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BARRIER OPTIONS AND TOUCH-AND-OUT OPTIONS UNDER
REGULAR LÉVY PROCESSES OF EXPONENTIAL TYPE
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University of Texas–Austin and Rostov State University of Economics

We derive explicit formulas for barrier options of European type and
touch-and-out options assuming that under a chosen equivalent martingale
measure the stock returns follow a Lévy process from a wide class, which
contains Brownian motions (BM), normal inverse Gaussian processes (NIG),
hyperbolic processes (HP), normal tilted stable Lévy processes (NTS Lévy),
processes of the KoBoL family and any finite mixture of independent BM,
NIG, HP, NTS Lévy and KoBoL processes. In contrast to the Gaussian case,
for a barrier option, a rebate must be specified not only at the barrier but
for all values of the stock on the other side of the barrier. We consider
options with a constant or exponentially decaying rebate and options which
pay a fixed rebate when the first barrier has been crossed but the second
one has not. We obtain pricing formulas by solving boundary problems for
the generalized Black–Scholes equation. We use the representation of the
q-order harmonic measure of a set relative to a point in terms of the
q-potential measure, the Wiener–Hopf factorization method and elements of
the theory of pseudodifferential operators.

1. Introduction. Various aspects of pricing of barrier options and touch-
and-out options have been considered in a number of papers and books [see,
e.g., Rubinstein and Reiner (1991), Wilmott, Dewynne and Howison (1995),
Musiela and Rutkowski (1997) and Ingersoll (2000) and the bibliography therein],
but to the best of our knowledge only Gaussian processes have been al-
lowed.

In this paper, we consider the case when the returns Xt = lnSt on the stock St

follow a Lévy process from a wide class of processes, which we introduced in
Boyarchenko and Levendorskiı̌ (1999, 2000) under the name generalized truncated
Lévy processes. In a recent paper, in which a generalization of the class for Feller
processes is developed, Barndorff-Nielsen and Levendorskiı̌ (2001) suggest a new
name, “regular Lévy processes of exponential type” (RLPE), and so we will use
the new name. (The second author thanks A. N. Shiryaev for pointing out that the
old name was noninformative.)

If the Lévy process is neither the Brownian motion nor the Poisson process,
the market is incomplete. According to the modern martingale approach to
option pricing [see Delbaen and Schachermayer (1994, 1998) and references
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therein], arbitrage-free prices can be obtained as expectations under any equivalent
martingale measure (EMM), which is absolutely continuous w.r.t. the historic
measure. We assume that the riskless rate r > 0 is constant, and an EMM Q is
chosen so that, under Q, X is an RLPE, and we derive explicit formulas for the
prices of barrier options on the stock with one fixed barrier and touch-and-out
options. In forthcoming papers, we will consider cases of time-dependent barriers
and double barrier options [the latter are considered in, e.g., Geman and Yor
(1996)].

Notice that, in contrast to the Gaussian case, a rebate (if any) must be specified
not only at the barrier but for all values of the stock on the other side of the
barrier, the reason being that trajectories of a non-Gaussian Lévy process are
discontinuous. In particular, we calculate the value of an option with the constant
or exponentially decaying rebate; our general formulas give also explicit formulas
for options which pay a fixed rebate when the first barrier has been crossed but the
second barrier (situated farther than the first one) has not. We also consider touch-
and-out options; they can be considered as barrier options with constant rebate and
zero terminal payoff, so the treatment is essentially the same (and even simpler).

The class of regular Lévy processes of exponential type contains, in particular,
Brownian motions (BM), normal inverse Gaussian processes (NIG), normal
tilted stable Lévy processes (NTS Lévy processes), hyperbolic processes (HP),
generalized hyperbolic processes (GHP), truncated Lévy processes (TLP) and any
finite mixture of independent processes of these model classes. Not only BM,
but the other mentioned processes as well have been widely used to describe the
behavior of stock prices in real financial markets.

Hyperbolic processes were constructed and used by Eberlein and co-authors
[Eberlein and Keller (1995); Eberlein, Keller and Prause (1998); Eberlein and
Prause (1998)]; hyperbolic distributions were constructed by Barndorff-Nielsen
(1977).

Normal inverse Gaussian processes were introduced by Barndorff-Nielsen
(1998) and used to model German stocks by Barndorff-Nielsen and Jiang (1998);
in Eberlein and Prause (1998) and Eberlein (1999), generalized hyperbolic
processes were constructed, which contained NIG and HP as subclasses.

The class of NTS Lévy processes was introduced in Barndorff-Nielsen and
Levendorskiı̌ (2001) and studied in Barndorff-Nielsen and Shephard (2001); it
contains NIG as a subclass.

Truncated Lévy processes constructed by Koponen (1995) were used for
modeling in real financial markets by Bouchaud and Potters (1997), Cont,
Potters and Bouchaud (1997) and Matacz (1997); a simple generalization of
this family was constructed in Boyarchenko and Levendorskiı̌ (1999, 2000) (the
generalization was needed since the probability distributions of Koponen’s family
have tails of the same rate of exponential decay whereas, in real financial markets,
the left tail is usually much fatter). We will call this generalization the KoBoL
family. [Later the KoBoL family was used by Carr, Geman, Madan and Yor
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(2001) under the name CGMY-model.] Earlier, noninfinitely divisible truncations
of stable Lévy distributions had been constructed and used to model the behavior
of the Standard & Poor 500 Index by Mantegna and Stanley (1994, 1997).

In the name of the class under consideration, of exponential type means that tails
of PDF are exponentially decaying, and regular indicates that generators of these
processes enjoy very favorable features from the point of view of the theory of
pseudodifferential operators (PDO); roughly speaking, regular Lévy processes are
the best class one can find if the Brownian motion is not available. [We recall the
definition of PDO in Section 2; for basic facts of the theory of PDO, see Eskin
(1973) and Taylor (1981).] This is important since the PDO technique is very
powerful. We applied it in Boyarchenko and Levendorskiı̌ (2000, 2002), where
we obtained explicit analytical formulas for perpetual American options, showed
that the smooth fit principle failed in some cases and suggested a substitute for it.
Later, Mordecki (2000) obtained pricing formulas for perpetual American puts and
calls by using the probabilistic technique, but without explicit analytic formulas for
processes observed in financial markets; his method allows one neither to notice
the failure of the smooth fit principle nor to suggest a substitute for it.

By using the Dynkin formula, we reduced the optimal stopping problem to a
free boundary problem; to solve the latter, we used the Wiener–Hopf factorization
technique in the form of Eskin (1973). In this paper, we use the representation
of the q-order harmonic measure of a set relative to a point in terms of the q-
potential measure to reduce the pricing problem to the corresponding boundary
problem for the generalized Black–Scholes equation; the latter is solved by means
of the Wiener–Hopf factorization technique, the Fourier transform and the theory
of PDO, and in the end we obtain explicit pricing formulas for barrier options and
touch-and-out options.

The pricing formulas are expressed in terms of the factors in the Wiener–Hopf
factorization formula, and hence can be expected to hold for variance Gamma
processes (VGP) used by Madan and co-authors in a series of papers during the
1990s [see Madan (1999), Madan, Carr and Chang (1998) and the bibliography
therein], but the analytical formulas for the factors and some technical details of
the proofs are invalid for VGP.

Notice that if X is a process of any of the classes listed above, it belongs to
the same class under the Esscher transform of the historic measure, which was
used, for example, by Madan and co-authors and Eberlein and co-authors. In
Boyarchenko and Levendorskiı̌ (1999) we have shown that if X is an RLPE, then
it remains a regular Lévy process of exponential type under EMM’s from a wide
class. This justifies our standing assumption below that X is an RLPE under a
chosen EMM.

The reader may decide that our technique is too heavy for the relatively
simple case of Lévy processes, when one can obtain many results by using the
fluctuation identities and simple tools from complex analysis (we are grateful to
the anonymous referee for bringing this fact to our attention), but our main concern
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is to introduce a general scheme which can be applied not only in the case of
one-dimensional Lévy processes but in the multidimensional case and in a much
more general situation of Lévy-like Feller processes [cf. Barndorff-Nielsen and
Levendorskiı̌ (2001), where approximate pricing formulas for European options
have been derived]. The Wiener–Hopf method in the form common in the theory of
boundary-value problems for PDO [see Eskin (1973)], which we use here, admits
straightforward generalization to the multidimensional case, and the methods of
Barndorff-Nielsen and Levendorskiı̌ (2001) and the present paper taken together
will produce approximate pricing formulas for barrier options under Lévy-like
Feller processes, with possible applications to interest-rate derivatives. We plan
to study these possibilities in the future. In addition, the formulas which our
method gives are convenient for developing much simpler approximate formulas
for touch-and-out options and some barrier options; the corresponding results will
be published elsewhere.

The plan of the paper is as follows. In Section 2, we reduce the pricing problem
of a contingent claim to the corresponding boundary problem for the generalized
Black–Scholes equation and give the scheme of the solution of these problems
for some barrier options and touch-and-out options. Notice that this part admits a
generalization to the case of a strong Markov process with absolutely continuous
q-potential measure, and constructions in the rest of the paper can be modified and
used in the case of Lévy-like Feller processes introduced in Barndorff-Nielsen and
Levendorskiı̌ (2001), the difference being that here the infinitesimal generator of
the (Lévy) process is a PDO with constant symbol (i.e., the symbol depends only
on the dual variable), and the infinitesimal generator of a Lévy-like Feller process
is a PDO with nonconstant symbol (i.e., with a nontrivial dependence on the state
variable). If the symbol depends appropriately on a small (and/or large) parameter,
the PDO technique allows one to derive and prove approximate formulas for
solutions of boundary value problems for PDO with nonconstant symbols, when
complex analysis alone does not suffice.

In Section 3, we give the definition of regular Lévy processes of exponential
type and examples, and discuss the main properties of the “generalized Black–
Scholes operator” on the real line. In Section 4, we obtain explicit formulas for the
factors in the Wiener–Hopf factorization formula and obtain necessary estimates.
We also give formulas (in terms of PDO) for the solutions of the boundary
problems which are needed in Sections 5 and 6, where we explicitly calculate
prices of touch-and-out options and barrier options, respectively. Section 7
concludes, and in the Appendix we prove some auxiliary technical estimates.

2. Pricing of contingent claims and boundary problems for generalized
Black–Scholes equation. Consider a model market of a bond yielding the
riskless rate of return r > 0, and a stock, for which price at time t is denoted
by St = expXt . We assume that X = {Xt } is a Lévy process under a chosen
equivalent martingale measure Q on a filtered probability space (�,F ; (Ft );P)
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satisfying the usual hypotheses. Let L := L
Q
X be the infinitesimal generator of the

transition semigroup of {Xt } under Q. Consider a contingent claim; its price at
time t we denote by f (t,Xt ). Denote by C the continuing observation region for
the claim; for example, for a down-and-out option with expiry date T and barrier
H = eh, C = (h,+∞) × (−∞, T ). By analogy with the initial Merton–Black–
Scholes approach, we derive the equation (generalized Black–Scholes equation),
which the function f obeys on C, and by adding appropriate boundary conditions,
which specify a given claim, we obtain a well-posed problem. By solving the
problem, we find f (t,Xt ), the price of the contingent claim. Though the setup
is similar to the initial one, the technique differs significantly at some steps since
we no longer live in the Gaussian world; in particular, it is simpler to use not the
Itô–Meyer formula but the relation between the generator of the process and the
resolvent, and it is necessary to use the Wiener–Hopf factorization method; the
representation theorem for analytical semigroups [see Yosida (1964)] can be used
to simplify some technical details. At the same time, the technique we use here
produces answers in the Gaussian case as well.

