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Importance sampling is a Monte Carlo technique where random data
are sampled from an alternative “sampling distribution” and an unbiased
estimator is obtained by likelihood ratio weighting. Here we consider
estimation of large deviations probabilities via importance sampling. Pre-
vious works have shown, for certain special cases, that “exponentially
twisted” distributions possess a strong asymptotic optimality property as
a sampling distribution. The results of this paper unify and generalize the
previous special case results. The analysis is presented in an abstract
setting, so the results are quite general and directly applicable to a
number of large deviations problems. Our main motivation, however, is to
attack sample path problems. To illustrate the application to this class of
problems, we consider Mogulskii type sample path problems in some
detail.

1. Introduction and summary. Let P ={P: &> 0} be a family of
Borel probability measures on a topological space 2. Suppose that P satisfies
a large deviations principle; that is, P, > 3, weakly for some p €27, and for
a large class of “continuity sets” we have — & log(P,(E)) ~ I(E), where I(E)
> 0 whenever u & E. This paper considers estimation of P,(E) using
the Monte Carlo method commonly known as importance sampling. Let
XM ..., X" be independent samples from a sampling distribution Q,.
Then the estimator is

N 1 dP,
1 P (E) 1(X®
( ) s( 8 Z_Z E( )dQ (
which is well defined and unbiased [i.e., EQE[PE(E)] = P (E)] if and only if
1P, < Q, [where 1P (-) = P.(-N E)].
Set L.(Q,) = min{L,: varg, [P(E)] < cP(E)?} for some 0 < ¢ < ». Then

L(Q,) =[v.(E;Q,)/(cP.(E)?)], where

X(l))

def
v(E;Q,) = varg, [ E(X) Q. (X )}
and, hence, a good sampling distribution will tend to minimize this single
sample variance. Of course, v (E; @,) = 0if and only if 1, dP,/d@, = constant
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with @, probability 1, and after normalization we find that the zero variance
sampling distribution is just the conditional law Q_(-) = 1;P.(-)/P(E) =
P (|E). However, this is not a practical solution. To see why, realize that total
cost of computation is actually L (Q,) X “per sample costs,” where the latter
factor includes the cost of numerically generating the samples X" and then
evaluating the likelihood ratios in (1). The conditional law blindly minimizes
L (Q,) without regard to per sample costs. The likelihood ratio becomes
(dP_/dQ XX,) = P.(E) with probability 1 and, hence, the estimator reduces
to direct evaluation of P,(E). This is why the variance is zero, but prohibitive
numerical cost of direct computation is presumably what leads to considera-
tion of Monte Carlo methods in the first place.

Practical importance sampling must seek a tradeoff between sampling
efficiency and implementation complexity. A common strategy is to impose
“ease of implementation” by constraining candidate sampling distributions to
lie in some natural family. One then attempts to minimize v, (E; @,) within
the constrained family. For example, if P, is a Gaussian distribution, then it
is natural to constrain @, to also be Gaussian.

Unlike the unconstrained problem, constrained minimization of v (E;®,)
can be quite difficult. This has led to consideration of the asymptotics,
particularly in the context of large deviations problems. Since P.(E) is
exponentially small, it is reasonable to suspect that L_(Q,) will be exponen-
tially large as & 0. Thus, the exponential growth rate of L_(Q,) is the
natural asymptotic characterization of sampling efficiency within the context
of large deviations.

The literature contains several examples of constrained optimizations
using this asymptotic efficiency measure. For example, consider P,(X}_,Z, >
ny), where P, is the ii.d. distribution for X, = (Z,,..., Z,) determined by
the marginal p(-) =(Z,), and ¢ = 1/n. From an implementation point of
view it is desirable to constrain the sampling distribution @, to be also of
1.i.d. form as determined by a marginal g (such that g < p). This determines
a nonparametric candidate family of sampling distributions. Embedded within
is the parametric family determined by the exponentially twisted marginal
p*(dz) = exp(az — A,(a))p(dz), where A (a) = log(Ep[e"Z]). Early works,
particularly Siegmund (1976), had showed that within the one-dimensional
exponentially twisted family there is a unique asymptotically optimal solu-
tion ¢ = p?, where A,(0) = y. Bucklew, Ney and Sadowsky (1990) extended
the unique optimality of ¢ = p? to the entire nonparametric family (actually,
in a Markov rather than ii.d. framework). Lehtonen and Nyrhinen (1992a, b)
proved a similar result for level crossing problems. Other examples
and practical applications are found in Asmussen (1985), Ben Letaief and
Sadowsky (1992, 1994), Bucklew (1990), Chang, Heidelberger, Juneja and
Shahabuddin (1992), Chen, Lu, Sadowsky and Yao (1993), Sadowsky and
Bucklew (1990), Sadowsky (1991, 1993) and Sadowsky and Bahr (1991).

Before proceeding with a formal problem statement, we must extend the
discussion of practical issues in one last direction. It is typically impossible to
evaluate L_(Q,) a priori. For this reason, it is standard practice to implement
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the sample variance estimator, denoted V,, to estimate v (E;®,) in tandem
with the sample mean estimator (1). As P.(E) and V, are both implicit
functions of L_, sampling proceeds up to
L¥ = min{ng I—Q’E(E)2 < cVS/LE},

which is a stopping time random variable with respect to the sequence
XM X® ... The behavior of this sequential estimator has been well studied
and characterized in the statistical literature. See Woodroofe (1982) and
references therein. The stability of the estimator is determined by both the
variance of the sample mean and the variance of the sample variance, and
the latter depends on the fourth moment of 15 dP,/d@.. The implication in
the large deviations context is as follows. It would be fruitless to optimize @,
by simply minimizing the exponential growth of the second moment if the
ratio of the fourth to second moments blows up exponentially. If such an
exponential divergence of moments occurs, the sequential estimator will be
hopelessly unstable for small values of &. From another point of view,
instability of higher order moments is manifest as an increasingly heavy
tailed error distribution as & | 0. The reader is directed to Sadowsky (1993)
for a more complete discussion of this stability issue, including a numerical
example of a low variance yet highly unstable importance sampling estima-
tor. Fortunately, it happens that the asymptotic analysis of any integral
moment of the estimator error is no more difficult than variance analysis. For
these reasons, we will formulate an asymptotic performance criteron in terms
of an arbitrary integral order moment.

