
The Annals of Applied Probability
1996, Vol. 6, No. 4, 1284]1302

ON TREE-GROWING SEARCH STRATEGIES

BY JANICE LENT AND HOSAM M. MAHMOUD1

George Washington University

Using the concept of a ‘‘tree-growing’’ search strategy, we prove that
for most practical insertion sorting algorithms, the number of comparisons
needed to sort n keys has asymptotically normal behavior. We prove and
apply a sufficient condition for asymptotically normal behavior. The condi-
tion specifies a relationship between the variance of the number of com-
parisons and the rate of growth in height of the sequence of trees that the
search strategy ‘‘grows.’’

1. Introduction. Insertion sort is a popular on-line sorting algorithm.
At each stage of the sorting, the data obtained so far make up a sorted array.
The algorithm reads in a new datum, searches for its proper position in the
array and inserts it. When a data file of size n G 2 is to be sorted, the ith

Ž .search is for the position of the i q 1 st key, i s 1, 2, . . . . We shall denote the
algorithm that performs the ith search by S and call the collection of searchi

� 4̀ Ž . Ž .algorithms SS s S a search strategy. Doberkat 1982 and Panny 1986i is1
have studied the moments of the number of comparisons required for inser-

Ž .tion sort with one particular linear search strategy. In this paper, we show
that if the values in a data array have been randomly selected from a
continuous distribution, the number of comparisons needed to sort the values
by most practical search strategies has asymptotically normal behavior. Thus
we investigate properties of search strategies in general, with insertion sort
serving as a conspicuous application.

In order to insert a new key in a sorted data array, an implementation of
insertion sort selects a sequence of probes: keys in the sorted array to which
the algorithm compares the new key. If the new key is larger than a given
probe, the algorithm selects a larger probe; if the probe’s value exceeds that of
the new key, the search continues in the segment of the data array contain-
ing keys smaller than the probe. In general, the search algorithms applied for
different keys in an insertion sort may be independent of each other. One

� 4̀may, for example, imagine a search strategy SS s S in which S isi is1 k
binary search and S is linear search. Practitioners, however, usuallykq1
prefer strategies in which all the algorithms applied are coded as a single
procedure which is then invoked with different parameters at different stages
of the sorting. Most efficient, easy-to-use strategies thus possess certain
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consistency properties, which we will specify and use to prove our main
result. Rudimentarily, when all the search algorithms S in a strategy SSi
specify probe positions through a reasonable function of the length of the
fragment of the data array being searched, we will call SS a consistent
strategy.

To identify a class of reasonable probe-selection functions, we introduce
decision trees: deterministic binary trees whose nodes correspond to the
positions of the probes selected by a search algorithm. Since the binary tree is
therefore a fundamental instrument in our analysis, we briefly review its
definition and basic properties. A binary tree is a hierarchical structure

Ž .comprising nodes organized in levels. A node can have either a no children
Ž . Ž .}in which case the node is called a leaf, b a left child, c a right child or

Ž .d two distinct children, one left and one right. It is customary to draw a
binary tree with the root}the only node with no ancestors}at the top and
the leaves at the bottom. The level or depth of a specific node is the length of

Ž .the path the number of edges from the node to the root node, which is on
level zero. The size of a binary tree is the number of its nodes. If level k of a
tree has 2 k nodes}the maximum number possible}it is said to be satu-
rated. A tree in which all existing levels, except possibly the lowest, are

Žsaturated is complete. Some authors require that the nodes on the lowest
level of a complete tree be positioned as far to the left as possible, but the

.positioning of the nodes within a level is irrelevant to our analysis. The
height of the tree is the length of the longest root-to-leaf path in the tree. We

Žextend a binary tree by adding enough external nodes squares in our
. Ždiagrams to ensure that each original internal node bullets in our dia-

.grams has two children. Each leaf thus has two external nodes as its left and
right children. An extended binary tree of size n has n q 1 external nodes.

A decision tree representing a search algorithm is constructed as follows:
The position of the first probe chosen becomes the root of the decision tree;
the two possible positions of the second probe}at most one on each side of
the first probe}become its children and so forth. A probe falling at one of the
ends of the data array will not have two internal nodes as children; one or
both of its children will then be external nodes in the extended tree. The
algorithm S is represented by T , a decision tree of size i whose root-to-leafi i
paths represent the possible probe sequences of S . We shall call the searchi
strategy SS a tree-growing strategy if, for every positive integer i, the shape of
T may be obtained by adding an internal node in one of the insertioniq1
positions}one of the external nodes}of T . Since the tree-growing propertyi
provides an element of consistency across algorithms in the search strategy,
we will restrict our class of consistent strategies to those possessing this
property.

