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THE WAITING TIME DISTRIBUTION FOR THE RANDOM
ORDER SERVICE M/M/1 QUEUE

By L. FrATTO
AT & T Bell Laboratories

The M /M /1 queue is considered in the case in which customers are
served in random order. A formula is obtained for the distribution of the
waiting time w in the stationary state. The formula is used to show that
P(w > t) ~ at™%/%exp(— Bt — yt1/3) as t — =, with the constants «a, S,
and vy expressed as functions of the traffic intensity p. The distribution of
w for the random order discipline is compared to that of the first in, first
out discipline.

1. Introduction. In this paper we obtain a formula for the waiting time
distribution of the single server queue subject to the random order service
(ROS) discipline. We assume that the customer arrivals form a Poisson
process with rate 1 and that the service time is exponential with mean
0 < p < 1. The mean p is referred to as the traffic intensity. The assumption
on p insures stability of the queue. The ROS discipline means that whenever
the server becomes free, the next customer is chosen at random from the
queue, each customer being equally likely to be chosen.

In much of queuing theory, the first come, first served (FIFO) discipline is
the prevalent one. But, for many switching systems, the ROS discipline is the
more realistic approximation. Comparing the two disciplines, it is clear that
the queue lengths are the same for both. Little’s law [1] then implies that the
expected waiting times, in the stationary state, are also the same for the two
disciplines. However, as is shown in this paper, the waiting time distributions
are very different.

The waiting time w is defined to be the amount of time spent by the
entering customer up to the beginning of service. We study the distribution of
this quantity in the stationary state. For n > 0 and ¢ > 0, let G,(¢) be the
probability that the waiting time exceeds ¢, given that the entering customer
finds the server occupied and n customers waiting. Vaulot [7] derived differ-
ential equations for the quantities G,(¢). Vaulot [7] and Riordan [5] use these
equations to evaluate the moments of w. Riordan also obtains approxima-
tions to the waiting time distribution by finite sums of exponential distribu-
tions. Starting with Vaulot’s system of differential equations, Kingman [3]
obtains a formula for the Laplace transform of w. Further references on the
above problem are found in Cohen’s book on queuing theory [3].
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In this paper, we carry the analysis a step further, and produce an explicit
formula for the distribution of w. In Section 5, we prove the following
theorem.

THEOREM 1.1. The distribution of w is given by

mexp((2¢(0) — 6)cot )
exp(mcot6) +1

P(w>zr)=2(,f1—1)/O

(1.1) ~1/2 -1
exp(—[1—2p Y2%2cos @+ p 1|t
X ( [ 2] )sinGdH,
[1-2p"Y2cos 6+ p 1]
where
1.2 0 t sin 6 0 0
) = _— < <.
D) o) —avctan| S 0<0(0) < m

The relation ¢ = ¢(6#) can be interpreted geometrically by the angles ¢
and 6 of Figure 5; ¢(0) increases continuously from 0 to 7 as 6 increases
from 0 to 7. This fact follows from (1.2), and is also evident from Figure 5.
For, given ¢ > 0, the integrand of (1.1) is a positive continuous function of 6,
tending to 0 as # tends to either O or .

By analyzing the behavior of the integrand near 0, we obtain in Section 6
the behavior of P(w > t) as t — .

THEOREM 1.2. Ast — o,

a exp(—pt — yt'/?)

(1.3) P(w>t) ~

£5/6 )
where
1+ p1/2 1+ p1/2
a = 22/3371/25/6,17/12 —exp s
(1-p'?) 1-p

B=(p "= 1)

m\2/3
r=alg) o

The above theorems can be used to compare the waiting time distributions,
in the stationary state, for the M /M /1 queue governed by the FIFO and
ROS disciplines.

In the former case it is known that ([3], page 195)

(1.4) P(w>t)=pexp(—(p "' — 1)t).

Denote P(w > ¢) for FIFO and ROS by g,(¢) and g,(¢), respectively.
Observe that g,(0) = g,(0), as these quantities denote the probabilities that
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the FIFO and ROS queues are not empty in the stationary state. For ¢ > 0,
we prove in Section 7 the following.