2.1. Reduction to boundary problems for the generalized Black–Scholes equa-
tion. Let X be an n-dimensional Lévy process. Introduce an n+ 1-dimensional
process X̂t = (Xt , t) on the state space Ê = Rn × (−∞, T ]; its generator is
L̂= ∂t +L. Set B := Ê \ C, and notice that, for X̂t ∈ B , the value of the contin-
gent claim is specified by the contract: f (X̂t )= g(X̂t ), where g(X̂t ) is the payoff
(including rebate). Let T ′B be the hitting time of B . If the contingent claim price is
a local martingale under Q, we must have

f (x̂)= Ex̂[
e−rT ′Bg(X̂T ′B )

]
.(2.1)

[Here x̂ = (x,0).] By comparing (2.1) with Dynkin’s formula

f (x̂)=Ex̂

[∫ T ′B

0
e−rt (r − L̂)f (X̂t ) dt

]
+Ex̂

[
e−rT ′Bf (X̂T ′B )

]
,(2.2)

one is tempted to conclude that f solves the following boundary value problem:

(r − L̂)f (x̂)= 0, x̂ ∈ C,(2.3)

f (x̂)= g(x̂), x̂ ∈ B.(2.4)

By returning to the variables (x, t), we can rewrite (2.3)–(2.4) as a boundary
problem for the generalized Black–Scholes equation:

(∂t +L− r)f (x, t)= 0, (x, t) ∈ C,(2.5)

f (x, t)= g(x, t), (x, t) ∈B.(2.6)

Usually, one writes (2.6) as a pair: the terminal condition and the boundary
condition. For instance, for a down-and-out call option with expiry date T , strike
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price K , barrier H and without a rebate, (2.6) turns into the following pair:

f (x,T )= (ex −K)+, x > lnH,(2.7)

f (x, t)= 0, x ≤ lnH, t ≤ T .(2.8)

Suppose, one can show that a solution f to the problem (2.3)–(2.4) in an
appropriate function class exists and that the f is unique and sufficiently regular
that Dynkin’s formula applies to the f ; then we conclude that the f is the
contingent claim price we look for. However, it not easy to realize this program
even in some cases when an explicit analytical formula for the f can be obtained,
and therefore it is advisable to have a general result which enables one not to be
bothered with the verification problem.

We work with RLPE’s, and it is easily seen from the definition of RLPE,
which we give in Section 3, that the transition density of an RLPE X is
absolutely continuous. Then the q-potential measure of the process X̂ is absolutely
continuous (the verification is straightforward), and therefore, in the case of RLPE,
the reduction of the calculation of the price (2.1) to the solution of the boundary
problem for the generalized Black–Scholes equation is justified by the theorem in
the next subsection.

2.2. Reduction to the stationary Black–Scholes equation. In this subsection,
X is an n-dimensional Lévy process with absolutely continuous potential mea-
sures, which means that its q-potential operators (resolvent operators) Uq ,

Uqf (x)=Ex

[∫ ∞
0

e−qtf (Xt ) dt

]
,

admit the representation

Uqf (x)=
∫

Rn
vq(y − x)f (y) dy,

where vq is nonnegative and measurable. One says that X satisfies the (ACP)-
condition [see Sato (1999), page 288].

Let B ⊂Rn be an Fσ -set [for the general definition, see Sato (1999), page 279;
for our purposes, it suffices to notice that Borel sets are Fσ -sets], and let T ′B be the
hitting time of B by X. For g ∈L∞(B), define

P
q
Bg(x) := Ex[

e−qT ′Bg(XT ′B )
]
.(2.9)

The map g �→ P
q
Bg(x) defines the measure which is called the q-order harmonic

measure of B relative to x.

THEOREM 2.1. Let X be an n-dimensional Lévy process satisfying the (ACP)-
condition. Let B ⊂ Rn be a closed set, and let Bc be its complement. Then the
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function f = P
q
Bg is a bounded solution to the following boundary value problem:

(q −L)f (x)= 0, x ∈Bc,(2.10)

f (x)= g(x), x ∈B,(2.11)

where (2.10) is understood in the sense of generalized functions,

〈f, (q − L̃)w〉L2 = 0 ∀w ∈ C∞0 (Bc).(2.12)

Here L̃ is the generator of the dual process X̃ = −X, and L2 = L2(Rn;R) is
the real space.

The proof is based on the following result [see, e.g., Sato (1999), Proposi-
tion 42.13, Theorem 42.5 and Definition 42.6].

LEMMA 2.2. Let B be an Fσ -set. There exists a σ -finite measure dµB

supported on B̄ such that

P
q
B1(x)=

∫
Rn

vq(y − x) dµB(y).

If g is constant and B is closed, then (2.12) follows from Lemma 2.2:

〈P q
B1, (q − L̃)w〉L2 = 0 ∀w ∈ C∞0 (Bc).(2.13)

We derive the more general statement

〈P q
Bg, (q − L̃)w〉L2 = 0 ∀w ∈C∞0 (Bc)(2.14)

from (2.13) by using an additional assumption which holds for RLPE’s: the
characteristic exponent ψ of X admits analytic continuation into a tube domain
Rn + iU , where U is an open set U ⊂Rn containing 0.

For γ ∈ Rn, define a function uγ by uγ (x)= e〈γ,x〉. The first step of the proof
is the following lemma.

LEMMA 2.3. Let−γ ∈U and q+ψ(−iγ ) > 0. Then g = uγ satisfies (2.14).

The proof is based on the change of the probability measure: Pγ = e〈γ,x〉+tψ(−iγ )P.
Under the new measure, X is the Lévy process with characteristic exponent
ψγ (ξ)= ψ(ξ − iγ )−ψ(−iγ ) since

EPγ
[
eiξXt

]=EP[
etψ(−iγ )+i〈ξ−iγ,Xt 〉]= exp

[−t
(
ψ(ξ − iγ )−ψ(−iγ )

)]
.

Let Eγ , {Pγ,t }t≥0 and Lγ be the corresponding expectation operator, semigroup
and infinitesimal generator. We have

e−〈γ,x〉(Ptuγ g)(x)=
∫

Rn
e−〈γ,x〉e〈γ,x+y〉g(x + y)P(Xt ∈ dy)

= e−tψ(−iγ )
∫

Rn
g(x + y)e〈γ,y〉+tψ(−iγ )P(Xt ∈ dy)(2.15)

= e−tψ(−iγ )(Pγ,tg)(x);
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therefore

e−〈γ,x〉P q
Buγ (x)=Ex

γ

[
e−(q+ψ(−iγ ))T ′B

]=: P q+ψ(−iγ )
γ,B 1(x).

Since q +ψ(−iγ ) > 0, (2.13) applies to P
q+ψ(−iγ )
γ,B 1 and L̃γ :

(
P

q+ψ(−iγ )
γ,B 1, (q +ψ(−iγ )− L̃γ )w

)= 0 ∀w ∈C∞0 (Bc),

or, equivalently,(
u−1
γ P

q
Buγ , (q +ψ(−iγ )− L̃γ )uγw

′)= 0 ∀w′ ∈C∞0 (Bc),

and finally,
(
P

q
Buγ ,

(
q − u−1

γ (L̃γ −ψ(−iγ ))uγ

)
w′

)= 0 ∀w′ ∈C∞0 (Bc).(2.16)

From (2.15), uγ (Lγ − ψ(−iγ ))u−1
γ = L, hence u−1

γ (L̃γ − ψ(−iγ ))uγ = L̃,
and (2.16) gives (2.14). Lemma 2.3 has been proved.

For the next step, consider a compact B and an arbitrary bounded measurable g.
We can approximate g in the L∞-norm by continuous functions, and each
continuous function by polynomials (the Stone–Weierstrass theorem). Fix ε > 0
such that V (ε) := {γ | ‖γ ‖ ≤ ε} ⊂ U , and q + ψ(−iγ ) > 0 for all γ ∈ V (ε).
Since, for any multiindex α,

lim
γ→0

n∏
j=1

γ
−αj

j (eγjxj − 1)αj →
n∏

j=1

x
αj

j ,

uniformly in x ∈ B , we can approximate g in the L∞-norm by a sequence of
functions of the form

gN(x)= ∑
−γ∈.N

cN,γ e
〈γ,x〉,

where .N ⊂ V (ε) is finite. Since (2.14) is valid for g = uγ , provided−γ ∈ U and
q + ψ(−iγ ) > 0, it holds for g = gN . By passing to the limit ε→ 0,N →+∞,
we conclude that (2.14) holds for any bounded measurable g and compact B .

It remains to drop the assumption that B is bounded. Notice that it suffices to
consider nonnegative g. For R > 0, set B(R)= B ∩ V (R), and show first that, for
any x,

P
q
B(R)g(x)→ P

q
Bg(x) as R→+∞.(2.17)

We have

Ex[
e
−qT ′B(R)g

(
X(T ′B(R))

)]≤Ex[
e−qT ′Bg

(
X(T ′B)

)]+ ‖g‖∞Ex[
e
−qT ′B\B(R)

]
and

Ex
[
e−qT ′Bg

(
X(T ′B)

)]≤Ex
[
e
−qT ′B(R)g

(
X(T ′B(R))

)]+ ‖g‖∞Ex
[
e
−qT ′B\B(R)

]
.
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For a Lévy process, T ′(B \B(R))→+∞ as R→+∞, a.s.; hence Ex[e−qT ′B\B(R) ]
→ 0 as R→+∞, and (2.17) follows.

By the previous step, (2.14) holds with B(R) instead of B; hence
∫

Rn
P

q
B(R)g(x)(q − L̃)w(x) dx = 0 ∀w ∈ C∞0 (Bc),(2.18)

and by (2.17), the integrand in (2.18) converges pointwise to P
q
Bg(x)(q − L̃)w(x)

as R→+∞. Since P
q
B(R)g(x) is bounded uniformly in R and x, and (q − L̃)w ∈

L1(Rn), we can pass to the limit under the integral sign and obtain (2.18) with B

instead of B(R). This finishes the proof of (2.14).

REMARK 2.4. (a) In each concrete case, we find bounded solutions of the
problem (2.10)–(2.11) by using tools from analysis; in many cases, the bounded
solution is unique, and in other cases, assuming that g is continuous and bounded,
we single out the solution we need as the unique continuous bounded solution.

(b) In many applications, the datum g may be unbounded (think about calls on
the maximum of two stocks). Suppose that g is nonnegative, measurable and finite
a.e. Then we use the following scheme:

1. construct a sequence of nonnegative bounded measurable gn with compact
support, which converge pointwise to g a.e., gn(x) ↑ g(x);

2. find the unique bounded solution un of the problem (2.10)–(2.11) with the
datum gn (or the unique continuous bounded solution);

3. calculate the limit u := limn→+∞ un; by the monotone convergence theorem,
this is the price of the derivative security.

(c) If the process X̂ does not satisfy the (ACP)-condition, we can solve the
problem (2.10)–(2.11), and after that check that Dynkin’s formula is applicable
to un; that is, (q− L̂)un is nonnegative and universally measurable. Luckily for an
RLPE X, the process X̂ does satisfy the (ACP)-condition.

(d) If the characteristic exponent of X does not admit an analytic continuation,
we can calculate the stochastic expression (2.9) as follows. Take the Lévy measure
F(dx) of X, and define Xε to be the Lévy process with the generating triplet
(A,b,Fε(dx)), where A and b are the same as for X, and Fε(dx)= e−ε‖x‖F(dx).
Define P

q
ε,Bg(x) by (2.9) with Xε instead of X. The P

q
ε,Bg(x) can be calculated as

described above, and it is possible to show that

P
q
ε,Bg(x)→ P

q
Bg(x) as ε→ 0.

