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THE STEPPING STONE MODEL:
NEW FORMULAS EXPOSE OLD MYTHS

BY J. THEODORE COX AND RICHARD DURRETT

Syracuse University and Cornell University

We study the stepping stone model on the two-dimensional torus. We
prove several new hitting time results for random walks from which we derive
some simple approximation formulas for the homozygosity in the stepping
stone model as a function of the separation of the colonies and for Wright’s
genetic distance FST . These results confirm a result of Crow and Aoki (1984)
found by simulation: in the usual biological range of parameters FST grows
like the log of the number of colonies. In the other direction, our formulas
show that there is significant spatial structure in parts of parameter space
where Maruyama and Nei (1971) and Slatkin and Barton (1989) have called
the stepping model “effectively panmictic.”

1. Introduction. The phrase “isolation by distance” was introduced by
Wright (1943) to describe the accumulation of local genetic differences under
geographically restricted dispersal. The effects of population subdivision have
primarily been studied using two models. The first, introduced by Wright (1943),
is the island model, in which a population consists of s colonies of equal size,
and migration probabilities are equal for each pair of colonies. The great amount
of symmetry of the island model makes it easy to solve the model exactly. An
account of the theory can be found in Section 7 of Hudson (1990) or Nei and
Takahata (1993).

The second approach, which will be the focus of this investigation, is the
stepping stone model of Kimura (1953). This process was studied extensively
in the genetics literature for at least two decades before being rediscovered by
probabilists Clifford and Sudbury (1973) and Holley and Liggett (1975) under
the name the voter model. At that time Kimura and Weiss (1964), Weiss and
Kimura (1965), Malécot (1967, 1969 1975), Maruyama (1970, 1971, 1972),
Nagylaki (1974) and others had built a detailed theory that could be used to
answer many questions of interest to geneticists. Work on the stepping stone model
has, of course, continued during the last 25 years. See Crow and Aoki (1984),
Strobeck (1987), Slatkin and Barton (1989), Slatkin (1991, 1993), Hey (1991) and
Wilkinson-Herbots (1998).

In a parallel endeavor, the voter model has been studied extensively by
probabilists. Our investigations here have their roots in the work of Sawyer (1976,
1979) and Cox and Griffeath (1986) who examined the spatial structure of the
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voter model, and in the work of Cox (1989) and Cox and Greven (1991) on the
voter model on a finite set. It is unfortunate for biological applications that most of
this work has been carried out under the assumption of nearest neighbor dispersal
and with one individual per location. Here we will allow for more general dispersal
distributions, and at each spatial location we will have a colony with one or more
individuals. The second generalization is needed for modeling. One can imagine
that early humans lived in small groups with infrequent exchanges between groups,
or one can think of the Napa Valley in California where different Drosophila
populations live on rotting fruit piles at different vineyards that are separated by
several miles.

We represent space as the torus �(L) = ((−L/2,L/2] ∩ Z)2, where Z is the
set of integers. Following the practice in the biology literature, we suppose that
at each point x ∈ �(L) there is a colony consisting of N diploid or 2N haploid
individuals, labeled 1, . . . ,2N . The type of an individual will be a real number in
the unit interval (0, 1), new mutant types being chosen randomly from (0, 1). The
only thing important about this type space is that each new chosen value will be
different from all previous ones. In genetics terms we are using the infinite alleles
model.

The population evolves in discrete time, with generation n+ 1 obtained from
generation n in the following way. Consider a given individual in colony x. With
probability µ, this individual mutates to a new type and, with probability (1 −µ)
· p(x, y), assumes the type of an individual chosen at random (in generation n)
from the colony at y. All such mutations and choices are assumed to be
independent for all individuals at all colonies.

We assume that the transition probability p(x, y) is given by

p(x, y)= (1 − ν)I (x, y)+ νq(y − x),(1.1)

where I (x, y) is 1 if x = y and 0 otherwise, and the difference y − x ∈ �(L) is
computed componentwise and modulo L. We have separated the kernel into two
parts since we will be interested in limits as L→ ∞ in which the migration rate ν
may converge to 0 but q(z) is a fixed displacement kernel. We suppose q(z) is an
irreducible probability distribution on Z2 with q((0,0))= 0 that has the following
properties:

(i) Z2 symmetry. q((x1, x2))= q((−x1,−x2)) and q((x1, x2))= q((x2, x1)).
(ii) Finite range. q((x1, x2))= 0 if supi |xi | ≥K .

We will suppose that L ≥ 2K so that we do not get confused when we try to
define the corresponding random walk transition probability on the torus. The first
assumption implies that a single step taken according to q has zero mean and
covariance σ 2I , where σ 2 = ∑

z∈Z2 z2
1q(z) = ∑

z∈Z2 z2
2q(z). The finite range

condition implies σ 2 <∞.
To study the behavior of the stepping stone model, we work backward in time

to define a coalescing random walk with killing. Individuals whose state is the
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result of a new mutation are killed, since we no longer have to work backward to
determine their state. Other particles make a jump from colony x to colony y with
probability p(x, y) and land at a randomly chosen site within the colony. Suppose,
for the moment, that the mutation rate µ = 0 and consider the genealogy of a
sample of size 2 chosen at random from the population. As we work backward,
let T0 be the amount of time required until the two lineages first reside in the
same colony and let t0 be the total amount of time needed for the two lineages
to coalesce to one. Let Xk be the difference in the locations of the two particles
(computed modulo L). Since the two particles were chosen randomly from the
torus, the distribution of X0 is the uniform distribution on �(L), which we denote
by π . Let Pπ denote the distribution of the difference of two random walks starting
from a pair of points chosen randomly on the torus. Using the methods of Section 2
of Cox (1989), we can prove the following, which generalizes results in Flatto,
Odlyzko and Wales (1985).

THEOREM 1. For any t > 0, as L→ ∞, uniformly for ν ∈ (0,1],

Pπ

(
T0 >

L2 logL

2πνσ 2 t

)
→ e−t .(1.2)

SKETCH OF PROOF. To explain the size of the normalizer, note that
Pπ(Xn = 0) = 1/L2, and the local central limit theorem implies P0(Xn = 0) ∼
(2π(2νσ 2)n)−1, so

1 =
L2−1∑
n=0

Pπ(Xn = 0)=
L2−1∑
m=0

Pπ(T0 =m)
L2−m∑
k=0

P0(Xk = 0)

≈ Pπ(T0 ≤ L2)
log(L2)

2π(2νσ 2)
.

Rearranging gives Pπ(T0 ≤ L2) ≈ 2πσ 2ν/ logL. To see why the limit is
exponential, one can show that Xn comes to equilibrium in time o(L2 logL/ν),
so the limit distribution of T0/(L

2 logL/ν) must have the lack of memory pro-
perty. �

NOTE . We will use the notation a ≈ b to mean that a is approximately equal
to b, but we will not be precise about the conditions or details of the approximation.
We will also use the notation an ∼ bn as n→ ∞ to mean that limn→∞ an/bn = 1.

The typical distance between two points compared in Theorem 1 is of order L.
When we look at closer distances the result changes. Let Px denote the law of
the difference of two walks when one starts in colony 0 and one in colony x.
(If x = 0 we pick two distinct individuals from colony 0.) Letting |x| denote the
usual Euclidean norm, we can now state the following result.
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THEOREM 2. Suppose x = xL satisfies limL→∞(log+ |x|)/ logL = β ∈
[0,1]. Then, for any t > 0, as L→ ∞, uniformly for ν ∈ (0,1],

Px

(
T0 >

L2 logL

2πνσ 2
t

)
→ βe−t .(1.3)

SKETCH OF PROOF. This generalizes a result in Cox and Greven (1991). The
main idea behind (1.3) is that if (log+ |x|)/ logL→ β , then

Px(T0 ≤ L2/ν)→ 1 − β.
When T0 >L

2/ν, it is likely that T0 >L
2√logL/ν at which time the distribution

of Xn has become uniform over the torus, and the longer time behavior is as in
Theorem 1. �

Getting the two lineages to the same colony at time T0 is only the first part of the
coalescence time t0. For the second part after T0, we need only be concerned with
the distribution of t0 under P0. We begin with a surprising formula of Strobeck
(1987), which shows that E0t0 is independent of the value of the migration rate
ν > 0 and of the dispersal kernel q(x). The proof we give here is new and is
a simple application of the cycle trick for Markov chains [see Theorem 5.4.3 in
Durrett (1996)].

