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We consider a stochastic model for the spread of an epidemic in a
population split into m groups in which both infective and susceptible in-
dividuals are able to move between groups. Using a coupling argument
similar to those applied to various other epidemic models by previous au-
thors, we show that as the initial susceptible population becomes large,
the process of infectives in this epidemic model converges to a multitype
birth-and-death process with time-dependent birth rates. The behavior of
this limiting process is then considered, in particular, the conditions under
which extinction is almost certain.

1. Introduction. In stochastic epidemic modeling, it is common to ap-
proximate the model of interest by an appropriate branching process. This is
useful since epidemic models are generally nonlinear and the linear branch-
ing process approximation is likely to be rather more tractable. The method
goes back to the comments of Bartlett (1955) and Kendall (1956), who pointed
out that in the case of the general stochastic epidemic model [see, for ex-
ample, Bailey (1975)] when the population is large, the process of infectives
approximately follows a linear birth-and-death process. This idea was made
more precise by Ball (1983), who used a coupling argument similar to that
of Metz (1978); the results also were extended to cover an epidemic model
in which the population is split into several groups. In this model, individ-
uals were not able to move between groups, but infection from one group to
another could occur. Ball (1991) pointed out that if infectives are allowed to
move between groups, then essentially the same argument can still be ap-
plied. The technique has been extended by Ball and Donnelly (1995) and Ball
and O’Neill (1994) to cover a very wide class of epidemic models. In each case
details were given only for the single group case, but the methods used clearly
apply to multigroup models as long as susceptibles are not able to move be-
tween groups. For a simple model in which both infectives and susceptibles are
able to move between groups, Clancy (1995) argued heuristically to conclude
that the process of infectives can be approximated by a multitype birth-and-
death process with time-dependent birth rates. In this paper, this result is
made rigorous using an argument similar to that of O’Neill (1996). We also
look at possible extensions of the model and at the behavior of the limiting
process.
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2. Construction of the epidemic process and the main convergence
result. Our basic epidemic model is defined as follows. We consider a closed
population divided into m groups, such that at time ¢, group i contains X;(¢)
susceptibles and Y, (¢) infectives. Initially, we have X;(0) = N, and Y;(0) = ¢,,
and we define N = N; + N, +---+ N,, to be the total number of susceptibles
in the population at time ¢ = 0. Each susceptible individual moves between
groups according to a Markov process on {1,2,..., m} with transition rate
matrix R and each infective moves according to a Markov process with tran-
sition rate matrix @. When an individual becomes infected, it remains so for
a time which is exponentially distributed with mean y~! (independent of its
movement process) and is then removed. Each pair of individuals in group i
makes contact at the points of a Poisson process of rate m / N, the contacts
between distinct pairs of individuals being mutually independent, and contact
between an infective and a susceptible results in the infection of the suscep-
tible. The infectious periods and movement processes of distinct individuals
are mutually independent.

We are interested in the behavior of our epidemic process when the initial
number of susceptibles is large. Thus defining 7; = N;/N (i =1,2, ..., m), we
consider a sequence of epidemics indexed by n such that as n — oo, N — oo
and ; RN m; > 0 for each i. We suppose that a4, as, ..., a,, are indepen-
dent of n, as are the parameters B, y, R and @. Up to any finite time ¢,
the number of initial susceptibles which have been infected will be negligi-
ble compared to the number of uninfected susceptibles. Also, since the num-
ber of susceptibles is very large, their movement can be well approximated
by a deterministic process. Thus for 0 < s < ¢, the process of susceptibles
X(s) = (X1(s), X5(s), ..., X,,(s)) can be approximated by N exp(Rs), where
w = (my, 7y, ..., T, ). Now since infections occur in group i at rate Bm XY, /N,
this implies that the process of infectives Y(s) = (Y 1(s), Yo(s), ..., Y, (s)) in
[0, ¢] can be approximated by a multitype birth-and-death process in which
each individual lives for a time which is exponentially distributed with mean
v~1, during which time it moves between groups according to a Markov pro-
cess with transition rate matrix @, and while in group i produces offspring in
group i at rate Bm(wexp(Rs));.