By calculating the limit, we obtain the formula for P q
Bg(x).

(e) The constructions above admit a natural generalization to the case of a
Markov process having absolutely continuous potential measures.
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2.3. The generalized Black–Scholes equation as a pseudodifferential equation.
Recall that the characteristic exponent ψ = ψQ of a Lévy process under a measure
Q is defined by E[eiξXt ] = e−tψ(ξ ) [for basic definitions and results of the theory
of Lévy processes, see, e.g., Bertoin (1996) and Sato (1999)]. In Boyarchenko
and Levendorskiı̌ (1999), we used the definition E[e−iξXt ] = e−tψ(ξ ), since in the
theory of PDO, the standard definition of the Fourier transform û of a function u

is

û(ξ)=
∫ +∞
−∞

e−ixξu(x) dx.(2.19)

(From now on, we consider the one-dimensional case.) This lead to the uncom-
fortable appearance of the minus sign in many places, and so we decided to switch
to the definition of the characteristic exponent common in probability; but we
use (2.19) as the definition of the Fourier transform.

By using the integrodifferential representation of L,

Lf (x)= σ 2

2
f ′′(x)+bf ′(x)+

∫ +∞
−∞

(
f (x+y)−f (x)−f ′(x)y1[−1,1](y)

)
F(dy),

where (σ 2, b,F (dy)) is the characteristic triplet of Xt , and the Lévy–Khintchine
formula

ψ(ξ)= σ 2

2
ξ2− ibξ +

∫ +∞
−∞

(1− eiξy + iξy1|y|≤1(y))F (dy),

we obtain that L acts on oscillating exponents as follows:

(−L)eixξ =ψ(ξ)eixξ .

By using the Fourier inversion formula and this equality, we conclude that, for a
sufficiently regular u,

(−L)u(x)= (2π)−1
∫ +∞
−∞

eixξψ(ξ)û(ξ) dξ.

This means that −L is a pseudodifferential operator with symbol ψ(ξ):

−L=ψ(D).

Recall that a pseudodifferential operator with symbol a = a(x, ξ) is defined by

a(x,D)u(x)= (2π)−1
∫ +∞
−∞

eixξa(x, ξ)û(ξ) dξ.(2.20)

When the symbol is independent of the state variable, x, one writes a(D) and calls
a a PDO with constant symbol. Now we can rewrite the generalized Black–Scholes
equation in variables τ = T − t and x as

∂τ f + (
r +ψ(Dx)

)
f = 0.(2.21)
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REMARK 2.5. If X belongs to the class of Lévy-like Feller processes
introduced in Barndorff-Nielsen and Levendorskǐı (2001), we obtain −L =
ψ(x,Dx); it is a PDO with nonconstant symbol ψ(x, ξ).

REMARK 2.6. (a) The problem (2.5)–(2.6) is an analog of the Cauchy
problem for a parabolic operator, with Dirichlet boundary condition. In the case
of a non-Gaussian Lévy process, the elliptic part, A := r + ψ(D), is not a
differential operator but a PDO. The standard technique of the theory of differential
operators is no longer applicable, and the adequate technique is to use the
Fourier transform and the Wiener–Hopf factorization; to study the problem for
the parabolic equation, the representation theorem for analytic semigroups Yosida
(1964) can be used to simplify some technical details.

(b) The approximations un on step (3) in Remark 2.5(b) will be found with
the help of the theory of PDO and the Wiener–Hopf factorization, hence by using
the Fourier transform; the resulting formula involves oscillating integrals (which
do not converge absolutely), and so the passage to the limit is nontrivial. In the
case of Lévy processes, when the resulting formula is given by an explicit analytic
expression involving oscillatory integrals, it is fairly straightforward to show that
the limit of the sequence un, call it U temporarily, exists in the sense of the theory
of generalized functions and can be defined by exactly the same expression as un,
with g substituted for gn. Moreover, we are capable of proving that U is continuous
on C. Since we know that un is a nondecreasing sequence of continuous functions,
converging pointwise to u, u is its limit in the sense of generalized functions.
Hence, u = U , and to finish the calculation of the price, it remains to calculate
oscillating integrals in formulas involving PDO.

(c) In the multidimensional case, especially in the case of nonflat barriers,
and for more general Markov processes, the argument above can be significantly
simplified by using the theory of Sobolev spaces. One should construct an
approximating sequence so that it converges in an appropriate Sobolev space, and
general boundedness theorems on the action of PDO in the scale of Sobolev spaces
can be applied to show that the limit of the sequence enjoys necessary properties.

3. Regular Lévy processes of exponential type and main properties of the
generalized Black–Scholes equation.

3.1. Definition of regular Lévy processes of exponential type. In Boyarchenko
and Levendorskiı̌ (1999), we have shown that for wide classes of Lévy processes X
used in empirical studies of financial markets, characteristic exponents (both under
a historic measure and under EMM’s from wide classes) satisfy the conditions of
the following definition.

DEFINITION 3.1. Let there exist constants c > 0, ν ∈ (0,2], ν′ < ν, µ ∈ R,
λ− < 0≤ λ+ and C > 0 such that

ψ(ξ)=−iµξ + φ(ξ),(3.1)
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where φ admits analytic continuation from R into a strip �ξ ∈ (λ−, λ+), admits
continuous extension up to the boundary of the strip and satisfies the following two
estimates:

(i) for all ξ in a strip �ξ ∈ [λ−, λ+],
|φ(ξ)− c|ξ |ν| ≤ C〈ξ 〉ν′,(3.2)

where 〈ξ 〉 = (1+ |ξ |2)1/2;
(ii) for any [λ′−, λ′+] ⊂ (λ−, λ+) and all ξ in a strip �k ∈ [λ′−, λ′+],

|φ′(ξ)| ≤ C〈ξ 〉ν−1;(3.3)

C depends on [λ′−, λ′+] but not on ξ .

We say that X is a regular Lévy process of order ν and exponential type [λ−, λ+].
REMARK 3.2. (a) We have modified the definition from Boyarchenko and

Levendorskiı̌ (1999, 2000) to allow for a diffusion component, simplify a
bound (3.2) and allow for the left tail to decay slower than exponentially. The
bound (3.3) is introduced to simplify the proof of uniform estimates in Section 8;
it can be significantly relaxed.

(b) In order that the stock itself can be priced under EMM Q, ψ(−i) must be
well defined, and hence we must have λ− ≤−1.

(c) If necessary for applications, one can generalize (3.2):

φ(ξ)∼ c±|ξ |ν +O(|ξ |ν′),
as !ξ → ±∞ in the strip, where !c± ≥ 0. This generalization allows for a
significant asymmetry in the central part of the PDF. If !c± > 0, all the results
below hold; only formulas for exponents κ± and the factor d in the construction of
the factors in the Wiener–Hopf factorization formula in Section 4 change [see the
proof of Theorem 6.1 in Eskin (1973)].

EXAMPLE 3.1. A NIG can be described by the characteristic exponent of the
form

ψ(ξ)=−iµξ + c[(α2 − (β + iξ)2)1/2− (α2− β2)1/2],
where α > |β|> 0. Clearly, (3.1)–(3.3) hold with ν = 1, ν′ = 0 and λ− =−α+β ,
λ+ = α+ β . Thus, NIG are processes of order 1. If we use the same formula with
κ ∈ (0,1) instead of 1/2 in the exponents, we obtain the definition of normal tilted
stable Lévy processes; they are RLPEs of order 2κ .

EXAMPLE 3.2. Hyperbolic processes are also processes of order 1. In the
symmetric case, a hyperbolic process can be defined by

EQ[eiξX1] = α

K1(αδ)

K1
(
δ

√
α2 + ξ2

)
√
α2+ ξ2

,

where K1 is the modified Bessel function of third kind and order 1, and α, δ > 0.
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NIG, NTS Lévy and HP can be obtained from pure diffusions by subordination
[see Barndorff-Nielsen (1998) and Eberlein (1999)], which has a natural economic
interpretation: the Brownian motion in the random “business time”—see, for
example, the general discussion in Geman, Madan and Yor (1998) (for different
processes).

EXAMPLE 3.3. Truncated Lévy processes of Koponen’s (1995) family
provide examples of processes of order ν ∈ (0,2), ν "= 1 with −λ− = λ+; a
generalization of this family constructed in Boyarchenko and Levendorskiı̌ (1999,
2000) provides examples of processes of order ν ∈ [0,2) with arbitrary λ−, λ+.
This is important since, for processes in real financial markets, the left tails
are fatter than the right ones, and Koponen’s family can contain processes with
asymmetric PDF’s only when PDF’s are asymmetric in the central part as well,
whereas PDF’s observed in real financial markets are approximately symmetric
in the central part. We will call this generalization the KoBoL family. If ν ∈
(0,2), ν "= 1, c > 0, then for a KoBoL process X of order ν, ψ is of the form

ψ(ξ)=−iµξ + c.(−ν)
[
λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν

]
.

Clearly, (3.1)–(3.3) hold; an example satisfying not (3.2) but its modification in
Remark 3.1(c) is

ψ(ξ)=−iµξ+d+.(−ν)
[
λν+−(λ++ iξ)ν

]+d−.(−ν)
[
(−λ−)ν−(−λ−− iξ)ν

]
,

where d+ "= d− are positive.

EXAMPLE 3.4. If in Examples 3.1–3.3 we add a diffusion component or
consider a pure diffusion, we obtain a process of order 2.

Clearly, any finite mixture of independent RLPEs is an RLPE.

REMARK 3.3. (a) In Boyarchenko and Levendorskiı̌ (1999), we used a
definition which regarded variance Gamma processes (VGP) as RLPE of order 0.
Some of our constructions below do not apply to VGP, and this is the reason we
exclude VGP here.

(b) A convenient feature of a class of HP is its closedness under the Esscher
transform, and the same holds for NIG, VGP and TLP.

In the next lemma, two important estimates for the characteristic exponent of an
RLPE are derived.

LEMMA 3.4. Let (3.1) and (3.2) hold, and let r > 0. Then the following hold:

(a) there exist σ− ∈ [λ−,0), σ+ ∈ [0, λ+] and δ > 0 such that, for any ξ in the
strip �ξ ∈ [σ−, σ+],

!ψ(ξ)+ r ≥ δ;(3.4)
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(b) there exist σ0 ∈ R and δ > 0 such that, for all λ in the half-plane �λ ≤ σ0
and all ξ in the strip �ξ ∈ [λ−, λ+],

!(
iλ+ r +ψ(ξ)

)≥ δ.(3.5)

PROOF. (a) Set M1(σ ) = ∫ +∞
−∞ e−σxp1(x) dx, where p1 is the probability

density of X1. By differentiating twice, we conclude that M1 is convex, and clearly
M1(0)= 1 < er . Hence, there exist σ− ∈ [λ−,0), σ+ ∈ [0, λ+] and δ > 0 such that,
for all σ ∈ [σ−, σ+], M1(σ )≤ er−δ .

Now, for any ξ ∈R, and these σ ,

exp
(−!ψ(ξ + iσ )

)= | exp(−ψ(ξ + iσ ))|

=
∣∣∣∣
∫ +∞
−∞

eiξx−σxp1(x) dx

∣∣∣∣≤
∫ +∞
−∞

e−σxp1(x) dx;
therefore (3.4) holds, and (a) is proved.

