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Let I1, I2, . . . , In be independent Bernoulli random variables with
P(Ii = 1) = 1 − P(Ii = 0) = pi , 1 ≤ i ≤ n, and W = ∑n

i=1 Ii , λ = EW =∑n
i=1 pi . It is well known that if pi ’s are the same, thenW follows a binomial

distribution and if pi ’s are small, then the distribution ofW , denoted by LW ,
can be well approximated by the Poisson(λ). Define r = �λ�, the greatest
integer ≤ λ, and set δ = λ − �λ�, and κ be the least integer more than or
equal to max{λ2/(r − 1 − (1 + δ)2), n}. In this paper, we prove that, if
r > 1 + (1 + δ)2, then

dκ < dκ+1 < dκ+2 < · · ·< dTV (LW,Poisson(λ)),

where dTV denotes the total variation metric and dm = dTV (LW,
Bi(m,λ/m)), m ≥ κ . Hence, in modelling the distribution of the sum of
Bernoulli trials, Binomial approximation is generally better than Poisson ap-
proximation.

1. Introduction and the main result. Let Ik’s, 1 ≤ k ≤ n, denote n indepen-
dent Bernoulli trials with success probabilities pk’s. LetW := ∑n

k=1 Ik denote the
number of successes with mean λ := EW = ∑n

k=1pk . If pk’s are the same, that is,
the trials are identically distributed, then the distribution of W , denoted by LW ,
has a binomial distribution. However, if pk’s are different and n is large, then LW
is often difficult to calculate and an approximation is necessary. Binomial, Poisson
and normal distributions have often been used to approximate LW [see Barbour,
Holst and Janson (1992) and Volkova (1995)].

Approximating LW by Poisson has a long history. Indeed, the Poisson distrib-
ution Po(λ) was first introduced by Poisson (1837) as the limiting distribution of
the binomial distribution Bi(m,λ/m) as m→ ∞. von Bortkewitsch (1898) and
Student (1907) were among the earliest to apply Poisson distribution to statisti-
cal analysis of rare events. However, the mathematical foundation of why Poisson
models could be used to fit the number of rare events was not fully understood un-
til the pioneering work of Chen (1975). Chen adapted Stein’s differential method
for assessing the accuracy of normal approximation for sums of dependent ran-
dom variables for Poisson approximations. The resulting Stein–Chen method can
be used to work out accurate upper bounds on the total variation distance between
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a Poisson distribution and the distribution of the sum of dependent 0–1 random
variables. In the context of independent Bernoulli trials, Barbour and Hall (1984)
use Stein–Chen method to obtain

1

32
min

{
1

λ
,1

} n∑
i=1

p2
i ≤ dTV

(
LW,Po(λ)

) ≤ 1 − e−λ
λ

n∑
i=1

p2
i ,

where dTV is the total variation metric for measuring the distance between two
probability measures Q1 and Q2 on Z+ := {0,1,2, . . .} defined as

dTV(Q1,Q2)= sup
A⊂Z+

|Q1(A)− Q2(A)| =
∑

Q1{i}>Q2{i}
[Q1{i} − Q2{i}].

Hence, the correct order for the distance dTV(LW,Po(λ)) is min{λ−1,1}∑n
i=1 p

2
i .

A direct setup of Stein identity for estimating binomial approximation error
to LW is given in Ehm (1991) for m= n, p = λ/n and q = 1 − p, and according
to Ehm’s Lemma 2, the correct order for the distance dTV(LW,Bi(n,p)) is

min{1, (npq)−1}
n∑
i=1

(pi − p)2.

For more investigations on binomial approximation, see Barbour, Holst and Janson
(1992), Soon (1996) and Roos (2000).