In order to prove this, we first of all give a construction of the limiting
birth-and-death process and then show how the nth epidemic process can be
constructed from this process. The process of infectives in the epidemic can
differ from the birth-and-death process in two ways—a birth can occur with
no corresponding infection or vice versa. An individual born into the birth-
and-death process with no corresponding infection in the epidemic process
will be called a “ghost,” following Mollison (1977), while an infection with no
corresponding birth will be called a shadow infection, following O’Neill (1996).
Infectives which do not result from a shadow infection will be referred to as
natural infectives. The proof that the process of infectives converges to the
birth-and-death process then consists of showing that given any fixed time ¢,
if n is sufficiently large, then there will be no ghosts and no shadow infections
in the interval [0, ¢].
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The birth-and-death process is constructed as follows. We have a closed
population divided into m groups, group i initially consisting of a; individ-
uals. The initial group i individuals are labelled (i, r) for r = —(a; — 1),
—(a; —2),...,0and for r =1, 2, ..., the rth individual to be born in group i
is labelled (i, ). Individual (i, r) has “life history” (I(:7), Y- P(.7)) where
I(:7) is an exponentially distributed random variable with mean y~1, y(") is
a Markov process on {1, 2, ..., m}, starting from i, with transition rate matrix
Q, and P®") is a homogeneous Poisson process of rate 1. For any particular
individual (i, r), the components of its life history I>7), x(>:) and P(:") are
independent of one another, and the life histories of distinct individuals are
all mutually independent. If individual (i, r) is born at time 7, then it lives
until time 74 I>"). For 0 < s < I(>"), the group which this individual is in at
time 7 + s is given by x> 7)(s). Finally, defining

B(s) = Bm(wexp(Rs)); (j=12,...,m),
venes) = [ B oy (7 + w) du,

then individual (i, ) gives birth at those times 7+ s (0 < s < I¢>") such that
V(:7)(s) is a point of P(>"), the birth producing a new individual in group

(@i, r)
x' ().

In order to construct our epidemic process, we suppose that for each (i, r)
such that i = 1,2,...,m and r = 1,2,..., we have defined on the same

probability space as our birth-and-death process the following additional in-
gredients:

1. A Markov process £¢:7) on {1,2,...,m}, starting from state { and with
transition rate matrix R.

2. A random variable U(:") uniformly distributed on [0, 1].

3. A homogeneous Poisson process PU:") of rate 1.

4. A life history (I, ¥\, P"") having the same distribution as the life
history of an individual born into group i of the birth-and-death process.

These additional random variables and processes are all supposed indepen-
dent of one another and of our birth-and-death process.

For n = 1,2,..., we now construct the epidemic process indexed by n as
follows. Initially, group i consists of N i(n) susceptibles and a; infectives. The
initial group i individuals are each given a label (i, r), where the initial in-
fectives have r = —(a; — 1), —(a; — 2), ..., 0 and the initial susceptibles have
r =1, 2,...,N,. Each initial infective (i, r) is associated with the initial
individual (i, r) in the birth-and-death process. It moves between groups ac-
cording to ") until time I¢-"), when it is removed. The initial susceptible
(i, 7) moves according to the process ¢?>™) until it becomes infected (which
may never happen).

Suppose that the rth group i birth in the birth-and-death process occurs
at time 7. If this birth is the offspring of a ghost, then it is ignored in the
construction of the epidemic process and the offspring is also a ghost. If the
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parent is not a ghost, then if
Xi(m—)
N(mexp(R7));’

the offspring is again treated as a ghost and ignored, together with all its
subsequent offspring. Otherwise, an infection occurs in the epidemic at time 7.
The susceptible (7', ') to be infected is chosen uniformly at random from those
in group i at time 7— and associated with the individual (i, r) born into the
birth-and-death process. This individual now moves between groups according
to x*7) [so at time 7 + s it is in group x(")(s)], rather than its original
movement process £7°7) until time 7 4+ I(>"), when it is removed.