The proof of (b) is similar. �

REMARK 3.5. If λ+ > 0, then we can find σ+ ∈ (0, λ+), and if λ− <−1, then
we can find σ− ∈ (λ−,−1).

COROLLARY 3.6. (a) There exist σ− < 0≤ σ+ and δ > 0 such that, for any ξ

in the strip �ξ ∈ [σ−, σ+],
!ψ(ξ)+ r ≥ δ(1+ |ξ |)ν.(3.6)

(b) The transition density is of the class C∞(R).

PROOF. (a) Follows from (3.4) and (3.1)–(3.2).
(b) Differentiate under the integral sign in the Fourier inversion formula

pt(x)= (2π)−1
∫ +∞
−∞

e−ixξ−tψ(ξ )dξ,

and use (3.6). �

The main properties (3.1)–(3.6) of the symbol r+ψ(ξ) of the stationary part of
the generalized Black–Scholes operator in the LHS of (2.21) having been stated;
we can study its action in appropriate scales of normed spaces.

3.2. Properties of the elliptic part of the generalized Black–Scholes equation as
an operator on R. If ν ≥ 1 or µ= 0, then from (3.1), (3.2) and (3.4) we conclude
that there exist C1, c1 > 0 such that a(ξ) := r + ψ(ξ) satisfies both (3.6) and the
following estimate:

|�a(ξ)/!a(ξ)| ≤C1, ξ ∈R.(3.7)
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Consider A = r + ψ(D) as an unbounded operator in H 0(R) = L2(R) with
the domain Hν(R) [Hs denotes the Sobolev space; see, e.g., Eskin (1973)].
From (3.6), it follows that !A is positive definite: for any u ∈Hs(R),

(!Au,u)0 ≥ c1‖u‖2
ν/2 ∀u ∈ L2(R),

and from (3.7), (!A)−1�A is bounded. This means that A is a strongly elliptic
PDO, and therefore the generalized Black–Scholes equation (2.21) is an analogue
of the parabolic equation. If ν ∈ (0,1) and µ "= 0, then one can reduce (2.21)
to a parabolic equation by changing coordinates x′ = x + µτ but this spoils
the time-independent boundary for barrier options and touch-and-out options.
This observation means, in particular, that in cases of time-dependent barriers,
processes of the order ν ∈ [1,2] are more tractable than the ones of the order
ν ∈ (0,1).

4. Generalized Black–Scholes equation on a half-axis.

4.1. The Wiener–Hopf equation. In this section, we assume that X is an RLPE
of order ν ∈ (0,2] and exponential type [λ−, λ+], where λ− ≤ −1 < 0 ≤ λ+. We
consider two closely related problems, which arise when we apply the Fourier
transform w.r.t. t to a boundary value problem with a time-independent boundary
for the generalized Black–Scholes equation (2.21). Let λ ∈ C, and set a(λ, ξ) =
iλ+ r +ψ(ξ). The first problem is

a(λ,D)u(x)= g(x), x > 0,(4.1)

u(x)= 0, x ≤ 0,(4.2)

and the second is

a(λ,D)u(x)= 0, x > 0,(4.3)

u(x)= g(x), x ≤ 0.(4.4)

Notice that each of these two problems can be reduced to the other one and that
we will also need similar problems with the inequalities of the opposite signs.

To solve these problems, we apply the Wiener–Hopf factorization method. We
modify some constructions and results of Chapters 6 and 7 in Eskin (1973) (see
the comment at the end of this paragraph) for the one-dimensional case, which we
consider here, though all of them have multidimensional analogs, and analogs for
PDO with nonconstant symbols. In particular, this is pertinent to the calculation
of the factors in the Wiener–Hopf factorization formula in the next subsection:
the formulations and standard proofs of the fluctuation identities in probability are
essentially one-dimensional, whereas the constructions in Section 4 are nothing
but adaptations of the corresponding multidimensional ones. These observations
explain why the method of calculation of prices of barrier options and touch-and-
out options, which is used in this paper, admits straightforward generalizations
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to the multidimensional case, and to the case of Lévy-like Feller processes. [The
reader should be aware of the following systematic differences: the monograph
Eskin (1973) is chosen as a reference book on PDO since in many respects its
exposition is simpler than in later monographs on the subject but it uses the
different definition of the Fourier transform, which has become obsolete in the
theory of PDO. In the result, to establish the correspondence between the results
in Eskin (1973) and their counterparts here, the lower half-plane of the complex
plane must be replaced with the upper one and vice versa, etc.]

4.2. The Wiener–Hopf factorization. Fix λ, and set q = iλ+r . If!q > 0, then
the factorization of a(λ, ξ)= q+ψ(ξ) can be done for any Lévy process [see, e.g.,
Theorem 45.2 in Sato (1999)] though without the explicit formulas for the factors;
in Boyarchenko and Levendorskiı̌ (2000, 2002), explicit formulas are derived for
any RLPE and, by using them, one can explicitly solve problems (4.1)–(4.2) and
(4.3)–(4.4). We impose the following additional condition on µ in (3.1):

if ν ∈ (0,1), then µ= 0.(4.5)

This condition enables one to transform the line of integration in the main formulas
for barrier options into an appropriate contour and enhance the rate of convergence
of the integral. [In our situation, (4.5) is necessary lest the representation theorem
for analytical semigroups—see Yosida (1964)—fail.] Until further notice, we
add (4.5) to the list of standing assumptions (3.1)–(3.3) on the process X; at the
end of the section, we explain which changes are to be made when (4.5) fails.

Let σ− < 0≤ σ+ and σ0 ≤ 0 be the same as in Lemma 3.4. For θ ∈ (0, π/2), set
Dθ = {λ ∈C | argλ ∈ [−π − θ, θ]} and Dθ,σ0 = iσ0 +Dθ .

LEMMA 4.1. There exist c1 > 0 and θ ∈ (0, π/2) such that the following
hold:

(a) if �ξ ∈ [σ−, σ+] and λ ∈Dθ , then

|iλ+ r +ψ(ξ)| ≥ c1(1+ |λ| + |ξ |ν);(4.6)

(b) if �ξ ∈ [λ−, λ+] and λ ∈Dθ,σ0 , then (4.6) holds.

PROOF. We prove (a) with the help of (3.4); in the same way, (b) can be
derived from (3.5).

Fix C1 > 0 and ε > 0, and consider domains

U−(C1, ε)= {
(λ, ξ) | |λ| ≤ C1(1+ |ξ |ν), argλ ∈ (−π − ε, ε), �ξ ∈ [σ−, σ+]},

U+(C1)= {
(λ, ξ) | |λ| ≥ C1(1+ |ξ |ν), λ ∈C, �ξ ∈ [σ−, σ+]}.

On U+(C1), it suffices to prove (4.6) without |ξ | in the RHS. From (3.1),
(3.2), (3.4) and (4.5) it follows that there exists C0 such that

|a(λ, ξ)| ≤ C0(1+ |ξ |)ν,
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and hence if C1 is sufficiently large, we obtain |a(λ, ξ)| ≥ |λ|/2; thus, any θ

fits. On U−(C1, ε), it suffices to prove (4.6) without |λ| in the RHS. From (3.1),
(3.2), (3.4) and (4.5) it follows that for any C1 we can find sufficiently small ε and
c1 = c1(C1, ε) such that, for indicated (λ, ξ),

!a(λ, ξ)≥ c1(1+ |ξ |ν).
Hence, (4.6) holds with θ = ε. �

Fix a branch of ln by a requirement: lny is real for y > 0; for z ∈ C \ (−∞,0]
and s ∈ C, set zs = exp[s ln z]. Next, fix ε0 > 1− λ− + λ+ and p ≥ 1 such that
pν > 1, and set

F±(λ, ξ)s := (
(iλ+ r)1/pν + (ε0 ∓ iξ)1/p)ps

.

(Thus, for processes of order ν > 1, a choice p = 1 is admissible.) Then choose
d > 0 and κ−, κ+ ∈R so that

B(λ, ξ) := d−1F+(λ, ξ)−κ+F−(λ, ξ)−κ−a(λ, ξ)(4.7)

satisfies, for all λ ∈Dθ , ξ ∈R and σ ∈ [σ−, σ+],
lim

ξ→±∞B(λ, ξ + iσ )= 1,(4.8)

and b(λ, ξ + iσ )= lnB(λ, ξ + iσ ) is well defined for these λ, ξ, σ .
Choices of d , κ+ and κ− depending on properties of B , hence on ν, µ and c in

(3.1)–(3.2), we have to consider two cases:

1. if ν ∈ (0,2], ν "= 1, we set d = c, κ− = κ+ = ν/2;
2. if ν = 1, we set d = (c2+µ2)1/2, κ± = 1/2± π−1 arctan(µ/c).

In the first case, (4.8) immediately follows from (3.1)–(3.2) and (4.5), and if
ν = 1, then the simplest way to prove (4.8) is to check that lnB(λ, ξ + iσ )→ 0 as
ξ →±∞:

lim
ξ→±∞ lnB(λ, ξ + iσ )=±πi

2
κ+ ∓ πi

2
κ− + ln

c∓ iµ

(c2+µ2)1/2

=±(κ+ − κ−)
πi

2
∓ i arctan

µ

c
= 0.

LEMMA 4.2. For any λ ∈Dθ and σ ∈ (σ−, σ+), the winding number around
the origin of the curve {B(λ, ξ + iσ ) | −∞< ξ <+∞} is zero:

(2π)−1
∫ ξ=+∞
ξ=−∞

d argB(λ, ξ + iσ )= 0.(4.9)
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PROOF. Due to (4.8) and (4.7), the LHS in (4.9) is an integer. From (4.6),
B(λ, ξ) "= 0 ∀λ ∈ Dθ and ξ in a strip �ξ ∈ [σ−, σ+]; hence this integer is
independent of λ ∈Dθ and σ ∈ [σ−, σ+]. With λ= 0 and �ξ = σ , the last factor
in (4.7) assumes values in the half-plane !z > 0 by (3.4), and the same is true
of the product of the first three factors, since the first one is positive, F−(λ, ξ)
and F+(λ, ξ) assume values in the same half-plane but in different quadrants, and
0 < κ± ≤ 1. Hence, for all ξ in a strip �ξ ∈ [σ−, σ+], −π < argB(0, ξ) < π , and
therefore (4.9) holds. �

Under condition (4.9), b(λ, ξ) := lnB(λ, ξ) is well defined on Dθ × {ξ | �ξ ∈
[σ−, σ+]}. Next, for real ξ , σ > σ− and σ1 ∈ (σ−, σ ), we set

b+(λ, ξ + iσ )=−(2πi)−1
∫ +∞+iσ1

−∞+iσ1

b(λ, η)

ξ + iσ − η
dη,(4.10)

and for real ξ , σ < σ+ and σ2 ∈ (σ, σ+), we set

b−(λ, ξ + iσ )= (2πi)−1
∫ +∞+iσ2

−∞+iσ2

b(λ, η)

ξ + iσ − η
dη.(4.11)

By the Cauchy theorem, b±(λ, ξ + iσ ) are independent of choices of σ1 and σ2.
It follows from (3.1), (3.2) and (4.8) that there exist C,ρ > 0 such that, for all η

in a strip �η ∈ [σ−, σ+],
|b(λ, η)| ≤ C(1+ |η|)−ρ,

where C depends on λ but not on η (and ρ > 0 is independent of λ and η).
Hence, the integrals in (4.10) and (4.11) converge, and b±(λ, ξ) is well defined
and holomorphic in a half-plane ±�ξ >±σ∓. In the Appendix, we will prove the
following lemma.