THEOREM 3. E0t0 = 2NL2.

PROOF. When both lineages are in the same colony, they have probability
1/2N per generation to hit, so E0t0 = 2NE0T

′
0, where T ′

0 is the first time t ≥ 1
that the two lines are in the same colony. (Recall that E0 refers to picking two
distinct individuals from the same colony.) The stationary distribution for the
migration process is uniform, so it follows from the cycle trick representation of
the stationary distribution that E0T

′
0 = L2. �

Comparing Theorems 1 and 3, we see that there are two extreme possibilities

ET0 =O(L2 logL/ν) <<O(2NL2)=Et0 or ET0 >>Et0.(1.4)

In the first case the two lineages will come to the same colony in o(NL2) so the
actual starting positions of the particles does not matter, and the limit distribution
will have the lack of memory property.

THEOREM 4. If limL→∞Nν/ logL= ∞, then, for any t > 0 as L→ ∞,

sup
x∈�(L)

|Px(t0 > 2NL2t)− e−t | → 0.(1.5)
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Conventional wisdom [see pages 125–126 of Kimura and Maruyama (1971)]
says that “marked local differentiation of gene frequencies can occur if Nν < 1
where N is the effective size of each colony and ν is the rate at which each colony
exchanges individuals with the four surrounding colonies.” In the other direction
“if Nν > 1 local differentiation is less pronounced and especially if Nν ≥ 4, the
whole population tends to behave as a panmictic unit.” As Theorem 4 and the next
result show, Nν must be larger than logL in order for the system to behave as if it
were homogeneously mixing.

THEOREM 5. If limL→∞ 2Nπσ 2ν/ logL = α ∈ [0,∞), then, for any t > 0
as L→ ∞,

Pπ

(
t0 > (1 + α)L

2 logL

2πνσ 2
t

)
→ e−t .(1.6)

If x = xL satisfies limL→∞(log+ |x|)/ logL= β ∈ [0,1], then, as L→ ∞,

Px

(
t0 > (1 + α)L

2 logL

2πνσ 2 t

)
→

(
β + (1 − β) α

1 + α
)
e−t .(1.7)

SKETCH OF PROOF. It suffices to prove the second conclusion. By the
reasoning for Theorem 2, the probability the two lineages will enter the same
colony before time L2/ν is about 1 −β . As the proof will show, when they do they
will be in the same colony a geometrically distributed number of times with mean
logL/πνσ 2 before time L2/ν. Therefore the probability of coalescence before
time L2/ν is approximately

1/(2N)

1/(2N)+ πνσ 2/ logL
→ 1

1 + α as L→ ∞.

If a large multiple ofL2/ν units of time elapses between times that the two lineages
are in the same colony, then the relative positions of the particles randomize
over the torus and we are back to waiting for T0 to happen under Pπ . After
a geometrically distributed number of attempts, each with success probability
1/(1 + α), the cycle ends with successful coalescence. Since the sum of a
geometric number of exponentials is exponential, the result follows. �

In Section 2 we use Theorems 1–5 to compute various quantities of interest in
genetics. Our main aim there is to dispel the myth that the stepping stone model is
too complicated for practical applications. The remainder of the paper is devoted
to proofs. Theorems 1 and 2 are proved in Section 3, Theorem 4 in Section 4 and
Theorem 5 in Section 5.
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2. Applications to the stepping stone model. Our results in Theorems 4
and 5 about the coalescence time t0 allow us to compute the distribution of any
quantity that involves only pairwise comparison of DNA sequences. In this section
we will consider three of these: (i) the probability two randomly chosen individuals
are identical by descent, (ii) the decay of genetic correlation with distance and
(iii) Wright’s (1951) measure of population subdivision, FST .

(i) Identity by descent. Two individuals will be identical by descent if (and
only if) no mutation has occurred before t0. If these individuals are picked at
random from the population and we let h denote the probability they are identical
by descent, then

h=Eπ(1 −µ)2t0 .(2.1)

If t0/cL equals (approximately) 0 with probability 1 − ρ and a mean one
exponential random variable with probability ρ, as is the case in all of the
conclusions of Theorems 4 and 5, then

h≈ (1 − ρ)+ ρ
∫ ∞

0
e2cL ln(1−µ)te−t dt = (1 − ρ)+ ρ

1 − 2cL ln(1 −µ).(2.2)

In the case of Theorem 4, ρ = 1 and cL = 2NL2. Using the approximation
ln(1 − x) ≈ −x for small x and letting NT = NL2 denote the total number of
individuals in the system,

h≈ 1

1 − 4NL2 ln(1 −µ) ≈ (1 + 4NTµ)
−1(2.3)

for small µ, the classic result for a homogeneously mixing population with NT
individuals. [See, e.g., page 10 of Hudson’s (1991) survey.] In contrast, if we let
L→ ∞ with constant colony size N , then we end up in the α = 0 case of the first
result of Theorem 5. Again ρ = 1, but this time the normalizing constant is

cL = L2 logL

2πσ 2ν
,

so using (2.2) we end up with

h≈
(

1 + L2 logL)

πσ 2ν
µ

)−1

.(2.4)

Turning (2.3) around, we see that the value of h given in (2.4) is that of a
homogeneously mixing population with effective population size

Ne = L2 logL

4πσ 2ν
.(2.5)

For a numerical example consider a 50 × 50 grid of colonies of size 20 for
a total of 50,000 individuals (L = 50,N = 20). Suppose there is migration with
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equal probability to each of the other 24 points in a 5 × 5 square centered at the
point (σ 2 = 50/24), and let ν = 0.1 have the number of migrants per generation
Nν = 2. In this case the effective population size is

Ne ≈ 2500(3.91202)

4(3.14159)(50/24)0.1
≈ 3736

versus the actual population size NT = 50,000.
It is interesting to contrast the last calculation with the island model in which

there are s subpopulations with N individuals and transition probability

p(x, y)=
{

1 − ν, x = y,
ν/(s − 1), x �= y.

Nei and Takahata (1993) found that the island model behaves like a homoge-
neously mixing population of size

Ne =Ns
(

1 + (s − 1)2

4Nνs2

)
.(2.6)

Note that the first factor Ns is the actual population size, while the factor in
parentheses is larger than 1, and is close to 1 + (1/4Nν) when the number of
subpopulations s is large. Thus, in contrast to the stepping stone model, in the
island model the effective population size Ne is always larger than the actual
population size.

(ii) Decay of correlation with distance. Pick one individual from the colony
at 0 and one from the colony at x (if x = 0 pick two distinct individuals from
the colony at 0). Let φ(x) be the probability the two individuals are identical
by descent. As Slatkin (1991) has observed, when the mutation rate is small,
1 − φ(x)≈ 2µExt0. Noting that Ext0 =ExT0 +E0t0, we have

φ(0)− φ(x)≈ 2µExT0.(2.7)

By Theorem 2, if L→ ∞ and log+ |x|/ logL→ β , then we should have

ExT0 ≈ βL
2 logL

2πσ 2ν
.