Assume the ranks of the data elements being sorted form a random
� 4permutation of the integers 1, . . . , n , as is the case when the data values are

selected at random from any continuous distribution. Let the random vari-
able C be the total number of times SS compares a new key to a proben
during the sorting of the first n keys. The class of normal search strategies
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comprises strategies for which C is asymptotically normal; that is,n

w xC y E Cn n ª N 0, 1 .Ž .DDw xVar C' n

We shall see that the normality of a subclass of tree-growing strategies}the
consistent strategies}may be established by relating the variance of C ton

� 4̀the rate of growth in height of the decision trees in the family TT s T . Ouri is1
sufficient condition for normality establishes asymptotic normality but does
not give the asymptotic mean or variance of C , which obviously depend onn
the particular strategy SS . Identifying these requires additional investigation
of the strategy. For linear search and binary search, the two most commonly
used strategies, we will establish asymptotic normality and calculate the
asymptotic means and variances which serve as centering and scaling factors.

The next section provides examples of tree-growing search strategies. In
Section 3 we identify a subclass of tree-growing strategies as consistent. The
remaining sections focus on the normality of consistent strategies. Section 4
gives a sufficient condition for the normality of tree-growing strategies. In
Section 5, we use this condition to establish the asymptotic normality for
binary search and linear search. We compute the mean and variance for the
binary search strategy}the variance includes periodic fluctuations}and use

wthe well-known mean and variance for the linear search strategy Gonnet and
Ž .xBaeza-Yates 1991 to derive full asymptotic distributions. In Section 6, we

use the sufficient condition to prove our main result: all consistent strategies
Žare normal. This result is further extended in the Appendix to include some

.tree-growing implementations of Fibonaccian search.

2. Examples of tree-growing strategies. We illustrate the tree-grow-
ing property through simple examples. One commonly used strategy known
as linear search from the bottom always selects as a first probe the largest
value in the data array being searched. When searching for the position of the
Ž .i q 1 st key, linear search from the bottom probes positions i, i y 1, i y 2

Ž .and so forth, until it discovers a key less than the i q 1 st key. If it finds
such a key in position j, it inserts the new key in position j q 1. Though
linear search from the bottom is inefficient, it is useful for searching sequen-

wtial access data files e.g., data stored on a tape, as discussed by Hu and
Ž .xWachs 1987 . Figure 1 shows the decision trees of linear search from the

bottom. The shape of T is obtained from T by adjoining a leaf to replaceiq1 i
the leftmost external node of T . The i nodes of T are relabeled in T , andi i iq1
it is the shape of T that evolves from that of T by ‘‘tree-growing.’’iq1 i

Variants of linear search from the bottom include the obvious linear search
from the top as well as a slightly more complex method called c-jump search.
Still based on sequential searching, c-jump search starts at the ‘‘top’’ of the
data array and advances c positions at a time. When it finds a probe larger
than the new key, it reverses direction and performs a linear search ‘‘from

Ž .the bottom’’ of the relevant fragment a fragment of size c y 1 of the array.
Three-jump search is illustrated by the decision trees of Figure 2.
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FIG. 1. The extended decision trees for linear search from the bottom.

Ž .FIG. 2. The unextended decision trees of three-jump search.

A more efficient search method also commonly used is binary search, which
always probes the middle position of the remaining portion of the list. Thus
when the search has been confined to a fragment of the data array between
an upper bound u and a lower bound l, binary search chooses the probe in
position l q u r2 . For i s 6, the decision tree representing binary searchŽ .
is that of Figure 3.

Though all of the search strategies discussed above lie in the class of
consistent strategies defined in the next section, strategies reasonable for
some applications lie outside this class. Examples include alternating linear
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Ž .FIG. 3. The unextended decision tree of binary search.

Ž .FIG. 4. The unextended decision trees of alternating linear search.

Ž .FIG. 5. The unextended decision tree of Fibonaccian search in an array of 12 keys.

search}a hybrid of linear search from the bottom and linear search from the
top}which is represented by the decision trees of Figure 4. Figure 5 shows a
decision tree for Fibonaccian search, a method so called because its decision
tree is endowed with a recursive partition that follows the Fibonacci number

Žsequence. The usual definition of the Fibonacci number F is F s F qj j jy1
.F , with F s 0, F s 1. Thus F s 1, F s 2, F s 3, F s 5 and so forth.jy2 0 1 2 3 4 5

When the tree size is F y 1, where F is the jth Fibonacci number, thekq1 j
two subtrees of the root node have sizes F y 1 and F y 1, and thek ky1
property propagates recursively in the subtrees. Fibonaccian search is some-
times preferred to binary search because Fibonaccian search requires only
the operations of addition and subtraction to compute the position of the next

w Ž . xprobe see Knuth 1973 , Section 6.2.1 .
Like alternating linear search, Fibonaccian search fails to meet our consis-

tency criteria. We will see, however, that all of the search strategies discussed
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here are normal, except possibly some implementations of Fibonaccian search.
ŽThe normality of Fibonaccian search may depend on the search strategy
used when the number of keys in the array being searched is not of the form
F y 1. In the Appendix, we discuss two implementations of Fibonacciank

.search for which we can prove normality.