LEMMA 4.3. For any [σ ′−, σ ′+] ⊂ (σ−, σ+), there exists C > 0 such that

|b+(λ, ξ)| ≤ C ∀λ ∈Dθ,�ξ ≥ σ ′−(4.12)

and

|b−(λ, ξ)| ≤ C ∀λ ∈Dθ,�ξ ≤ σ ′+.(4.13)

By the residue theorem, for σ− < σ1 < σ < σ2 < σ+,

b+(λ, ξ + iσ )+ b−(λ, ξ + iσ )

=−(2πi)−1
(∫ +∞+iσ1

−∞+iσ1

−
∫ +∞+iσ2

−∞+iσ2

)
b(λ, η)

ξ + iσ − η
dη= b(λ, ξ + iσ ).

Hence, B± = expb± satisfy B = B+B− on Dθ × {ξ | �ξ ∈ (σ−, σ+)}, and if we
set

a−(λ, ξ)=F−(λ, ξ)κ−B−(λ, ξ),
a+(λ, ξ)= dF+(λ, ξ)κ+B+(λ, ξ),
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then, for λ ∈Dθ, �ξ ∈ (σ−, σ+),

a(λ, ξ)= a+(λ, ξ)a−(λ, ξ).(4.14)

LEMMA 4.4. (a) For any λ ∈ Dθ , a+(λ, ξ) is holomorphic in the half-plane
�ξ > σ−, admits continuous extension up to the boundary of the half-plane and
satisfies an estimate

c(1+ |λ|1/ν + |ξ |)κ+ ≤ |a+(λ, ξ)| ≤ C(1+ |λ|1/ν + |ξ |)κ+ ,(4.15)

where C,c > 0 are independent of λ ∈Dθ and ξ in the half-plane �ξ ≥ σ−.
(b) For any λ ∈Dθ , a−(λ, ξ) is holomorphic in the half-plane �ξ < σ+, admits

continuous extension up to the boundary of the half-plane and satisfies an estimate

c(1+ |λ|1/ν + |ξ |)κ− ≤ |a−(λ, ξ)| ≤ C(1+ |λ|1/ν + |ξ |)κ− ,(4.16)

where C,c > 0 are independent of λ ∈Dθ and ξ in the half-plane �ξ ≤ σ+.
(c) For all λ ∈Dθ and ξ in a strip σ− ≤ �ξ ≤ σ+, (4.14) holds.
(d) Factors in (4.14) are uniquely defined by properties (a) and (b), up to scalar

multiples which may depend on λ.

PROOF. Fix [σ ′−, σ ′+] ⊂ (σ−, σ+), and prove (a)–(c) for λ ∈ Dθ and ξ

with �ξ ∈ [σ ′−, σ ′+]. Clearly, F±(λ, ξ)κ± satisfy (a) and (b), and since b± are
holomorphic and bounded on the same set due to (4.12)–(4.13), (a) and (b) are
proved; (4.14) has already been proved.

To prove (a)–(c) in full generality, we notice that a(λ, ξ) is continuous on the
strip �ξ ∈ [σ−, σ+], and hence a+(λ, ξ) admits continuous extension on Dθ ×
{ξ | �ξ ≥ σ−} by a+(λ, ξ) = a(λ, ξ)/a−(λ, ξ), and a−(λ, ξ) admits continuous
extension on Dθ × {ξ | �ξ ≤ σ+} by a−(λ, ξ) = a(λ, ξ)/a+(λ, ξ); then (4.14)
holds for λ ∈Dθ, �ξ ∈ [σ−, σ+] by construction. (4.15) and (4.16) for these λ and
ξ follow from (3.1)–(3.2) and (3.4) and from the already proved (4.15) and (4.16)
for λ ∈Dθ , �ξ ∈ [σ ′−, σ ′+].

To prove (d), fix λ, and let a(λ, ξ)= a′+(λ, ξ)a′−(λ, ξ) be another factorization
with the same properties. Then a′+(λ, ξ)/a+(λ, ξ) [resp., a′−(λ, ξ)/a−(λ, ξ)] is
holomorphic in the upper half-plane �ξ > 0 (resp., the lower half-plane �ξ < 0)
and continuous up to the boundary. Both functions are bounded and nonzero and
coincide on R. Hence, the analytic continuation of any of them is a bounded
holomorphic function on C. By the Liouville theorem, it must be constant. �

REMARK 4.5. Let q = iλ+ r be positive, and let

q

q +ψ(ξ)
= φ+q (ξ)φ−q (ξ)(4.17)

be the Wiener–Hopf factorization standard in probability theory [see Sato (1999),
Theorem 45.2]. For an RLPE, φ−(λ, ξ) := φ−q (ξ), φ+(λ, ξ) := φ+q (ξ) and their
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inverses are polynomially bounded w.r.t. ξ in the corresponding half-planes [this
is proved in Boyarchenko and Levendorskiı̌ (2002)]; therefore by applying the
same argument as in the proof of Lemma 4.4(d), and taking into account that
φ±(λ,0)= 1, we conclude that, for q = iλ+ r > 0,

φ±(λ, ξ)= a±(λ,0)

a±(λ, ξ)
.(4.18)

Since both sides are holomorphic w.r.t. λ in a neighborhood of i(−∞, r),
we conclude that (4.18) holds in the domain of analyticity of a±(λ, ξ) w.r.t.
(λ, ξ) ∈C2.

REMARK 4.6. Since all the constructions and estimates above are based on
the estimate (4.6), which is valid not only on Dθ × {ξ | �ξ ∈ [σ−, σ+]} but on
Dθ,σ0 × {ξ | �ξ ∈ [λ−, λ+]} as well, we can repeat these constructions and proofs
with Dθ,σ0 and [λ−, λ+] in place of Dθ and [σ−, σ+], and use these modifications.
When we do it, we refer to the same formulas.

4.3. Solution of the problem (4.1)–(4.2). For γ ∈ R and a function g defined
on R or its subset, set gγ (x) = eγ xg(x). We write g ∈ L

γ∞(R) iff gγ ∈ L∞(R),
and similarly define L

γ∞(R±). Let σ0 be from Lemma 3.4.

THEOREM 4.7. Let g ∈ L
−β∞ (R+), where β < −λ−. Then, for any λ in the

half-plane �λ≤ σ0 and any β1 ∈ (β,−λ−), the following hold:

(i) a solution to the problem (4.1)–(4.2) in the class L
−β1∞ (R+) exists;

(ii) if κ− < 1, it is unique and given by

u= a−(λ,D)−1θ+a+(λ,D)−1e+g,(4.19)

where e+g is the extension of g by 0 on the negative axis, and θ+ is the indicator
function of the positive axis;

(iii) if κ− = 1, then the continuous solution of the class L
−β1∞ (R+) is unique,

and it is given by (4.19).

REMARK 4.8. When we apply the definition of the action of PDO a±(λ,D)−1

to (4.19), we assume implicitly that the integration is over the line �ξ = γ , where
γ ∈ (λ−,−β). Due to the Cauchy theorem, the result is independent of a choice of
such a γ .

PROOF OF THEOREM 4.7. Take any γ ∈ (λ−,−β1), set uγ (x) = eγ xu(x),
insert u(x)= e−γ xuγ (x) into (4.1)–(4.2), multiply by eγ x and use the equality

eγ xa(λ,D)e−γ x = a(λ,D+ iγ ).(4.20)
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The result is

a(λ,D + iγ )uγ (x)= gγ (x), x > 0,(4.21)

uγ (x)= 0, x ≤ 0.(4.22)

Due to our choice of γ , gγ ∈ L2(R+) = H 0(R+), and since (3.5) holds, the
problem (4.21)–(4.22) satisfies conditions of Theorem 7.2 in Eskin (1973). This
theorem gives, in particular, that any solution of the class L2(R) is of the
form

uγ = a−(λ,D+ iγ )−1θ+a+(λ,D+ iγ )−1e+gγ +Cw,

where w = a−(λ,D)−1δ, δ is the Dirac delta-function and C is a constant. By
multiplying by e−γ x , we obtain (4.19) with an additional term Ce−γ xw. By
integrating by part in the oscillatory integral, which defines w, and using (4.16),
one can show that if κ− < 1, then w is unbounded in the neighborhood of 0, and
if κ− = 1, it is discontinuous at 0. Hence, C = 0, and we are left with the unique
solution (4.19). �

COROLLARY 4.9. Let σ0 be as in Lemma 3.4, and let g(x) = eβx , where
β <−λ−.

Then, for any γ ∈ (λ−,−β) and all λ in the half-plane �λ≤ σ0,

u(λ, x)= a−(λ,D)−1a+(λ,−iβ)−1(θ+eβ·)(x)(4.23)

= 1

2πa+(λ,−iβ)

∫ +∞+iγ

−∞+iγ

eixξ

a−(λ, ξ)(iξ − β)
dξ.(4.24)

PROOF. By using (4.15) and the Cauchy theorem, it is straightforward to
show that if we evaluate a+(λ,D)−1(e+g(·)− eβ·) at x > 0, we obtain 0. Hence,
in (4.19), we may replace a+(λ,D)−1e+g with

a+(λ,D)−1eβ· = eβ·a+(λ,−iβ)−1,(4.25)

and obtain (4.23)–(4.24). [To see why (4.25) holds, either apply both sides (as
functionals) to f ∈ C∞0 (R), or recall (4.18) and the probabilistic meaning of
φ−(λ, ξ)—see, e.g., Equation (45.8) in Sato (1999)]. �

4.4. Solution of the problem (4.3)–(4.4). We consider only a special case
g(x)= eβx .

LEMMA 4.10. Let σ0 be as in Lemma 3.4, and let g(x) = eβx , where
β >−λ+.

Then, for any β1 ∈ (−λ+, β) and all λ in the half-plane �λ≤ σ0, the following
hold:
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(i) a solution of the problem (4.3)–(4.4) of the class L
−β1∞ (R−) exists;

(ii) if κ− < 1, then the solution is unique, and for any γ ∈ (−β,λ+) it is given
by

u(λ, x)= φ−(λ,D)φ−(λ,−iβ)−1(θ−eβ·)(x)(4.26)

= (2πφ−(λ,−iβ))−1
∫ +∞+iγ

−∞+iγ
eixξφ−(λ, ξ)(β − iξ)−1 dξ ;(4.27)

(iii) if κ− = 1, then the continuous solution of the class L
−β1∞ (R−) is unique,

and it is given by (4.26)–(4.27).

PROOF. Lemma 4.10 is a special case of Theorem 4.2 in Boyarchenko and
Levendorskiı̌ (2002); for reader’s convenience, we give the proof for the case
β ∈ (−λ+,−λ−). Introduce a new function by v(x)= u(x)−eβx . By using (4.20),
we see that v solves the problem (4.1)–(4.2) with g(x)=−a(λ,−iβ)eβx . Then we
use (4.23) and (4.18) and arrive at (4.26)–(4.27). �

4.5. The case ν ∈ (0,1) and µ "= 0. Let ν ∈ (0,1). If µ > 0, set κ+ = 1,
κ− = 0 and F+(λ, ξ) = ε0 + iλ − iµξ (there is no need to introduce F−), and
if µ < 0, set κ+ = 0, κ− = 1 and F−(λ, ξ) = ε0 + iλ − iµξ (this time, we do
not need F+). After that we can repeat all the constructions, which have been
made under assumption (4.5) but this time for λ from a more narrow set: instead
of Dθ , we can use D′(ε)= {λ | �λ≤ ε}, for sufficiently small ε > 0. Remark 4.6,
Theorem 4.7, Corollary 4.9 and Lemma 4.10 are valid for all ν ∈ (0,2] and µ ∈R.