Replacing β by log+ |x|/ logL on the right-hand side and using (2.7), we see that,
for small µ,

φ(0)− φ(x)≈ 2µ
log+ |x|

logL
· L

2 logL

2πσ 2ν
=µ · log+ |x| · L2

πσ 2ν
.(2.8)

That is, the difference φ(0)− φ(x) is proportional to log+ |x|.
To get a check on the quality of this approximation, we may use the exact results

of Maruyama (1970) [see formula (5.12) on page 512] to compute φ(m,0) for the
case L= 50,N = 20, with nearest neighbor migration (σ 2 = 0.5) at rate ν = 0.05,
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FIG. 1. Homozygosity as a function of the log of the distance.

and with a mutation rate µ= 10−7. Figure 1 shows φ(m,0) plotted against logm.
Note that φ(m,0) does decrease roughly linearly with the logarithm of the distance
between the colonies until the effect of wraparound on the torus kicks in.

The heterozygosities 1 − φ(m,0) are quite small here, but they do range from
0.021 to 0.029, an increase of about 40% as we move across the system. The fact
that there is spatial structure in this case contradicts Slatkin and Barton (1989)
who predict that the population should be effectively panmictic. Their heuristic
argument is simple. The amount of time until a lineage encounters a mutation is
of order 1/µ. The amount of variance in the random walk at this time is σ 2ν/µ,
so if this is much smaller than L2 two lineages from opposite points of the torus
will have little chance to meet before a mutation and there will be significant spatial
structure. The last conclusion is clearly correct. However, Slatkin and Barton argue
that conversely if σ 2ν/µ is much larger than L2 then the genealogies will have
wrapped around the torus many times and spatial structure is lost. The preceding
example shows that there is a flaw in this reasoning, since in that case

σ 2ν

µ
= (0.5)(0.05)

10−7 = 250,000 � 2500 =L2,

but there is significant spatial structure.
To further investigate the values of µ for which a system is effectively

panmictic, we have considered the last example for various values of the mutation
rate. Figure 2 plots φ(0) as determined by Maruyama’s (1970) exact formula,
a “large mutation approximation” due to Nagylaki (1974) and the mean field
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FIG. 2. Comparison of the probability that two individuals in the same colony are identical
by descent as computed by Maruyama’s exact solution (squares), Nagylaki’s large mutation
approximation (diamonds) and the result for a homogeneously mixing population (circles).

value given in (2.3). Let µ0 = νσ 2/L2 = 10−5 and µ1 = νσ 2/(L2 logL) ≈
(10−5)/3.91. Note that, as our theory predicts, the large mutation approximation
works well for µ >> µ0, while mean field theory works well for µ << µ1 ≈
2.5 × 10−6.

(iii) Wright’s (1951) statistic FST . This statistic was invented to quantify the
amount of genetic differentiation in a spatially distributed population. Following
Nei (1975), we define it as

FST = φ(0)− φ̄
1 − φ̄ ,(2.9)

where, as before, φ(0) is the probability of identity by descent for two individuals
sampled from the same colony and φ̄ is the probability for two individuals sampled
at random from the entire population. As before, when the mutation rate is small,
1 − φ̄ ≈ 2µEπt0 and 1 − φ(0)≈ 2µE0t0, so

FST ≈ Eπt0 −E0t0

Eπt0
= EπT0

EπT0 +E0t0
.(2.10)
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Using Theorems 1 and 3, it follows that if 2Nπσ 2ν/ logL→ α ∈ (0,∞), then

FST ≈ L2 logL/(2πνσ 2)

L2 logL/(2πνσ 2)+ 2NL2 ≈ 1

1 + 2α
.(2.11)

This says that FST is close to 0 if and only if Nν >> logL. Crow and Aoki (1984)
did a numerical study of FST for the nearest neighbor stepping stone model and
found (see page 6075) that FST is roughly proportional to logn, where n= L2 is
the number of colonies. In the cases they considered, logL/(2πνσ 2) << 2N , so
the first term in the denominator of (2.11) can be ignored, and we have

FST ≈ logL

4Nπνσ 2 = 1

8Nπνσ 2 log(L2),

confirming their prediction.
It is interesting to compare (2.11) with the corresponding formula for the island

model. In this case Nei and Takahata (1993) have shown

FST = 1

1 + 4Nνs2/(s − 1)2
.(2.12)

Most authors assume s is large to suppress the factor s2/(s − 1)2, so that FST ≈
(1 + 4Nν)−1, and one can estimate the scaled migration rate Nν by

M̂ = 1

4

(
1

FST
− 1

)
(2.13)

[see, e.g., page 265 of Slatkin (1993)]. Suppose the population being sampled has
a stepping stone structure, and one uses the island model formula (2.13). Using
(2.11) in (2.13) and the assumption 2Nπσ 2ν/ logL≈ α, we find that

M̂ ≈ α

2
≈Nνσ 2 · π

logL
,(2.14)

so there is a bias which depends on the size of the system. Here, we have kept the
σ 2 with Nν, since in the stepping stone model the scaled migration rate Nνσ 2 is
what one can most simply estimate from observations.

In (1998) Seielstad, Minch and Cavalli-Sforza used FST values with the island
model formula to make the following estimates of human migration rates from
three different types of genetic material: mitochondrial DNA (mtDNA), the Y
chromosome and the non-sex chromosomes called autosomes.

Genetic system FST Neν Ne

mtDNA 0.186 4.38 N/2
autosomes 0.144 1.49 2N
Y chromosome 0.645 0.55 N/2
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To explain the last column, note that males have one Y chromosome and females
zero; mtDNA is haploid and inherited from an individual’s mother, so in mtDNA
evolution males can be ignored.

If we imagine the world to be a 50 × 50 grid (L = 50), then the correction
factor π/ logL is about 0.4, and there is a significant amount of bias from using an
island model formula on a stepping stone population. The point is moot, however.
Seielstad, Minch and Cavalli-Sforza (1998) used the fact that the ratio of estimates
from mtDNA and Y chromosome data is 8 to conclude that the migration rate for
females is 8 times that for males. When this is done the extra factor cancels out.

3. Proofs of Theorems 1 and 2. In this section we prove the indicated
results by following the basic approach of Cox (1989), where simple random
walk in continuous time is treated. Here, we work with discrete time, use a more
general random walk and need uniformity in the parameter ν. We will begin with
Theorem 2, which implies Theorem 1, since, under Pπ , the probability that the
distance between the two chosen particles is larger than L/(logL) tends to 1 as
L→ ∞.

LetW 1
n andW 2

n be independent random walks on Z2 that take jumps according
to q with probability ν and do not move with probability 1 − ν. Let Xn be the
difference random walk on the torus

Xn =W 2
n −W 1

n mod L,

so that T0 = inf{n ≥ 1 : Xn = 0}. To get rid of the dependence on ν, it is useful
to scale time by the factor ν. Let Ys = X[s/ν] for s ≥ 0, where [t] is the largest
integer less than or equal to t , and let ρLs (x, y)= Px(Ys = y). Note that ρLs (x, y)
is defined for all s ≥ 0 and is constant between integer multiples of 1/ν. Let
T̂0 = min{s ≥ 0 : Ys = 0} and define the transforms

FL(x,λ)= Ex exp(−λT̂0),

GL(x,λ)=
∫ ∞

0
e−λtρLt (x,0) dt.

