator (see, e.g., Hardle [15]):

E
[
b(x,Xt ) | θ = a

] �
N∑

i=1

G((θi − a)/hN)∑N
k=1 G

(
(θk − a)/hN

)b(x,Xi
t ),(40)

where hN > 0 and G is, for example, a Gaussian density.
The approximate regressogram estimator:

E
[
b(x,Xt ) | θ = a

] �
N∑

i=1

I(θ̃ i = a)∑N
k=1 I(θ̃k = a)

b(x, X̃i
t ),(41)

where ν̃ is a discrete probability measure approximating ν and the (X̃i, θ̃ i ),
1 ≤ i ≤ N , are independent copies of the process (X̃, θ̃ ), weak solution of (29)
with initial law [�(a)](x) dx ν̃(da).

REMARK 4.1. The above choices of the estimators are mainly motivated
by the simplicity of formulas (39) and (40), which allows us to estimate the
convergence rate of the particle method that we define below. However, we think
that our results should easily be extended to more accurate estimators, for example,
those developed in the references mentioned above or wavelet estimators.

Replacing, in the SDE (29), the exact coefficients by one of the formulas (39)
or (40), we get the particle system:

dX
i,N
t =

N∑
j=1

αij b
(
X

i,N
t ,X

j,N
t

)
dt +

N∑
j=1

αijσ
(
X

i,N
t ,X

j,N
t

)
dWi

t ,
(42)

X
i,N
t |t=0 = Xi

0 for all 1 ≤ i ≤ N,

where the (Xi
0, θ

i) are independent copies with common law [�(a)](x) dx ν(da)

and

αij = I(θ i = θj )∑N
k=1 I(θ i = θk)

(regressogram estimator for a discrete ν),(43)

αij = G((θi − θj )/hN)∑N
k=1 G((θi − θk)/hN)

(44)

(Nadaraya–Watson estimator for an absolutely continuous ν),

or

αij = I(θ̃ i = θ̃ j )∑N
k=1 I(θ̃ i = θ̃ k)

(45)

(approximate regressogram estimator for an absolutely continuous ν).
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Observe that the system (42) generalizes the system (24). Indeed, if ν is a Dirac
measure, the weights αij reduce to the usual value 1/N .

We deduce an approximation formula for the first moment from Corollary 3.4:

〈M1(T ), f 〉L2(R) = E
νf (XT ) � 1

N

N∑
i=1

f
(
X

i,N

T

)
,(46)

where X
i,N

· , 1 ≤ i ≤ N , is defined by discretizing the SDE (42) by the Euler
scheme with constant step �t = T/K (tk = k�t,0 ≤ k ≤ K):

X
i,N

tk+1
= X

i,N

tk
+

N∑
j=1

αij b
(
X

i,N

tk
,X

j,N

tk

)
�t

+
N∑

j=1

αijσ
(
X

i,N

tk
,X

j,N

tk

)(
Wi

tk+1
− Wi

tk

)
,(47)

X
i,N

0 = Xi
0.

We aim to estimate the accuracy of this particle method. To this end, we
introduce the Euler scheme for the SDE (29)

Xtk+1 = Xtk + ub

(
tk,Xtk , θ

)
�t + uσ

(
tk,Xtk , θ

)(
Wtk+1 − Wtk

)
,

(48)
X0 = X0.

Considering N independent copies X
i

·,1 ≤ i ≤ N, of the process X·, we split the
convergence error of the particle method into three parts:

〈M1(T ), f 〉L2(R) − 1

N

N∑
i=1

f
(
X

i,N

T

)

= 〈M1(T ), f 〉L2(R) − E
ν[f (XT )

] + E
ν[f (XT )

]
(49)

− 1

N

N∑
i=1

f
(
X

i

T

)
+ 1

N

N∑
i=1

(
f
(
X

i

T

) − f
(
X

i,N

T

))
.

In view of (1), the first term on the right-hand side of (49) is a time discretization
error. We estimate it in Section 5, owing to the results of Talay [23]. The second
one is a statistical error. Indeed, in view of the strong law of large numbers,

E
ν

∣∣∣∣∣Eν
[
f (XT )

] − 1

N

N∑
i=1

f
(
X

i

T

)∣∣∣∣∣ ≤ ‖f ‖L∞(R)√
N

.(50)

The last term is an error related to the propagation of chaos of the particle sys-
tem (42). In Sections 6 and 7, we estimate it successively for the three families of
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weights (43), (45) and (44). For a review of error estimates on stochastic particle
methods for McKean–Vlasov nonlinear PDEs with deterministic initial conditions,
see Talay [24].

5. Discretization of the limit process X·.

PROPOSITION 5.1. Suppose that the hypotheses of Theorem 3.1 hold. In
addition, suppose that the functions b and σ are in C4+ε

b (R2). Then, for any test
function f ∈ C4+ε

b (R),∣∣Eν[f (XT )
] − E

ν[f (XT )
]∣∣ ≤ C �t.

The proof of Proposition 5.1 relies on the following technical lemma:

LEMMA 5.2. For any a ∈ [−1,1], let La
t be the operator defined by

∀φ ∈ C2
b (R), La

t φ(x) = 1
2u2

σ (t, x, a)φ′′(x) + ub(t, x, a)φ′(x).

Then, for any function f ∈ C4+ε
b (R), the PDE

∂tv(t, x, a) + La
t v(t, x, a) = 0,

v(T , x, a) = f (x),
(51)

has a unique solution in the space C
2,4+ε
b ([0, T ] × R). Moreover, the mapping

a ∈ [−1,1] �→ sup
t∈[0,T ]

4∑
i=1

(‖∂(i)
x ub(t, ·, a)‖L∞(R) + ‖∂(i)

x uσ (t, ·, a)‖L∞(R)

+ ‖∂(i)
x v(t, ·, a)‖L∞(R)

)
is bounded.

PROOF. We only sketch the proof detailed in Vaillant [27]. As the functions
b and σ are in C4+ε

b (R2), one easily checks that, for any differentiation of order
q ≤ 4,

sup
a∈[−1,1]

sup
t∈[0,T ]

(‖∂(q)
x ub(t, ·, a)‖L∞(R) + ‖∂(q)

x uσ (t, ·, a)‖L∞(R)

)
< +∞,

sup
a∈[−1,1]

(‖ub(t, ·, a) − ub(s, ·, a)‖L∞(R) + ‖uσ (t, ·, a) − uσ (s, ·, a)‖L∞(R)

)
(52)

≤ C
√

t − s.