The original goal for this work was to obtain a general asymptotic result
for “sample path” large deviation problems. This was motivated by efforts to
apply the importance sampling method to estimate probabilities of rare
trajectories in semiconductor devices: X(¢) = [(V(s)ds, where the velocity
process V(t) is a Markov jump process with drift. In this paper, we will
illustrate the sample path issues using the simpler process X, (¢) = (1/n)S,,,,,
where S, = ¥*_,Z_is a random walk. One type of twisted distribution would
make the Z, independent with twisted marginals (Z,) = p**, where «, is
a time varying (but deterministic) sequence. We will call this simple expo-
nential twisting. An alternative is sequential exponential twisting deter-
mined by the conditional distributions A(Z,|X,(s): s < k/n) = p*, where
a, = (X, (s): x <k/n). (The history {X,(s): s <k/n} depends only on
Z,,...,Z,_,) In fact, the sampling distribution used in Asmussen (1985),
Lehtonen and Nyrhinen (1992a, b), Sadowsky (1991) and Siegmund (1976) for
the level crossing problem is actually a sequential exponential twisting where
the @, depend on the sample path only through the level crossing stopping
time. These previous works have attacked importance sampling analysis
using Wald’s identity. The proofs, however, are cumbersome (several cases
must be eliminated), and it is not likely that that approach can be readily
generalized, say, to problems involving multidimensional and /or time vary-
ing boundaries or position dependent acceleration fields. For example,
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Asmussen (1985) discussed difficulties when simulating a modified gambler’s
ruin problem where the betting strategy changes as the gambler’s fortune
approaches the ruin boundary.

This paper presents an entirely new approach that is generally applicable
to large deviations problems involving a convex rate function. As is consistent
with modern large deviations theory, we cast the analysis in the abstract
setting of locally convex Hausdorff topological vector space. Our main result,
Theorem 2, establishes a general necessary condition for asymptotic optimal-
ity. Roughly stated, the sequence Q = {@,} must be locally similar (at certain
“points of continuity”) to the simple exponentially twisted distribution. This
result is similar in character (and proof) to the local nature of large devia-
tions lower bounds. A significant departure from previous results is that
Theorem 2 is applicable to any sequence Q; we do not consider a particular
constrained candidate family. Thus, a candidate family may be tailored to
match the specifics of the particular application at hand and then Theorem 2
can be used to identify possible optimal solutions within the selected family.

In addition to the general necessary condition, Theorem 3 presents neces-
sary and sufficient conditions for optimality of simple exponential twisting. It
turns out that simple exponential twisting is generally not asymptotically
optimal, except for problems with a special “dominating point” geometry.

The paper is organized as follows. Section 2 is the formal presentation of
results. Section 3 then demonstrates the procedure for application of Theo-
rems 2 and 3 to time varying level crossing problems for the process X, (¢) =
(1/n)S,,,- Proof are deferred to Section 4, and further discussion is found in
Section 5.

2. Presentation of results. In this section we present the new results.
To do this, we must first review the large deviations setting. Given this
background, we then formally state the asymptotic optimality criteria and
the new results, Theorems 2 and 3.

Let 2 be a locally convex regular Hausdorff topological vector space
and let 27* denote its topological dual endowed with the weak-* topology.

For a function g: 2% — [ —, ] the Fenchel transform is defined as g*(x)
def . . .
= sup, . »+1{(A, x) — gV} for all x €2, which is convex and lower semicon-

tinuous. Likewise, for f: & — [ —», =], define f*()\)ti:efsupxey{@\, x) — f(x)}
for each A € 27*. If f(-) is convex, lower semicontinuous and f(-) > —«, then
F**() = f(-). A point x € £ is called an exposed point of f(-) if there exists a
A, €Z* such that

f(y) >f(x) +<{A,,y —x) forall y+x;

A, is called an exposing hyperplane of f(-) at x. If g*(-) has an exposed
point x with exposing hyperplane A, then we may easily evaluate g*(x) =
(A, 2y —g(A) and g**(A,) = (A, x) — g*(x).

Let P = {P,, £ > 0} be a family of probability measures on 2. The family P

is said to satisfy a large deviations principle with rate function I: 2 — [0, ] if
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I(-) is lower semicontinuous,

(2) hfli(?fa log(P,(0)) = —I(0)

for all open O €2 and
(3) liminfe log(P,(C)) < —I(C)
e—=0

def
for all closed C c 2, where I(E) = inf, _ ; I(x). If the level sets {x: I(x) <}
are compact, then I(-) is called a good rate function.
Let X, be an 2*valued random element and define

(4) A (X) P log(EPS[exp(()\,X€>/e)])

and A(A) d=eflim8_, o A (A) for A € 2*. The following is taken from Theorem
4.5.10 in Dembo and Zeitouni (1993).

THEOREM 1. Assume that P satisfies a large deviations principle with
convex good rate function I(-) and that limsup, _, o A (A) < o for all A € Z*.
Then the limit A(A) exists for all A € 2%, and I(-) = A*(-).

Let .7 denote the set of all exposed points of I(:). We will say a Borel set E
is a continuity set if
(5) 0< infI(x) = infI(x) = inf I(x) <oo,

xeE xeE xeE°NF

and y € E is a point of continuity if I(y) = I(E) and there is a sequence
x, € E° N such that x, — 7. A continuity set always has at least one point
of continuity.

For any A € 2* such that A_()) < «, the simple twisted distribution is

def 1
(6) PA(dx) = exp| —[(A, ) = A, (V)] | P(dx).

Next, we move on to importance sampling issues. We say that @, is a
candidate sampling distribution if 1, P < @, . Recall that this is the minimal
requirement for (1) to be well defined. For a candidate sequence Q and an
integer v > 2, define

(7) a,(E,Q) diflimsupalog(L‘e(Qa)),
e—0

where L,(Q,) = min{L,: E,, [ P,(E)"] < cP,(E)"} for some 1 < ¢ < . Clearly
a,(E,Q) > 0. We say Q is wefficient, for a given set E, if a,(E,Q) = 0. This
definition of a,(E,Q) neglects the subexponential behavior of L_; hence,
v-efficiency is a weaker optimization criteria than the strict minimization.
Unlike strict optimization, there may be many sequences Q that are v-effi-
cient. As discussed in the Introduction, our goal is to characterize the
candidate sequences Q that are at least 2-efficient, both 2- and 4-efficient
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when the sequential estimator is used and perhaps also v-efficient for arbi-
trary v > 2.

For nontrivial substochastic measures u < &, define differential entropy
(or Kullback-Leibler information) as

e d
(8) D(ule) < [ log(d—’;) dp.

Let £“ be the absolutely continuous Lebesgue component of ¢ with respect
to w, s0 €% ~ w, and put £¢ = £¢/£4Z). Since u log(u) is convex, by Jensen’s
inequality,

du
D(ul¢) = ¢ (%)/—log

dé dér

> w(2)log( u(2)).
foay | = M@Nos(m(2))
In particular, if u is a probability measure, then D( ull£¢) > 0 with equality if
and only if w = £ For strictly substochastic measures, the lower bound
D(ull €) = u@log( u(2)) is negative.