THEOREM 1.3. There exists a positive number 7( p) such that
go(t) <gyt) for0<t<r7(p),
82(t) > g4(t) fort>7(p).

Theorem 1.3 states that it is more likely for the customer to experience
both short and long waiting times under ROS than under FIFO, a result
which can be backed by intuition.

The proof of Theorem 1.1 uses, for a starting point, Kingman’s [4] formula
for the Laplace transform f(s) of w and employs methods of classical
complex analysis.

This paper proceeds as follows. Section 2 reviews Kingman’s derivation of
the formula for f(s), which represents f(s) as a complex integral. Originally,
f(s) is defined only for Re s > 0, and in Section 3 we show that Kingman’s
formula provides an analytic continuation of f(s) to the entire s-plane minus
theslitI = [—(p /2 + 1)2, —(p /2 — 1)2]. Furthermore, f extends continu-
ously to both the upper and lower sides of I, and we denote these, respec-
tively, by f, and f_. We can recover P(w > t) from f by the classical
inversion formula, which represents P(w > ¢) by an integral of f(s) over an
infinite vertical path in the s-plane. It is difficult to obtain insight into
P(w > t) directly from the inversion formula. To achieve this, in Section 4 we
deform the vertical path to the closed contour consisting of the slit I traversed
in both directions. This contour integral can be expressed as an integral
of [f,(x) — f_(x)] over I. In Section 5 we obtain a closed expression for
[f.(x) —f_(x)] which leads to Theorem 1.1. We find it surprising that
[f.(x) —f_(x)] can be expressed in closed form, since the corresponding
statement seems false for f(s). In Section 6, we derive from Theorem 1.1 the
asymptotics of Theorem 1.2. Finally in Section 7, we derive Theorem 1.3 from
Theorems 1.1 and 1.2.

To justify the contour deformation presented in Section 4, we need esti-
mates for f near the points % and —(p /2 + 1)2, the end points of I. The
derivation of these estimates is intricate and is deferred to the Appendix.

Throughout this paper, we encounter repeatedly the function z%. This
function is multivalued and must be specified. For z not on the negative real
axis (i.e., it is not the case that z < 0) and arbitrary w, we define

(1.5) z¥ = exp(w log 2)
with
(1.6) log z = log|z| + i arg z,

where log|z| is real and |arg z| < .

Thus log z and arg z will always denote principal values. On its domain of
definition, z% is analytic in both z and w. The restriction placed on z holds
in all ensuing uses of the function z*.
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From (1.5) and (1.6), we get the identities
(1.7) z" = exp(w logl|zl)exp(iw arg z) = |z|“exp(iw arg z)
and

(1.8) |z2¥| = exp(Re(w log z))

|Z|Rew

= exp(Rew -loglz| - Imw -arg z) = exp(—Imw - arg z)

which will be used later on.

2. The Laplace transform of w. For n > 0 and ¢ > 0, let G,(¢) be the
probability that the waiting time of the arriving customer exceeds ¢, given
that the customer finds the server occupied and n customers waiting. The
probability of the latter event is given, in the stationary state, by (1 — p)p™* L.
Hence

(2.1 P(w>t) =p(1l—p) X p"G,(2).
n=0
Let f(s) = E(e™*"), Re s > 0, be the Laplace transform of w. Then
(22) f(s) =(1—p)+p(1-p) X p"Gi(s), Res=0,
n=0
where
(2.3) Gi(s) = — [ e dG,(t), n=0andResz=0.
0
Vaulot [7] has shown that the random order service discipline implies
daG, n
(24) p = G,.,— (1L+p)G, +pG,.q, n>0and¢ >0,

dt n+1 "
where, for n = 0, (n/(n + D)G,_; = 0.
Multiplying by e ! and integrating over (0, «), (2.4) converts to
1= —nGf , + (1+p+ps)(n + 1)GF — p(n + G,
(2.5)
n>0and Res > 0,

where, for n = 0, nG}_, = 0.