5. Touch-and-out options.

5.1. The setup. A first-touch digital is a digital contract which pays $1 when
and if a specific event occurs. Consider the first-touch digital (another name is a
touch-and-out option) which pays $1 the first time the stock price S hits or crosses
the level H from above. (It would be better to say “hits (0,H ];” for simplicity,
in the sequel we say “crosses the level H .”) If the stock price never crosses the
level H before time T , the claim expires worthless. Denote by Vd(H,T ;S, t) the
no-arbitrage price of such a contract. (It coincides with the price of an American
put-like option with a digital payoff. Since the payoff is the same for all levels of
the stock price below the barrier, it is optimal to exercise the option the first time
the level H is crossed.)

The formulas for the value Vu(H,T ;S, t) of a similar contract, which pays $1
the first time the stock price crosses the level H from below, easily follow by
reflection of the real axis w.r.t. the origin. For explicit pricing formulas for the
case when the dynamics of the stock price is modelled as the geometric Brownian
motion, see, for example, Ingersoll (2000).
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The riskless rate r > 0 is constant, and EMM Q is chosen so that, under Q,
{Xt } = {lnSt } is an RLPE of order ν ∈ (0,2] and exponential type [λ−, λ+], where
λ− <−1 < 0 < λ+.

At the end of the section, we obtain similar results for power first-touch
contracts; we also consider contracts which pay a nonzero amount when the first
barrier has been crossed but the second one (situated farther) has not, and expire
worthless if both barriers have been crossed in one jump.

5.2. Pricing formulas. Set x = ln(S/H), u(x, t) = Vd(H,T ;S, t). Then, for
t < T and x ∈R,

u(x, t)=E[e−rT ′1T ′≤T |Xt = x],(5.1)

where T ′ is the hitting time of (−∞,0] by X. By applying Theorem 2.1 to the
two-dimensional process X̂t = (Xt , t), we obtain the following theorem.

THEOREM 5.1. The u is a solution of the following problem:(
∂t − (

r +ψ(Dx)
))
u(x, t)= 0, x > 0, t < T,(5.2)

u(x, t)= 1, x ≤ 0, t ≤ T,(5.3)

u(x,T )= 0, x > 0,(5.4)

in the class of bounded measurable functions.

Set τ = T − t , v(x, τ )= u(x,T − τ ) and rewrite (5.2)–(5.4) as follows:(
∂τ + r +ψ(Dx)

)
v(x, τ )= 0, x > 0, τ > 0,(5.5)

v(x, τ )= 1, x ≤ 0, τ ≥ 0,(5.6)

v(x,0)= 0, x > 0.(5.7)

To solve the problem (5.5)–(5.7), make the Fourier transform w.r.t. τ ; since the
terminal condition (5.7) is homogeneous, we obtain the following family of the
problems on R, parametrized by λ with �λ < 0:(

iλ+ r +ψ(Dx)
)
v̂(x, λ)= 0, x > 0,(5.8)

v̂(x, λ)= (iλ)−1, x ≤ 0.(5.9)

Let σ0 be from Lemma 3.4. By applying Lemma 4.10 and using the equality
φ−(λ,0)= 1, we find, for λ in the half-plane �λ≤ σ0,

v̂(x, λ)= φ−(λ,D)(iλ)−1θ−.(5.10)

Recall that if κ− < 1, the solution is unique in the class of bounded functions, and
if κ− = 1, it is unique in the class of bounded continuous functions, and notice that
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the condition κ− = 1 holds (or fails) for all λ simultaneously. The equality κ− = 1
implies that either the process is of order 2 and hence has a diffusion component, or
it is a process of order ν ∈ (0,1) and µ< 0, that is, a process of bounded variation,
with negative drift. In both cases, by using (5.1), we obtain that u is continuous.

Explicitly, (5.10) is

v̂(x, λ)= (2π)−1
∫ +∞+iω+

−∞+iω+
eixξφ−(λ, ξ)(λξ)−1 dξ,

where ω+ ∈ (0, λ+), and v is obtained by the Fourier inversion: for any negative
σ ≤ σ0,

v(x, τ )= (2π)−2
∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+
ei(τλ+xξ)φ−(λ, ξ)(λξ)−1 dξ dλ.(5.11)

If κ− > 0, then on the strength of (4.16) the integrand admits a bound via

C(1+ |ξ |)−1−ε(1+ |λ|)−1−ε,

for some C,ε > 0. Hence, v is continuous. If κ− = 0, then we integrate by parts
w.r.t. x and τ in the open quadrant (0,+∞)2, and by using the explicit formula
for φ−, obtain the integrand, which (locally w.r.t. x and ξ ) admits the same bound,
and we conclude that v is continuous on (0,+∞)2. Therefore, (5.11) gives the
price we are looking for. By returning to the initial variables, we obtain the
following theorem.

THEOREM 5.2. For S >H and t < T ,

Vd(H,T ;S, t)
(5.12) = (2π)−2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+
ei((T−t)λ+ln(S/H)ξ)φ−(λ, ξ)(λξ)−1 dξ dλ,

for σ ≤ σ0 and ω+ ∈ (0, λ+).

By making the inversion of the x-axis w.r.t. the origin, which leads to the change
X �→ X̃, S �→ −S, H �→ −H , ξ �→ −ξ and φ−(λ, ξ) �→ φ+(λ,−ξ), and then
making the change of variable ξ �→ −ξ in the integral, we obtain the following
theorem.

THEOREM 5.3. For S <H and t < T ,

Vu(H,T ;S, t)
(5.13) =−(2π)−2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω−

−∞+iω−
ei((T−t)λ+ln(S/H)ξ)φ+(λ, ξ)(λξ)−1 dξ dλ,

for σ ≤ σ0 and ω− ∈ (λ−,0).
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5.3. First-touch power options.

5.3.1. Down-and-out case. Let β > −λ+, H > 0, and denote by V
β
d (H,T ;

S, t) the price of the contract which pays Sβ the first time the stock price crosses
the level H from above. If this does not happen until the terminal date T , the
contract expires worthless. Let σ0 < 0 be from Lemma 4.1.

THEOREM 5.4. For S > H and t < T ,

V
β
d (H,T ;S, t)

(5.14)
= Sβ

(2π)2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+

ei(T−t)λ+i ln(S/H)ξφ−(λ, ξ − iβ)

λξφ−(λ,−iβ)
dξ dλ,

for any σ ≤ σ0 and ω+ ∈ (0, λ+ + β).

PROOF. Clearly,

V
β
d (H,T ;S, t)=HβV

β
d (1, T ;S/H, t),

and V
β
d (1, T ;S/H, t) can be calculated in essentially the same way as Vd(H,T ;

S, t). The result is

V
β
d (H,T ;S, t)

= Hβ

(2π)2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+

ei(T−t)λ+i ln(S/H)ξφ−(λ, ξ)
λ(ξ + iβ)φ−(λ,−iβ)

dξ dλ,
(5.15)

for any σ ≤ σ0 and ω+ ∈ (−β,λ+). In the case β < 0, the payoff is unbounded;
to be able to use Theorem 2.1, we have to approximate g(x)= eβx by a sequence
of bounded smooth nonnegative functions gn, which converges pointwise to g:
gn(x) ↑ g(x), ∀x ≤ 0. Denote by Vd(gn;H,T ;S, t) the price of the contract
with the early exercise payoff gn. By using Theorem 4.2 in Boyarchenko and
Levendorskiı̌ (2002) (Lemma 4.10 is a special case of this theorem), we obtain

Vd(gn;H,T ;S, t)= Hβ

2π

∫ +∞+iσ

−∞+iσ
ei(T−t)λ(−iλ)−1

(5.16)

× φ−(λ,D)θ−φ−(λ,D)−1gn

(
ln

(
S

H

))
dλ,

and since eω+·gn→ eω+·g in L2(R−), we have that

Vd(gn;H,T ;S, t)→ Vd(g;H,T ;S, t)
in the sense of generalized functions. By writing the RHS in (5.16) explicitly and
integrating by parts, we can prove that the functions involved are continuous in the
region S > H, t < T . Hence, the limit Vd(g;H,T ;S, t) is the price we are looking
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for. By using the equality φ−(λ,D)−1eβx = φ−(λ,−iβ)−1eβx and the definition
of PDO, we conclude that Vd(g;H,T ;S, t) is given by the RHS in (5.15).

Shift the line of integration in (5.15) w.r.t. ξ and integrate over the line �ξ =
ω+ − β; then change the variable ξ �→ ξ − iβ . The result is (5.14). �

5.3.2. Up-and-out case. Let β <−λ−, H > 0, and denote by V
β
u (H,T ;S, t)

the price of the contract which pays Sβ the first time the stock price crosses the
level H from below. If this does not happen until the terminal date T , the contract
expires worthless.

THEOREM 5.5. For S <H and t < T ,

V β
u (H,T ;S, t)

(5.17)
=− Sβ

(2π)2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω−

−∞+iω−

ei((T−t)λ+ln(S/H)ξ)φ+(λ, ξ − iβ)

λξφ+(λ,−iβ)
dξ dλ,

for any σ ≤ σ0 and ω− ∈ (λ− + β,0).

5.4. First-touch power options: the double barrier case.

5.4.1. Down-and-out case. Let β ∈ R, H2 > H1 > 0, and denote by
V

β
d ((H1,H2], T ;S, t) the price of the contract which pays Sβ the first time the

stock price crosses the level H2 from above unless it crosses the level H1 as well.
If both barriers have been crossed in one jump or the first barrier has not been
crossed until the terminal date T , the contract expires worthless.

THEOREM 5.6. For S >H2 and t < T ,

V
β
d ((H1,H2], T ;S, t)

= (2π)−1
∫ +∞+iσ

−∞+iσ
ei(T−t)λ(−iλ)−1(5.18)

× φ−(λ,D)1(−∞,lnH2]φ−(λ,D)−1g(lnS)dλ,

where g(x)= eβx1(lnH1,lnH2](x), and σ ≤ σ0 is arbitrary.

PROOF. We use Theorem 4.2 in Boyarchenko and Levendorskiı̌ (2002) [cf.
the derivation of (5.16)]. �

5.4.2. Up-and-out case. Let β ∈R, 0<H1 <H2, and denote by V
β
u ([H1,H2),

T ;S, t) the price of the contract which pays Sβ the first time the stock price crosses
the level H1 from below unless it crosses the level H2 as well. If both barriers have
been crossed in one jump or the first barrier has not been crossed until the terminal
date T , the contract expires worthless.
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THEOREM 5.7. For S < H1 and t < T ,

V β
u ([H1,H2), T ;S, t)

= (2π)−1
∫ +∞+iσ

−∞+iσ
ei(T−t)λ(−iλ)−1(5.19)

× φ+(λ,D)1[H1,+∞)φ+(λ,D)−1g(lnS)dλ,

where g(x)= eβx1[lnH1,lnH2)(x), and σ ≤ σ0 is arbitrary.

6. Barrier options. Barrier options are reducible to boundary value problems
with a nontrivial terminal condition and a fixed early exercise boundary. In the
event of the early exercise, the option owner may be entitled to a rebate; that is,
the boundary condition can be homogeneous or inhomogeneous. In contrast to the
Gaussian case, the rebate must be specified not at the barrier only but everywhere
on the other side of the barrier as well.