Breaking things down according to the value of T̂0, and using the Markov property
of Ys (which holds at times s = mν), shows that GL(x,λ) = FL(x,λ)GL(0, λ)
and hence that

FL(x,λ)= GL(x,λ)

GL(0, λ)
.(3.1)

We will prove Theorem 2 by determining the limiting behavior of GL(x,λ) for
appropriate λ and applying (3.1). To do this, we need several preliminary facts
which are consequences of the local central limit theorem.
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LEMMA 3.1. (a) Let εL = 1/
√

logL. There is a finite constant C such that, if
L≥ 2,

sup
u≥εLL2

sup
x∈�(L)

εLL
2 · ρLu (x,0)≤ C.(3.2)

(b) If tL → ∞ as L→ ∞, then, uniformly for ν ∈ (0,1],
sup
u≥tLL2

sup
x∈�(L)

L2|ρLu (x,0)−L−2| → 0.(3.3)

(c) If uL → ∞ as L→ ∞, then

sup
x∈�(L)

sup
uL(1+|x|)2≤t≤εLL2

∣∣(2π(2σ 2)t
)
ρLt (x,0)− 1

∣∣→ 0.(3.4)

(d) There is a finite constant C such that

sup
u≥0, x∈�(L)

(1 + |x|2)ρLu (x,0)≤ C.(3.5)

To encourage the reader to skip the proof of Lemma 3.1, we have hidden it away
in the Appendix. In each case one first uses the local central limit theorem to prove
the result for the random walk with jump kernel q . Then one uses the fact that ρLt
corresponds to a binomial(2[t/ν], ν) number of steps according to q .

The next result is:

LEMMA 3.2. Suppose log+ |x|/ logL → β ∈ [0,1] as L → ∞. Then,
uniformly for ν ∈ (0,1],

GL(x,λ/L
2 logL)

logL
→ λ−1 + (1 − β) 1

2πσ 2 .(3.6)

It follows from (3.1) and Lemma 3.2 that if log+ |x|/ logL → β ∈ [0,1] as
L→ ∞, then

FL

(
x,

2πσ 2λ

L2 logL

)
→ λ−1 + (1 − β)

λ−1 + 1
.

That is, as L→ ∞, uniformly in ν ∈ (0,1],

Ex exp
(
− 2πσ 2λ

L2 logL
T̂0

)
→ (1 − β)+ β 1

1 + λ.

The right-hand side above is the Laplace transform of the distribution that is 1 −β
times a point mass at 0 plus β times a mean one exponential. By a standard
argument, Theorem 2 follows.
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PROOF OF LEMMA 3.2. We will write o(1) for a quantity that tends to 0,
uniformly in ν ∈ (0,1], as L → ∞. Let εL = 1/(logL)1/2 and assume that
tL → ∞ and uL → ∞ such that tL/(logL)1/2 → 0 and uL/ logL→ 0 as L→ ∞.
We compute the left-hand side of (3.6) as follows. By (3.3),

1

logL

∫ ∞
tLL

2
exp

( −λt
L2 logL

)
ρLt (x,0) dt

= 1

logL

∫ ∞
tLL

2
exp

( −λt
L2 logL

)
1 + o(1)
L2 dt

= 1 + o(1)
λ

exp
(−λtL

logL

)
→ λ−1

(3.7)

as L→ ∞. By (3.2),

1

logL

∫ tLL2

εLL
2

exp
( −λt
L2 logL

)
ρLt (x,0) dt

≤ 1

logL

∫ tLL
2

εLL
2

C

εLL2
dt ≤ CtL

εL logL
→ 0

(3.8)

as L→ ∞. Next, using (3.4), logεL/ logL→ 0 and loguL/ logL→ 0, it follows
that

1

logL

∫ εLL2

uL(1+|x|2)
exp

( −λt
L2 logL

)
ρLt (x,0) dt

= 1

logL

∫ εLL2

uL(1+|x|)2
1 + o(1)
2π(2σ 2)t

dt

= 1 + o(1)
2π(2σ 2) logL

(
2 logL− 2 log(1 + |x|)+ logεL − loguL

)→ 1 − β
2πσ 2

(3.9)

as L→ ∞. To complete the calculation, (3.5) implies

1

logL

∫ uL(1+|x|2)
0

exp
( −λt
L2 logL

)
ρLt (x,0) dt

≤ 1

logL

∫ uL(1+|x|2)
0

C

(1 + |x|)2 dt

≤ CuL

logL
→ 0

(3.10)

as L→ ∞. Combining (3.7)–(3.10) gives (3.6). �
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4. Proof of Theorem 4. Our first step is to show that the random variables
t0/2NL2, under Px for x ∈ �(L), are uniformly integrable. To do this, we first
observe that

NL2

(L2 logL)/ν
= Nν

logL
→ ∞ as L→ ∞.(4.1)

On account of this, Theorem 1 implies that, for any ε > 0, Pπ(T0 > εNL
2)→ 0

as L→ ∞. Considering the location of X[εNL2], we may write

Px(T0 > 2εNL2)≤ ∑
y∈�(L)

Px
(
X[εNL2] = y)Py(T0 > εNL

2).

By (3.3) and (4.1), Px(X[εNL2] = y) = (1 + o(1))/L2 uniformly in y and ν as
L→ ∞. Thus,

Px(T0 > 2εNL2)≤ ∑
y∈�(L)

1 + o(1)
L2 Py(T0 > εNL

2)= (
1+o(1))Pπ(T0 > εNL

2)

as L→ ∞. That is, we have established that, for any ε > 0,

lim
L→∞ sup

x∈�(L)
Px(T0 > εNL

2)= 0.(4.2)

We may therefore choose L0 such that, for all L≥ L0 and x ∈�(L),
Px(T0 >NL

2) < 1/12.

Since t0 occurs after T0, and P0(t0 > 3NL2)≤ E0t0/3NL2 = 2/3 by Theorem 3,
we have

Px(t0 > 4NL2)≤ Px(T0 >NL
2)+ P0(t0 > 3NL2) < 3/4

for all L≥ L0 and x ∈�(L). Iterating this inequality, we obtain

sup
x∈�(L)

Px(t0 > 4nNL2) < (3/4)n, n≥ 1,(4.3)

which implies uniform integrability.
Our next step is to argue that

lim
L→∞P0(t0 > 2NL2t)= exp(−t).(4.4)

Tightness of the laws of t0/2NL2 follows from the uniform integrability just
established (or, more simply, from Theorem 3). We will show that every
subsequential limit is exponential with mean 1, proving convergence of the whole
sequence. Let F denote the distribution function of the limit law along some
subsequence Lk , which, for notational simplicity, we will write as L, and let
s, t be continuity points of F . We will show now that

1 − F(s + t)= (
1 − F(s))(1 − F(t)).(4.5)
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By (4.1), we may choose a sequence εL > 0 such that

εL → 0 and εL
Nν

logL
→ ∞(4.6)

as L→ ∞. We can estimate P0(t0 > 2NL2(s + t)) by arguing that, with high
probability, the event t0 > 2NL2(s + t) occurs in the following way. First, t0
does not occur before time 2NL2(s + εL), at which time the random walk is
uniformly distributed over �(L). Next, the time T0 occurs at some time k ∈
[2NL2(s + εL),2NL2(s + 2εL)]. Starting at 0 at this time k, t0 does not occur
for another 2NL2t − k units of time. Here are the details.

By (4.1), (4.6) and (3.3), Px(Xj = y) = (1 + o(1))/L2 as L→ ∞, uniformly
in j ≥ [2NL2s] and x, y ∈�(L). Therefore, with I = [[2NL2s],2NL2(s + εL)],

P0(t0 ∈ I )≤ 1

2N

∑
j∈I
P0(Xj = 0)≤ (1 + o(1))(2NL2εL + 1)

NL2 → 0(4.7)

as L→ ∞. By Theorem 1, we also have

Pπ(T0 < 2NL2εL)→ 1.(4.8)

By (4.7), (4.8) and the Markov property,

P0
(
t0 > 2NL2(s + t))
= o(1)+ ∑

x,y∈�(L)

[2NL2εL]∑
k=0

P0
(
t0 > [2NL2s],X[2NL2s] = x)Px(X[2NL2εL] = y)

×Py(T0 = k)P0(t0 > uL − k),
where uL = 2NL2(s + t)− [2NL2s] − [2NL2εL]. Replacing Px(X[2NL2εL] = y)
with (1 + o(1))/L2 and summing on x and y, we obtain

P0
(
t0 > 2NL2(s + t))
= o(1)+ P0(t0 > 2NL2s)

[2NL2εL]∑
k=0

Pπ(T0 = k)P0(t0 > uL− k).