Let G(s,z) =X:_,G*(s)z". Since |G¥(s)|<1 for n >0 and Res > 0,
G(s,z) converges for Re s > 0 and |z| < 1. Multiplying (2.5) by z" and sum-
ming over n > 0, (2.5) converts to

G
(1—2)_1=(l+p+ps—z)G—(p—[1+p+ps]z+22)z,

Res>0and|z| < 1.
Let

(2.6) 22— A +p+ps)z+p=1(z— us)z— v(s) with|v|<|ul
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Since vu = p, we obtain |v| < p¥/? < | ul, and in Section 3 we show that
inequality holds. Assume from here on that Re s > 0, |z| < p/% and z # v(s).
Equation (2.6) gives

nt+v—z 1
— = G+ .
dz  (z—-pm)(z-v) (z-1(z-pn)(z-7)
For fixed s, the differential equation (2.7) has a unique singularity at

z = v(s). However, G is analytic in |z| < p'/2, and this forces the solution
1

(z—w)(z-v)

v _ —n/(p—v) _ v/(u—v)
- ()

z— z—v
where, for simplicity, the path of integration is chosen to be [ zv), defined as
the half-open line segment from z to v which includes z and excludes v. (For
a rigorous justification of this step, we first integrate (2.7) over [ zal], where a
is interior to [zv], and then let a — v.) We have chosen the half-open line
segment [ zv) instead of the closed line segment [ zv], because the integrand
of (2.8) may have a singularity of ¢ = v(s) [Lemma 3.2 of Section 3 insures
that this singularity is integrable at ¢ = v(s)]. In accordance with the con-
cluding remarks of the Introduction, we must show that, for { € [zv], the
quantities (¢ — w)/(z — w), ({ — v)/(z — v) are not on the negative real axis.
Observe that {{: ({ — w)/(z — ) < 0} is the ray emanating from u which
has the same direction as [zu]. This ray lies outside the circle || = p/2.
Hence it does not meet [ zv], which lies inside the circle | /| = p/%2. We have
thus proved the result for ({ — w)/(z — w). For ({ — v)/(z — v), the result
follows from the fact that (¢ — v)/(z — v) > 0 for £ € [2zv).

If v(s) = p, then (2.6) implies s = 0. Thus v(s) # p for Re s > 0, so (2.8) is
valid for z = p. Let G(s) := G(s, p). From (2.2) and (2.8), we obtain the
following.

(2.7)

G(s,z) =

(2.8)

THEOREM 2.1. For Res > 0, f(s) is given by
(2.9) f(s) = (1 —=p) +p(1-p)G(s),

where

) = -

(2.10) ) .
X/(l—z)‘l(

de.

p— p

—u/(p—v) [— v v/(p—v)
(P_ V)

3. Analytic continuation of f(s). We use formulas (2.9) and (2.10) to
obtain the analytic continuation of f(s) beyond Re s > 0. We first discuss the
domain of analyticity of the functions u(s) and v(s). Let

I= [—(p* vz 4 1)2, —(p™ % - 1)2] and % = s-plane minus the slit I.
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We show in Theorem 3.1 that f(s) can be continued analytically into .%.
LEMMA 3.1. (1) u(s) and v(s) are analytic in %, and are given by

(), v(s) = 5{1 +ptps

eoyf[s+ [0 72— 11)(s + [p 7+ 117 ),

the plus sign chosen for w and the minus sign for v. The square root function
in (3.1) is that analytic branch in % which is positive for s > —[ p~1/2 — 1]
(i) z = u(s) and z = v(s) are, respectively, conformal maps from % onto
lz| > p¥?% and 0 < |z| < p¥/2.
(iii)) w(s) and v(s) extend continuously to both the upper and lower sides

of 1.