3. Consistent strategies. In this section we present a condition on the
search strategy SS that is equivalent to the tree-growing property and give a
rigorous definition of consistency. Let T be the decision tree representing thei

Ž .search algorithm S }the algorithm used to insert the i q 1 st key. Let Ai i
be the sorted array formed by the first i keys. We search for the correct

Ž .position of the i q 1 st key by successively selecting probes in A , at eachi
Ž .step comparing the i q 1 st key to the selected probe. At the first step in the

insertion, we select one probe; at the second step, we again select one probe,
but the probe we select depends on the outcome of our comparison of the
Ž .i q 1 st key to the first probe. Thus there are two possible second probes: one

Ž .in case the i q 1 st key is larger than the first probe and another in case it is
Žsmaller unless, of course, the first probe selected falls at one of the ends of

A }in this case, the algorithm would specify only one probe at the secondi
.step . In general then, at the jth step in the insertion, the algorithm specifies

up to 2 jy1 possible probes.
Let P be the set of all possible positions for the first j probes in thei j

Ž . jinsertion of the i q 1 st key. Then P has at most 2 y 1 elements, whichi j
correspond to the nodes on levels zero through j y 1 of T . Leti
Ž . Ž . Ž j. ŽA i, j, 1 , A i, j, 2 , . . . , A i, j, 2 be the subarrays of A in increasing order,i

.though some may be empty created by the partitioning which results from
deleting all elements of P . If we have some adjacent probes or probes ati j

Ž .either of the ends of the array, some of the subarrays A i, j, k will be empty.
Ž . j w Ž . xLet l be the length of A i, j, k , k s 1, 2, . . . , 2 zero if A i, j, k is empty .i jk

Ž .For the j q 1 st step in the insertion, the algorithm specifies one probe from
Ž .each of the nonempty subarrays. If A i, j, k is not empty, let p be thei jk

Ž .position of the next probe within the subarray A i, j, k , relative to the other
elements of the subarray.

It is easy to show that the search strategy SS has the tree-growing property
Ž .if and only if, for all i, j and k such that A i, j, k is not empty,

p s f l , j, k ,Ž .i jk i jk

for some function f such that

f l q 1, j, k s f l , j, k q a l , j, kŽ . Ž . Ž .
Ž . � 4and a l, j, k takes values in the set 0, 1 , where l is any natural number. So

Ž . Ž .the tree-growing property implies that 1 the probe selected in A i, j, k at
Ž .the j q 1 st step cannot depend directly on i, the index of the insertion, and

Ž . Ž .2 if the array A i, j, k were larger by one element, the position of the probe
selected would be either p or p q 1. The tree-growing property thusi jk i jk
provides some similarity of probe selection functions within and across the
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algorithms S , i s 1, . . . , n. We restrict our class of consistent strategies toi
those which possess additional consistency properties:

� 4̀DEFINITION. Let SS s S be a tree-growing strategy for insertion sort.i is1
Ž .We call SS a consistent strategy if, for all i, j and k such that A i, j, k is not

w Ž .xempty, S specifies the relative rank within A i, j, k of the probe selectedi
Ž .in A i, j, k by

p s w l , 1 F p F l ,Ž .i jk SS i jk i jk i jk

Ž . Ž Ž .where the function w has the following property: if g n s min w n ySS SS SS
Ž .. Ž .1, n y w n , then lim g n rn exists.SS nª` SS

Ž .In words, g n is the size of the smaller subtree rooted at level one of T ,SS n
and consistency requires that the proportion of nodes belonging to the
smaller subtree approach a limit as n approaches infinity. Note also that for

Ž .consistent strategies, the position of the probe p within A i, j, k dependsi jk
only on l , the length of the subarray. Since consistent strategies arei jk
tree-growing, we have

w l q 1 s w l q a lŽ . Ž . Ž .SS SS SS

Ž . � 4and a l takes values in the set 0, 1 . Examples of consistent strategiesSS

include c-jump search, which is specified by the function

c, if l ) c,
w l sŽ .SS ½ l , otherwise.

Ž .In this case, lim g n rn s 0. For alternating linear search, however,nª` SS

the position of the next probe is a function of both l and j:i jk

1, j odd,
p si jk ½ l , j even.i jk

ŽThus p is not a function of the length only}it depends explicitly on j thei jk
. Žstep number . So, though alternating linear search is tree-growing see

.Figure 4 , it is not consistent.

4. A sufficient condition for normality of tree-growing strategies.
Let T be the decision tree for S , the search algorithm used to insert thei i
Ž . � 4̀i q 1 st key by the tree-growing search strategy SS s S . Let h denotei is1 i
the height of T , let X denote the number of comparisons made by S and leti i i
C s Ýny1X , the total number of comparisons required by SS for sorting nn is1 i
keys. Each insertion is performed independently of all others, so we take the

2 w xX ’s to be independent random variables. Let s s Var C .i n n
We also define the symbol V: if x and c are functions of n, we say that
Ž . Ž Ž .. Ž . Ž Ž ..x n s V c n if c n s O x n .