The infective which is associated with individual (i, r) in the birth-and-
death process also has associated with it the Poisson process PU-"), governing
the times at which shadow infections occur. If this individual is born at time
7 and is not a ghost, then defining

ut:n >

Bils) =" (=L2..m),

Vr)(s) = /0 max {0, Bnu) (7 + &) — Byinq (7 + )} du,

the associated infective causes shadow infections at those times 7 + s
(0 < s < I%7) such that V(®7)(s) is a point of P%7). (There is a slight
technical problem here in that if V(") remains constant on the interval
[s, s + &) for some 8 > 0, then we would have shadow infections occurring
at every point of this interval. However, we simply need to observe that the
probability of this problem arising is zero.) A susceptible is chosen uniformly
at random from those currently in the same group as the infective (i, ), and
this susceptible becomes a shadow infective. The rth shadow infective to be
created in group i has associated with it the life history (/ il’r), )(f:’ r), Pf:’ r)).
If shadow infective (i, r) becomes infected at time 7, then it moves between
groups according to )(Sf’ ") until it is removed at time 7+ I\, Defining

ey TG .
VIR (s) = [ B (7 u)du,

then at those times 7+ s (0 < s < If,f’r)) such that Vf:’r)(s) is a point of
ng’ ) , the shadow infective infects a susceptible chosen uniformly at random
from those in its current group, and this individual itself becomes a shadow
infective.

In a similar way to O’Neill (1996), we can easily verify that the above
construction does indeed give the required epidemic model by checking that
the rates of infection, removal and movement are all correct. We now need to
show that for any fixed time interval [0, ¢], if n is sufficiently large, then no
ghosts or shadow infectives will appear in [0, ¢]. Thus the epidemic process on
[0, ¢] converges in the discrete topology to the corresponding birth-and-death
process.
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THEOREM 2.1. Writing Z,(s) for the number of individuals in group i of
our birth-and-death process at time s and Z = (Z,, Zq, ..., Z,,), then for any
fixed t > 0,

lim sup [Y®(s)— Z(s)l =0 «almost surely,

n—00 (<g<y

where for w, v € R™, [u —v| =max,_; 5 ‘ui — vi|.

,,,,,

PROOF. Fix ¢ > 0 and writing 1, for the indicator function of the event
{-}, define

m Ni
(21) XJ(S) = Z Z 1{§(ivr)(s):j} (] = 1, 2, ey m),
i=1r=1

so X ;(s) is the number of susceptibles which would be in group j at time s if

no infection took place. Writing X = (X, X, ..., X,,), then Theorem 2.1 of
Ethier and Kurtz [(1986), Chapter 11] states that

lim sup iX(”)(s) —mwexp(Rs)| =0 almost surely.
n—00 gcs<t| N

Let W be the total number of births in [0, ¢] in the birth-and-death process,
which is almost surely finite. Then at most a + W natural infectives can exist
during the interval [0, £], each of which produces shadow infectives at times
governed by the Poisson process P(:") for some (i, ). Thus there almost surely
exists some time ¢, such that for all these a + W values of (i, r), P%") has
no points in [0, {y]. Now given any ¢ > 0, there almost surely exists some n,
such that for n > n,

sup %X(”)(s) —mwexp(Rs)| < e.

O<s<t

Clearly X(s) < X(s), so in [0, ¢], for each : = 1,2,..., m, we have that for
n= ny,

~X,(s) - (mexp(RS))
NXi wexp(Rs)); < &,
which implies that

Bi(s) - Bi(s) < Bme
and hence
VEN(s) < Bmet.