These bounds, though informative, do not quite compare the binomial and
Poisson approximations to LW . For a given W , Deheuvels and Pfeifer (1986)
determined asymptotically those Poisson distributions Po(ν) which minimize the
total variation distance of Poisson approximations to LW . Our main interest in
this paper is to compare the binomial and Poisson approximations with the same
mean λ. More precisely, if one wants to compute P(W ∈ A), should one use
a binomial or a Poisson? Obviously, the answer depends on the form of set A. For
sets A of certain intervals, it is well understood which model should be used due
to an elegant result of Hoeffding [(1956) Theorem 4] which states the following.

THEOREM A. If EW = λ, and a is an integer, then

P(W ≤ a)≤ P

(
Bi

(
n,
λ

n

)
≤ a

)
if 0 ≤ a ≤ λ− 1,

P(W ≤ a)≥ P

(
Bi

(
n,
λ

n

)
≤ a

)
if λ≤ a ≤ n.

To avoid introducing more notation, we generally use distributions [here,
e.g., Bi(n, λ

n
)] as random variables having the corresponding distributions.

Combining this result and an observation by Anderson and Samuels (1967),
Theorem 2.1 and Corollary 2.1, we have for integer a,
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if 0 ≤ a ≤ λ− 1,

P(W ≤ a) ≤ P

(
Bi

(
n,
λ

n

)
≤ a

)

< P

(
Bi

(
n+ 1,

λ

n+ 1

)
≤ a

)
< · · ·< P

(
Po(λ)≤ a)

(1.1)

and if a ≥ λ+ 1,

P(W ≥ a) ≤ P

(
Bi

(
n,
λ

n

)
≥ a

)

< P

(
Bi

(
n+ 1,

λ

n+ 1

)
≥ a

)
< · · ·< P

(
Po(λ)≥ a)

(1.2)

showing that the binomial model is preferred over the Poisson model for ap-
proximating LW for such sets A.

What happens if the set A is not of such intervals? We are then led to
compare dTV(LW,Bi(n, λ

n
)) and dTV(LW,Po(λ)). Our main result (Theorem 1.1)

states that, under some mild conditions on λ, binomial approximation is better
than Poisson approximation in the sense of total variation. Moreover, there is
a monotone analogue of (1.1) or (1.2). This result is also motivated by the
following considerations.

As the mean of a Poisson distribution is the same as its variance, if the data of
“rare events” have the sample mean close to the sample variance, then the Poisson
fitting is likely a good choice, as evidenced in von Bortkewitsch (1898) and Student
(1907). However, when it is found that the variance of the counts is substantially
larger than the mean, the negative binomial distribution is sometimes instead
considered as a model [see Bliss and Fisher (1953) or Hand, Daly, McConway
and Ostrowski (1996), pages 173–176, for many sets of data of this kind]. The
underlying structure of getting such data suggests that the data exhibit a kind of
positive dependence and it is well known that compound Poisson distribution can
take into consideration of the dependence of the data. As a member of compound
Poisson distribution family, negative binomial can play a better role than Poisson.

On the other hand, if the variance of the counts is much smaller than the mean,
then a binomial could match the variance of the data better than that of a Poisson
and hence could fit the data better than a Poisson. The theorem below confirms that
for the counts of independent Bernoulli trials, binomial is indeed a more favored
model than Poisson.

THEOREM 1.1. Let W = ∑n
k=1 Ik , where Ik’s are independent Bernoulli

random variables such that P(Ik = 1) = 1 − P(Ik = 0) = pk , for 1 ≤ k ≤ n.
Let dm = dTV(LW,Bi(m,λ/m)), r = �λ�, the integer part of λ, δ = λ − �λ�
and κ the least integer more than or equal to max{n,λ2/(r − 1 − (1 + δ)2)}.
If r > 1 + (1 + δ)2, then

dκ < dκ+1 < dκ+2 < · · ·< dTV
(
LW,Po(λ)

)
.
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In particular, if λ≥ 6 and n≥ (r + 1)2/(r − 5), then

dTV

(
LW,Bi

(
n,
λ

n

))

< dTV

(
LW,Bi

(
n+ 1,

λ

n+ 1

))
< · · ·< dTV

(
LW,Po(λ)

)
.