6.1. Types of barrier options.

6.1.1. Standard barrier options. Consider a contract which pays the specified
amount at the terminal date provided during the lifetime of the contract the price
of the underlying asset does not cross a specified barrier S = H(t) from above
(down-and-out barrier options) or from below (up-and-out barrier options). When
the barrier is crossed, the option expires worthless or the option owner is entitled
to some rebate. For simplicity, we consider constant barriers only, though non-
constant barriers can also be considered.

The standard variety of barrier options on a stock, without a rebate, comprises
four types of down-and-out and up-and-out options, and four types of down-and-in
and up-and-in options. The “out” options are as follows:

1. the down-and-out put option with the same terminal payoff as for the European
put; denote the price of this contract by Vdo;put(K,H,T ;S, t);

2. the down-and-out call option with the same terminal payoff as for the European
call; the price is denoted by Vdo;call(K,H,T ;S, t);

3. the up-and-out put option with the same terminal payoff as for the European
put; the price is denoted by Vuo;put(K,H,T ;S, t);

4. the up-and-out call option with the same terminal payoff as for the European
call; the price is denoted by Vuo;call(K,H,T ;S, t).

An “in” option becomes the European option when the specified barrier is crossed
(before or on the terminal date); otherwise it expires worthless. For instance, the
up-and-in put option becomes the European put option when the barrier is crossed
from below; we denote its price by Vui;put(K,H,T ;S, t). Similarly, one considers
the up-and-in call option, with the price Vui;call(K,H,T ;S, t), and down-and-in
put and call options Vdi;put(K,H,T ;S, t) and Vdi;call(K,H,T ;S, t).
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In all states of nature, a European option pays the same amount as the portfolio
of the down-and-out option and up-and-in option with the same barrier (of course,
this is pertinent to the portfolio of the up-and-out option and down-and-in option
with the same barrier as well); therefore standard no-arbitrage considerations show
that the pricing problem for an “in” option reduces to the pricing problem of the
corresponding “out” option and the European option, for instance,

Vdi,call(K,H,T ;S, t)= Vcall(K,T ;S, t)− Vuo,call(K,H,T ;S, t),(6.1)

where Vcall(K,T ;S, t) is the price of the European call with the same strike
price K and expiry date T . Equalities similar to (6.1) hold for other pairs of barrier
options, and in the sequel we will write the explicit formulas for “out” options only.

6.1.2. Options with a rebate. Suppose that when the barrier is crossed from
above, the European option with terminal payoff G(ST ) expires but the option
owner is entitled to some rebate Gr(St , t). If the rebate is constant, then standard
no-arbitrage consideration shows that the price of the barrier option with a rebate
is equal to the price of the portfolio of the same type of barrier option but without a
rebate, and the first-touch digital with payoff Gr ; the same holds for “up” options.
Similarly, the price of an option with a power rebate Gr(S) = Sβ is equal to
the price of the corresponding option without a rebate, and the first-touch power
option; for instance, the price of the down-and-out put with a power rebate can be
calculated as

V
β
do,put(K,H,T ;S, t)= Vdo,put(K,H,T ;S, t)+ V

β
d (H,T ;S, t).(6.2)

Likewise, consider the contract for the down-and-out put option, which specifies
that the rebate Sβ is paid provided the barrier H2 has been crossed from above
but the second barrier H1 < H2 has not, and the option expires worthless, if both
barriers have been crossed in one jump. The price of such a contract is

V
β
do,put(K, (H1,H2], T ;S, t)

= Vdo,put(K,H2, T ;S, t)+ V
β
d ((H1,H2], T ;S, t).

(6.3)

By using (6.2)–(6.3) and their analogue for other types of barrier options, and
the formulas for first-touch digitals and power options, we can reduce the pricing
problem of barrier options with a constant or power rebate to the case without a
rebate.

6.1.3. More general barrier options. One can consider barrier options for
other terminal payoffs, say, barrier counterparts of power options, and rebates of
different types. This increases the variety of barrier options still further.
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6.2. Main results for barrier options without a rebate. We assume that the
riskless rate r > 0 is constant and, under a risk-neutral measure Q, X is an RLPE
of exponential type [λ−, λ+], where λ− <−1 < 0 < λ+.

We consider “out” options with barrier H , without a rebate; the terminal payoffs
are of the form

G(ST )= (S
β
T −K)+,(6.4)

where 0 ≤ β < −λ−, which includes payoffs for calls and “power calls” [we
denote the price of such a contract by W

β
∗;call(K,H,T ;S,T )], or of the form

G(ST )= (K − S
β
T )+,(6.5)

where −λ+ < β , which includes payoffs for puts and “power puts” [the notation
used is W

β
∗;put(K,H,T ;S,T )]. We also consider barrier contracts with payoffs

G(ST ) = S
β
T ; in the down-and-out case, the price is denoted by W

β
do(H,T ;S, t),

and in the up-and-out case, by W
β
uo(H,T ;S, t). (More general payoffs can also be

considered.)
In addition to W

β
do and W

β
uo, we have to consider separately six cases of standard

(power) barrier options:

(i) down-and-out call option W
β
do;call(K,H,T ;S,T ), in the case K ≤Hβ ;

(ii) up-and-out put option W
β
uo;put(K,H,T ;S,T ), in the case K ≥Hβ ;

(iii) down-and-out put option W
β
do;put(K,H,T ;S,T ), in the case K >Hβ ;

(iv) up-and-out call option W
β
uo;call(K,H,T ;S,T ), in the case K <Hβ ;

(v) down-and-out call option W
β
do;call(K,H,T ;S,T ), in the case K >Hβ ;

(vi) down-and-out put option W
β
do;put(K,H,T ;S,T ), in the case K <Hβ .

Of these eight cases, there are only two essentially different: the calculation of Wβ
uo

(resp., Wβ
uo;call) is reducible to the calculation of W−β

do (resp., Wβ
do;put) by passing

to the dual process, the prices in cases (i) and (ii) can easily be expressed in terms
of Wβ

uo and W
−β
do , and cases (v)–(vi) reduce to (i)–(iv):

THEOREM 6.1. (i) If K ≤Hβ , then

W
β
do;call(K,H,T ;S, t)=W

β
do(H,T ;S, t)−KW 0

do(H,T ;S, t).(6.6)

(ii) If K ≥Hβ , then

W
β
uo;put(K,H,T ;S, t)=KW 0

uo(H,T ;S, t)−Wβ
uo(H,T ;S, t).(6.7)
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(v) If K >Hβ , then

W
β
do;call(K,H,T ;S, t)=W

β
do(H,T ;S, t)−KW 0

do(H,T ;S, t)
−W

β
do;put(K,H,T ;S, t).

(6.8)

(vi) If K <Hβ , then

W
β
uo;put(K,H,T ;S, t)=KW 0

uo(H,T ;S, t)−Wβ
uo(H,T ;S, t)

−W
β
uo;call(K,H,T ;S, t).

(6.9)

It remains to write the explicit formulas for functions in the RHS’s of
(6.6)–(6.9). As in Section 5, the results are formulated in terms of the factors in
the Wiener–Hopf factorization formula.

Let σ0 be from Lemma 3.4. In the formulas below, we may use any negative
σ ≤ σ0.

THEOREM 6.2. (a) Let β <−λ−. Then, for t < T and S >H ,

W
β
do(H,T ;S, t)

= Hβ

(2π)2a+(λ,−iβ)

∫ +∞+iσ

−∞+iσ

∫ +∞+iω−

−∞+iω−
(6.10)

× exp(i[λ(T − τ )+ ξ ln(S/H)]) dξ dλ

a−(λ, ξ)(iξ − β)
,

where ω− ∈ (λ−,−β) is arbitrary.
(b) Let β >−λ+. Then, for t < T and S <H ,

Wβ
uo(H,T ;S, t)

= Hβ

(2π)2a−(λ,−iβ)
(6.11)

×
∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+

exp(i[λ(T − τ )+ ξ ln(S/H)]) dξ dλ

a+(λ, ξ)(β − iξ)
,

where ω+ ∈ (−β,λ+) is arbitrary.

In the last theorem, we need the Fourier transforms of functions

g+(K,H,β;x) := 1[lnH,lnK/β](x)(K − eβx) when K >Hβ

and

g−(K,H,β;x) := 1[lnK/β,lnH ](x)(eβx −K) when K <Hβ;
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they are

ĝ+(K,H,β;η)= K1−iη/β −KH−iη

−iη
− K1−iη/β −Hβ−iη

β − iη

and

ĝ−(K,H,β;η)= K1−iη/β −Hβ−iη

β − iη
− K1−iη/β −KH−iη

−iη
.

THEOREM 6.3. (a) Let K > Hβ , β ≥ 0 and κ+ > 0. Then, for t < T and
S > H ,

W
β
do;put(K,H,T ;S, t)

= 1

(2π)3i

∫ +∞+iσ

−∞+iσ

∫ +∞+iγ1

−∞+iγ1

∫ +∞+iγ

−∞+iγ
ei(λ(T−t)+ln(S/H)ξ)

× ĝ+(K,H,β;η)dη dξ dλ

a−(λ, ξ)(ξ − η)a+(λ, η)
,

(6.12)

where a negative σ ≤ σ0 and λ− < γ1 < γ < λ+ are arbitrary.
(b) Let K <Hβ , 0≤ β <−λ+ and κ− > 0. Then, for t < T and S <H ,

W
β
uo,call(K,H,T ;S, t)

= 1

(2π)3i

∫ +∞+iσ

−∞+iσ

∫ +∞+iγ1

−∞+iγ1

∫ +∞+iγ

−∞+iγ
ei(λ(T−t)+ln(S/H)ξ)

× ĝ−(K,H,β;η)dη dξ dλ

a+(λ, ξ)(η− ξ)a−(λ, η)
,

(6.13)

where a negative σ ≤ σ0 and λ− < γ < γ1 < λ+ are arbitrary.

REMARK 6.4. (i) The proof of part (a) [resp., (b)] is valid for κ+ = 0 (resp.,
κ− = 0) as well; only the last step needs some modification, and the resulting
formulas are more complex.

(ii) If ν ∈ [1,2) or ν ∈ (0,1) and µ= 0, then the factors a±(λ, ξ) in the Wiener–
Hopf factorization formula can be constructed so that each of them admits analytic
continuation w.r.t. λ in the region of the form

D(−C0, ε) := −C0 + {λ | argλ ∈ (−π − ε, ε)},
for all ξ ∈ (λ−, λ+), with appropriate estimates (cf. Lemma 4.1). Denote by
L(−C0, ε) the boundary of D(−C0, ε), and notice that in (6.11)–(6.13), we
can transform the line �λ = σ into the contour L(−C0, ε). This improves the
convergence of the integral.



1292 S. BOYARCHENKO AND S. LEVENDORSKIǏ

To prove Theorems 6.2 and 6.3, we first notice that the proof of the (b)-parts
can be obtained from the proof of the (a)-parts by using the dual process instead
of the initial one and that the (a)-parts are special cases of the following general
result. Let g be a nonnegative, continuous function on [h,+∞), where h= lnH ,
and let g satisfy an estimate

g(x)≤ Ceβx,(6.14)

where β < −λ−. Below, we identify a function on [h,+∞) with its extension
by zero on (−∞, h). Denote by Wdo(g;H,T ;S, t) the price of the down-and-out
contract with barrier H , terminal date T and payoff g(lnST ), and for any γ ∈ R
set gγ (x)= eγ xg(x).