We are now ready to state the main result.

> M(é?”)log(

THEOREM 2. Assume P satisfies the conditions of Theorem 1 and E is a
continuity set. Let y be a point of continuity. A necessary condition for
v-efficiency of any candidate sequence Q is
(9) lim sup 11m1nst(1E @, )

0

x>y &=

xeE°NS

where A, is an exposing hyperplane at each x.

REMARK 1. The bound D(1;P}*+|Q,) > P)<(E)log(P}+(E)) will generally
be negative for fixed & > 0 because P*+(E ) < 1. However, in Section 4 we will
show that P<(E) — 1 for any x € E° N #, and hence, the left-hand side of
9)is always nonnegative.

REMARK 2. In the Introduction it was stated that the necessary condition
is a “local condition” that must be checked in the vicinity of points of
continuity. Suppose there are two points of continuity y,, vy, € #. Let Q, and
Q, be candidate sequences such that each Q; satisfies (9) with y = v,, but not
with y = vy, j # i. Put Q,(Q, , + @, ,)/2. Then

! ( ar.- B
Og d(Q1,£+Q2,s)/2 ’

<D(1;PMIQ; ) + log(2) P)+(E)
for both i = 1 and 2 and, hence, Q = (Q; + Q,)/2 satisfies (9) at both points
v, and vy,.

D(1;PQ,) = Ep..
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Finally, we turn to the issue of necessary and sufficient conditions for
simple exponential twisting to be »-efficient. A point of continuity y € E is
called a dominating point if there is a A* € 2% such that I(y) = (A¥,y) —

— def

A(X*) and E cZ(y, X*) = {x (XN, (x — v)) = 0}. [A dominating point need
not be an exposed point, except when I(-) is strictly convex.] Suppose that
there is a point of continuity y such that I(y) = (A*,y) — A(X*), and define

(10) E, (v, ) S {x: I(x) + (v — 1N, x — v) = I(y)).

Since I(x) = A*(x) = (A*, x) — A(X*) = (A*,(x — y)) — I(y), we observe
that vy is a boundary point of E (y, A*). Moreover,

Ey(y,X*) DEg(y,A*) D -+ and () E,(y,A") =2y, r*).
v=2

THEOREM 3. Assume P satisfies the conditions of Theorem 1 and E is a
continuity set. Fix \* € Z* and an integer v > 2.

(i) The following conditions are sufficient for v-efficiency of P*": (a) there is
a point of continuity y such that I(E) = I(y) = (X*,y) — A(A*); (b) E C
E (y, *); (¢) either E c#(y, *) (in which case vy is a dominating point) or
(1 — v)A* is an exposing hyperplane.

(i1) Conditions (a) and (b') E° N7 C E (y, A*) are necessary for v-efficiency
of PV

COROLLARY 1. Fix X* € 2* and suppose that E = E° N . Then P" is
v-efficient for all integers v > 2 if and only if E has dominating point y and

I(y) = (X, y) — AY).

When the necessary condition of Theorem 3 fails, it may be possible to
construct r-efficient sequences as convex combinations of exponentially
twisted sequences. This avenue is explored in Sadowsky and Bucklew (1990)
for the finite-dimensional case with v = 2. Chen, Lu, Sadowsky and Yao
(1993) first proved this type of result in the setting of the finite-dimensional
Gaussian case with v =2, in which case the boundary JE,(y, A*) is an
ellipsoid.

3. Mogulskii sample path probabilities. Let {Z,} be an i.i.d. sequence
of bounded random variables with marginal distribution p(-) and define

1

(11) X,(t) = ;{S[ntj + (nt - lntJ)Z[ntJ+ 1}

for ¢ € [0, 1], where S, = X*_,Z . Take 2 to be the Banach space of continu-
ous functions x: [0,1] — R with x(0) = 0, endowed with the sup norm topol-
ogy. Throughout this section, we replace ¢ with 1/n and modify all notation
accordingly.
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The process X, really depends on finitely many random variables
Zi,...,Z,. The Banach space 2 simply provides a convenient setting for
studying the large deviations asymptotics as n — %. Observe that (11) de-
fines a continuous mapping R" — 2. Thus, P, = the distribution of X, on &
is induced by the i.i.d. product form distribution

po(dzy X = X dz,) = p(dzy) X - X p(dz,)

for Z,,...,Z,. It is this finite-dimensional distribution to which any Monte
Carlo method would be applied; hence, we really seek a finite-dimensional
sampling distribution ¢,(dz; X -+ X dz,), which may or may not have prod-
uct form. Of course, g, induces a distribution @, on 2 via the transformation
(11).

Write Z = esssup Z, < < and z = essinf Z;, > —», and assume that z <z

[so p(-) is not degenerate]. Define AZ(a)d=eflog(Ep[e“Z ]D. Then, under the

current assumptions, A,(-) is strictly convex and analytic on R and
def ,_ . . . . -
0(z)= N , '(2) defines a 1-to-1, strictly increasing and continuous map (z, Z)

— R. Next, define A%(z) = sup {az — A, (a)}. Then A%(:) is a lower semicon-
tinuous convex function and

0(z)z — Ayz(0(2)), forze(

A* — g ’ E) ’

2(2) = + oo, forz & [z, Z].
Write dom(A%) = {z: A%(2) < «}, so (2, 2) € dom(A%) [z, zZ]. It happens
that A%(z) < « if and only if (Z = z) > 0, and likewise for z. By the strict
convexity of A,(-), it turns out that |A%(2)|1~ as z 1 Z or z | z; that is, A%(-)
is “steep.” The set of exposed points is precisely the interior interval (z, z),
and on this interval we may evaluate the derivatives A%(z) = 6(z) and

A(z) = 1/X,(6(2)). Finally, define

pe(dz) d=6fexp(a(2 —Ayz(a))p(dz).

Then Epu[Z] = N (a). In particular, E,«-[Z] = z for z € (2, 2).
Let @& c2 denote the set of absolutely continuous x: [0,1] —» R such
that x(0) = 0.

THEOREM 4 (Molgulskii). The family P satisfies a large deviations princi-
ple with good rate function

o5 (%(t)) dt, forx ewE,

(12) I(x) = , forx &£ /F.

Moreover, the set of exposed points F is the set of all absolutely continuous

x € dom(I)dif{x ew®: I(x) < «©} such that x is a function of bounded varia-
tion, and I(-) is strictly convex on dom(I).
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For a proof of Molgulskii’s large deviations principle, see Dembo and
Zeitouni (1993). The characterization of exposed points is established below.