Since (uL − k)/2NL2 → t as L→ ∞, uniformly for k ∈ [0,2NL2εL], it follows
that

P0
(
t0 > 2NL2(s + t))= o(1)+ P0(t0 > 2NL2s)P0(t0 > 2NL2t)

as L→ ∞, which proves (4.5).
To see that (4.5) implies that F is exponential, we can argue as follows. Since

F is monotone, it has only countably many discontinuity points, and there exists
a θ > 0 such that all points of the form m/θn, for positive integers m,n, are
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continuity points of F . Since (4.5) must hold for all s, t of this form, using
monotonicity again we conclude that there exists a λ≥ 0 such that F(t)= 1−e−λt
for all t > 0. Now the uniform integrability estimate (4.3) implies that λ= 1, and
hence we have established (4.4).

To complete the proof of Theorem 4, we note that, for x �= 0 and 0< ε < t ,

Px(t0 > 2NL2t)≤ Px(T0 > εNL
2t)+ P0

(
t0 > 2NL2(t − ε)).

By (4.2) and (4.4), this implies

lim
L→∞ sup

x∈�(L)
Px(t0 > 2NL2t)≤ lim

L→∞P0(t0 > 2NL2t)= exp(−t).

On the other hand, Px(t0 > 2NL2t)≥ P0(t0 > 2NL2t), so the proof of Theorem 4
is complete. �

5. Proof of Theorem 5. We begin with some preliminary results for a random
walk on Z2. Let X̄n =W 1

n −W 2
n be the difference between the two random walk

positions in Z2 and let Ȳs = X̄[s/ν].

LEMMA 5.0 . As t → ∞, uniformly for ν ∈ (0,1],∫ t
0
P0(Ȳs = 0) ds ∼ log t

2πσ 2 .

PROOF. The rescaled random walks have second moments bounded away
from 0 and third absolute moments bounded. With this in hand, one can work
through one’s favorite proof of the local central limit theorem [see, e.g., Durrett
(1995), pages 132–134] and get explicit error estimates that only depend on the
moment bounds. Alternatively, using the stronger local central limit theorem given
in the Appendix, one can use the argument for part (c) of Lemma 3.1 to show that,
as s→ ∞, uniformly in ν ∈ (0,1],

2π(2σ 2)sP0(Ȳs = 0)→ 1,

and then integrate this result. �

Now let T̄0 = inf{n≥ 1 : X̄n = 0}, and define

γ = P0(X̄1 �= 0)= 2ν(1 − ν)+ ν2

(
1 − ∑

x∈Z2

q(x)2

)
(5.1)

[recall q(0)= 0].

LEMMA 5.1. As t → ∞, uniformly for ν ∈ (0,1],

P0

(
T̄0 >

t

ν

∣∣∣X̄1 �= 0
)

∼ 2πσ 2

log t
· ν
γ
.(5.2)



1364 J. T. COX AND R. DURRETT

REMARK . We note that γ ∼ 2ν as ν → 0, so ν/γ is bounded and bounded
away from 0 for all ν ∈ (0,1].

PROOF OF LEMMA 5.1. Breaking things down according to the last visit to 0
before time [t/ν],

1 =
[t/ν]∑
r=1

P0(X̄r−1 = 0)γ P0
(
T̄0 > [t/ν] − r | X̄1 �= 0

)
.

Dropping the −r , which makes the probability smaller, we have

P0

(
T̄0 >

[
t

ν

]∣∣∣X1 �= 0
)

≤ 1

γ
∑[t/ν]
r=1 P0(X̄r−1 = 0)

= ν

γ
∫ [t/ν]ν

0 P0(Ȳs = 0) ds
∼ 2πσ 2

log t
· ν
γ

(5.3)

as t → ∞ by Lemma 5.0. For a bound in the other direction, consider the last visit
to 0 before time [t (1 + log t)/ν],

1 ≤
[t log t/ν]∑
r=0

P0(X̄r = 0)γ P0
(
T̄0 > [t/ν] | X̄1 �= 0

)+ [t (1+log t)/ν]∑
r=[t log t/ν]

P0(X̄r = 0)γ .

Computing as before, we obtain

P0

(
T̄0 >

[
t

ν

]∣∣∣X̄1 �= 0
)

≥ ν/γ − ∫ [t (1+log t)]
[t log t] P0(Ȳs = 0) ds∫ [t log t]

0 P0(Ȳs = 0) ds

∼ 2πσ 2ν/γ − log(1 + 1/ log t)

log(t log t)
∼ 2πσ 2

log t
· ν
γ

(5.4)

as t → ∞. Together, (5.3) and (5.4) imply (5.2). �

We will make use of the following abbreviations:

u1 = L2/(logL)2,

u2 = L2/
√

logL,

u3 = L2
√

logL.

LEMMA 5.2. There is a constant C so that, for all L≥ 3,

P0

(
u1

ν
< T̄0 ≤ u3

ν

∣∣∣X̄1 �= 0
)

≤ C log logL

(logL)2
.(5.5)
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PROOF. Let I (s, t)= ∫ t
s P0(Ȳr = 0) dr . By (5.3) and (5.4), the probability of

interest is asymptotically at most

ν/γ

I (0, u1)
− ν/γ − I (u3 logu3, u3(1 + logu3))

I (0, u3 logu3)

= (ν/γ )I (u1, u3 logu3)+ I (0, u1)I (u3 logu3, u3(1 + logu3))

I (0, u1)I (0, u3 logu3)
.

From Lemma 5.0, it follows that, as L→ ∞,

(2πσ 2)2I (0, u1)I (0, u3 logu3)∼ (2 logL)2,

2πσ 2I (u1, u3 log t2)∼ logu3 + log logu3 − logu1 ∼ 4.5 log logL,

2πσ 2I
(
u3 logu3, u3(1 + logu3)

)∼ log
(

1 + 1

logu3

)
∼ 1

2 logL
.

Combining these asymptotics gives (5.5). �

Let R0 = 0 and, for k ≥ 1, define

Qk = min{s > Rk−1 : X̄s �= 0},
Rk = min{s > Qk : X̄s = 0},

and also K = min{k ≥ 1 : Rk −Qk > L2/ν}. Then K is geometric, with success
probability P0(T̄0 − 1 > L2/ν | X̄1 �= 0). Note that, by Lemma 5.1, there is a
constant C such that EK ≤ C logL. The random variables Qk − Rk−1 are iid
geometric random variables with success probability γ , independent of K . Now
define OK to be the number of visits to 0 up to time QK and OL to be the number
of visits to 0 by time u3/ν,

OL = ∑
k≤u3/ν

1{X̄k = 0},

OK =
K∑
k=1

(Qk −Rk−1).

We are interested primarily in OL, but OK is easier to analyze, because it is
geometric with success probability pL = γP0(T̄0 − 1>L2/ν | X̄1 �= 0). The next
result shows that OL = OK with high probability.

LEMMA 5.3. If L→ ∞, then (a) P0(X̄k = 0 for some k ∈ [2u2/ν,u3/ν])→ 0
and (b) P0(OK �= OL)→ 0.