Choosing ¢ so that Bmet < ¢y, then for n > n; no shadow infectives will
be produced by natural infectives in [0, ¢] and so no shadow infectives will
appear at all.
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The first ghost appears when an individual (i, r) is born at time 7 with
Xi(m)
N(wexp(R7));”

Since the number of individuals W born in [0, ¢] is almost surely finite, there is
almost surely some u, < 1 such that for each of these W individuals, U*") <
uy. Now for n > n,, since no shadow infectives appear in [0, ¢], we have for
i=1,2,...,m that in [0, ¢],

Xi(s)= X;(s) - W

> N((wexp(Rs)), —¢e)— W.

(2.2) Uutn -

Defining 6; = inf(_,,(7exp(Rs));, then §; > 0 (since the components of 7 are
all strictly positive) and for 0 < s < ¢,

X;(s) & w

N(wexp(Rs)), & N3,
Thus if we take ¢ < %Bi(l —ug) fori =1,2,...,m and n, sufficiently large
that for n > n,, W < %SiN(")(l —ug) (i =1,2,...,m), then for n > ng =
max{n, ny} we have
X;(s)
——— > uO
N(mexp(Rs)),
which contradicts (2.2) and so no ghosts can appear in [0, ¢].
We have shown that we can almost surely find some n5 such that for n > ng,
neither shadow infectives nor ghosts appear in [0, ¢], and so up to time ¢ we
have Y™ = Z and the result follows. O

(i=12...,m),

COROLLARY 2.1. Defining T; to be the total number of births ever to occur

in group i in the birth-and-death process and Ti(n) to be the total number of
infections to occur in group i of the nth epidemic process, then as n — oo,

T™W T almost surely,

where T= (T, Ty, ..., T,) and T™ = (T, 17, ..., 7).

ProOOF. First choose a particular group i. If T'; < oo, then the birth-and-
death process becomes extinct at some finite time ¢ and so from the proof of

Theorem 2.1 we have Ti(n) = T, for n sufficiently large.

If T; = oo, then for any M > 0 there exists ¢ such that the birth-and-death
process has more than M births in group i before time ¢. Again from the
proof of Theorem 2.1, there are more than M infections in group i of the nth

epidemic process by time ¢ for n sufficiently large, so Ti(") > M and so since
. . (n)

M is arbitrary, T;"’ — oo as n — oo.
Thus for each ¢, Ti(n) — T; almost surely as n — oo. O



MOBILE POPULATION EPIDEMICS 889

3. Extensions of the model. The relatively simple model of Section 2
can easily be extended in several directions, the proof of Theorem 2.1 remain-
ing essentially unchanged.

First of all, we could allow contact between group i infectives and group j
susceptibles at rate B;;m /N, no longer insisting that g, i = B9;;. In the limit-
ing birth-and-death process, individuals in group i can now produce offspring
in any group Jj, the birth rate depending upon both i and j as well as upon
time. It does not seem possible to relax the assumption that infection times
are governed by a Poisson process, since otherwise it is not clear how shadow
infections should be generated.

We can also allow infectives to move between groups according to an ar-
bitrarily distributed random process on {1,2,..., m}, not necessarily Mar-
kovian. Similarly, infectious periods need not be exponentially distributed nor
independent of the individual’s movement process. Thus each individual in-
fected while in group i now has life history distributed as (I, (), P), where
I® is some nonnegative random variable giving the infectious lifetime of the
individual, x(¥, is some random process on {1,2, ..., m} with x)(0) = i al-
most surely and P is a homogeneous Poisson process of rate 1, independent
of I) and y9). We still insist that the life histories of distinct infectives are
mutually independent and identically distributed.

Generalizing the way in which susceptibles move between groups is a little
more complicated. If initial susceptible (i, r) moves between groups according
to the process ¢>7) until it is infected, the movement processes of distinct
susceptibles being mutually independent, then we require that for some de-

terministic function x(s) = (x(8), 29(s), - . ., x,,(s)) from [0, co) to R™,
[1 - |
(3.1 lim sup INX(”)(S) —x(s)| =0 almost surely
o0 g<s<t | I

for each ¢ > 0, the components X ; of X being defined by (2.1). We further
require that x;(s) > 0 forall s >0,i =1, 2,..., m, so that at all times there
will be a large number of susceptibles in every group.