The topological dual space 2* consists of the signed Borel measures of
finite variation and (A, x) = [Jx(£)M(d¢). For A € 2%, we directly evaluate

1 n
X)) = (X)) = = ¥ a, (M7,
0 N1

where

a o) EA((k/n, 1)) + [ (nt =k + 1)A(de)
(k—1)/n

and, hence,
of 1 1
A1) S ~log(Ey, [exp(nh, X)) = ~ & Ag(a, x(1)).
k=1

It immediately follows that the simple twisted distribution P, is induced by
the product form distribution

(13)  pi(dz, X = X dz,) < peni(dzy) X -+ X prei(dz,)
via the transformation (11). Moreover, letting n — « we obtain the limit
(14) AA) = Tim A, (A) = [TA5(A((£,1])) dt.

n—w 0

Clearly, A(A) < = for each A € 27*. Thus, by Theorem 1 we have I(-) = A*(:).
Observe that I(:) is strictly convex on dom(I) because of the strict convex-
ity of A% (). Using A%(z) = 06(2), we find that I(-) is Gateaux differentiable
on dom(7) with directional derivative
def I(x+eéx) —I(x .
Dy () % tim 2 ) ~1(%) _ [ o(i(2)) 8x(¢) dt.
0

el0 &

The function I(-) has Fréchet derivative A, € Z* at x if D, I(x) = (A, 8x)
for all §x such that x + £5x € dom(]) for some ¢ > 0. Let & be as stated in
Theorem 4. Then by integration by parts, we find that I(-) is Fréchet
differentiable on . and

(15) A (dt) = 0(x(1))8,(dt) — do(%(¢))

determines a 1-to-1 relationship between &% and £°*. By strict convexity, it
follows that 7 is precisely the set of exposed points and the measure A, given
by (15) is the unique exposing hyperplane.

There are a number of problems that can be attacked within the frame-
work of Mogulskii’s theorem. Here we consider only the case of a time varying
level crossing:

E={xe2: x(t) > e(t) for at least one ¢ € [0, 1]},

where e(t) is lower semicontinuous (so E is closed) and we assume
min, ¢ (o, 1;e(¢2)/t > E [ Z]. The simple level crossing problem (as considered in
the references) is the case e(t) = a > 0 and Ep[Z] < 0.
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For 7 € (0, 1], define

et [ (e(7)/7)t, fort <,
Y(t) = e(T)+Ep[Z](t—T), fort > r.

Then vy, € # whenever z < e(7)/7 < Z, and from (15) the exposing hyperplane
£
is )\T(dt)di A (dt) = 6(e(r)/7)8.(dt) [because 6(E [Z]) = 0]. Thus, (A, x) =
6(e(r)/7)x(7). By convexity, v, minimizes I(-) over the half-space Z(y_, A ) =
{x: x2(7) = e(r)}, and I(Z(y,, A.)) = I(y,) = 7A%(e(r)/7). Since E =
U, ec0,1;7(%, A,), the points of continuity for E are the sample paths 1y,-,
where
7% = argmin 7A%(e(7) /1),

which may not be unique. We will write y =y, A* =A. and 0* =
0(e(7*)/7*). The simple twisted distribution is as in (13) with

0*, for £ < [n7*],
a, () = (nt* — |n7*])6*, fork =[n7*],
0, for & > [n7*].

Now consider the Monte Carlo estimation problem. For each n < «, let
q,(+) denote a candidate joint sampling distribution for (Z,, ..., Z,); in partic-
ular, ¢,(-) need not be of product form.

Unfortunately, v is not a dominating point for E. This is clear from the
representation E = U, < 1;#(%,, A,). This argument can be extended to
show that the necessary condition of Theorem 3 is violated for any v > 2 and,
hence, the simple twisted distribution pnA* is not v-efficient.

Thus, we consider the following sequential alternative. On the event
£ £
(X, € E}, define T, & min{¢ € [0, 1]: X,(t) > e(t)} and K, = [nT,]. On {X, ¢

E} put K, = n. Sample the Z, from an alternative marginal ¢ up to the
random stopping time K,, instead of up to the deterministic time [n7* ] (as
p,i‘* does). After time K,, revert to sampling from p. At this point, consider
any marginal ¢ such that ¢ < p. Then the joint distribution is

q,(dz; X -+ X dz,)

(16) n k n
= X q(dz) IT p(dz,) g iy 21505 21)-
k=1 k=1 k=k+1

We now apply the necessary condition of Theorem 2 to prove the following
proposition.

PROPOSITION 1. The sequence Q defined in (16) can be v-efficient only if 7*
is unique and g = p?".

PRrROOF. Let y = y,» denote an “extremal trajectory” as identified above. To
apply Theorem 2 we first must construct a sequence of “interior trajectories”
x = vy, x € E° N Fix (¢, xy) €[0,1] X R such that x, > e(¢,) and Ep[Z]
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< x,/t, <Z, and put

(t) = (x0/t0)E, for t < t,,
o= xo +E[Z](t —t,), fore>t,.

Then x € E° N.7 and the exposing hyperplane is A,(d¢) = «,8§, (dt), where
a, = 6(x,/t,). This construction is illustrated in Figure 1. Observe that the
outer limit of (9), x — v, is achieved by letting (¢,, x,) — (7%, e(7*)).

The argument goes essentially as follows. Under the simple twisted distri-
bution P}« the process X,(¢) tends to follow the trajectory x(¢). By the law of
large numbers, K, ~ nr,, where 7, = min{¢: x(¢) > e(¢)}, as illustrated in
Figure 1. Thus, replacing K, by |nt,],

1 lnTy) dpao
— I Z,)|; E
x n kgl Og( dq ( k))’

1
~D(1:PIQ,) ~ Ep ~ 7 D(p"lg).

Letting x — vy, we have 7, » 7* and «, — 6* and, hence, the necessary
condition for v-efficiency boils down to D(p?*|lg) = 0, which implies g = p®"

We now formalize the above sketch. In order to apply the law of large
numbers, we consider the expectations indexed by n to be evaluated on a
common probability space. Let {Z¢} and {Z}} be independent i.i.d. sequences
with respective marg‘inals p“ and p. In the nth expectation, put Z, = Z;} for
k <[ntyland Z, = Zk (nto] for & > [nto] and on this probability space let E,

denote the event {X, € E}. Define K = mln{K ,Lnto ). Then
D(1;PQ,)

g, dp o
=El L log( (Z“)); E,
L—1 dq *

[ntql dpao dpa(;’
+E log( Zyy| + log| —(%,, ;
[k_§n+1 dp ( k) dp ( [to]))
(17)
Kn =< lntOJ
dp @6 K, —[nt,] dp
+ E|log Z.. )|+ log(— Zy );
[ ||+ L o S

{K, > |t} N E, |,

where «af = (nt, — |ntyDa,. We will consider the preceding three terms
separately below. However, hereafter we neglect two two asymptotically
negligible terms involving the single random variable Z,,, ,. Also, observe
that {K, < |nt,]} = {K = K,} Cc E, in the middle term above.
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Fic. 1. Illustration of the extremal trajectory y = v.= and the interior trajectory x.