Ž .LEMMA 1. If h s o s , then SS is a normal strategy.n n
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w xPROOF. For i s 1, . . . , n y 1, let Y s X y E X and let FF denote thei i i i
distribution function of Y . Theni

< < w xP Y ) h q 1 F P max X , E X ) h q 1 s 0,� 4 � 4Ž .i n i i i

Ž .since X cannot exceed h q 1. Now if h s o s and « ) 0, there is ai i n n
constant N such that, for all n ) N , h q 1 - « s . Then for i s 1, . . . , n y 1,« « n n

y2 dFF y F y2 dFF y s 0,Ž . Ž .H Hi i
� < < 4 � < < 4y G« s y )h q1n n

because the integral is taken over a set of zero probability. Thus for n ) N ,«

ny1
2y dFF y s 0.Ž .Ý H i

� < < 4y G« snis1

So
ny11

2lim y dFF y s 0Ž .Ý H i2snª` � < < 4y G« sn nis1

wand the normality of SS follows from the Lindeberg theorem see Billingsley
Ž . x1986 , page 368 . I

Although most practical strategies satisfy the condition of the lemma, the
condition does not hold for all tree-growing strategies. Consider, for example,
a strategy described by a sequence of decision trees T , T , . . . that satisfies1 2
the following property: let k s 2 and for each integer i G 2, let k s k q1 i iy1
2 k iy 1 r2 . The k ’s form a sequence of even numbers. For each i G 1, each of thei
trees T for n s 2 k iq1 , . . . , 2 k iq1 q 2 k i r2 y 1 has levels 0 through k satu-n i
rated, while its remaining n y 2 k iq1 q 1 nodes form a thin branch at the
bottom of the tree; that is, levels k q 1, . . . , n y 2 k iq1 q k q 1 of T eachi i n
contain only one internal node. In a recursive fashion, the strategy first grows
a complete tree of height k , then grows a thin branch of length 2 k i r2 at thei
bottom of the complete tree. Finally, it fills out levels k q 1 through k qi i
2 k i r2 to obtain the next complete tree, a complete tree of height k . Letiq1
n s 2 k iq1 q 2 k i r2 y 1, the size of the smallest decision tree whose thini
branch is grown to length 2 k i r2 . The height of T is h s k q 2 k i r2 sn n ii i
Ž k i r2 . Ž k i r2 .V 2 , whereas it can be shown that s s O 2 . Thusn i

lim sup h rs ) 0. While this strategy is not of practical interest, itiª` n ni i

provides an example of a tree-growing strategy that violates the condition of
Lemma 1. It can also be shown, by the Lindeberg]Feller theorem, that this
strategy is not normal.

5. Normality of two commonly used search strategies. We illus-
trate the use of the sufficient condition for normality by showing the normal-
ity of two search strategies commonly used for insertion sort: binary search
and linear search. We begin by introducing some notation to be used here and
in later sections.
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� 4̀ � 4̀NOTATION. Let SS s S be a consistent strategy and let TT s T bei is1 i is1
the sequence of decision trees representing SS . For i s 1, . . . , n, let h be thei

� 4 �height of T , and for k s 1, 2, . . . , let L s min i: h s k and U s max i:i k i k
4h s k . That is, T , T , . . . , T are the only trees in TT that have height k;i L L q1 Uk k k

thus U q 1 s L . Define U s 1, and for k s 1, 2, . . . , let m s U y U .k kq1 0 k k ky1
As before, let C denote the number of comparisons needed to sort the first nn
keys by insertion sort using SS and let X denote the number of comparisonsi

Ž .required for inserting the i q 1 st key.

We may write
ny1

C s X .Ýn i
is1

So
ny1

w x w xE C s E XÝn i
is1

and, since we assume the X ’s are independent,i

ny1

w x w xVar C s Var X .Ýn i
is1

Binary search is a consistent strategy which, when searching a subarray of
Žlength l, selects as a probe the element whose rank relative to the other

.elements in the subarray is lr2 . This strategy results in a sequence ofu v
complete decision trees. The external nodes of the complete decision tree
representing the binary search algorithm S lie only on one or two levels: thei

Ž .lowest level log i if i q 1 is a power of 2 or the two lowest levels log i? @ ? @2 2
and log i q 1. Thus X s log i q B , where B is a Bernoulli random? @ ? @2 i 2 i i
variable that assumes the value 1 with probability