Lemma 5.2 is then a consequence of Theorem 5.1.9 in Lunardi [18]: (51) has a
unique solution v(t, x, a) in C

2,4+ε
b ([0, T ] × R) and

‖v(·, ·, a)‖
C

2,4+ε
b ([0,T ]×R)

≤ C‖f ‖
C4+ε

b (R)
.

The constant C is uniform in a owing to inequalities (52). �
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PROOF OF PROPOSITION 5.1. For any a ∈ [−1,1], let (Xtk (a))k≤K be the
process defined by the Euler scheme, with constant discretization step �t = T/K ,
applied to the SDE (10). The law of the process X· satisfies

PX· = PX.(a)
⊗ ν(da).

Consequently,

E
ν
[
f (XT )

] − E
ν
[
f (XT )

] =
∫ 1

−1

{
E
[
f
(
XT (a)

)] − E
[
f
(
XT (a)

)]}
ν(da).(53)

Thus, we have to prove that, for any a ∈ [−1,1],∣∣E[
f
(
XT (a)

)] − E
[
f
(
XT (a)

)]∣∣ ≤ C �t,

with a constant C independent of a.
By the Feynman–Kac formula, the solution of (51) defined by Lemma 5.2 is

given by

v(t, x, a) = E
[
f
(
X

t,x
T (a)

)]
,

where Xt,x· (a) is the Markov process whose generator is La
t and such that

X
t,x
t (a) = x a.s. Hence,

Ef
(
XT (a)

) − Ef
(
XT (a)

) = Ev
(
0,X0(a), a

) − Ev
(
T,XT (a), a

)

=
K∑

k=1

[
Ev

(
tk−1,Xtk−1(a), a

)− Ev
(
tk,Xtk (a), a

)]
.

From this representation of the discretization error, Talay [23] showed that

Ef
(
XT (a)

) − Ef
(
XT (a)

) ≤ C(T , a)�t,

where a �→ C(T , a) is a sum of terms of the type ∂
(i)
x ub ∂

(j)
x uσ ∂

(k)
x v, i, j, k ≤ 4.

We conclude by using our Lemma 5.2. Estimate (53) is thus proved. �

We now give estimates for the third term of (49), namely,

1

N

N∑
i=1

(
f
(
X

i

T

)− f
(
X

i,N

T

))
,(54)

depending on the choice of the random weights (43), (44) or (45).

6. Global error estimates for the stochastic particle system with the
regressogram estimator. We distinguish two cases: the probability measure ν is
discrete, or it is absolutely continuous. First, suppose that the measure ν is discrete:

ν =
M∑

�=1

p�δa�
, a� ∈ [−1,1] ∀ � ≤ M, and a� �= am if � �= m,(55)

and define the random weights αij by (43).
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PROPOSITION 6.1. Suppose that the hypotheses of Theorem 3.1 hold. More-
over, suppose that the functions b and σ are in C4+ε

b (R2). Then

1

N

N∑
i=1

E
ν
∣∣Xi

T − X
i,N
T

∣∣2 ≤ C

(
M

N
+ M(�t)2

)
.(56)

PROOF. It is convenient to rewrite the left-hand side of (56) after having
gathered particles having the same initial law, that is, to split the particle
system (42) into M independent subsystems. To this end, set

C(M,N) := {(
c(1), . . . , c(N)

) ∈ N
N | ∀1 ≤ i ≤ N, c(i) ≤ M

}
.

We identify an element of this set and a random choice according to the law ν. For

any c = (c(1), . . . , c(N)) ∈ C(M,N), define the processes X
i
(c) and X

i,N
(c) by




X
i

tk+1
(c) = X

i

tk
(c) + ub

(
tk,X

i

tk
(c), ac(i)

)
�t

+ uσ

(
tk,X

i

tk
(c), ac(i)

)(
Wi

tk+1
− Wi

tk

)
,

X
i
0(c) with law

[
�(ac(i))

]
(x) dx,

αij (c) = I(c(i) = c(j))∑N
k=1 I(c(k) = c(i))

,

X
i,N

tk+1
(c) = X

i,N

tk
(c) + �t

N∑
j=1

αij (c)b
(
X

i,N

tk
(c),X

j,N

tk
(c)

)

+
N∑

j=1

αij (c)σ
(
X

i,N

tk
(c),X

j,N

tk
(c)

)(
Wi

tk+1
− Wi

tk

)
,

X
i,N

0 (c) = X
i

0(c).

(57)

Setting E�(c) = {j ∈ N, 1 ≤ j ≤ N | c(j) = c(�)}, θ = (θ1, . . . , θN) and ac =(
ac(1), . . . , ac(N)

)
, we observe that

E
ν

{
1

N

N∑
i=1

∣∣∣Xi

tk
− X

i,N

tk

∣∣∣2
}

(58)

= ∑
c∈C(M,N)

P(θ = ac)

{
1

N

M∑
�=1

∑
j∈E�(c)

E

∣∣∣Xj

tk
(c) − X

j,N

tk
(c)

∣∣∣2
}
.
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Suppose that

∀ � ≤ M, ∀ j ∈ E�(c), E

[
X

j
tk
(c)−X

j,N
tk

(c)
]2 ≤ C

(
1

�E�(c)
+(�t)2

)
.(59)

Then

E
ν

{
1

N

N∑
i=1

∣∣∣Xi

tk
− X

i,N

tk

∣∣∣2
}

≤ ∑
c∈C(M,N)

P(θ = ac)

{
C

N

M∑
�=1

(
1 + �E�(c) (�t)2)}

≤ C

{
M

N
+ M(�t)2

}
.

PROOF OF ESTIMATE (59). For any � ≤ M and j ∈ E�(c), we have

E

[
X

j

tk+1
(c) − X

j,N

tk+1
(c)

]2

= E

[
X

j

tk
(c) − X

j,N

tk
(c)

]2

+ (�t)2
E

[
1

�E�(c)

∑
i∈E�(c)

b
(
X

j,N

tk
(c),X

i,N

tk
(c)

)
− ub

(
tk,X

j

tk
(c), ac(�)

)]2

+ �tE

[
1

�E�(c)

∑
i∈E�(c)

σ
(
X

j,N
tk

(c),X
i,N
tk

(c)
)

− uσ

(
tk,X

j
tk
(c), ac(�)

)]2

+ 2�tE

[(
X

j

tk
(c) − X

j,N

tk
(c)

)( 1

�E�(c)

∑
i∈E�(c)

b
(
X

j,N

k�t(c),X
i,N

tk
(c)

)

− ub

(
tk,X

j

k�t(c), ac(�)

))]
.