The dominant term on the right-hand side of (17) is the first term. Write
log((dp“°/dq)(2)) = f*(2) — f(2), where f*(z) and f (z) are the positive
and negative parts. Using K, < |nt,], we have

lntol

12| <l (2],

1 | K.
—E| X [ (Z);E,|<—E
n |, n

Next, by the {Z}} strong law of large numbers, we have #(E,) - 1, K, /n —
T, a.s., K,/n — 7, a.s. and, hence,

n

1 5 K, 1%
;kglf (Zk) B n KTnkglf (Zk) _)TOEpaO[f (Z)] o

even when E «[f"(Z)] = +%. Thus, by Fatou’s lemma and the previous
upper bound, we have

@o

K, dp
log( Z; ); E,
ké:l dq ( k)

liminf —E
n

n—ow

Y

7By FT(Z)] — toE, [ f7(2)]
=71,D(p®llq) — (t, — 7)E,«[f7(Z)].

Next, since the Z, for k£ > K, are independent of K,, the middle term in
(17) is easily evaluated as

ntol dp ®o
El X 10g( P (Zz?));KnSlntoJ
k=K,+1 dp

= D(pa()”p)E[(I.ntOJ - Kn)’ Kn = I.ntOJ] = 0.
Finally, consider the third term in (17). Let

g (z) = max{0, —log((dp/dq)(x))}.
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Since —ulogu <1/e we have E [g (2)] = E [(dp/dgXZ)g (2)] < 1/e.
Then
1 K, —[ntyl
(— Y & (Z)
k=1

n

1 n+[ntyl

Lk, > ntopnE, < = ) g_(Z,i’)
nop-

and the random variable on the right-hand side has expectation less than or
equal to (1 — ¢))E [g7(Z)] < «. By the {Z}} law of large numbers, we have
P(K, > |nt,]) — 0 and, hence, by dominated convergence, we have

|
ImEl— Y g (Z);{K,>|nt |} NE,|=0.
n=e n n=|ntyl+1

Since log((dp/dq)(z)) > —g~(z), we conclude that as n — o the limit infe-
rior of the third term in (17) is greater than or equal to 0. [For the purpose of
getting a lower bound greater than or equal to 0, we do not even have to
consider the positive part g*(z). However, that limit is also zero whenever
D(plig) < ]

Applying the above results to the three terms of (17), we have

1
liminf —D(1;PMQ,) = 7o D(p=llg) — (t, — 70)E,«[f (Z)].

n—o«x N

Let x — vy, or equivalently, (¢,, x,) = (7%, e(r*)). Then «, = 0(x,/¢,) =
6(e(r*)/7*) = 6* and 7, > 7* and, hence,

1 *
lim sup liminf—D(lEPn’\XIIQn) > *D(p”lig).
x—y n—>w N
Thus, by Theorem 2, D(p®’|lq) = 0 is necessary for r-efficiency of a sequence
Q of the form (16), which occurs if and only if ¢ = p? . O

Next we address the sufficiency of the condition g = p? to yields a
v-efficient sequential sampling distribution ¢, as defined in (16). This re-
quires additional conditions. Observe that the pair (+*, 0*) is the solution of a
min-max problem:

e(t

I(E) = min TA*Z( () ) = min sup{ae(7) — TA,(a)}.
re(0,1] T 7€[0,1] weR

Thus, consider the possibility that (7%, 6*) satisfies the saddle point inequali-

ties

(18) ae(t) — 7*A () <I(E) < 6*e(7) — 7A,4(6%)

for all (7, a) € [0, 1] X R. The left-hand inequality above follows immediately

from Fenchel’s inequality: A%(z) > az — A, (a) for all @ € R. However, the

right-hand saddle point inequality may fail. By the min-max theorem a

sufficient (but not necessary) condition is that e(¢) be convex.

PROPOSITION 2. Assume that the saddle point inequalities (18) hold. Then
the sampling distribution q, defined in (16) with q = p”" is v-efficient.
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The proof of Proposition 2 is postponed to the next section.

We remark that if the minimizer 7* is not unique, then one might
construct efficient sampling distributions as convex combinations of those of
the form (16). Alternatively, the set E might be partitioned into subsets each
satisfying the conditions of Proposition 2.

4. Proofs. In this section we prove the results presented in Section 2.
Throughout this section we assume that P satisfies the conditions of Theorem
1 and that E is a continuity set.

Our first task is to relate a,(E, Q) [defined in (7)] to

iz ]

Recall that «,(E, Q) was defined as the exponential rate of growth of L (Q,)
subject to EQs[ﬁg(E)”] = O(P.(E)"). The quantity I, (E, Q) is more fundamen-
tal because it does not depend on the precise procedure for setting L, . By
Jensen’s inequality, Eq [(15 dP,/dQ,)"] = Eq [15 dP,/dQ.]” = P.(E)". Our
first lemma establishes the satisfying fact that »-efficiency is equivalent to
I(E,Q) = vI(E). That is, the exponential behavior of the rth moment
matches that of P.(E)".

(19) I(E,Q) e lim sup ¢ log

e—0

Eq,

LEMMA 1. (i) The inequality I(E,Q)/v < L(E,Q)/V holds for each 1 <
v<v<owo I(E,Q =I(E) and I(E,Q) is a concave function of v on [1, ).
(i) For any integer v > 2,

(20) 0<a,(EQ) =

——[vI(E) ~ L(E, Q)]

and, moreover, a,(E,Q) is a nondecreasing function of v. In particular,
I(E,Q) < vI(E) and Q is v-efficient if and only if I (E,Q) = vI(E). More-
over, v-efficiency implies v-efficiency for v < v.