PROOF. We claim that

P0

(
QK <

2u2

ν
,RK >

u3

ν

)
→ 1 as L→ ∞.
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Both (a) and (b) follow from this claim and the observation that X̄k �= 0 for
k ∈ [QK,RK). We start with an upper bound for RK . Since RK −QK >L2/ν, we
have, using Lemma 5.2,

P0

(
RK ≤ u3

ν

)
≤

∞∑
k=1

P0

(
Rj −Qj ≤ L2

ν
for j ≤ k − 1,

L2

ν
< Rk −Qk ≤ u3

ν

)

≤ P0

(
L2

ν
< RK −QK ≤ u3

ν

)

≤
∞∑
k=1

P0(K > k − 1)P0

(
L2

ν
< T̄0 − 1 ≤ u3

ν

∣∣∣X̄1 �= 0
)

≤ C log logL

(logL)2
EK→ 0

as L→ ∞, since EK ≤ C logL.
To boundQK , we first observe that

QK =
K∑
k=1

(Qk −Rk−1)+
K−1∑
k=1

(Rk −Qk).(5.6)

For the first sum on the right-hand side, we have

E

K∑
k=1

(Qk −Rk−1)= 1 +EK
γ

≤ C logL

ν
,

so by Markov’s inequality,

P0

(
K∑
k=1

(Qk −Rk−1)≥ u2

ν

)
≤ C(logL)3/2

L2
.

For the second sum, we note first that Markov’s inequality and the estimate EK ≤
C logL imply P (K ≥ (logL)3/2) ≤ C/√logL. Next, since Rk −Qk ≤ L2/ν for
k < K ,

P0

(
Rk −Qk > u1

ν
for some k <K and K < (logL)3/2

)

≤ (logL)3/2P0

(
u1

ν
< T̄0 − 1<

L2

ν

∣∣∣X̄1 �= 0
)

≤ C log logL√
logL

by Lemma 5.2. When K < (logL)3/2 and Rk −Qk < u1/ν for k < K ,
K−1∑
k=1

(Rk −Qk)≤ (logL)3/2
(
u1

ν

)
= u2

ν
.
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Using the estimates in (5.6), we obtain

P

(
QK ≥ 2u2

ν

)
→ 0

as L→ ∞, and we are done. �

We are now ready to prove the key lemma.

LEMMA 5.4. If 2Nπσ 2ν/ logL→ α ∈ [0,∞) as L→ ∞, then

lim
L→∞P0

(
t0 >

u3

ν

)
= α

1 + α .(5.7)

PROOF. We consider first the corresponding problem on Z2, with colonies of
size 2N located at each point and t̄0 the time that two lineages first coalesce. Since
the probability of coalescence when two lines land in the same colony is 1/2N ,

P0

(
t̄0 >

u3

ν

)
=E0

(
1 − 1

2N

)OL

.

Since P (OL �= OK)→ 0 as L→ ∞, it suffices to compute

E

(
1 − 1

2N

)OK =
∞∑
k=1

pL(1 − pL)k−1
(

1 − 1

2N

)k−1

= pL

1 − (1 − pL)(1 − 1/2N)
= 2NpL

2NpL+ 1 − pL .

By Lemma 5.1, 2NpL → α, so we have proved

lim
L→∞P0

(
t̄0 >

u3

ν

)
= α

α + 1
.(5.8)

To transfer this result to the torus �(L), we suppose that our random walks are
constructed so that Xk = X̄k mod L. In this case X̄k = 0 implies Xk = 0. When
X̄k = 0 we use a single coin flip to determine if coalescence should occur in the
two systems. If we do this, then it follows that t0 ≤ t̄0. In particular, for α = 0,
(5.8) implies (5.7). For the remainder of the proof, we suppose that α > 0. We will
argue that Xk = X̄k for all k < u2/ν with high probability and, that Xk does not
hit 0 enough times during [u2/ν,u3/ν] to cause t0 (or t̄0) to occur during that time
interval.

The first step is simple. By the L2-maximal inequality for martingales and
Markov’s inequality,

P

(
max

0≤k≤u2/ν
|X̄k|>L/3

)
≤ CE|X[u2/ν]|2/L2 ≤Cu2σ

2/L2 → 0
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as L→ ∞. Consequently, X̄k stays in�(L) up to time u2/ν with high probability,
which implies that

P0(t0 > u2/ν)− P0(t̄0 > u2/ν)→ 0.(5.9)

For the second step, we first note that we can bound the probability of
coalescence of lineages with the expectation estimate

P0

(
t0 ∈

[
u2

ν
,
u3

ν

])
≤ 1

2N

u3/ν∑
k=u2/ν

P0(Xk = 0).

By Lemma 3.1, there are constants A and C such that

P0(Xk = 0)≤
{
C/u2, if k ∈ [u2/ν,AL

2/ν],
2/L2, if k ≥AL2/ν.

These estimates imply that

u3/ν∑
k=u2/ν

P0(Xk = 0)≤ C

u2

AL2

ν
+ 2

L2

u3

ν
≤ C

√
logL

ν

for an appropriate constant C. Consequently,

P0

(
t0 ∈

[
u2

ν
,
u3

ν

])
≤ C

√
logL

2Nν
→ 0(5.10)

as L → ∞, since, by assumption, 2Nπσ 2ν/ logL → α > 0. Furthermore,
P0(X̄k = 0) ≤ P (Xk = 0), so this argument shows that (5.10) holds with
t̄0 replacing t0. By combining this observation with (5.8)–(5.10), we obtain
(5.7). �

PROOF OF THEOREM 5. By assumption, N =N(L) and ν = ν(L) satisfy

2Nπσ 2ν

logL
→ α ∈ [0,∞) as L→ ∞.(5.11)

We fix t > 0 and define

<L =
[
u3

ν

]
, aL = L2 logL

2πνσ 2 , τL = L2 logL

2πνσ 2 t.

Let E1,E2, . . . be independent exponential mean one random variables and let G
be a geometric random variable with parameter 1/(1 + α), independent of the Ei .
We will prove that, under Pπ , for α > 0,

t0

aL
⇒ E1 + · · · + EG as L→ ∞.(5.12)

Since E1 + · · · +EG is exponential with parameter 1/(1 +α), (5.12) implies (1.6).
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Define the sequence of delayed return times Sn by setting S1 = T0 and

Sn+1 = inf{k > Sn + 2<L :Xk = 0}, n≥ 1.(5.13)

Intuitively, during each interval [Sn,Sn +<L], t0 has probability ≈ 1/(1 + α) of
occurring, and we can ignore the probability of t0 occurring in [Sn + <L,Sn +
2<L]. Also, at time Sn + 2<L, the difference between the walks has distribution
≈ π , so (

Sn+1 − (Sn + 2<L)
)
/aL ≈ En.

These facts suggest (5.12) should hold.
To begin to make this rigorous, we note that the time t0 cannot occur during any

of the time intervals (Sn + 2<L,Sn+1), so

Pπ(t0 > τL)=
∞∑
n=1

Pπ
(
t0 > τL, t0 ∈ [Sn,Sn + 2<L]).(5.14)

Using this decomposition and Lemma 5.4, we will prove that, for each n≥ 1,

lim
L→∞Pπ(t0 ≥ Sn)=

(
α

1 + α
)n−1

(5.15)

and

lim
L→∞Pπ

(
t0 > τL, t0 ∈ [Sn,Sn + 2<L)

)= αn−1

(1 + α)n P (E1 + · · · + En > t).(5.16)

For α > 0, the results (5.14)–(5.16) imply (5.12). For α = 0, they imply that
Pπ(t0 > τL)→ P (E1 > t) = e−t , and hence (1.6) holds. So it suffices to prove
(5.15) and (5.16).

We begin with a preliminary estimate, which shows that t0 will not occur during
any of the time intervals [Sn +<L,Sn + 2<L] with significant probability. By the
strong Markov property, an obvious inequality and (3.3), as L→ ∞,

Pπ
(
t0 ∈ [Sn +<L,Sn + 2<L)

) ≤ P0
(
t0 ∈ [<L,2<L])

≤ 1

2N

∑
k∈[<L,2<L]

P (Xk = 0)≤ 1 + o(1)
2NL2 (<L + 1).