(60)

Observe that, owing to Theorem 3.1 and equalities (11),

ub(t, x, ac(j)) = E
[
b
(
x,Xt (ac(j))

)]
and uσ (t, x, ac(j)) = E

[
σ
(
x,Xt (ac(j))

)]
.

Then, inserting E[b(x,X
j

tk
(c))] |

x=X
j
tk

(c)
and E[σ(x,X

j

tk
(c))] |

x=X
j
tk

(c)
in equal-

ity (60), we have

E

[
X

j

tk+1
(c) − X

j,N

tk+1
(c)

]2 ≤ (1 + C�t)E
[
X

j

tk
(c) − X

j,N

tk
(c)

]2

+ C �tA1(j, l, c, tk) + C �tA2(j, l, c, tk),

(61)
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with

A1(j, l, c, tk)

= E

[
1

�E�(c)

∑
i∈E�(c)

b
(
X

j,N

tk
(c),X

i,N

tk
(c)

)
− E

[
b
(
x,X

j

tk
(c)

)] ∣∣∣
x=X

j
tk

(c)

]2

+ E

[
1

�E�(c)

∑
i∈E�(c)

σ
(
X

j,N

tk
(c),X

i,N

tk
(c)

)
− E

[
σ
(
x,X

j

tk
(c)

)] ∣∣∣
x=X

j
tk

(c)

]2

,

A2(j, l, c, tk)

=
∣∣∣∣E[

b
(
x,Xtk (ac(j))

)] ∣∣
x=X

j
tk

(c)
− E

[
b
(
x,X

j

tk
(c)

)] ∣∣∣
x=X

j
tk

(c)

∣∣∣∣
2

+
∣∣∣∣E[

σ
(
x,Xtk (ac(j))

)] ∣∣
x=X

j
tk

(c)
− E

[
σ
(
x,X

j

tk
(c)

)] ∣∣∣
x=X

j
tk

(c)

∣∣∣∣
2

.

To estimate A1(j, l, c, tk), observe that the particles (X
i,N
· )i∈E�(c) have the same

weight 1/(�E�(c)) and the same initial law p0(x, ac(�)) dx. Thus, using the

symmetry of the particle system (X
i,N

· )i∈E�(c) and the Lipschitz property of
functions b and σ , one shows that (see, e.g., Sznitman [22])

A1(j, l, c, tk) ≤ C

(
E

[
X

j

tk
(c) − X

j,N

tk
(c)

]2 + 1

�E�(c)

)
.(62)

Furthermore, in view of Proposition 5.1,

A2(j, l, c, tk) ≤ C(�t)2.(63)

Owing to inequalities (61), (62) and (63), we deduce estimate (59) by induc-
tion. �

We are now in a position to estimate the accuracy of the particle method. This
is a straightforward consequence of (49), (50) and Propositions 5.1 and 6.1.

THEOREM 6.2 (Discrete case). Suppose that the probability measure ν is of
the form (55) and that the hypotheses of Theorem 3.1 hold. In addition, suppose
that the functions b and σ are in C4+ε

b (R2). Consider the particle system (47) with
weights (43). Then, for any function f ∈ C4+ε

b (R),

E
ν

∣∣∣∣∣〈M1(T ), f 〉L2(R) − 1

N

N∑
i=1

f
(
X

i,N

T

)∣∣∣∣∣
2

≤ C

(
M

N
+ M(�t)2

)
.

We now study the convergence rate of the particle method with weights (45)
when the measure ν has a density w.r.t. Lebesgue’s measure.
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THEOREM 6.3. Let ν be a probability measure on [−1,1] with density q and
distribution function V . We define the weights of the particle method by

αij = I(θ̃ i = θ̃ j )∑N
k=1 I(θ̃ i = θ̃ k)

,

where the independent random variables θ̃ i ,1 ≤ i ≤ N, have the common law

νM = 1

M

M∑
�=1

δV −1(�/M), M ∈ N.

Suppose that:

(i) the hypotheses of Theorem 6.2 hold;
(ii) there exists a strictly positive constant q∗ such that

∀a ∈ [−1,1], q(a) ≥ q∗ > 0.

Then, for any test function f ∈ C4+ε
b (R),

E
νM

∣∣∣∣∣〈M1(T ), f 〉L2(R) − 1

N

N∑
i=1

f
(
X

i,N

T

)∣∣∣∣∣
2

≤ C

(
M

N
+ M(�t)2 + 1

M2

)
.

PROOF. Owing to Theorem 6.2, we already know that

E
νM

∣∣∣∣∣EνM f
(
XT

) − 1

N

N∑
i=1

f
(
X

i,N

T

)∣∣∣∣∣
2

≤ C

(
M

N
+ M(�t)2

)
.

We thus have to prove that

∣∣〈M1(T ), f 〉L2(R) − E
νM f (XT )

∣∣2 ≤ C

M2
,

that is,

|Eνf (XT ) − E
νM f (XT )|2 ≤ C

M2
.(64)

Let X·(V −1(y)) denote the solution of the SDE (10) with initial law
[�(V −1(y))](x) dx. Set

FT (f, ·)y ∈ [0,1] �→ E
[
f
(
XT

(
V −1(y)

))]
.

As V is the distribution function of the measure ν, one has

E
νf (XT ) − E

νM f (XT ) =
∫ 1

0
FY (f, y) dy − 1

M

M∑
�=1

FT

(
f,

�

M

)
.
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Observe that, for any (y1, y2) ∈ [0,1]2,

FT (f, y1) − FT (f, y2) =
∫

R

f (x)
(
p
(
t, x,V −1(y1)

) − p
(
t, x,V −1(y2)

))
dx,

where p(t, x,V −1(yi)) is the solution of the PDE (9) with initial condition
�(V −1(yi)).

In view of Proposition 2.2 of [25], we know that the mapping

a ∈ [−1,1] �→ p(t, ·, a) ∈ L1(R)

is Lipschitz continuous. Thus, we deduce that

|FT (f, y1) − FT (f, y2)| ≤ C|V −1(y1) − V −1(y2)|.
In addition, the mapping V −1 is Lipschitz continuous since

sup
y∈[0,1]

∣∣∣∣ d

dy
V −1(y)

∣∣∣∣ = sup
y∈[0,1]

∣∣∣∣ 1

q(V −1(y))

∣∣∣∣ ≤ 1

q∗
.