SKETCH OF THE PROOF. For1 < 7 < v <wand Z > 0, by Jensen’s inequal-
ity we have E[Z”] > E[Z”]"/”. Applying this to (19) yields I(E,Q)/v <
I(E,Q)/v. Likewise, the Hélder inequality

E[Zw1+(1—a)u2] < E[ZVI]UE[ZVZ](I*U)’

for o € (0, 1), yields concavity in v. That I,(E, Q) = I(E) follows immediately
from definition (19).
. dPg Ji

With a little work one finds that
where the inner sum is over all integer m-tuples (j,,...,Jj,) such that
Ji=Jy= = =Jj, >1and X" ,j;, = v. The properties established in part (i)

m

J

B [A(E)] - T o) ¥

; EQg
Urseos Jm) i=1
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can be applied to show that the m = 1 term is exponentially dominant, and
setting L, so that O(L.,” ")Eq [(15(dP,/dQ,))"] = O(P(E)") yields (20). See
the proofs of Corollary 3 and Theorem 3 in Sadowsky (1993) for a complete
development of these arguments. O

REMARK 3. In definition (7) we set L, to stabilize the noncentral moment

EQ [P (E)”], rather than the central moment EQ [(P (E) - P(E)"]. Had we
used the latter definition, the factors in the expansion of Eq [(P (E) —
P (E))"] would be Eq [(1 £(dP./dQ,) — P.(E))’], which may have alternatlng
signs. When I,(E, Q) > L(E,Q/2 > - > I(E,Q)/v, the exponential domi-
nance of the m = 1 term is unchanged. [See Corollary 2 in Sadowsky (1993).]
When I(E,Q)/v = I,(E,Q) for each ¥ = 2, ..., v, however, there is the possi-
bility of cancellation due to negative odd order moments. In Sadowsky (1993),
subexponential asymptotics were applied to establish dominance of the m = 1
when the exponential rates are the same. The use of noncentral moments
here is simply a convenient way to avoid the cancellation issue, as in this
more general setting we do not have subexponential asymptotics to work
with.

REMARK 4. Let V_ denote the same variance estimator that complements
def
the sample mean (1); that is, V, - v,(E; Q,) = varg [15(dP,/d@Q,)] as L, — .
Suppose that we set L, to stabilize the vth moment of the sample variance
V., that is, so that Eq [V] ~ O(v,(E; @,)"). Following the arguments of
Lemma 1, we find that

def _., 1
b,(y;Q) = limsupelog(L,) =
v —

e—>0

1 [vI,(E,Q) - I,,(E,Q)] =0

See Section IV of Sadowsky (1993). Now, let us relate the asymptotic optimal-
ity b,(y;Q) =0 for variance estimation to our previous definition of
2 v-efficiency. The 2v-efficiency is equivalent to I(E,Q) = vI(E) for 1 < v <
2v, and, clearly, this is sufficient to achieve b,(y; Q) = 0. To show necessity,
assume I,(E,Q)/2 = I, (E,Q)/(2v). Then, since I,(E, Q) is concave in 7, we
must have I(E,Q) <[I, (E,Q)/(2v)]v for all ¥ > 1, in particular, I(E) =
I(E,Q <I,,(E,Q/2v). By Lemma 1, I, (E,Q) < 2vI(E). Thus, in light of
the inequality I(E) < I, (E,Q)/(2v), we have I, (E,Q) = 2vI(E), that is, Q
is 2v-efficient. In particular, as noted in the Introduction, 4-efficiency is
necessary (and sufficient) to minimize asymptotically the variance of the
sample variance.

Our next lemma provides basic upper and lower bounds for I (E, Q). For

any candidate @, define
(LX) \(dP, " e
exp — I3 Q.

def
(21) Ay,a()\; E,Q,) = ¢log EQS
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for each A € 27*. Also define the extended real-valued functions

KV()\; E. Q) d=eflim sup A, (M ELQ,)
e—0

and
def
A (ME,Q) = liminf A, (M E,Q,),
>0 ’

and the measures

def dP, }
(22) ¢ (dx; E,Q,) = lE(x)(E(x)) Q.(dx).

A set of measures {£,(+)} is said to be exponentially tight if for any o > 0 there
exists a compact set K such that limsup, _, , £ log(£.(K€)) < —a.
LEMMA 2. Let Q be any candidate sequence.
(1) We have
(23) I(E,Q) < inf A'(x;E,Q).
xex
(ii) If the measures{é, ()} are exponentially tight or if E has a dominating
point, then
(24) I(E,Q) > inf A(x; E,Q).
xekE

Proor. To prove (23), from (21) we get &log(Eq [(15(dP,/d@Q.))"]) =
A, (0 E,Q,) for each &> 0. Thus,
) dpP,\"

=A,(0;E,Q) > A**(0; E,Q) = — inf Af(x; E,Q).
xeZ

_IV(E’ Q)

%

liminfe log| Eq
e—0 ¢

To prove part (ii), apply the standard upper bound proof to
limsup & log( ¢, .(C; E,Q)).

e—0
See Theorem 4.5.3 in Dembo and Zeitouni (1993). The fact that the measures
{§V7€(~)} are not necessarily probability measures makes no difference. Part
(i1) follows by taking C = E. O

REMARK 5. Part (i) of Lemma 2 is standard large deviations (upper
bound) theory, but part (i) is not. Even if the measures {£, ,} do satisfy a
logarithmic lower bound for arbitrary open sets, since each &, , is concen-
trated on the not necessarily convex set E, the lower bound rate function
need not be convex. Thus, one should not expect that a general lower bound
will hold with the convex rate function A*(-; E, Q), but this is no matter here.
We only need a lower bound for the fixed set E.
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REMARK 6. If dP,/dQ, < M, for all x € E, where lim sup, _, , elog(M,) <
o, then & () <M V1,P( ) and exponential tightness of {¢, ,} follows
from the exponentlal tightness of P. With this observation, we may now prove
Proposition 2 from the previous section as a consequence of Lemma 2.

ProOOF OF PROPOSITION 2. Observe that
dP, . .
Q. = exp(—0*Sx + K,A,(6%)).

On the event {X, € E} we have Sg = ne(K, /n). Thus, since we assume that
the right inequality in (18) holds, we have the bound

2ol oo ] -

on the event {X, € E}. Also, applying this bound to definition (21) (in the next
section), we have
P (rv—1)
. ) . E

£

1
A, L (MEQ,) = ;log EPE

exp({A, X£>n)( 7

<A,(AN) —(v—1)I(E).
Letting n — « and applying the resulting bound to the Fenchel transform,
we obtain A*(x; E, Q) > A*(x) + (v —1DI(E) and, hence, inf, _ 7 A*(x; E, Q) >
vI(E). The proposition now follows by Lemma 2. O

Next, we will need to work with the following twisted measures. First,
define

Q, .(dx)

25 dP,
(20) d—th%><1)( [<A, ) — A, s()‘;E,Qa)])lE(x)(

B dQ
which can be viewed as an exponentially twisted version of the measure
&, (). Notice that @, , is a probability measure even though ¢, () generally
is not and that Q’\ and 1, P, are mutually absolutely contmuous Recall the
definition of the s1mple twisted distribution (6). Its conditional law is P"
1, P}/P)E) or, equivalently,

(r—1)
) P (dx),

(26) PNdx) < exp( [A, ) — AS(A;E)])IE(x)Pg(dx),
where
~ def
(27) A(ME)=¢ log( [exp((x\ X.0); E])
Clearly, A (/\ E) < A_()). Also, observe from (21) and (25) with v = 1 that
A E) = L5 E, Q ) and P’\ Q1 .. (So Q7 , does not actually depend

OnQ)
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LEMMA 3. Fix x € ¥ and let A, be an exposing hyperplane at x.