THEOREM 6.5. For S >H and t < T ,

Wdo(g;H,T ;S, t)= e−γ x

2π

∫ +∞+iσ

−∞+iσ
eiλ(T−t)[a−(λ,D + iγ )−1

(6.15)
× 1[h,+∞)a+(λ,D + iγ )−1gγ

]
(lnS)dλ,

where a negative σ ≤ σ0 and γ ∈ (λ−,−β) are arbitrary.

PROOF. Construct a sequence {gn} of nonnegative continuous functions with
compact supports converging pointwise to g: gn(x) ↑ g(x), n→∞. Then, for any
S >H and t < T ,

Wdo(gn;H,T ;S, t) ↑Wdo(g;H,T ;S, t).(6.16)

By applying Theorem 2.1 to a two-dimensional process X̂t = (Xt , t), we find that
vn(x, t) :=Wdo(gn;H,T ;S, t) is a measurable bounded solution to the following
problem: (

∂t − (
r +ψ(D)

))
v(x, t)= 0, x > h, t < T,(6.17)

v(x,T )= gn(x), x > h,(6.18)

v(x, t)= 0, x ≤ h, t ≤ T .(6.19)

Set un(x, τ )= vn(x,T − τ ), and for λ on the line �λ= σ consider the problem(
iλ+ r +ψ(D)

)
ûn(x, λ)= gn(x), x > h,(6.20)

ûn(x, λ)= 0, x ≤ h.(6.21)

The Wiener–Hopf method gives the unique bounded solution

ûn(·, λ)= a−(λ,D)−11[h,+∞)a+(λ,D)−1gn.(6.22)

Define

un(x, τ )= 1

2π

∫ +∞+iσ

−∞+iσ
eiλτ

(
a−(λ,D)−11[h,+∞)a+(λ,D)−1gn

)
(x) dλ.(6.23)
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By invoking the definition of PDO and integrating by parts in the resulting
oscillatory integral, it is straightforward to show that un is continuous on
(h,+∞) × (0,+∞) and, for any x > 0, un(x, τ )→ gn(x), as τ →+0. Thus,
Wdo(gn;H,T ;S, t) = un(x,T − t), and in view of (6.16), to finish the proof of
Theorem 6.5, it suffices to calculate the limit of the RHS in (6.23).

Take γ ∈ (λ−,−β), set gn,γ (x) = eγ xgn(x), ûn,γ (x, λ) = eγ xûn(x, λ) and
rewrite (6.22) as

ûn,γ (·, λ)= a−(λ,D+ iγ )−11[h,+∞)a+(λ,D+ iγ )−1gn,γ .(6.24)

Define ûγ and uγ by (6.24) and (6.23), respectively, with gγ instead of gn,γ .
Due to the choice of γ , we have gn,γ → gγ in the topology of L2(R); therefore
un,γ → uγ in the sense of generalized functions. By using the definition of PDO, it
is straightforward to show that uγ is continuous on (h,+∞)× (0,+∞). However,
if two continuous functions define the same generalized function, they coincide.
Hence, Wdo(g;H,T ;S, t)= u(x,T − t), and (6.15) has been proved. �

6.3. Proof of Theorem 6.2. Now we can deduce (6.10). Without loss of
generality, we may assume H = 1. Then, for x > 0, we have

(
a+(λ,D+iγ )−11[0,+∞)e

(β+γ )·)(x)= (2π)−1
∫ +∞
−∞

eixξ dξ

a+(λ, ξ + iγ )(iξ −β−γ )
.

In view of (4.15), the integrand is meromorphic in the upper half-plane with the
only pole at ξ =−i(β+γ ), which is simple, and in the upper half-plane, outside a
vicinity of the pole, the integrand admits an estimate via C(1+ |ξ |)−1−κ+ . Hence,
we can shift the line of integration in the direction �ξ →+∞, and by using the
residue theorem we obtain

1[0,+∞)a+(λ,D + iγ )−11[0,+∞)e
(β+γ )· = a+(λ,−iβ)−11[0,+∞)e

(β+γ )·.(6.25)

Once (6.25) has been calculated, we insert the RHS into (6.15), use the definition
of PDO and obtain (6.10). �

6.4. Proof of Theorem 6.3. Without loss of generality, we may assume that
H = 1. We write (6.15) explicitly, by using the definition of PDO, and obtain, for
any negative σ ≤ σ0 and any ω ∈ (λ− − γ,0),

W
β
do;put(K;H,T ;S, t)= e−γ x

(2π)3

∫ +∞+iσ

−∞+iσ
dλ eiλτ

×
∫ +∞+iω

−∞+iω
dξeix(ξ+iγ )a−(λ, ξ + iγ )−1

∫ +∞
0

dy e−iyξ

×
∫ +∞
−∞

dη eiyηa+(λ, η+ iγ )−1ĝ+(η+ iγ ).
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We know that ĝ(η + iγ )=O(|η|−1), as η→±∞; therefore in the case κ+ > 0,
we conclude from (4.15) and the condition ω < 0 that the inner double integral
converges absolutely. By applying the Fubini theorem and integrating w.r.t. y first,

∫ +∞
0

dy ei(−ξ+η)y =−i(ξ − η)−1,

we obtain

W
β
do;put(K;H,T ;S, t)= e−γ x

(2π)3

∫ +∞+iσ

−∞+iσ
dλ eiλτ

×
∫ +∞+iω

−∞+iω
dξ eix(ξ+iγ )a−(λ, ξ + iγ )−1

×
∫ +∞
−∞

dη
(
i(ξ − η)

)−1
a+(λ, η+ iγ )−1ĝ+(η+ iγ ).

Now it remains to change the variables ξ �→ ξ − iγ and η �→ η − iγ to
obtain (6.12).

To prove an analogue of (6.12) in the case κ+ = 0, we represent a+ in the form
a+(λ, ξ)= 1+ d+(λ, ξ), where d+(λ, ξ) decays at infinity w.r.t. ξ , and work with
the resulting two integrals separately. �

7. Conclusion. We have suggested a general procedure of the computation
of the price of a contingent claim under a Lévy process and applied it to barrier
options and touch-and-out options under regular Lévy processes of exponential
type. The first step is reduction of the calculation of the price to the boundary
value problem for the generalized Black–Scholes equation, which is a nonlocal
pseudodifferential equation. In this step, we use the representation of the q-
order harmonic measure of a set relative to a point in terms of the q-potential
measure. The reduction procedure generalizes to any Markov process having
absolutely continuous potential kernel; the payoff is assumed measurable and
bounded.

The next step is solution of the boundary problem by means of the standard
tools of the theory of boundary value problems for PDO. Since the infinitesimal
generator of a Lévy process is a PDO with constant symbol, the simplest
tools—the Fourier transform and the Wiener–Hopf factorization—suffice, but for
more general Lévy-like Feller processes considered in Barndorff-Nielsen and
Levendorskiı̌ (2001), more serious machinery of PDO is necessary.

After the explicit analytical formula for the unique bounded measurable solution
is found (in some cases, the solution is singled out as the unique continuous one),
we check that it is continuous in the continuation region, and hence this is the
solution we are looking for. The verification is necessary since the solution is found
as a generalized function, and the analytic expression involves the inverse Fourier
transform.
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In the case of an unbounded payoff, one more step is needed. In the stochastic
representation, which defines the contingent claim with payoff g, we replace g

by bounded functions gn with compact support such that gn ↑ g pointwise. This
allows one to reduce the problem of the computation of f to the problem which is
already solved: we find fn as the solution of the corresponding boundary problem
for the generalized Black–Scholes equation. The formula for fn being found, we
pass to the limit in the sense of generalized functions and obtain the analytic
expression for the limit. By inspection, we see that the limit is a continuous
function; hence it coincides with f .

We find explicit formulas for touch-and-out options, first-touch power options
and power-like barrier options (including standard barrier options); we consider
cases of options without rebate, with constant rebate and with exponentially
decaying rebate. We also consider the case of the double barrier, when the rebate
is paid only when the first barrier has been crossed but the second one, situated
farther, has not.

The formulas obtained admit certain simplifications (from the point of view of
the numerical calculations, not the length of the resulting formulas) but they are
much more involved; we consider them in separate publications.

APPENDIX

PROOF OF LEMMA 4.3. We prove (4.10); (4.11) is proved similarly. By
making an appropriate change of variables, we may assume that σ > 0= σ1 > σ−.

By using (3.2), (3.3) and (4.6), we easily obtain the estimates

C−1 ≤ |B(λ,η)| ≤ C,(A.1)

|B(λ,η)− 1| ≤ C1(1+ |λ| + |η|ν′)/(1+ |λ| + |η|ν),(A.2)

|∂ηB(λ,η)/B(λ,η)| ≤ C2(1+ |λ|1/ν + |η|)−1,(A.3)

where C, C1 and C2 are independent of λ ∈Dθ and η in a strip �η ∈ [σ−, σ+], as
well as all constants below. Set K = (|λ|+1)1/ν , and for each pair (λ, ξ) introduce
intervals Jj ⊂R:

J1 = {η | |η− ξ | ≤K}, J2 = {η | |η− ξ |>K, |η| ≤K},
J3 = {η | |η− ξ | ≥ |η|, |η|>K}, J4 = {η |K < |η− ξ |< |η|, |η|>K}.

By using the mean value theorem and (A.3), we obtain

b(λ, η)

ξ + iσ − η
= b(λ, ξ)

ξ + iσ − η
+R(λ, ξ, η, σ ),(A.4)

where

|R(λ, ξ, η, σ )| ≤ C3(1+ |λ|)−1/ν.(A.5)
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Since ∣∣∣∣
∫ K

−K

dη

iσ − η

∣∣∣∣=
∣∣∣∣ln −K − iσ

K − iσ

∣∣∣∣≤ 2π,

we deduce, from (A.4)–(A.5) and (A.1),∣∣∣∣
∫
J1

b(λ, η) dη

ξ + iσ − η

∣∣∣∣≤ 2π lnC +C3

∫
|η−ξ |≤K

(1+ |λ|)−1/ν dη= C4.(A.6)

To prove the following estimate, only (A.1) is needed:∣∣∣∣
∫
J2

b(λ, η) dη

ξ + iσ − η

∣∣∣∣≤ C5

∫
|η|≤K

(1+ |λ|)−1/ν dη=C6.

Further, we infer from (A.2) that b admits an estimate of the same form as B − 1;
using this estimate on J3, we obtain

∣∣∣∣
∫
J3

b(λ, η) dη

ξ + iσ − η

∣∣∣∣≤ C7

∫
|η|≥K

1+ |λ| + |η|ν′
|η|(1+ |λ| + |η|ν) dη.(A.7)

By changing variables η=Kη′, we see that the RHS in (A.7) is bounded uniformly
in λ ∈Dθ , ξ ∈R, σ > 0.

Since ν′ ∈ [0, ν), a function

f (s)= (1+ |λ| + sν
′
)/(1+ |λ| + sν)

is decreasing on [0,+∞), and therefore we deduce from (A.2) an estimate, for
η ∈ J4,

|b(λ, η)| ≤C8(1+ |λ| + |ξ − η|ν′)/(1+ |λ| + |ξ − η|ν).(A.8)

From (A.8),
∣∣∣∣
∫
J4

b(λ, η) dη

ξ + iσ − η

∣∣∣∣≤ C8

∫
|ξ−η|≥K

1+ |λ| + |ξ − η|ν′
|ξ − η|(1+ |λ| + |ξ − η|ν) dη,(A.9)

and the change of variables η = ξ +Kη′ shows that the RHS in (A.9) is bounded
uniformly in λ ∈Dθ .

By gathering bounds (A.6)–(A.7) and (A.9), we obtain (4.10). �
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