2 i q 1 y 2 ? log 2 i @Ž .
,

i q 1

the proportion of external nodes at level log i q 1, as is easily shown. So? @2

2 i q 1 y 2 ? log 2 i @Ž .w xE X s q log i? @i 2i q 1
and

ny1 ? log i @ ny122 i q 1 y 2Ž .w xE C s q log i? @Ý Ýn 2i q 1is1 is1

s n log n q O n .Ž .2

For binary search, U s 2 kq1 y 1, the number of nodes in a complete tree ofk
height k, so m s 2 k. To compute s2 , we may first sum the variances of thek Uj
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X ’s corresponding to trees of height k, for k s 1, . . . , j, and then sum over k:i

j k2 y1
2s s Var X .Ý ÝU L qij k

ks1 is0

? @Again using the result about the number of nodes on levels log i and2
? @log i q 1,2

2ky1 2 ky1 2 i q 1 2 i q 1Ž . Ž .
Var X s 1 y .Ý ÝL qi k kk ž / ž /2 q i q 1 2 q i q 1is0 is0

Some straightforward algebraic manipulation shows that

2ky1
k kq1 Ž2. Ž2. kq1w xkq 1 kVar X s 6 2 H y H y 4 H y H y 2 ,Ž . kq 1 kÝ L qi 2 2 2 2k

is0

Žm. n m Žwhere H s Ý 1ri , the nth harmonic number of order m. We omit then is1
.superscript when it is 1. To simplify this expression, we use the asymptotic

approximations
1

H s ln n q g q O ,n ž /n

where g is Euler’s constant, and

p 2 1 1
Ž2.H s y q O .n 2ž /6 n n

Using these we obtain

2ky1
kVar X s 6 ln 2 y 4 2 q O 1 .Ž . Ž .Ý L qik

is0

Then
j

2 ks s 6 ln 2 y 4 2 q O jŽ . Ž .ÝUj
ks1

s V U .Ž .j
Also, if 0 F l F 2 j y 1,

l 1 1
jq1Var X s 4 yÝ L qi j jj ž /2 q l q 1 2is0

q 6 2 j H j y H j y 2 l q O 1 .Ž . Ž . Ž .2 qlq1 2

Thus for general n s L q i, where 0 F i F 2 j y 1,j

1 1
2 2 jq1s s s q 4 yL qi U j jj jy1 ž /2 q i q 1 2

q 6 2 j H j y H j y 2 i q O 1 .Ž . Ž . Ž .2 qiq1 2
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Ž .Since, in the case of binary search, h s O ln U , there is a positive constantU jj

Ž 1r2 . Ž Ž ..c such that s s V U s V exp ch . Then for i s 0, . . . , m y 1,U j U jj j

s ) sL qi Uj jy1

s V exp c h y 1ž /L qiž /j

s V exp ch .Ž .ž /L qij

Ž Ž .. Ž .That is, s s V exp ch , so h s o s and the sufficient condition forn n n n
normality is satisfied. Writing n s L q i and simplifying the above expres-j
sion for s2 givesL qij

6 1 q f ln 2 y 6 4Ž .n2s s n y 2 q q O ln n ,Ž .n f fn n2 4

where
f ' log n y log n .? @n 2 2

w � 4̀ w . xThe sequence f is dense on the interval 0, 1 . Thenn ns1

C y n log nn 2 ª N 0, 1 ,Ž .DDnA' n

where
6 1 q f ln 2 y 6 4Ž .n

A s y 2 q .n f fn n2 4
Ž .The analytic continuation of the function A s A f to the real line, as fn n n

w . Žranges over the interval 0, 1 , attains its minimum value approximately
.0.151911 at the point

W y8r3e2 q 2Ž .
y 1 s 0.141469 . . . ,

ln 2
Ž . wwhere W x is the principal branch of the omega function see Fritsch,

Ž .x ŽSchafer and Crowley 1973 . It attains its maximum value approximately
.0.174449 at

W 0, y8r3e2 q 2Ž .
y 1 s 0.707059 . . . ,

ln 2
Ž .where W 0, x is the zeroth branch of the omega function. Intuitively, we can

� 4think of A as an asymptotic average of the variances of X , . . . , X . Thusn 1 n
w xA increases in n as long as Var X ) A . This occurs while the numbersn n ny1

of external nodes on the two lowest levels of T are close, and thus f is closen n
Ž . Ž .to ln 4r3 rln 2 approximately 0.415037 . When one level of T has manyn

w xmore external nodes than the other, Var X is small and thus A tends ton n
decrease. As each level of the tree fills up and f takes on increasing valuesn

w .in the interval 0, 1 , A completes one cycle: it moves from 6 ln 2 y 4n
Ž . Ž .approximately 0.158883 down to its minimum for that cycle , then up to its
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Ž .maximum for that cycle and finally back down to 6 ln 2 y 4. With each new
cycle, A more closely approximates its analytic continuation.n

A second commonly used consistent strategy is linear search, which, when
searching an array of size l, always selects as a probe the data element of

Ž . Žrank l linear search from the bottom or the data element of rank 1 linear
. wsearch from the top . For linear search it is known see Gonnet and Baeza-

Ž .xYates 1991 that
n2

w xE C s q O nŽ .n 4
and

n3

w xVar C ; .n 36
2 Ž 3.Since s s V n and h s n y 1, the sufficient condition holds for the linearn n

search strategy; thus

C y n2r4 1n ª N 0, .DD3r2 ž /36n

6. Normality of consistent strategies. In this section we use the
sufficient condition for normality to prove that all consistent strategies are

� 4̀normal. Let SS s S be a consistent strategy represented by the decisioni is1
� 4̀ 2trees TT s T and let X , C , s , L , U and m be as defined. We begin byi is1 i n n k k k

establishing some properties of consistent strategies.