(i) The sequence P*: Ef{PgAX} satisfies the large deviations principle
[bounds (2) and (3)] with rate function I(y; x)dl=6f1(y) —I(x) = A,y — x).

In particular, we have the exponential convergence P} — §,.
(ii) Forx € E° N, we have P)<(E) — 1. For x € (E° N %) N (in partic-
ular, x € may be a point of continuity), we have &log(P}(E)) — 0. In

. ~ def -~ ; . .
either case, the sequence P*: = {P2+} satisfies the large deviations principle
with rate function
A def I ;x y or e E,
f(ysa) & 15, fory ©
0, otherwise.

In particular, we have the exponential convergence P—S"x - §,.

ProOOF. Part (i) is established as part of the proof Baldi’s theorem, which
holds under the hypothesis of Theorem 1. See Theorem 4.5.20 in Dembo and
Zeitouni (1993). We elaborate slightly. Define

A(A; x) def 1in}) e 1og(EPﬁAx[exp(</\, X8>/.9)]).

It is easily shown that A(A;x) = A(A + A1) — A(A,) for all A €27*. The
expression for I(-; x) follows. Moreover, the exposed points of I(-; x), are
precisely the exposed points of I(-) = A*(-), and for an exposed point y, if A,
is a exposing hyperplane for I(-), then A, — A, is a exposing hyperplane for
I(-; x). Thus, I(-; x) and I() share the same set of exposed points .7.

Since PXNB) =PMB N E)/PXNE), clearly & log(P*(B)) = &log(P*(B N
E)) — £log(PM(E)). For x € (E° N.F) N.Z, the large deviations lower bound
of part (i) yields & log(P}<(E)) — 0 and for x € E° N .7, the large deviations
upper bound yields P*<(E) — 1. Thus, the conclusions of part (ii) follow by
part ). O

LEMMA 4. Let A, denote an exposing hyperplane for I(-) at a point x € &.
(i) For x € (E° N.9) N.F we have the limit

(28) lim A, (A E) = A(A,).
e—=0
(i1) For x € E° N we have
1.
(29) lim —[A,(A;E) — A (A,)] =0
e—>0 &
and
(30) liminfA, (A E) = (A — A, x) + A(A,)
e—0

for all A € Z*.

Proor. By (6) and (27), we have
PNE) = Ep [exp([(}, X,) — A, ()] /2); E] = exp([A, (A E) — A, (V)] /).
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For A = A, (28) and (29) follow by Lemma 3. Since we assume that E is a
continuity set, it is evident that the sequence of substochastic distributions
{1, P.} satisfies the large deviations lower bound with rate function

I(x; B) I(x), forxekE°,
x; E) =
’ o, for x ¢ E°.

Thus, from the proof of Lemma 4.3.4 in Dembo and Zeitouni (1993) (the lower
bound part of Varadhan’s integral lemma), for any A € 2% we have

liminf A,(A; E) > sup {<A, x) — I(x; E)} > (A, x) — I(x),

£=0 xEF

where the last bound holds for x € E° N . Let A, be an exposing hyperplane
at x. By Theorem 1, I(x) = A*(x) = (A, x> — A(A,), which in the last
display yields (30). O

LEMMA 5. Forx € E° N %,

(31) liminf eD(P}|Q,) = liminf eD(1,PQ,),
e—0 e—0

x{eD(15PM1Q.) + (Au(A) = A (A B)) P(E))

Lemma 5 now follows directly from Lemma 4. O

where A, is an exposing hyperplane.

Proor. From (6), (26) and (8), we have
dP dP}+ dP)-
dP}+ dP}: dQ,

eD(P}Q,) = eEpn., log

&

~ ([Ag(m —&(Ax;E)])
= exp

Next, define
def
M(E)={ped: n~1zP},

where .# is the set of all Borel probability measures on 2. From definitions
(25) and (26) observe that P}, @, , €.#,(E). The next lemma provides a key
representation.

LEMMA 6. Let @, be a candidate sampling distribution. Then

A, (M E,Q,)

(32) = sup (E,[(A,X,)] — veD(ulP,) + (v - 1)eD(ulQ,))
neL(E)

and when A, (A E, Q,) < ©, the supremum is obtained at p = Q) , €4, (E).
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Proor. For any u €Z,(E), we have w(E) = 1 and p < @, and, hence, by
Jensen’s inequality,

A X))\ (aP, \" P
A, . (ME,Q,) = elog|Ep. exp( ) 70  E
s - ]
RS ST AT
= ¢log|E,|exp - in TQB
du du
= B.1¢h %] = w8 o g1 + - 1B, o -

= EM[<)\,X€>] — veD(ullP,) + (v—1)eD( ulQ,).

Thus,

A, (AE,Q) 2 sup {E,[(AX,)] — vD(ulP,) + (n - 1)D(ulQ,)}.
peM(E)

If the right-hand side above is + =, we are done. So, suppose A, ,(A; E, Q,) <

». Putting u = @, , and then using definition (25) to evaluate the dP,/d@, ,,
we get

sup {E,[(A,X,)] — veD(ulP,) + (v — 1)eD(ulQ,))

weMLE)
s de; .
= EQ,ﬁ\,g[<)\’X£>] + VEEQ;‘,S log W + (V - 1)“3‘EQ3"9 log dQ7
MX )\ (dP Y dP,
:EQAE ¢ log|exp . Q. aQr .

=Eq [A (L E,Q,)]
= AV,E(A; E’ Qé‘)

Combining the last two displays yields the result. O

PrOOF OF THEOREM 2. Fix x € E° N . Applying Lemma 6 to A (A; E, Q)

def -
= liminf A, (X E,Q,) and putting u = P € #,(E), we obtain

e—0
A, (X E,Q) > liminf Ep [(A, X,)]
-0 N

— vlimsupeD(PP,) + (v = 1) liminfeD(PQ, ).

e—0
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Plugging this into the Fenchel transform yields

Ni(xE,Q) S sup (A, x) — A, (L E, Q)

reZ*
< — inf liminf Ep,[(A, (X, —
inf_ Timinf E 5. [CA, ( x))]
+ vlimsup eD(PM||P,) — (v — 1) liminfeD(PMIQ,).
-0 £=0

Now consider each term in this bound separately By Lemma 3 we have the
exponential convergence P+ — §_. Thus, lim, _, Esa. KA, X, —x)] = 0for all
A €Z* and, hence, the ﬁrst term in the above bound Vanlshes Next, from
definition (26) we have

eD(PMP,) = Ep.[(),, X,) — A,(A,; E)].