By (5.11), the last expression above tends to 0 as L→ ∞. That is,

lim
L→∞Pπ

(
t0 ∈ [Sn +<L,Sn + 2<L])= 0, n≥ 1.(5.17)

We now prove (5.15). By the strong Markov property and (5.17),

Pπ(t0 ≥ Sn)= o(1)+ Pπ (t0 /∈ [Sk, Sk +<L],1 ≤ k < n)
= o(1)+ Pπ (t0 /∈ [Sk, Sk +<L],1 ≤ k < n− 1

)2N − 1

2N
P0(t0 ≥<L).
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Applying Lemma 5.4 gives

Pπ(t0 ≥ Sn)= o(1)+ α

1 + α
(
P0(t0 ≥ Sn−1)

)
as L→ ∞. Iteration of this argument establishes (5.15).

Now we prepare for the proof of (5.16). The estimate (5.17) implies that we
may replace Pπ(t0 > τL, t0 ∈ [Sn,Sn + 2<L]) in the decomposition (5.14) with
Pπ(t0 > τL, t0 ∈ [Sn,Sn +<L]). We would like to replace the latter quantity with
Pπ(Sn > τL, t0 ∈ [Sn,Sn +<L]). To see that this is possible, we first observe that

Pπ
(
t0 > τL, t0 ∈ [Sn,Sn +<L])
= Pπ (Sn > τL, t0 ∈ [Sn,Sn +<L])+ Pπ(Sn ≤ τL < t0 ≤ Sn +<L).

(5.18)

We claim that

lim
L→∞Pπ

(
τL ∈ [Sn,Sn +<L])= 0,(5.19)

which certainly implies that the second term on the right-hand side of (5.18) tends
to 0. The n= 1 case of (5.19) is straightforward. Since <L = o(τL) as L→ ∞,

Pπ
(
τL ∈ [S1, S1 +<L])= Pπ (T0 ∈ [τL −<L, τL])→ e−t − e−t = 0

by Theorem 1. For n > 1, by decomposing according to the time Sn−1 and
positions XSn−1+<L and XSn−1+2<L and using the Markov property, we have

Pπ
(
τL ∈ [Sn,Sn +<L])=∑

j

∑
x,y∈�(L)

Pπ(Sn−1 = j,Xj+<L = x)Px(X<L = y)

×Py(τL − (j + 2<L) ∈ [T0, T0 +<L]).
Using (3.3) to replace Px(X<L = y) with (1 + o(1))/L2, summing on x and y, we
obtain

Pπ
(
τL ∈ [Sn,Sn +<L])
= o(1)+∑

j

Pπ(Sn−1 = j)Pπ (τL− (j + 2<L) ∈ [T0, T0 +<L])(5.20)

as L→ ∞. By Theorem 1, for fixed j , since <L = o(τL) as L→ ∞,

lim
L→∞Pπ

(
τL− (j + 2<L) ∈ [T0, T0 +<L])= 0.

Substitution into (5.20) shows that (5.19) holds.
In view of (5.14), (5.17), (5.18) and (5.19), we now have

Pπ(t0 > τL)= o(1)+
∞∑
n=1

Pπ
(
Sn > τL, t0 ∈ [Sn,Sn +<L]).(5.21)
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To add up the o(1)’s, we note that (5.3) implies that there is a δ > 0 independent
of L so that Pπ(t0 ≥ Sn) ≤ (1 − δ)n−1 for all n, and we use the dominated
convergence theorem. By the strong Markov property and Lemma 5.4,

Pπ
(
Sn > τL, t0 ∈ [Sn,Sn +<L])= Pπ(τL < Sn ≤ t0)P0(t0 <<L)

= o(1)+ Pπ(τL ≤ Sn ≤ t0) 1

1 + α .
Inserting this into (5.21) gives

Pπ(t0 > τL)= o(1)+ 1

1 + α
∞∑
n=1

Pπ(τL < Sn ≤ t0).(5.22)

Our final task is to show that

lim
L→∞Pπ(τL < Sn ≤ t0)

=
(
α

1 + α
)n−1

P (E1 + E2 + · · · + En > t), n≥ 1,
(5.23)

because (5.16) follows from (5.15), (5.22) and (5.23).
The n= 1 case of (5.23) is an immediate consequence of Theorem 1, since

Pπ(τL < S1 ≤ t0)= Pπ(T0 > τL)→ P (E1> t) as L→ ∞.
For n > 1, we use a decomposition similar to the one used in the proof of (5.19).
As L→ ∞, by Lemma 3.1,

Pπ(τL < Sn≤ t0)= o(1)+
∑
j

∑
x,y∈�(L)

Pπ(Sn−1 = j, t0 > j)P0(t0 ><L,X<L = x)

×Px(X<L = y)Py(T0 > τL − (j + 2<L)
)
.

Replacing Px(X<L = y) with (1 + o(1))/L2 and summing over x and y, the right-
hand side above becomes

o(1)+∑
j

Pπ(Sn−1 = j, t0 > j)P0(t0 ><L)Pπ
(
T0 > τL− (j + 2<L)

)
.

Consequently, by Lemma 5.4,

Pπ(τL < Sn ≤ t0)= o(1)+ Pπ(Sn−1 + T 1
0 > τL − 2<L, t0 > Sn−1)

α

1 + α
as L→ ∞, where T 1

0 is independent of the walk Xj and has the same law as T0
under Pπ . Iterating this argument, we see that, as L→ ∞,

Pπ(τL < Sn ≤ t0)= o(1)+ Pπ(T n0 + · · · + T 1
0 > τL− 2n<L)

(
α

1 + α
)n−1

,
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where the T i0 are independent with the same law as T0 under Pπ . By Theorem 1,
since <L = o(τL),

lim
L→∞Pπ(T

n
0 + · · · + T 1

0 > τL− 2n<L)= P (E1 + · · · + En > t), n≥ 1,

and the proof of (5.23) is finished.
To prove (1.7) now, we let @L = εLL

2 logL/ν. By Theorem 2, if εL → 0
slowly enough, Px(T0 > @L) → β . Lemma 5.4 implies that P0(t0 > <L) →
α/(1 + α). When T0 > @L, or T0 ≤ @L and t0 > T0 +<L, an event of probability
≈ β + (1 − β)α/(1 + α), Xn is approximately uniformly distributed at time
@L + 2<L = o(L2 logL/ν). These observations having been made, the rest of
the proof is straightforward using the techniques above. Details are left to the
reader. �

APPENDIX

PROOF OF LEMMA 3.1. We first prove all four results for the case ν = 1, that
is, for p = q . As the reader will see, the extension to ν ∈ (0,1) can be obtained
by using the observation that ρLu corresponds to a binomial(2[u/ν], ν) number of
steps according to q . We will sometimes write q(x, y) for q(y − x). Let qn be the
nth iterate of q and let qLn be the corresponding kernel on the torus,

qLn (x, y)=
∑
z∈Z2

qn(x, y +Lz), x, y ∈�(L).(A.1)

Note that the symmetry of q implies ρLt (x, y)= qL2[t](x, y) for ν = 1, and by the

right-hand side we need only be concerned with qLn when n is even.
For (a), we begin by observing that

qLm+n(x,0)=
∑

y∈�(L)
qLm(x, y)q

L
n (y,0)≤ sup

y∈�(L)
qLn (y,0).(A.2)

Next, let q̂Ln (k) = ∑
x∈�(L) eik·xqLn (0, x) be the Fourier transform of qLn . The

inversion formula tells us that

qLn (0, x)=
1

L2

∑
k∈2π�(L)/L

e−ik·xq̂Ln (k).