Consequently,

|FT (f, y1) − FT (f, y2)| ≤ C|y1 − y2|.(65)

Thus, estimate (64) readily follows from (65). �

REMARK 6.4. We can deduce from Theorem 6.3 that, in this case, the particle
method converges if

lim
N→+∞

M

N
= 0 and lim

�t→0
M(�t)2 = 0.

The first condition is natural: the measure νM , concentrated in M points, can be
well approximated by the empirical measure of (θ1, . . . , θN ) only if N � M . The
second condition is a relationship between the time and space discretization steps,
�t and 1/M . It is implied by M�t = constant, which is a c.f.l. condition, implying
the stability of the numerical scheme.

7. Global error estimates for the particle system with the Nadaraya–
Watson estimator. In this section, we suppose that the probability measure ν

is supported in [−1,1] and has a strictly positive Lipschitz continuous density q .
The weights αij of the particle method are defined by (44):

αij = GN

(
θi − θj

)
∑N

k=1 GN

(
θi − θk

) ,
where GN(·) := (1/hN)G(·/hN), hN > 0 and G is a Gaussian density on R.

We gather estimates for GN is the following lemma.
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LEMMA 7.1. One has

∀N ∈ N, ∀x ∈ R, E
νGN(θ − x) ≤ ‖q‖L∞(R)(66)

and

∀x ∈ R, E
νGN(x − θ) ≥ q∗

∫ 1

0
G(z)dz.(67)

Moreover, for any Lipschitz-continuous bounded real function φ on [−1,1]
with Lipschitz constant Lφ , one has∫ 1

−1

∣∣∣∣
∫

R

GN(z − x)φ(z) dz − φ(x)

∣∣∣∣
2

dx ≤ C
(
L2

φh2
N + ‖φ‖2∞TG(N)

)
,(68)

where

TG(N) :=
∫ 1

−1

[ ∫ (x−1)/hN

−∞
(
G(z) + G(z)2)dz

+
∫ +∞
(x+1)/hN

(
G(z) + G(z)2)dz

]2

dx.

(69)

In addition,

TG(N) ≤ ChN and
∫ 1

−1

∣∣∣∣
∫

R

GN(x − z)φ(z) dz − φ(x)

∣∣∣∣
2

dx ≤ ChN.(70)

PROOF. Inequality (66) results from

E
νGN(θ − x) =

∫ 1

−1

1

hN

G

(
x − z

hN

)
φ(z) dz

=
∫ (x+1)/hN

(x−1)/hN

G(z)φ(x − zhN)dz

≤
∫

R

G(z)φ(x − zhN)dz.

Inequality (67) results from hN ≤ 1.
Now observe∫

R

GN(x − z)φ(z) dz − φ(x)

=
∫ (x+1)/hN

(x−1)/hN

G

(
z

hN

)
φ(x − z) dz −

∫
R

G(z)φ(x) dz

=
∫ (x+1)/hN

(x−1)/hN

G(z)
(
φ(x − zhN) − φ(x)

)
dz

− φ(x)

[∫ (x−1)/hN

−∞
G(z)dz +

∫ +∞
(x+1)/hN

G(z) dz

]
.

Inequality (68) readily follows.
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Finally, inequality (70) follows from

∀ z > 0,

∫ +∞
z

exp(−x2) dx ≤ C exp(−z2). �

Our next statement provides a propagation of a chaos-type estimate.

PROPOSITION 7.2. Suppose that:

(i) the hypotheses of Theorem 3.1 hold;
(ii) in addition, the interaction kernels b and σ are in C4+ε

b (R2), 0 < ε < 1;
(iii) the sequence (hN) tends to 0 and limN→+∞ log(N)/(Nh2

N) = 0;
(iv) supa∈[−1,1]

∫
R

x4p0(x, a) dx < +∞;
(v) the probability measure ν has a strictly positive Lipschitz-continuous

density q on [−1,1].
Then there exist a strictly positive constant C, independent of N and �t , and an
integer N0 such that, for any N ≥ N0,

1

N

N∑
i=1

(
E

ν
∣∣Xi

T − X
i,N
T

∣∣2) ≤ C


 1√

Nh2
N

+ √
hN + (�t)2


 .

PROOF. Similarly to what we got in the proof of Proposition 6.1, for all indices
i ≤ N and k ≤ K , we have

E
ν
∣∣∣Xi

tk+1
− X

i,N

tk+1

∣∣∣2 ≤ (1 + C�t)Eν
∣∣∣Xi

tk
− X

i,N

tk

∣∣∣2
+ C �t

(
A1(i, tk) + A2(i, tk)

)
,

(71)

where

A1(i, tk) = E
ν

[
N∑

j=1

αij b
(
X

i,N

tk
,X

j,N

tk

)
− E

ν
[
b
(
x,X

i

tk

) ∣∣ θi
] ∣∣∣

x=X
i
tk

]2

+ E
ν

[
N∑

j=1

αijσ
(
X

i,N

tk
,X

j,N

tk

)
− E

ν
[
σ
(
x,X

i

tk

) ∣∣ θi
] ∣∣∣

x=X
i
tk

]2

,

and

A2(i, tk) =
∣∣∣∣∣Eν[b(x,Xi

tk

) | θi] ∣∣
x=X

i
tk

− E
ν
[
b
(
x,X

i

tk

) ∣∣ θi
] ∣∣∣

x=X
i
tk

∣∣∣∣∣
2

+
∣∣∣∣∣Eν[σ (

x,Xi
tk

) | θi] ∣∣
x=X

i
tk

− E
ν
[
σ
(
x,X

i

tk

) ∣∣ θi
] ∣∣∣

x=X
i
tk

∣∣∣∣∣
2

.
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In view of Proposition 5.1,

A2(i, tk) ≤ C(�t)2.(72)

We first consider A1(i, tk). We insert b(X
i

tk
,X

j

tk
) and use the Lipschitz property

of b. As

∀1 ≤ i, j ≤ N, αij > 0 and
N∑

j=1

αij = 1,(73)

Jensen’s inequality and easy computations lead to

A1(i, tk) ≤ C

(
E

ν
∣∣Xi,N

tk
− X

i

tk

∣∣2 + E
ν

[
N∑

j=1

αij

∣∣Xj,N

tk
− X

j

tk

∣∣2])

+ C
(
E

ν[αiib
(
X

i

tk
,X

i

tk

)]2 + E
ν[αiiσ

(
X

i

tk
,X

i

tk

)]2
)

(74)

+ CE
ν

[
N∑

j=1,j �=i

αij b
(
X

i

tk
,X

j

tk

)− E
ν
[
b
(
x,X

i

tk

) | θi
] ∣∣

x=X
i
tk

]2

+ CE
ν

[
N∑

j=1,j �=i

αij σ
(
X

i

tk
,X

j

tk

) − E
ν[σ (

x,X
i

tk

) | θi] ∣∣
x=X

i
tk

]2

.