(3.1)

We refer to the extended values of u by u, and u_, and those of v by v,
and v_. Thus, if we denote the points of % contained, respectively, in the
upper and lower parts of the s-plane by s’ and s”, then for x € 1,

po(x) = lim p(s’),  p(x) = lim p(s")

with similar formulas for v, (x) and v_(x).

Lemma 3.1 expresses standard facts concerning the roots u(s), v(s) ob-
tained by solving Q(s,z) =22 — (1 + p + ps)z + p=0 for z in terms of s.
The lemma becomes more lucid when solving Q(s, z) = 0 for s in terms of z,
so that

1
(3.2) s(z)=—+——

The mapping properties of s(z) are well known (see, for instance, [6], page
196). For 0 < |z| < =, s(z) is analytic and maps both |z| > p¥/2 and 0 < |z| <
pY/? conformally onto .%Z. The upper and lower parts of the circle |z| = p/2
map in continuous fashion onto I, with end points plus or minus p!/2? going to
_(p—1/2 1 1)2

The inverse to s = s(z) consists of the conformal maps z = u(s) and
z = v(s), taking %, respectively, to |z] > p'/? and 0 < |z| < p/2. Also u, (x)
maps I to the upper part of |z| = p?/2 and u_(x) maps I to the lower part of
|z| = p'/2, the reverse holding for v, and v_. The maps u(s) and v(s) are
depicted in Figure 1.

The terms u, and v, satisfy the following identities, which are used in
Section 5:

(3:3)  wmi(x)=v(x), p(x)=r(x), p(x)=p(x)
The identities (3.3) are illustrated in Figure 1.

We require the following lemma, which is a simple consequence of
Lemma 3.1.
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Z = p(s)

L
— N \m:v—m
z=v(s
—(p~1241)2  —(p~12-1)2 -p1/i2 p1/2
H-(X) = v4(x)

FiG. 1. The maps z = u(s) and z = v(s).

LEmma 3.2. () If s €%, then

v 1
(3.4a) Re > ——.
n—v 2
Gi) Ifx eI’ =(—(p V2 + 1?2, —(p V%2 = 1)?), then
v v_ 1
(3.4b) Re———, Re—— > ——.
M=V M_—V_ 2

ProoF. (i) From u = p/v we get

14 V2

L=—v p—v
By Lemma 3.1, z = v(s) maps %# onto 0 < |z| < p/2. Hence &= v%(s)
maps &% onto 0 <|&|<p. But n=§&/(p— &) maps 0 <|£| < p onto
{n: Rem > — 3 and 7 # 0}, which proves Lemma 3.2().
(ii) This follows by taking limits in (i). O

9

We obtain the analytic continuation of f(s) from standard results concern-
ing the analyticity of integrals depending on a parameter. It proves advanta-
geous to rewrite (2.10) as (3.7). Parametrize [ pv] by

(3.5) (s, t) =v(s) +t(p—v(s)), (s,t)exx][0,1]
and let
(3.6) §(s,t)=w, (s,t) € x [0,1].
p— 1(s)
It terms of s and ¢, (2.10) becomes
(3.7) G(s) = ['F(s,t)dt, Res>0,
0
where

1
g/ ngr/mn (g ) e x(0,1].

(38) F(s,0) =~ 1
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In (3.7) we imposed the restriction Re s > 0 since, in Section 2, G(s) was
only defined for Re s > 0. However, in (3.8), F(s, t) is defined for (s, ) €% X
(0,1]. We use this fact to obtain the analytic continuation of G, and hence of
f, into %.

LEMmMA 3.3. The function F(s,t) is continuous in (s, t) on % X (0, 1], and
is analytic in s € %, for each fixed value of t.

The lemma follows from Lemma 3.1 and (3.5), (3.6), and (3.8).

We remark that (3.5) and (3.6) actually show that the first three factors in
(3.8) for F(s, t) are continuous in (s, ¢) on &% X [0, 1]. This fact is false for the
fourth factor, because log ¢ is not continuous at ¢ = 0. This slight strengthen-
ing of Lemma 3.3 is used in the proof of Theorem 3.1.