PROPERTY 1. For each positive integer i, the decision tree T representingi
an algorithm from a consistent strategy has at least one external node on each
unsaturated level.

The right subtree of the tree in Figure 6, for example, has the following
shape characteristic: its left sub-subtree is complete down to level two, while
its right sub-subtree has neither internal nor external nodes on level two. The
third level of the tree is therefore both unsaturated and bereft of external
nodes. We will show that this tree cannot be part of a sequence of decision
trees representing a consistent strategy.

FIG. 6. An extended decision tree that cannot represent an algorithm from a consistent strategy.
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PROOF OF PROPERTY 1. The first probe specified by S , i s 1, 2, . . . , dividesi
Ž .an array of size i into two subarrays. Let g i denote the size of the smallerSS

X Ž . wof the two subarrays and g i the size of the larger. Naturally we defineSS
Ž . X Ž . xg 0 s g 0 s 0. For a cleaner notation, we suppress the subscript SS . If TSS SS i

had an incomplete level with no external nodes, T would contain a subtreei
Ž .whose two sub-subtrees left and right had the following property: one

sub-subtree would be complete down to some level l, while the other would
have neither internal nor external nodes at level l. Since S is a consistenti
algorithm, this would imply that for some number nX F i, the size of the
subtree,

g Žl. nX s 0 and g Žl. gX nX ) 0Ž . Ž .Ž .

w Ž p.Ž . Ž Ž Ž ...where g i s g g g ??? i , the function g composed p times, for a
xpositive integer p . This is a contradiction, since g must be nondecreasing,

XŽ X. Xbut g n - n . I

� 4̀PROPERTY 2. For consistent strategies, the sequence m is nondecreas-k ks1
ing in k, so U rm F k q 1.k k

X Ž .PROOF. Let g and g be as defined. Again we suppress the subscript SS .
Ž .Then for each positive integer i, the larger subtree rooted at level one of Ti

has the same shape as T X , the decision tree for S X . Since height isg Ž i. g Ž i.
monotonic in size, the larger subtree of T }recall that T is theL Lkq 1 kq1

smallest decision tree in TT having height k q 1}has the shape of T , theLk
XŽ .smallest decision tree in TT whose height is k. So g L s L . Similarly,kq1 k

XŽ . XŽ .g U s U . Also, by the tree-growing property, if i ) i , then g i Gkq1 k 2 1 2
XŽ . XŽ . XŽ . XŽ .g i and i y g i G i y g i . Since for all i, g i - i, this implies1 2 2 1 1

w XŽ . xtaking i s g i and i s i that1 2

i y gX i G gX i y gX gX i .Ž . Ž . Ž .Ž .
Then

m s U y Ukq1 kq1 k

s U y gX UŽ .kq1 kq1

G gX U y gX gX UŽ . Ž .Ž .kq1 kq1

s U y Uk ky1

s m .k

Since the m ’s are nondecreasing in k,k

U 1 q m q m q ??? qmk 1 2 ks F k q 1. I
m mk k

2 Ž .PROPERTY 3. For consistent strategies, s s V n .n
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ŽPROOF. Suppose n G 100. First note that, unless T the decision treei
.illustrating S has at least 95% of its external nodes at a single level, wei

w xhave Var X G 0.0475. Hence, unless at least 95% of the trees T in thei i
� 4n 2subsequence T have this property, we have s G 0.002375n.i is1 nq1

� 4n ŽNow if 95% or more of the trees T in T have this property that is, ati i is1
.least 95% of their external nodes lie on a single level , then this level, level L

say, must be the same for all the integers i, 0.10n F i F n, for which T hasi
this property. This is so because if the level L were to shift, say to level L q D

� 4nfor some integer D / 0, then T would contain a subsequence of decisioni is1
trees having fewer than 95% of their external nodes on any single level, and

� 4nthis subsequence would include more than 5% of the decision trees in T .i is1
Toward a contradiction, suppose T has fewer than 0.80n external nodesn

on level L. Let

� 4i s max i F n: T has at least 0.95i nodes on level L .0 i

We know that i G 0.95n, so we may add at most 0.05n nodes to T to obtain0 i0
ŽT . If we add all the n y i internal nodes to level L of T reducing by asn 0 i0

.many as possible the number of external nodes on level L , the number of
external nodes on level L of T will still be at least 0.8525n, a contradiction.n
So T must have at least 0.80n external nodes on level L. Now since T X isn g Žn.
a subtree of T and contains at least 0.50n external nodes, T X has at leastn g Žn.