By the exponential convergence P)‘x — 6, from Lemma 3 and the limit
A (A;E) - A(A,) from Lemma 4, we have

lim eD(BM|P,) = (A, x) — A(),) = A*(x) = I(x)

e—0

by Theorem 1. Thus, the previous bound becomes
Ni(x;E,Q) < vI(x) — (v— 1)liminfeD(PMQ,).
-0

Applying this to the bound (23) of Lemma 2, we have
I(E,Q) < inf Aj(y;E,Q) < Aj(x; E,Q)
yex

A

< vI(x) — (v— 1)liminfeD(PQ,).
e—0

By the lower semicontinuity of I(:), as x — y (with x € E° N.%), we have
I(x) - I(y) = I(E) and, hence,

I(E,Q) <vI(E) — (v— 1)limsup hmlnfeD(P’\ Q. ).
From Lemma 2, recall that v-efficiency is equivalent to I (E,Q) = vI(E).
Application of Lemma 5 completes the proof. O

Proor oF THEOREM 3. First we show that condition (c) is sufficient for the
bound (24) of Lemma 2 to hold. That E C;?(y, A*) is sufficient is stated in
Lemma 2. If (1 — »)A* = A, for some z € %, using (22) and (6) we get

§, .(dx) < exp [(V— DA, (X*) + A, ((1 = »)X*)] | P(dx).
The family P+ is exponentially tight by Lemma 2. By Remark 2 following

Lemma 2, it follows that the measures {£, ,(-)} are exponentially tight, and by
Lemma 2 this is a sufficient condition for the bound (24).
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Now assume conditions (a), (b) and (¢) hold. Plugging (6) into (21), one
easily evaluates

A, J(AE,PYY=A (A= (v—1DXSE) + (v — 1)A,(X).
Since A(-; E) < A,(*) and taking the limit superior as £ — 0, we have
A A+ (v= DX E,PY) < A(A) + (v — 1)A(X¥)
=AM + (v = DA, y) - I(E)},

where the last equality follows because A(A*) = (A, y) — A¥(y) = (A*,y) —
I(E) from (a). Applying the Fenchel transform to both sides of the above
inequality yields
Ne(x; E,PY) = sup {A+ (v = DA, 2) — A, (A + (v — 1)\ E,PV)}
rEL*

Sg;)*{()\,x> - AN} +(v—D{{X*,x—y>) +I(E)}

=I(x) + (v—D{{X*,x—y)+I(E)}.
Since we assume (c), we may apply the bound (24) to get
vI(E) > I,(E;Q) > inf A*(x; E,P")
x€E

2

= inf {I(x) + (v = DN, 2 = )} + I(E).

Finally, condition (b) [that E C E (v, A*)] reduces this to
vI(E) > I(E;Q) > (v—1)I(y) + I(E) = vI(E),

where the last equality follows because y is a point of continuity. Thus, we
have v-efficiency.

Next, we prove part (ii). Let A, be an exposing hyperplane for A*(-) at any
point x € E° N.%. Applying the minorization (30) of Lemma 4, we have

A (A + (A= 1)A*; E,PY) limiglf{KS(A;E) + (v — 1A, ()

%

(A=A, x) + A(A) + (v = 1)A(XY)
for all A € 27*. Applying this bound to the Fenchel transform yields

A (x; E,PY) < sup (A + (v — 1)A%, x)
reZ*

—[CA =A%) + A(A) + (v = DA(X)])
=I(x) + (v — 1){{X*, x) — A(X))

because {A,, x) — A(A,) = A*(x) = I(x). Applying this to the bound (23) of
Lemma 2, we have

I(E,Q) < inf A (y; E,PY) < A*(x; E,P")
yEZ

<I(x) + (v = D{{A*, x) = A(A*))
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for any x € E° N .. Let y € E be any point of continuity. Letting x — 7y, we
have

L(E,Q) < I(y) + (v -~ D{{X*,y) — A(X)} < vI(y) = vI(E).
By Lemma 1, Q is v-efficient if and only if equality holds in both inequalities
of the last display. Equality in the second implies I(y) = {A*,y) — A(A*).

Thus, condition (a) is necessary. Now return to the previous bound assuming
(a) holds. Using A(X*) = {A*,y) — I(y), we have

I(E,Q) <I(x) + (v— 1)[XA", x = y) + I(v)]
for all x € E° N .%. This last upper bound must not take on a value less than

vI(E) = vI(y). Thus, we must have E° N C E (v, \*). That is, condition
(b') is also necessary. O

PrOOF OF COROLLARY 1. The necessary condition of Theorem 2 provides a
point of continuity y such that conditions (a) and (b’) hold. As noted in
Section 2, E (y, A*)] Z(y,X*) as v 1x; hence, (b') for all v < implies
E° nFc#(y, X*). Since we assume E = E° N7 and #(vy, A*) is closed, we
also have E c.#(y, A*). Thus, we have conditions (b) and (c), in particular, y
is a dominating point. O

5. Discussion and conclusion. We have adopted the hypothesis of
Theorem 1 as the foundation of our analysis; however, these conditions might
be relaxed. In particular, the condition that A(A) <o for all A € 2Z* is
excessive. The key element in our analysis that must be preserved in any
generalization is the exponential convergence P+ — §_, which hinges on the
assumption that x is an exposed point. This convergence was established in
the proof of Theorem 4.5.20 in Dembo and Zeitouni (1993) under the condition
that A(8A,) < o for some & > 1. Thus, our proofs would go through if we take
Z to be the set of exposed points that also satisfy this extra condition.

Moreover, it appears unnecessary that P satisfy a full large deviations
principle. P is said to satisfy a weak large deviations principle if the lower
bound (2) holds for all open sets, the upper bound (3) holds for compacts. Our
analysis really requires that the upper bound (3) hold only for the fixed set E.
For example, when the Z, are not bounded, the proof of exponential tightness
fails and Mogulskii’s rate function is known to yield only a weak large
deviations theorem. However, other methods (i.e., Wald’s identity) establish
the upper bound (3) for the level crossing set E. In this example it may be
difficult to establish the exponential convergence P+ — §, for all exposed
points (satisfying the extra condition above). However, in Section 3 we
considered only exposed points of the type illustrated in Figure 1, and for
these we may directly establish the exponential convergence P}+ — §, via
Cramér’s theorem following the law of large numbers arguments used in the
proof of Proposition 1.
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