THEOREM 3.1. The function G(s) has an analytic continuation into %,
provided by the integral (3.7). Then f(s) has an analytic continuation into %,
provided by (2.9).

ProOF. For 0 < &< 1, let G(s)=[! F(s,t)dt. From Lemma 3.3, we
conclude that G.(s) is analytic in % (see [6], page 99). Hence, to prove
Theorem 3.1 it suffices to show

lim G,(s) = G(s) uniformly on compact subsets of %.
e—=0
Let C be any compact subset of .%, and let II(s, ¢) be the product of the first

three factors in (3.8). By the remark following the proof of Lemma 3.3, we
obtain

(3.9) ITi(s,¢)| < K(C) for (s,t) €% x [0,1]

for some constant K(C) > 0.
By Lemma 3.2, we get

(3.10) [¢7/(n=m)| = ¢ReC/(h=v) < 4=1/2 for (s,t) €Z X(0,1].

Hence
(3.11) |F(s,6)| < K(C)t™'/2, (s,¢) € Cx(0,1].
Since [; ¢ /2dt <=, we conclude from (8.11) that lim, ,G.(s) = G(s),

uniformly on C. O

The function G(s), analytic in %, can be extended continuously to both
sides of I°. Let

G.(2) = [[F.(x,t)dt, G.(x)=[F (x,0)dt, zxePl,
0 0

where F, (x,¢) and F_(x,t) are obtained from (3.8) by replacing, respec-
tively, (u(s), v(s)) by (u,(x), v.(x)) and (u_(x), v_(x)).
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THEOREM 3.2. G(s), hence f(s), can be extended continuously to both the
upper and lower sides of 1°; these extensions are given, respectively, by G_(x)

and G_(x).

The proof of Theorem 3.2 differs from that of Theorem 3.1 only in minor
details, and is omitted.
Letting s — x in (2.9), we obtain the relations

fi(x)=(1-p) +p(1-p)G (%),
f-(x)=(1-p)+p(1-p)G_(x), x el
We remark that (3.7) can be converted back to (2.10) via the variable

change provided by (3.5), (2.10) now being valid for s €.% [an exception must
be made at s =0, where (2.10) is indeterminate; here we define G(0) :=
lim, , , G(s)]. Equation (2.10) also serves as a formula for G, (x) and G_(x),
after replacing (u(s), v(s)), respectively, by (u, (x), v,(x)) and
(u_(x),v_(x)). The advantage of (2.10) over (3.7) is the symmetry of the
integrand in u and v, a fact that is exploited in Section 5.

(3.12)

4. Integral formula for P(w > #). We shall prove Theorem 4.2, which
gives an integral formula for P(w > #). We use the following estimates for
G(s), which are valid in the vicinity of the points « and —( p~!/2 + 1)%. These
estimates will be derived in the Appendix.

THEOREM 4.1. G(s) satisfies the estimates
1
(4.1) G(s)=0(ﬂ) ass — =,
s

1
-1/2 2
s+ (p /22 1)

In principle, P(w > t) can be recovered from f(s) by the following inver-
sion formula (see, e.g., [8], page 70).

(42) G(s)=0

log| ] ass — —(p_l/zil)z.

THEOREM 4.2. Let —(p /2 —1)2 <c¢ < 0. Then

(4.3) P(w>t) = — 271”, [ fls)e”

c—1i® S

S.

REMARKS. (i) To take advantage of Theorem 4.1, we replace f(s) in (4.3)
by f(s) — p = p(1 — p)G(s). This is permissible by the familiar fact that for
c<O0and¢t >0,

crire’
lim f —ds = 0.
Toole—iT S

(i) Let s = ¢ + 1y. For fixed ¢, the integrand in (4.3) is a function of y. In

the general theory, the integrand need not be absolutely integrable over
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—o <y < », and the integral of (4.3) must be interpreted as lim, . [%.
However, in our case we obtain from (4.1) the estimate

G(c + iy)elcrit
c+1y

=0(y?) asy— o,

guaranteeing that the integrand is absolutely integrable over —« < y < o,

(iii) In the general theory, the inversion formula may only hold at continu-
ity points of P(w > t). However, by (ii), the integrand in (4.3) is absolutely
integrable over —o < y < oo, and this guarantees that the right-hand side of
(4.3) is continuous for all # > 0. A standard continuity argument then shows
that (4.3) holds for all # > 0.