Fori, j=1,2,..., m, defining

N,

(i)

XV(s) = Zl Ligins)=jy»
r=

pij(s) = Pr(f(i’r)(s) =J)s

then the strong law of large numbers tells us that for any fixed s,

lim X(ji)(s) — p;j(s)| =0 almost surely.

1
Denoting by P(s) the matrix with entries p;;, then if we let x(s) = wP(s),
we have that for each s,

lim %X(”)(s) —x(s)

n—oo

=0 almost surely.
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Thus if (3.1) is to hold, we expect the function x(s) to be given by x(s) = wP(s).
In the limiting process Z(s), the rate at which individuals in group i give birth
to offspring in group J at time s will then be ﬁij(s) = mp;jx j(s). Unfortunately,
for general processes ¢(7), simple conditions which would ensure that (3.1)
holds do not appear to be available.

4. The limiting process.

4.1. Susceptible population in equilibrium. Most commonly, we think of a
small amount of infection being introduced into a large, stable population of
susceptibles. In this case, it is natural to suppose that the susceptible popu-
lation is initially in equilibrium, so that x(s) = & for all s. As well as being
the most interesting case from an epidemic modeling point of view, this is also
the simplest case mathematically, since now the birth rates in our limiting
process do not change with time. The limiting process is the same as that
for a multigroup epidemic model in which susceptibles do not move between
groups, and results given by Ball and Clancy (1993) for such a model (in the
case of a small outbreak of infection) can be applied.

Thus for our most general model, the limiting process Z(s) is a branching
random walk in which individuals born in group i have lifetimes distributed
as 1), move between groups according to the law of y() and when in group
k give birth in group ;j at the points of a Poisson process of rate mB;;7 ;. The
total size vector T of this limiting process is the same as that of an embedded
m-type Galton—Watson process, initiated by @ = (a4, ay, ..., @,,) ancestors. If
we define 1 (jl) to be the time spent in group j by a typical group i infective
during its infectious lifetime, that is,

W _ "
I; ZA Lixos)=iy s,

then writing G(ji) for the number of type j offspring produced during its life-
time by a typical type i individual in the embedded Galton-Watson process,
the joint probability generating function of G = (G(l), Gg), cees GEZ)) is given
by

m

fim —E| il ]

= E[exp{— > mlg)ﬁkﬂj(l - oj)H
J=1k=1

fOI‘ W= (91, 92, ey 9m)
Defining the matrices L and A with entries {/;;} and {A;;} by

@)
lij=E[I;’],

m
Nij =D mly By,
k=1



MOBILE POPULATION EPIDEMICS 891

then A;; is the mean number of type j offspring produced by each type i
individual in the Galton—Watson process.

In the case where the infectious lifetime of each individual is exponentially
distributed with mean y~!, during which time the infective moves between
groups according to a Markov process with transition rate matrix @, its move-
ment being independent of its infectious period, we have from Ball (1991) that
L = (yI — @)~!. Similarly, the probability generating functions f;(w) can be
found in terms of the parameters B;;, 7;, y and @ as in Ball and Clancy [(1993),
Section 5.2].

Suppose that the matrix A is irreducible and let R be its Perron—Frobenius
eigenvalue. Then by standard branching process theory [e.g., Mode (1971)],
if R < 1, the total number of progeny produced by the branching process is
almost surely finite. In this case, the epidemic is said to be below threshold.
Alternatively, if R > 1, then the epidemic is above threshold and there is a pos-
itive probability that the Galton—Watson process produces an infinite number
of progeny. This probability is given by 1], q;’, where ¢ = (q1, @2, - - - » @)
is the unique solution with 0 < g; < 1 of the equations q; = f,;(q) for i = 1,
2,...,m.