XŽ . Ž .0.40g n external nodes on level L y 1 measured from its own root . Let

i s min i ) gX n : T has at least 0.80i nodes on level L .� 4Ž .1 i

Ž . XŽ .XNote that i F n must exist. Since T has at least 0.40g n external1 g Žn.
XŽ . � 4 i1 Xnodes on level L y 1 and g n G nr2, the subsequence T containsi isg Žn.

� 4 i1 Xmore than 0.05n trees. This is a contradiction, since all trees in Ti isg Žn.
have fewer than 95% of their external nodes on level L. I

We now present our main result.

THEOREM 1. All consistent strategies are normal.

Ž .PROOF. If lim g n rn s 1r2, the strategy is similar to binary search:nª`

Ž .the rate of growth in h is O ln n , while, by Property 3, the rate of growthn
2 Ž .in s is V n , so the sufficient condition clearly holds. Now assumen

Ž . w .lim g n rn s c for some constant c g 0, 1r2 . Let h be the height andnª` n
b the number of complete levels of a decision tree of size n. We first shown
that in this case, there are positive constants N and c such that c - 1 and1 1 1
for n ) N we have1

b F c h .n 1 n

If b is bounded above by some constant, there is nothing to prove, so assumen
Ž .that lim b s `. The limit must exist because b is nondecreasing in n.nª` n n

Ž .Since lim g n rn s c - 1r2, there is a positive constant c - 1r2 and annª` 2
Ž .integer N such that for n ) N , g n - c n. That is, the smaller subtree of a2 2 2
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decision tree of size n ) N has fewer then c n nodes. Further, each subtree2 2
of size n ) N also has this property; that is, its smaller sub-subtree has at2
most c n nodes. Thus there is a constant integer c such that for n large2 3
enough,

c31Ž b y1. b ycn n 3g n - c n ,Ž . Ž .2 2

Žk .Ž . Ž Žky1.Ž .. Ž b ny1 .Ž .where, by definition, g n s g g n . Since g n s 1, we have
c31b ycn 3c n ) 1.Ž .2 2

Taking logarithms on both sides of the inequality gives

b y c ln c y c ln 2 q ln n ) 0,Ž .n 3 2 3

and, rearranging, we obtain

ln n ln 2
b - q c 1 y .n 3 ž /ln 1rc ln 1rcŽ . Ž .2 2

Since h G log n and c - 1r2, this implies that there are positive con-? @n 2 2
stants N and c such that c - 1 and for n ) N ,1 1 1 1

b F c h .n 1 n

In the notation introduced at the beginning of the previous section, we have
shown that there is a constant j such that for j ) j ,0 0

b F c j,i j 1

where b is the number of complete levels of T , i s 0, 1, . . . , m y 1. Byi j L qi jj

Property 1, T has at least one external node on every level below b , soL qi i jj

for i s 0, . . . , m y 1,j

j1 2
Var X G k y E XÝL qi L qij jL q i q 1j ksbi j

jX

1 2X Xw xG k y m ,Ý
XUj k s1

X X w xwhere j s j y b q 1 and m s E X y b q 1. Since the sum of squaresi j L qi i jjX Ž X .above may be minimized by setting m s j q 1 r2, we have
X X 2j1 j q 1

XVar X G k yÝL qij
XU 2j k s1

1 jX3
X2s q O jŽ .½ 5U 12j

V jX3Ž .
s .

Uj
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X Ž .Recalling that j G 1 y c j for sufficiently large j, we have1

V j3Ž .
Var X s .L qij Uj

Then
m y1 m y1 3j j V jŽ .

Var X sÝ ÝL qij Ujis0 is0

m j 3s V jŽ .ž /Uj

1
3G V jŽ .ž /j q 1

s V j2 ,Ž .
where we have used Property 2 to obtain the inequality. So

m y1j k
2s s Var XÝ ÝU L qij k

ks1 is0

j
2s V kŽ .Ý

ks1

s V j3 .Ž .
Ž 3r2 . Ž . Ž .Thus s s V j , which implies that j s o s or h s o s . IU L n nj j

APPENDIX

Normality of other tree-growing search strategies. Properties 1]3,
as is clear from their proofs, apply to all tree-growing strategies for which the
position of each probe depends only on the length of the data subarray being
searched. Here we consider tree-growing strategies which, though not consis-
tent, retain this characteristic and thus possess Properties 1]3. The proof in
the previous section clearly works for all such strategies in which the limit

Ž . Ž .lim g n rn does not exist, as long as lim sup g n rn - 1r2. Onenª` nª`

example of such a strategy is the following tree-growing implementation of
ŽFibonaccian search. Not all implementations of Fibonaccian search have the

w Ž . xtree-growing property see Knuth 1973 , Section 6.2.1 . We restrict our
.discussion to tree-growing implementations. Let the position of the probe to

be selected in an array of size n be specified by

n , if n F 3,¡
n y F q 1, if F F n F F q F y 1,~ k Žn.y1 k Žn.q1 k Žn.q1 k Žn.y1j n sŽ .1 ¢F , if F q F F n F F y 1,k Žn.q1 k Žn.q1 k Žn.y1 k Žn.q2
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Ž .where, for n G 3, k n is such that