(1.3)

And these inequalities are strict.

REMARK 1.1. When 6 ≤ λ < 7, (1.3) holds for n ≥ 49, which is hardly
restrictive in applications.

REMARK 1.2. Theorem 1.1 says that dm is increasing for m ≥ κ if r >
1 + (1 + δ)2. We believe the restrictions of r > 1 + (1 + δ)2 and m ≥ κ could
be slightly relaxed. In fact, the idea of the moment estimates suggests that the
best binomial distributions Bi(m,p) to fit the distribution of W should be those
with mp ≈ EW and mp(1 − p)≈ Var(W), giving m≈ λ2∑n

i=1 p
2
i

. This leads to the

following conjecture.

CONJECTURE. Let m0 be the integer part of λ2∑n
i=1 p

2
i

, then dm is decreasing

for m≤m0 and increasing for m>m0.

EXAMPLE. Suppose

X1 ∼ Binomial(70,0.1), X2 ∼ Binomial(9,1/3),

X3 ∼ Binomial(2,1/
√

2)

are independent random variables and let W =X1 +X2 +X3. It has been shown
in Brown and Xia (2001) that binomial approximation to LW is much better

TABLE 1

m 48 49 50 51 52 53 54 55
dm 0.48006 0.48072 0.53914 0.60633 0.69992 0.80139 0.90084 1.0055

m 56 57 58 59 60 65 70 75
dm 1.1080 1.2064 1.3099 1.4103 1.5070 1.9409 2.3065 2.6187

m 80 81 85 90 95 100 200 300
dm 2.8886 2.9382 3.1241 3.3314 3.5153 3.6795 5.1831 5.6626

m 400 500 600 700 800 900 1000 1250
dm 5.8984 6.0388 6.1318 6.1980 6.2475 6.2860 6.3167 6.3719

m 1500 1750 2000 2250 2500 2750 3000 3250
dm 6.4086 6.4348 6.4544 6.4696 6.4818 6.4918 6.5001 6.5071

m 3500 3750 4000 5000 6000 7000 8000 ∞
dm 6.5131 6.5183 6.5229 6.5365 6.5457 6.5522 6.5570 6.5912
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than Poisson approximation. In fact, if we choose m = 48 and p = 0.237796
so that mp = E(W) and mp(1 − p) ≈ Var(W), then d48 = 0.48% and d∞ =
dTV(LW,Po(E(W))) = 6.6%. More details of approximation errors (in percent-
age) for other binomial distributions are provided in Table 1. Note that, in this case,
κ = n= 81 and one can easily verify that the values of the table are in agreement
with the conjecture.

2. Proofs. For this section, m≥ n. To simplify our notation, we write

Bim(j) := Bi(m,λ/m){j}
and, for each A⊂ Z+,

Bim(A) :=
∑
j∈A

Bim(j).

Let

Am(j)= P(W = j)/Bim(j), 0 ≤ j ≤m.
We need the following results from Hoeffding [(1956), Corollary 2.1 and Theo-
rem 5].

LEMMA 2.1. For any function g : Z+ → R, the maximum and minimum of

f (p1, . . . , pn) := Eg(W),

as a function of p1, . . . , pn with p1 + · · · + pn = λ, are attained at points whose
coordinates take on, at most, three different values, only one of which is distinct
from 0 and 1.

LEMMA 2.2. For integers a and b such that 0 ≤ a ≤ λ≤ b ≤ n,

P(a ≤ Bim ≤ b)≤ P(a ≤W ≤ b)
for m≥ n.

REMARK 2.1. As in (1.2), for m≥ n, and integers a and b such that 0 ≤ a ≤
λ≤ b, we have

P(a ≤ Bim+1 ≤ b) < P(a ≤ Bim ≤ b).
We need the following lemmas to prove Theorem 1.1.