4.2. No movement of infectives. If we now suppose that only susceptibles
move between groups, while infectives do not, and also that infectives are only
able to contact susceptibles in their own group, then our limiting process con-
sists of m independent single-group branching processes, with time-dependent
birth rates. In the case when each group i infective lives for an exponentially
distributed time with mean v;, each of these single-group processes is an ex-
ample of the generalized birth-and-death process studied by Kendall (1948).
Thus if we write B;m / N for the infection rate in group i and define

pi(8) =v;s—B;m /OS x;(u)du,

then the probability that the process in group i has gone extinct by time ¢ is
given by q;(¢)%, where

Jo exp{p;(s)} ds
vt + [y exp{p;(s)} ds

The probability that the process goes extinct eventually in group i is given
by q;(00)%. Thus the whole process will almost surely go extinct eventually,

producing only a finite number of progeny (i.e., the epidemic will be below
threshold) if

(4.1) [ ~ exp{p;(s)} ds

q;(t) =

is divergent for each i such that a; > 0.
Now suppose that x(s) — v as s - oo for some v = (v, vy, ..., v,,). For
instance, if each susceptible moves between groups according to a Markov
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process with transition rate matrix R, then v will be a stationary distribution
of R. It is easy to show that the integral (4.1) diverges if v; / B; > mv; and
does not diverge if y; /B; < mv;. (The case y; /B; = mv; is less clear.) If the
infection and removal rates do not differ from group to group, so 8; = B and
vi=vfori=1,2,..., m, then assuming that a; > 0fori =1, 2,..., m, the
process is below threshold if

(4.2) RS ~max {my;}.

B i=12

The right-hand side of (4.2) is minimized when v; = 1/m fori =1, 2,..., m,
which means that as time progresses the susceptibles tend to spread them-
selves as evenly as possible between groups. In this case, the epidemic thresh-
old occurs when y = B. If the limiting distribution v of the susceptible popula-
tion is not uniform, then the right-hand side of (4.2) is greater than 1 and so
when y = B, the epidemic will be above threshold. This suggests that hetero-
geneity in the susceptible population tends to increase the spread of infection.

4.3. Other special cases. Before moving on to the general case, we mention
two more special cases of our limiting process which have been considered by
previous authors. In both cases it is assumed that individuals move between
groups according to a Markov process with transition rate matrix @ and pro-
duce offspring only in their own group, so that 8;; = 8;5;;. It is also assumed
that for an individual in group i at time s, the probability of being removed in
the interval [s, s + 8s) is given by y;s+ o(8s). Thus unless y; = y9 = - - = y,,,,
the length of an individual’s life is not independent of its movement process.

Raman and Chiang (1973) make the further assumption that g;; = 0 for
i > J; then our limiting process is their Model II. They write down a partial
differential equation satisfied by the probability generating function of Z(s),
the state of the process at time s, and outline a successive method for the so-
lution of this differential equation involving the solution of a system of Riccati
equations. However, no explicit solution is available.

Puri (1968), on the other hand, assumes that g;; = 0 for [{ — j| > 1. Again
a partial differential equation is given which is satisfied by the probability
generating function of Z(s), but now a recursive method is described for finding
an approximation to this generating function. As far as finding the generating
function exactly is concerned, the relevant differential equation was found to
be intractable.

4.4. The general case. Now suppose that both infectives and susceptibles
move between groups and that x(s) — v as s — oco. Then so far as the thresh-
old behavior of the epidemic is concerned, since this depends only on the be-
havior of the process as s — oo, it seems likely that the epidemic will be above
threshold precisely when a modified version of the process, with x(s) = v for
all s, is above threshold.
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In order to prove this, for i, j =1, 2,..., m, define

0
Bi; = mpBiv;,

}‘ij(s) = Z likBkj(s)a
k=1

D likﬁgj
k=1
and also
~ m A
A= > LirBrj
k=1

for general {Bij}.