It is difficult to obtain information about P(w > t) directly from the
inversion formula. To do so, we convert (4.3) to a more useful integral
formula.

THEOREM 4.3. Fort > 0,

1 (o172 x)—f_(x
(4.4) P(w>t)=5— v 1)ZMe“d&c.
2wi ) (12412 x

REMARK. In (4.4) f (x) and f_(x) are only known to exist for x € I°. Thus
the integral of (4.4) is to be interpreted as lim, . f:((‘,j:iﬁ;iggii. However,
in Section 5 we shall obtain a formula for the integrand, which shows that it
extends to a continuous function on I. Hence the integral (4.4) exists as a

Riemann integral over L.

Proor. Let I' be the contour depicted in Figure 2. Thus I' consists of the
vertical line segment [ =[c — iR, c + iR], the semicircle C of radius R

FiG. 2. The contour T.
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centered at ¢ and to the left of [, the two circles C, and C, of radius ¢
centered, respectively, at —(p 172 + 1)2 and —(p /2 — 1)2, and the cross-
cuts I-IV joining these circles. As ¢ < 0, we conclude that for all ¢ > 0,
g(s) == ((f(s) — p)/s)e® is analytic on I' and its interior. Hence, by Cauchy’s
theorem,

(4.5) fl+fc+f01+fcz+fn+fm=0.

Observe that [; + [;y = 0, so these integrals do not appear in (4.5). How-
ever, [ and [;; do appear in (4.5) as g(x) assumes the distinct values
(f.(x) — p)/x)e* and ((f_(x) — p)/x)e*" along II and III.

From Theorem 4.1, we obtain

1
(4.6) [C=0(E) as R — =,
1
(4.7) /=O(slog—) ase—>0forj=1,2.
c, £

J

We now let ¢ > 0 and R — «in (4.5). We conclude from (4.6) and (4.7) that

fc+in(s)eSt ds + 7(p’1/271)2f+(x) _fi(x)extdx _

c—io s —(p~V/241)? x

(4.8) 0.

Equations (4.3) and (4.8) give Theorem 4.2. O

5. Proof of Theorem 1.1. We derive Theorem 1.1 from Theorem 4.2. To
do this, we first obtain an integral formula for [G,(x) — G_(x)] for x € I°,
which we then evaluate in closed form.

5.1. Integral formula for [G, (x) — G_(x)]. Let v=pl/2"? 0<|0l <7
and ({ — v)/(p — v) # ¢ where ¢ < 0. Geometrically, the latter means that
{ & r(v), where r(v) is the ray emanating from » which has the same
direction as [ pv]. The term r(v) is depicted in Figure 3, where v=v_, u..

Be

\t“

*/

Fic. 3. The contours y and y(e).
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For these values of v and ¢/, define

g _ V)VZ/(pVZ)

(5.1) K(v,£) = (p_ .

LEMMA 5.1. For given v, K(v,(!) is analytic in the {-plane minus r(v),
and

-1/2

é’_
p—v

(52) |K(v,{)] <

ar
exp(glcot GI).

PrROOF. The analyticity follows from (5.1). As v = p*/2e'’, we have

53 v? el? 1 i ‘o
N = N — = —— 4+ —CO N
( ) p— V2 e—zB _ ezG 2 2

Equations (1.8), (5.1), and (5.3) give

_ -1/2 to _
D
p—v p—v
{—v| V2 (7-r| t@l) 5
< exp| —Ico
p—v 2
THEOREM 5.1. Forx € I°,
G, (x) ~ G (x)
1 v, (x -
GH e [0 - )T R (e (x), OB (v, (%), £) dE

lp = v () Do

where [+(¥) denotes the integral over the vertical line segment [ u(x), v, (x)].