LEMMA 2.3. Let m≥ n and r = �λ� as above, then

Am(r − 2)≤Am(r + 1),(2.1)

Am(r)≥Am(r + 3).(2.2)
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Moreover, if δ > 0.5, then Am(r − 1)≤ Am(r + 1), and if δ ≤ 0.5, then Am(r)≥
Am(r + 2).

PROOF. We will prove (2.1) only as the other claims can be proved in the same
way. Let

am = Bim(r − 2)

Bim(r + 1)
= (r − 1)r(r + 1)(m− λ)3
(m− r + 2)(m− r + 1)(m− r)λ3 .(2.3)

Note that am is dependent on λ. Then (2.1) is equivalent to

P(W = r − 2)− amP(W = r + 1)≤ 0.

Define

g(w)=



1, for w = r − 2,

−am, for w = r + 1,

0, otherwise.

It follows from Lemma 2.1 that Eg(W) is maximized at one of the shifted binomial
distributions with the same mean:

P(W = r − 2)− amP(W = r + 1)

= Eg(W)≤ max
s,k∈Z+;s≤λ≤s+k≤mEg

(
s + Bi

(
k, (λ− s)/k)).

Hence, it suffices to show

P
(
s + Bi

(
k, (λ− s)/k) = r − 2

)
≤ amP

(
s + Bi

(
k, (λ− s)/k) = r + 1

)
, s ≤ r − 1,

which is equivalent to, after simple expansion, much as for (2.3),

bs,k := (r − s + 1)(r − s)(r − s − 1)(k − λ+ s)3
(k − r + s + 2)(k − r + s + 1)(k − r + s)(λ− s)3 ≤ am,(2.4)

for all s, k ∈ Z+ with s ≤ r − 1 and s + k ≤m. However,

(k − λ+ s)3/[(k − r + s + 2)(k − r + s + 1)(k − r + s)]
is an increasing function of k, (2.4) is ensured by bs,m−s ≤ am, that is,

(r − s + 1)(r − s)(r − s − 1)

(λ− s)3 ≤ (r + 1)r(r − 1)

λ3
.

The last inequality is obvious because (r − s + 1)(r − s)(r − s − 1)/(λ− s)3 is
a decreasing function of s in [0, r − 1]. This completes the proof. �

For λ
m+1 ≤ p ≤ λ

m
, let

Km(p)= Bi(m,p)+ I (p),
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where I (p) is an indicator random variable with P(I (p)= 1)= 1 − P(I (p)= 0)
= λ − mp ∈ [0,1], and I (p) is independent of Bi(m,p). Then, we have
Km(λ/m)∼ Bim and Km(λ/(m+ 1))∼ Bim+1.

LEMMA 2.4. For each j ∈ Z+ and λ
m+1 <p <

λ
m

, we have

∂P(Km(p)= j)
∂p

= Bi(m,p){j}[λ− (m+ 1)p]
(m+ 1 − j)p2(1 − p) [(mp− j)2 +mp2 − j ],(2.5)

∂P(Km(p)≤ j)
∂p

= Bi(m,p){j}
p(1 − p) [λ− (m+ 1)p](mp− j).(2.6)

PROOF. Clearly, for each i ∈ Z+, we have

∂ Bi(m,p){i}
∂p

=m[Bi(m− 1,p){i − 1} − Bi(m− 1,p){i}],
and so

∂ Bi(m,p)([0, i])
∂p

= −mBi(m− 1,p){i}.
Now,

P
(
Km(p)≤ j) = Bi(m,p)([0, j ])(1 − λ+mp)+ Bi(m,p)([0, j − 1])(λ−mp),

which implies

∂P(Km(p)≤ j)
∂p

= −m[Bi(m− 1,p){j}(1 − λ+mp)
+ Bi(m− 1,p){j − 1}(λ−mp)− Bi(m,p){j}]

= Bi(m,p){j}
p(1 − p) [λ− (m+ 1)p](mp− j).