Suppose that the matrix A° with entries {/\?j} is irreducible, with Perron—
Frobenius eigenvalue R < 1. Then since R is a continuous function of each
of the {/\?j}, which are themselves continuous functions of the {,B?J-}, there
exists some & > 0 such that if ﬁij = ,B?J- +efori, j=1,2,...,m, then the
matrix f\ij with entries {A; i} is irreducible with Perron—-Frobenius eigenvalue
less than 1. However, Bij(s) — B‘i)j as s — oo and so we can choose ¢ such
that for s > ¢, Bij(s) < B?j +efori, j=1,2,...,m. Now suppose that our
limiting process has not already died out by time ¢. Then by time ¢, only a
finite number of progeny will have been produced in total (almost surely),
and from time ¢ onward, the number of births in our process with birth rates
B; (s) will be less than in the modified process started at time ¢ with the same
number of individuals alive at this time as in the original process, but with
birth rates B?j + ¢. (To be precise, we can couple together our limiting process
with this modified version in much the same way as the epidemic was coupled
with the limiting birth-and-death process in order to prove the main result
of the paper.) This modified process almost surely becomes extinct eventually,
having produced only a finite number of progeny in total, and hence so does
our process of interest.

A similar argument shows that if A? is irreducible with Perron—Frobenius
eigenvalue R > 1, then there is a positive probability that our limiting process
will never become extinct. How one might evaluate this probability seems
unclear.

Now from Seneta [(1973), Theorem 1.5] we have that

(4.3) min {Z/\?j}ng max {Z/\?J}
i =1

i=1,2,...,m i=1,2,...,m

In the case when B,; = B8,; and E[I®)] = y~! for each i, then we have that
)\?j =Bml;jv; and 374 ;= v~1, so that (4.3) implies

min {my;} <R < B max {mv;}.
L m Y i=1,2,..m
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Comparing this with the situation when only susceptibles move, we see that
if the condition for an epidemic in which infectives do not move to be below
threshold [i.e., the condition (4.2)] is satisfied, then the epidemic is certainly
below threshold, whether or not infectives move. Movement of infectives ap-
pears to decrease the spread of infection. This may be explained by the obser-
vation that even if y/B8 < my; for some group i, movement of individuals away
from this group may bring the process below threshold. On the other hand,
if y/B > my; for every i, then individuals moving into the groups where v; is
large cannot push the process above threshold, since the number of individuals
which do so will always remain finite.

5. Concluding comments. We have shown that a quite general multi-
group epidemic model incorporating population mobility can be approximated
over finite time intervals by an appropriate branching random walk with time-
dependent birth rates. Possible further results are suggested by previous work
on related problems by various authors.

In the single group case, Ball and Donnelly (1995) considered convergence
of various functionals of the epidemic process, such as the duration of the
epidemic, or the maximum number of infectives present at any time. These
results could easily be extended to our current model. Bounds were also given
for the total variation distance between the epidemic process and the ap-
proximating branching process, although these bounds were found to be often
rather poor.

By looking only at convergence over finite time intervals [0, ¢], we have in
effect restricted ourselves to the early stages of the epidemic. Both Ball and
Donnelly (1995) and Ball and O’Neill (1994), looking at different classes of
single-group models, were able to improve on this by considering intervals of
the form [0, ¢, ], where ¢, — oo as n — oo. The details are quite technical, and
whether their methods could be applied to our current model seems unclear.
In the case of a major outbreak of infection, Ball and Clancy (1993) were able
to show that for a multigroup model in which only infectives move, the total
size of the epidemic has an asymptotically Gaussian distribution with mean
equal to the total size of a corresponding deterministic epidemic model. When
susceptibles are able to move, their arguments [based on those of Scalia-Tomba
(1985, 1990)] appear inapplicable.

Finally, our model does not explicitly allow for immigration to or emi-
gration from the population. However, this is easily incorporated following
O’Neill (1996).
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