Set

SN

(
tk
) = 1

N

N∑
i=1

E
ν
∣∣Xi,N

tk
− X

i

tk

∣∣2,

δ0(tk) = 1

N

N∑
i=1

(
E

ν
[
αiib

(
X

i

tk
,X

i

tk

)]2 + E
ν
[
αiiσ

(
X

i

tk
,X

i

tk

)]2
)
,

�b(tk) = 1

N

N∑
i=1

E
ν

[
N∑

j=1,j �=i

αij b
(
X

i

tk
,X

j

tk

) − E
ν[b(x,X

i

tk

) | θi] ∣∣
x=X

i
tk

]2

,

�σ (tk) = 1

N

N∑
i=1

E
ν

[
N∑

j=1,j �=i

αij σ
(
X

i

tk
,X

j

tk

) − E
ν
[
σ
(
x,X

i

tk

) | θi
] ∣∣

x=X
i
tk

]2

.

In view of (71), (72) and (74), we finally get

SN(tk+1) ≤ (1 + C�t)SN(tk)

+ C �t
(
�t + δ0(tk) + �b(tk) + �σ(tk)

)

+ C�t

N

N∑
j=1

E
ν

(∣∣Xj,N

tk
− X

j

tk

∣∣2 N∑
i=1

αij

)
.

(75)
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The terms �b(tk) and �σ (tk) characterize the accuracy of the approximation of

the regression functions E
ν[b(x,X

i

tk
) | θi = a] and E

ν[σ(x,X
i

tk
) | θi = a] by the

Nadaraya–Watson estimator (40). Indeed, using results of Collomb [8] (we refer
to Vaillant [27], Section 4.3.3 for the easy and lengthy modification of Collomb’s
calculation—here the assumption that q is Lipschitz is used in force) and (68) one
can check that

�b(tk) + �σ (tk) ≤ C

(
1

NhN

+ h2
N + TG(N)

)
.(76)

In view of (70), we deduce that

�b(tk) + �σ (tk) ≤ C

(
1

NhN

+ hN

)
.(77)

The term

1

N

N∑
j=1

E
ν

(∣∣Xj,N

tk
− X

j

tk

∣∣2 N∑
i=1

αij

)

characterizes the uncertainty on the initial condition of the PDE (9). Indeed, if the
measure ν were a Dirac mass, all the weights αij would be equal to 1/N and

1

N

N∑
j=1

E
ν

(∣∣Xj,N

tk
− X

j

tk

∣∣2 N∑
i=1

αij

)
= SN

(
tk
)
.

Suppose that we have shown Lemma 7.3. Owing to estimates (77) and (78),
Proposition 7.2 then follows from the induction (75). �

LEMMA 7.3. Suppose that the hypotheses of Proposition 7.2 hold. Then there
exist a strictly positive constant C, independent of N and �t , and an integer N0
such that, for any N ≥ N0,

δ0
(
tk
)+ 1

N

N∑
j=1

E
ν

(
N∑

i=1

αij

∣∣Xj,N

tk
− X

j

tk

∣∣2) ≤ C

(
SN(tk) + 1√

Nh2
N

+√
hN

)
.(78)

PROOF. As noticed before, if the measure ν were a Dirac mass, all the
weights αij would be equal to 1/N . We thus naturally found it useful to rewrite∑N

i=1 αij in order to separately estimate the different sources of fluctuation around
the value 1:

N∑
i=1

αij =
N∑

i=1

GN(θi − θj )

G(0)/hN + ∑N
k=1,k �=i GN(θi − θk)

(79)
=: 1 + A1(j) + A2(j) + A3(j) + A4(j) + A5(j) + A6(j),
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with

A1(j) = E
ν

(
GN(θi − x)

q(θi)

)∣∣∣∣
x=θj

− 1,

A2(j) = E
ν

(
GN(θi − x)

G(0)/((N − 1)hN) + q(θi)

)∣∣∣∣
x=θj

− E
ν

(
GN(θi − x)

q(θi)

)∣∣∣∣
x=θj

,

A3(j) = 1

N − 1

N∑
i=1, i �=j

GN(θi − θj )

G(0)/((N − 1)hN) + q(θi)

− E
ν

(
GN(θi − x)

G(0)/((N − 1)hN) + q(θi)

)∣∣∣∣
x=θj

,

A4(j) = 1

N − 1

N∑
i=1, i �=j

(
GN(θi − θj )

G(0)/((N − 1)hN) + EνGN(x − θ) |x=θ i

− GN(θi − θj )

G(0)/((N − 1)hN) + q(θi)

)
,

A5(j) = 1

N − 1

N∑
i=1, i �=j

(
GN(θi − θj )

G(0)/((N −1)hN)+1/(N −1)
∑N

k=1,k �=i GN(θi − θk)

− GN(θi − θj )

G(0)/((N − 1)hN) + EνGN(x − θ) |x=θ i

)
,

A6(j) = 1

N − 1

(
GN(0)

G(0)/((N − 1)hN) + 1/(N − 1)
∑N

k=1,k �=j GN(θj − θk)

− GN(0)

G(0)/((N − 1)hN) + EνGN(x − θ) |x=θj

)

+ 1

N − 1

(
GN(0)

G(0)/((N − 1)hN) + EνGN(x − θ) |x=θj

− GN(0)

G(0)/((N − 1)hN) + q(θj )

)

+ 1

N − 1

GN(0)

G(0)/((N − 1)hN) + q(θj )
.

Under hypothesis (iv) of Proposition 7.2, the random variables Xi
0, 1 ≤ i ≤ N ,

have moments up to order 4. Hence, since the functions b and σ are bounded and
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the weights αij satisfy (73),

sup
tk∈[0,T ]

sup
1≤i≤N

(
E

ν[Xi

tk

]4 + E
ν[Xi,N

tk

]4)
< +∞.