Finally, (2.5) follows from (2.6) by taking difference and some algebraic
rearrangement. �

LEMMA 2.5. Suppose that r > 1 + (1 + δ)2 and m ≥ λ2/[r − 1 − (1 + δ)2].
If r − 1 ≤ j ≤ r + 1 or j = r + 2 and δ > 0.5, then

Bim+1(j) < Bim(j).

PROOF. Let

h(p)= (mp− j)2 +mp2 − j =m(m+ 1)p2 − 2mpj + j (j − 1).

Since

m≥ λ2

r − 1 − (1 + δ)2 ≥ j (j − 1)

j − (λ− j)2
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for r − 1 ≤ j ≤ r + 1 or j = r + 2 and δ > 0.5, it follows that

h

(
λ

m+ 1

)
= m

m+ 1
[(λ− j)2 + j (j − 1)/m− j ] ≤ 0.

On the other hand, by the fact that

m≥ λ2

r − 1 − (1 + δ)2 ≥ λ2

j − (λ− j)2
for r − 1 ≤ j ≤ r + 2, we have

h

(
λ

m

)
= (λ− j)2 + λ2

m
− j ≤ 0.

Hence h(p)≤ 0 for all λ
m+1 <p <

λ
m

, giving

∂P(Km(p)= j)
∂p

≥ 0,
λ

m+ 1
< p <

λ

m
,

and consequently,

Bim+1(j)= P
(
Km

(
λ/(m+ 1)

) = j)< P
(
Km(λ/m)= j) = Bim(j),

for r − 1 ≤ j ≤ r + 1 or j = r + 2 and δ > 0.5. �

PROOF OF THEOREM 1.1. We first note that λ2/(r − 1 − (1 + δ)2) is a non-
decreasing function of δ; (1.3) follows from the first assertion of Theorem 1.1.

Next, for each m≥ κ , define

lm = min
{
j : P(W = j)≥ Bim(j)

}
,

rm = max
{
j : P(W = j)≥ Bim(j)

}
and set

Lm = [0, lm − 1], Mm = [lm, rm] and Rm = [rm + 1,∞).
Since Am(j)/Am(j − 1) is decreasing in 1 ≤ j ≤ m [see the inequality (5) of
Samuels (1965)], we have

P(W = j)
{≥ Bim(j), if lm ≤ j ≤ rm,
< Bim(j), if 0 ≤ j < lm or rm < j ≤m.

Therefore, we have

dm = P(W ∈Mm)− Bim(Mm).(2.7)

Fix m≥ κ . Letting a = r , b= r + 1 in Lemma 2.2, we have

P(r ≤W ≤ r + 1)≥ Bim([r, r + 1]).
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There are three cases to consider:

(I) P(W = r)≥ Bim(r) and P(W = r + 1)≥ Bim(r + 1),
(II) P(W = r) > Bim(r) but P(W = r + 1) < Bim(r + 1)

and
(III) P(W = r) < Bim(r) and P(W = r + 1) > Bim(r + 1).

To complete the proof, it is sufficient to show that dm < dm+1 for the three cases.

Case I. We have, under this case, lm ≤ r and r + 1 ≤ rm and hence

dm = P(W ∈Mm)− Bim(Mm)

< P(W ∈Mm)− Bim+1(Mm) (by Remark 2.1)

≤ dm+1.

Case II. Under this situation, we have lm ≤ r and rm = r . Lemma 2.3 shows
that lm = r or r − 1. Now, it follows from (2.7) and Lemma 2.5 that

dm = P(W ∈Mm)− Bim(Mm) < P(W ∈Mm)− Bim+1(Mm)≤ dm+1.

Case III. The proof is essentially the same as in Case II. Here Lemma 2.3
implies that lm = r + 1 and rm = r + 1 or r + 2 and δ > 0.5. The proof is thus
completed by applying (2.7) and Lemma 2.5 again. �
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