The symmetry of q implies that q̂Ln (k) is real. When n is even the Fourier
coefficients are positive, so the above implies that, when n is even,

qLn (0, x)≤ qLn (0,0) for all x ∈�(L).(A.3)

To estimate qLn , we will apply a local central limit theorem for qn from
Bhattacharya and Rao (1976), in the form given in (2.10)–(2.11) of Cox (1989):

qn(0, x)= φn(x)+ψn(x).(A.4)
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Here φn(x)= (2πσ 2n)−1 exp(−|x|2/2σ 2n), and

ψn(x)= φn(x)
2∑
r=1

n−r/2Br(x/
√
n)+ e(x,n),

where each Br(x) is a polynomial (depending on q) of degree at most r , and

n
∑
x∈Z2

|e(x,n)| → 0 as n→ ∞.

By straightforward calculation, one can check that, as L→ ∞:

(i) εLL2φ[εLL2](0)→ 1/2πσ 2,
(ii) εLL2∑

z∈Z2\{0}φ[εLL2](Lz)→ 0,
(iii) εLL2∑

z∈Z2 ψ[εLL2](Lz)→ 0

(recall εL → 0). See pages 1342–1343 of Cox (1989) for similar computations.
Consequently, (A.1) and (A.4) imply

εLL
2qL[εLL2](0,0)→

1

2πσ 2 as L→ ∞.(A.5)

Combining (A.2), (A.3) and (A.5), we obtain, for some constant C,

sup
n≥εLL2,x∈�(L)

εLL
2qLn (x,0)≤ C,(A.6)

from which the ν = 1 case of (3.2) easily follows.
For (b), we start with the observation that

|qLm+n(x,0)−L−2| ≤ ∑
y∈�(L)

qLm(x, y)|qLn (y,0)−L−2|

≤ sup
y∈�(L)

|qLn (y,0)−L−2|.(A.7)

Next, as in pages 1342–1343 of Cox (1989), one can check that, as L → ∞,
uniformly for x ∈�(L):

(i) L2∑
y∈Z2 φ[tLL2](x +Ly)→ 1,

(ii) L2∑
y∈Z2 ψ[tLL2](x +Ly)→ 0

(recall that tL → ∞). Therefore, applying (A.1), (A.4), and (A.7), we have

lim
L→∞ sup

n≥tLL2
sup

x∈�(L)
L2|qLn (x,0)−L−2| = 0(A.8)

from which the ν = 1 version of (3.3) easily follows.
For (c), one first checks that, as L→ ∞, uniformly in x ∈�(L):
(i) supuL(1+|x|2)≤k≤3εLL2 |(2πσ 2k)φk(x)− 1| → 0,

(ii) supuL(1+|x|2)≤k≤3εLL2 k
∑
z∈Z2\{0}ψk(x + zL)→ 0
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(recall uL → ∞). Combining these estimates with (A.1) and (A.4) gives

sup
1
2uL(1+|x|2)≤k≤2εLL2

|(2πσ 2k)qLk (x,0)− 1| → 0,(A.9)

and the ν = 1 case of (3.4) follows.
The fourth result (d) is closely related to (2.9) in Cox (1989). To prove it,

we repeat the calculation on page 1344 of Cox (1989), replacing a2
N there by

(1 + |x|)2. The second term there does not go to 0 now as L→ ∞, but since
lim sup(1 +|x|2)/L2 ≤ 1/4, that term is bounded. That is enough to prove that, for
a finite constant C,

sup
n≥0,x∈�(L)

(1 + x)2qLn (x,0)≤ C,(A.10)

from which the ν = 1 case of (3.5) easily follows.

Extension to ν ∈ (0,1). Let B be a binomial random variable with number of
trials equal to 2[t/ν] and success probability ν. It is easy to see that

ρLt (0, x)=
2[t/ν]∑
k=0

P (B = k)qLk (0, x).(A.11)

To prepare for our proofs, let Z = ξ1 + · · · + ξn, where the ξi are iid Bernoulli
random variables with success probability p. A simple calculation shows that

E(Z−EZ)4 =
(
n

2

)(
4

2

)(
E(ξ1 − p)2)2 + nE(ξ1 − p)4.

Since E(ξ1 −p)2 = p(1−p)≤ p andE(ξ1 −p)4 = p(1−p)4 + (1−p)p4 ≤ 2p,
it follows that, if np ≥ 1, then

E(Z−EZ)4 ≤ 5(np)2 = 5(EZ)2.

For B , setting n= 2[t/ν] and p = ν and using the last inequality with r = 7/8, we
obtain

|EB|4rP (|B −EB| ≥ |EB|r )≤E|B −EB|4 ≤ 5|EB|2
(when EB ≥ 1). For t ≥ 3/2, 2t ≥EB ≥ 2t − 2 ≥ 1 and 2t − 2 ≥ 2t − (2t)7/8, so
it follows that

P
(|B − 2t| ≥ 2(2t)7/8

)≤ 5

(2t − (2t)7/8)3/2 .(A.12)

To prove (a), we now take t = εLL2 (recall εL = 1/
√

logL) and note that, for
large L, 2(2t)7/8 ≤ t and 2t−2(2t)7/8 ≥ εLL2. Thus, using (A.11) and (A.12), we
have

ρL
εLL

2(x,0)≤ P (|B − 2t| ≥ 2(2t)7/8
)+ sup

k≥εLL2
qLk (x,0)

≤ 5

(εLL2)3/2
+ sup
k≥εLL2, x∈�(L)

qLk (x,0).
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In view of (A.6), this shows that, for a finite constant C,

sup
x∈�(L)

εLL
2ρL
εLL

2(x,0)≤ C.
This is enough to prove (3.2), since, if t < u,

sup
x∈�(L)

ρLu (x,0)≤ sup
x∈�(L)

ρLt (x,0).

To prove (b), we set t = tLL
2 (recall tL → ∞) and note that, if L is large

enough, then 2(2t)7/8 ≤ t and (A.12) implies that

|ρL
tLL

2(0, x)−L−2| ≤
2[t/ν]∑
k=0

P (B = k)|qLk (x,0)−L−2|

≤ 5

(tLL2)3/2
+ sup
k≥tLL2

|qLk (0, x)−L−2|.

By (A.8), it follows that

sup
x∈�(L)

L2|ρtLL2(x,0)−L−2| → 0

as L→ ∞. This is enough to prove (3.3), since, if t < u, supx∈�(L) |ρLu (x,0)−
L−2| ≤ supx∈�(L) |ρLt (x,0)−L−2|.

The proof of (c) is similar to that of (a) and (b), but now requires the full
strength of (A.12). Let L be large enough so that, for all t ∈ [uL(1 + |x|2), εLL2],
2(2t)7/8 ≤ t (recall uL → ∞). For t in this interval, let K(t) be the interval
[2t − 2(2t)7/8,2t + 2(2t)7/8] and note that, if k ∈ K(t), then k ∈ [uL(1 +
|x|2),3εLL2] and 2t/k → 1 uniformly as L→ ∞. Consequently, using (A.11)
and (A.12),

|2π(2σ 2)tρLt (x,0)− 1|

≤
2[t/ν]∑
k=0

P (B = k)|2π(2σ 2)tqLk (x,0)− 1|

≤ (
2π(2σ 2)t + 1

)
P
(|B − 2t| ≥ 2(2t)7/8

)+ sup
k∈K(t)

|2π(2σ 2)tqLk (x,0)− 1|

≤ 2π(2σ 2)t + 1

t3/2
+ sup
k∈[uL(1+|x|2),3εLL2]

∣∣∣∣2tk 2πσ 2kqLk (x,0)− 1
∣∣∣∣→ 0

as L→ ∞, uniformly for x ∈�(L) and t ∈ [uL(1 + |x|)2, εLL2].
The proof of (d) is the simplest:

(1 + |x|2)ρLt (x,0)=
2[t/ν]∑
j=0

P (B = j)(1 + |x|2)qLj (x,0)≤ C,

the last inequality by (A.10). �
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