Hence, we have

1

N

N∑
j=1

E
ν

{(
N∑

i=1

αij

)∣∣Xj,N

tk
− X

j

tk

∣∣2}

= SN(tk) + 1

N

N∑
j=1

E
ν

( 6∑
k=1

Ak(j)
∣∣Xj,N

tk
− X

j

tk

∣∣2)

≤ SN(tk) + C
1

N

N∑
j=1

(
E

ν |A4(j)|

+
√

Eν
∣∣Xj,N

tk
− X

j

tk

∣∣4( 6∑
k=1, k �=4

√
EνAk(j)2

))
.

Estimate (78) then results from estimates (80)–(82), (84), (89) and (91) below. �

Estimate for the second moment of A1(j). We have

E
ν |A1(j)|2 =

∫ 1

−1

∣∣∣∣Eν

(
GN(θ − x)

q(θ)

)
− 1

∣∣∣∣
2

q(x) dx

=
∫ 1

−1

∣∣∣∣
∫

R

GN(x − z)I[−1,1](z) dz − I[−1,1](x)

∣∣∣∣
2

q(x) dx

≤ ‖q‖L∞(R)

∫ 1

−1

∣∣∣∣
∫

R

GN(x − z)I[−1,1](z) dz − I[−1,1](x)

∣∣∣∣
2

dx.

In view of Lemma 7.1, we conclude

E
ν |A1(j)|2 ≤ ChN.(80)

Estimate for the second moment of A2(j). As q is a strictly positive continuous
function on the compact set [−1,1], there exists a strictly positive constant q∗ such
that, for any y ∈ [−1,1], q(y) ≥ q∗ > 0. Fix x ∈ [−1,1]. We have

E
ν

(
GN(θ − x)

q(θ)

)
− E

ν

(
GN(θ − x)

G(0)/((N − 1)hN) + q(θ)

)

= E
ν

(
GN(θ − x)

q(θ)(G(0)/((N − 1)hN) + q(θ))

)
G(0)

(N − 1)hN

≤ E
νGN(θ − x)

q2∗
G(0)

(N − 1)hN

.
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In view of Lemma 7.1, we finally get

E
ν |A2(j)|2 =

∫ 1

−1

∣∣∣∣Eν

(
GN(θ − x)

q(θ)

)

− E
ν

(
GN(θ − x)

G(0)/((N − 1)hN) + q(θ)

)∣∣∣∣
2

q(x) dx(81)

≤ C

[(N − 1)hN ]2 .

Estimate for the second moment of A3(j). As the random variables θi ,
1 ≤ i ≤ N , are independent and identically distributed, we have

E
ν |A3(j)|2 =

∫ 1

−1
E

ν

∣∣∣∣∣ 1

N − 1

N∑
i=1,i �=j

GN(x − θi)

q(θi) + G(0)/((N − 1)hN)

− E
ν

(
GN(x − θi)

q(θi ) + G(0)/((N − 1)hN)

)∣∣∣∣∣
2

q(x) dx

≤
∫ 1

−1

1

N − 1
E

ν

(
GN(x − θ)

q(θ) + G(0)/((N − 1)hN)

)2

q(x) dx.

For any x ∈ [−1,1], we have

E
ν

(
GN(x − θ)

q(θ) + G(0)/((N − 1)hN)

)2

≤ E
ν

(
GN(x − θ)

q(θ)

)2

=
∫ 1

−1

1

h2
N

G2((x − y)/hN)

q2(y)
q(y) dy

= 1

hN

∫ (x+1)/hN

(x−1)/hN

G2(z)

q(x − zhN)
dz

≤
‖G‖2

L2(R)

q∗
1

hN

.

Consequently,

E
ν |A3(j)|2 ≤ C

(N − 1)hN

.(82)

Contribution of A4(j) to the convergence error. Setting θ = (θ1, . . . , θN), we
have

E
ν
(|A4(j)| ∣∣Xj,N

tk
− X

j

tk

∣∣2) = E
ν
(|A4(j)|Eν

[∣∣Xj,N

tk
− X

j

tk

∣∣2|θ |]),
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since A4(j) is σ(θ)-measurable. Moreover, owing to the boundedness of func-
tions b and σ , hypothesis (iv) of Proposition 7.2 and (73), there exists a strictly
positive constant C such that

∀N ≥ 1, ∀ j = 1, . . . ,N, ∀ k ≤ K, E

[∣∣Xj,N

tk
− X

j

tk

∣∣2θ ]
≤ Ca.s.

Hence, we have

E
ν
(
|A4(j)| ∣∣Xj,N

tk
− X

j

tk

∣∣2) ≤ CE
ν |A4(j)|.(83)

Then, as the random variables θi,1 ≤ i ≤ N , are i.i.d.,

E
ν |A4(j)| ≤ CE

ν

[
1

N − 1

∑
i=1,i �=j

GN(θi − θj )

q(θi )[EνGN(x − θj )] |x=θ i

× ∣∣[EνGN(x − θj )
] ∣∣

x=θ i − q(θi)
∣∣]

≤ CE
ν

[
GN(θ1 − θ2)

q(θ1)[EνGN(x − θ2)] |x=θ1

∣∣[EνGN(x − θ2)
] ∣∣

x=θ1 − q(θ1)
∣∣].

In view of (67), it becomes

E
ν |A4(j)| ≤

(
(q∗)2

∫ 1

0
G(z)dz

)−1

E
ν
[
GN(θ1 − θ2)

× ∣∣ [EνGN(x − θ2)
] ∣∣

x=θ1 − q(θ1)
∣∣]

=
(
(q∗)2

∫ 1

0
G(z)dz

)−1

E
ν
{
E

ν
[
GN(θ1 − θ2) | θ1]

× ∣∣ [EνGN(x − θ2)
] ∣∣

x=θ1 − q(θ1)
∣∣}

≤ CE
ν
∣∣[EνGN(x − θ2)

] ∣∣
x=θ1 − q(θ1)

∣∣ [owing to inequality (66)]
≤ C

√
hN (owing to Lemma 7.1).