F F n - Fk Žn.q1 k Žn.q2

and F is the ith Fibonacci number.i
Using this strategy, we ‘‘grow’’ the Fibonacci tree of size F y 1 into akq1

Fibonacci tree of size F y 1 in the following way. We first add F nodeskq2 ky1
to the larger subtree of T , bringing the size of this subtree to F y 1.F y1 kq1kq 1

Then we add F nodes to the smaller subtree, bringing its size to F y 1.ky2 k
The new Fibonacci tree then has size F y 1 q F q F s F y 1.kq1 ky1 ky2 kq2
With this strategy we have, using our previous notation,

g n F y 1Ž . ky1
lim sup s lim

n F y 1kª`nª` kq1

ky1'1r 5 fŽ .
s lim

kq1'kª` 1r 5 fŽ .
1

s 2f

s 0.381966 . . . ,

where

'1 q 5
f s ,

2

w Ž . xthe golden ratio as in Knuth 1973 , page 416 . This strategy is not consis-
tent, because

g n F y 1Ž . ky1
lim inf s lim

n F q F y 1nª` kª` kq1 ky1

f ky1

s lim kq1 ky1f q fkª`

1
s 2f q 1

s 0.276393 . . . .

Ž .Since we do, however, have lim sup g n rn - 1r2, this strategy is nor-nª`

mal. Note that we may draw this conclusion from our general result, avoiding
a somewhat complicated variance calculation.

The following proposition further expands the class of strategies for which
we can prove normality.

Ž .PROPOSITION 1. Any search strategy S for which lim inf g n rn snª`

Ž .k g 0, 1r2 is normal.1
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XŽ . Ž .PROOF. Let g n be as defined. Since lim inf g n rn s k ) 0, therenª` 1
XŽ .are constants j and k such that k - 1 and for j ) j we have g U F k U .0 2 2 0 j 2 j

Then for j ) j ,0

gXŽ jyj0 . U F k jy j0U .Ž .j 2 j

For example, for j s j q 2 we have0

gXŽ2. U s gX gX U s gX U F k U s k gX U F k 2U .Ž . Ž . Ž . Ž .Ž .j q2 j q2 j q1 2 j q1 2 j q2 2 j q20 0 0 0 0 0

XŽ jyj0 .Ž .Since g U G 1, this implies thatj

1 F k jyj0U .2 j

Ž .Thus there is some constant k ) 0 such that for j ) j , U ) exp k j .3 0 j 3
Writing j s h and noting that U - n, we have, by Property 3,n jy1

s2 s V n s V exp k h ,Ž . Ž .Ž .n 3 n

Ž .so h s o s . In n

Another implementation of Fibonaccian search provides a practical exam-
ple of a strategy for which the previous proposition applies. Let the position of
the probe to be selected in an array of size n be determined by the function

n , if n F 2,¡
F , if F F n F F q F y 1,~ k Žn. k Žn.q1 k Žn.q1 k Žn.y2j n sŽ .2 ¢n y F q 1, if F q F F n F F y 1,k Žn. k Žn.q1 k Žn.y2 k Žn.q2

where F is as previously defined. This strategy is similar to the onek Žn.
determined by j above, except we add nodes to the smaller subtree first,1
then to the larger. With this strategy we have, using our previous notation,

g n F y 1Ž . k
lim sup s lim

n F q F y 1kª`nª` kq1 ky2

1
s .

2
Here, again, we do not have consistency, since

g n F y 1Ž . ky1
lim inf s lim

n F y 1nª` kª` kq1

f ky1

s lim kq1fkª`

1
s ,2f

but the normality of this Fibonaccian strategy follows from Proposition 1.
Many other tree-growing strategies are also normal. Alternating linear

search, for example, is clearly normal and shares the asymptotic mean and
Ž .variance of linear search from the bottom or top . Intuitively, if a strategy
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� 4̀corresponds to a set of decision trees TT s T for which the height of Ti is1 i
grows at a steady rate as i grows, the strategy is likely to be normal. In fact,
we can prove the normality of all search strategies SS whose corresponding
decision trees TT satisfy one of the following sets of conditions:

Ž . Ž 1q« . Ž . Ž . Ž 1qd .1. a m s O k for some « in the interval 0, 1 , b U rm s O kk k k
Ž . Ž .for some d in the interval 0, 1 and c the tree T is complete down to ai

certain level; below this level, T has at least one external node on everyi
cth level for some constant c.
Ž . Ž 1q« . Ž . Ž . Ž .2. a m s V k for some « ) 0 and b Var X s V 1 .k n
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