Therefore, in view of inequality (83), it holds that

E
∣∣A4(j)

(
X

j,N
t − X

j
t

)2∣∣ ≤ C
√

hN.(84)
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Estimate for the second moment of A5(j). The term A5(j) measures the
convergence rate of the denominator of αij toward its mean value:

GN(θi − θj )

G(0)/((N − 1)hN) + 1/((N − 1)hN)
∑N

k=1,k �=i GN(θi − θk)

− GN(θi − θj )

G(0)/((N − 1)hN) + EνGN(x − θ) |x=θ i

= GN(θi − θj )

D1(N)D2(N)

×
(

E
νGN(x − θ)

∣∣
x=θ i − 1

(N − 1)hN

N∑
k=1,k �=i

GN(θi − θk)

)
,

where

D1(N) = G(0)

(N − 1)hN

+ 1

(N − 1)hN

N∑
k=1,k �=i

GN(θi − θk),

D2(N) = G(0)

(N − 1)hN

+ E
νGN(x − θ) |x=θ i .

Owing to the lower bound (67), we see that D2(N) is bounded from below by a
strictly positive constant independent of N . This property does not hold for D1(N).
We thus use a localization argument by introducing the event

[∣∣∣∣∣ 1

N − 1

N∑
k=1,k �=i

GN(x − θk) − E
νGN(x − θ)

∣∣∣∣∣ ≥ η(N,a)

]
.

We start by showing that there exists η(N,a) > 0 such that

P
ν

(∣∣∣∣∣ 1

N − 1

N∑
k=1,k �=i

GN(x − θk) − E
νGN(x − θ)

∣∣∣∣∣ ≥ η(N,a)

)
≤ 1

Na
(85)

for all (N,a) ∈ N × R
+∗ , and that

lim
N→+∞η(N,a) = 0 if lim

N→+∞
log(N)

Nh2
N

= 0.(86)

Indeed, the random variables

Yk(N,x) := hNGN(x − θk) − E
νGn(x − θk), 1 ≤ k ≤ N,
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are i.i.d. and bounded by 2‖G‖L∞(R). Then Hoeffding’s inequality implies

P
ν

(∣∣∣∣∣ 1

N − 1

N∑
k=1, k �=i

GN(x − θk) − E
νGN(x − θ)

∣∣∣∣∣ ≥ η(N,a)

)

= P
ν

(∣∣∣∣∣
N−1∑
k=1

Yk(N,x)

∣∣∣∣∣ ≥ (N − 1)η(N,a)hN

)

≤ exp
(
−(N − 1)(η(N,a)hN)2

2‖G‖2
L∞(R)

)
.

Hence, inequality (85) and the limits in (86) hold for

η(N,a) =
√

2‖G‖2
L∞(R)a

log N

(N − 1)h2
N

.

We are now in a position to estimate the second moment of A5(j). For x ∈ [−1,1]
and a > 0, set

E(x,N,a) =
{
ω
/∣∣∣∣∣ 1

N − 1

N∑
k=1,k �=i

GN

(
x − θk(ω)

) − E
νGN(x − θ)

∣∣∣∣∣ ≤ η(N,a)

}
,

A5(j, x) = GN(x − θj )

G(0)/((N − 1)hN) + 1/(N − 1)
∑N

k=1,k �=i GN(x − θk)

− GN(x − θj )

G(0)/((N − 1)hN) + EνGN(x − θ)
.

As η(N,a) tends to 0 when N tends to ∞, we have, for N large enough,

η(N,a) ≤ 1
2q∗

∫ 1

0
G(z)dz.

Thus, in view of (67), we have

1

N − 1

N∑
k=1,k �=i

GN(x − θk) ≥ 1

2
q∗

∫ 1

0
G(z)dz

on the event E(x,N,a). Therefore,

E
ν
{|A5(j, x)|2I

(
E(x,N,a)

)}
(87)

≤ CE
ν

{
GN(x − θj )

∣∣∣∣∣ 1

N − 1

N∑
k=1,k �=i

GN(x − θk) − E
νGN(x − θi)

∣∣∣∣∣
}2

.
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We then distinguish two cases:

• j = i. As the random variables θk are independent and the sum only concerns
subscripts different from i, the random variables GN(x − θi) and 1/(N − 1)

× ∑N
k=1,k �=i GN(x − θk) − E

ν[GN(x − θ)] are independent. Thus,

E
ν
{| A5(i, x) |2 I

(
E(x,η,N)

)}

≤ E
ν[G2

N(x − θi)]Eν

∣∣∣∣∣ 1

N − 1

N∑
k=1,k �=i

GN(x − θk) − E
ν[GN(x − θ)]

∣∣∣∣∣
2

≤ CE
ν [G2

N(x − θi)] 1

N − 1
E

ν[G2
N(x − θ)]

≤ C

(N − 1)h2
N

.

• j �= i. We isolate the term GN(x − θi) from the rest of the sum. A computation
similar to the case j = i leads to

E
ν{|A5(j, x)|2 I

(
E(x,η,N)

)} ≤ C

(
1

Nh2
N

+ 1

(N − 1)2h2
N

)
.

Finally, it becomes

E
ν
{|A5(j, x)|2 I

(
E(x,N,a)

)} ≤ C

Nh2
N

.(88)

On the other hand, roughly bounding GN by 1/hN and then A5(j, x) by CN and
using (85), we have

E
ν |A5(j, x)|2 ≤ C

Nh2
N

for a and η(N,a) suitably chosen and any j ≤ N .
Observing that the constant C does not depend on x ∈ [−1,1], we conclude

E
ν |A5(j)|2 = 1

N − 1

N∑
i=1,i �=j

∫ 1

−1
E

ν |A5(j, x)|2q(x) dx ≤ C

Nh2
N

.(89)

Estimate for E
ν[A6(j)]2 and δ0(tk). These two terms concern the interaction

of a particle with itself. For the first term of A6(j), we observe that it looks like
A5(j), except that the numerator is constant and of order 1/hN ; for the two last
terms, we use Lemma 7.1 and get

E
ν |A6(j)|2 ≤ C

(
1

N2h3
N

+ 1

N2h2
N

)
≤ 2C

(
1

N2h3
N

)
.(90)
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Moreover, as the random variables (X
i

tk
, θ i), 1 ≤ i ≤ N , are i.i.d.,

δ0(tk) = 1

N

N∑
i=1

(
E

ν
[
αiib

(
X

i

tk
,X

i

tk

)]2 + E
ν
[
αiiσ

(
X

i

tk
,X

i

tk

)]2)

= E
ν[α11b

(
X

1
tk
,X

1
tk

)]2 + E
ν[α11σ

(
X

1
tk
,X

1
tk

)]2

≤ (‖b‖2
L∞(R2)

+ ‖σ‖2
L∞(R2)

)
E

ν[α11],

≤ CE
ν

∣∣∣∣α11 − 1

N − 1

∣∣∣∣ + 1

N − 1
.

Proceeding as in the preceding steps, we get

δ0(tk) ≤ C

(
1

N

(
1√

Nh2
N

+ √
hN

)
+ 1

N − 1

)
.(91)

We can finally estimate the accuracy of the particle method. This is a
straightforward consequence of (49), (50), (77), Proposition 5.1 and Lemma 7.3.

THEOREM 7.4. Suppose that the hypotheses of Proposition 7.2 hold. Then
there exists an integer N0 such that, for any N ≥ N0 and any test function
f ∈ C4+ε

b (R), 0 < ε < 1,

E
ν

∣∣∣∣∣〈M1(T ), f 〉L2(R) − 1

N

N∑
i=1

f
(
X

i,N

T

)∣∣∣∣∣
2

≤ C

(
1√

Nh2
N

+ √
hN + (�t)2

)
.

8. Conclusion. We have constructed an original and efficient stochastic
method to compute moments of statistical solutions of McKean–Vlasov equations,
and we have analyzed the convergence rate of the method. Several extensions
should be studied in the future, for example: first, the cases of nonsmooth
interaction kernels and, in particular, the cases of the Burgers and Navier–Stokes
equations; second, the use of random weights other than ours, for example, weights
resulting from conditional expectation estimators using wavelets.

In [25] we present numerical results describing the satisfying performances of
our particle method for the computation of statistical solutions of Burger’s and the
Navier–Stokes equations.

APPENDIX

LEMMA A.1. Suppose that the hypotheses of Proposition 2.3 hold. Then, for
any function g ∈ Cb(C([0, T ],R),R), the mapping

a ∈ [−1,1] �→ Eg
(
X·(a)

)
is continuous.
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PROOF. Let g ∈ Cb(C([0, T ],R)). For any a ∈ [−1,1], let PX·(a) denote the
law of the process X·(a). Let a sequence (an) ⊂ [−1,1] converge to a. We have
to verify that the sequence (PX·(an)) weakly converges to PX·(a). Owing to the
boundedness of the functions b and σ , it is clear that

sup
n∈N

E

{
sup

t∈[0,T ]
|Xt(an) − Xs(an)|4

}
≤ C(T )(t − s)2.

The sequence (PX·(an)) is thus tight, so there exists a subsequence of (PX·(an)),
which we abusively denote by (PX·(an)), that weakly converges to a probability
measure P

∞ on C([0, T ],R). It remains to prove that P
∞ is equal to PX·(a).

As (10) has a unique solution in law, this is equivalent to showing that P
∞ is the

unique solution of the martingale problem associated with the operator La
t defined

in (32).
So let ψ ∈ C2

b(R), p ∈ N, h ∈ Cb(R
p) and (t1, . . . , tp, s, t) ∈ [0, T ]p , such that

0 ≤ t1 ≤ · · · ≤ tp ≤ s ≤ t.

For any α ∈ [−1,1], we set

Mt(ψ,Lα) = ψ
(
x(t)

) − ψ
(
x(0)

)−
∫ t

0
Lα

τ ψ
(
x(τ )

)
dτ,(92)

where x(·) is the canonical process on C([0, T ],R). For any probability measure m

on C([0, T ],R), we set

�(m,α) := E
m[

h
(
x(t1), . . . , x(tp)

)(
Mt(ψ,Lα) − Ms(ψ,Lα)

)]
.(93)

We have to prove:

(a) ∀ ψ̃ ∈ Cb(R), E
P

∞[ψ̃(x(0))] − ∫
R

ψ̃(x)[�(a)](x) dx = 0;
(b) �(P∞, a) = 0.

As (PX·(an)) weakly converges to P
∞, for any function ψ̃ ∈ Cb(R),

E
P

∞[ψ̃(x0)] −
∫

R

ψ̃(x)[�(a)](x) dx

= lim
n→+∞

{
E

PX·(an)[ψ̃(x0)] −
∫

R

ψ̃(x)[�(a)](x) dx

}

= lim
n→+∞

∫
R

ψ̃(x)
{[�(an)](x) − [�(a)](x)

}
dx

≤ ‖ψ̃‖L∞(R) lim
n→+∞

∥∥[�(an)] − [�(a)]∥∥L1(R)

= 0.

It now remains to prove property (b). One has

�(P∞, a) = �(P∞, a) − �(PX·(an), a) + �(PX·(an), a)

− �(PX·(an), an) + �(PX·(an), an).
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As (PX·(an)) weakly converges to P
∞,

lim
n→+∞

{
�(P∞, a) − �(PX·(an), a)

} = 0.(94)

Moreover, the measure PX·(an) is a solution of the martingale problem associated
with the operator L

an
t , so

�(PX·(an), an) = 0 ∀n ∈ N.(95)

Finally, one has

�(PX·(an), a) − �(PX·(an), an)

= E

[
h
(
Xt1(an), . . . ,Xtp (an)

) ∫ t

s
(La

τ − Lan
τ )ψ

(
Xτ (an)

)
dτ

]

= E

[
h
(
Xt1(an), . . . ,Xtp (an)

)

×
∫ t

s

(
ub

(
τ,Xτ (an), a

) − ub

(
τ,Xτ (an), an

))
ψ ′(Xτ (an)

)
dτ

]

+ E

[
h
(
Xt1(an), . . . ,Xtp (an)

)

×
∫ t

s

1
2

(
u2

σ

(
τ,Xτ (an), a

)− u2
σ

(
τ,Xτ (an), an

))
ψ ′′(Xτ (an)

)
dτ

]
.

By boundedness of the functions ψ,ψ ′,ψ ′′ and h and properties (7) and (8) of b

and σ , it is easy to check that

�(PX·(an), a) − �(PX·(an), an)

(96)
≤ C sup

τ∈[0,T ]
‖(Sτ ◦ �)(an) − (Sτ ◦ �)(a)‖L1(R),

(7), where the operator S ◦ � has been defined in Proposition 2.3. Then, owing to
Proposition 2.4,

lim
n→+∞

{
�(PX·(an), a) − �(PX·(an), an)

} = 0.(97)

Property (b) results from (94), (95) and (97). �
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