Proor. For x € I°, rewrite (2.10) as
1
(p - /.L+(x))(p - V+(x))

><fp”*(x)(1 —0) T E(pi (%), 0)K(v (%), £)d¢

G, (x) =
(5.5)

with a similar formula for G_(x), replacing the plus sign by the minus sign.

By (3.3), the expression for G_(x) is identical with the one for G (x),
except that the upper limit v, (x) appearing in fp”+(x) is to be replaced by
v_(x). Furthermore, since w,(x) and v, (x) are conjugate, we have

(p—=wm(x))(p—ri(x)) =|p— V+(x)|2-
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We conclude that

G.(x) -G (¥) = ——
(5.6) |p V+(x)|
5 /‘w(x)L(x’{)dg_/V(x)L(x’g)dg}’
where
(5.7) L(x,¢) = (1= &) "K(n(x),0)K(v (%), 0).

Let A Dbe the closed triangle with vertices p, p, (x), v, (x). See A depicted
in Figure 3.

The function L(x,¢) is analytic in A, except at the points u,(x) and
v, (x). Near the latter, we obtain from (5.2) the estimates

(5.8a) L(x,¢) = O(|¢ = pa(x)| %) as - p.(x),
(5.8b) L(x,8) =O(|¢ = v (2)| ) asi— v (x).

The estimates (5.8) imply that Cauchy’s theorem applies to vy, the perime-
ter of A. That is, [, L(x,?)d¢ = 0. For a formal justification of this formula,
we indent y near p, (x) and v, (x) with circular arcs of radius ¢, as indicated
in Figure 3. Let vy(g) be the resulting curve. By Cauchy’s theorem
Jyiey Lx, ) d{ = 0. Letting &£ — 0 and using (5.8), we get [, L(x,{)d¢= 0.
Rewrite the latter as

v_(x)

(59  ["Lx,0)di- [ L(x,{)d§=fv*((t)L(x,§)d{.
P v_(x

p
Theorem 5.1 follows from (5.6) and (5.9). O

We parametrize [v, p. ] by
(5.10) (=v .+ (p,— v, 0<t<l1.

Theorem 5.2 restates Theorem 5.1 in terms of parameter ¢.
For x € I°, let

(5.11) v,(x) =p"% 7 u,.(x)=p"%" 0<60<m.
Also, let
(5.12) ¢ = arg[ p,(x) — p], O<odp=<m.

The angle ¢ is depicted in Figure 4.
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Ky K

<

(@) 03 () 023

Fi1c. 4. The angles §,, Y5 and ¢.

THEOREM 5.2. For x € I°,
—iexp((¢ — m/2)cot )

| p = V+(x)|
1t_1/2_(l’/2)c0t9(1 _ t)—1/2+(i/2)cot9

G.(x) -G (x) =
(5.13)

dt.
0 1-v,=(p = vt

ProOF. For f€([v,u,], arg(({ — v,)/(p— v,)) and arg(({ — u,)/(p —
. ) are constant in ¢ and given respectively by

By v v,— M
(5.14) ¥, = arg———— Yy = arg————
p— v, p— Ky
To relate ; and i, to ¢, consider separately the cases 0 < ¢ < 7/2 and
7/2 < ¢ < 7 depicted in Figure 4(a) and 4(b). If ¢ < 7/2, then Figure 4(a)
shows that ¢, = —; > 0, and that ¢, is complementary to ¢. Hence

T
(5-15) Uy = _¢2=¢_§-

If ¢ = w/2, then Figure 4(b) shows that ); = —¢, > 0 and that ¢, is
complementary to m — ¢, leading again to (5.15).
Equations (1.7), (5.1), (5.3) and (5.15) give

—-1/2—-(i/2)cot 6

K(v.(x),0) = g:z—iz;
(5.16a) P ¥t
1 T
X exp{g(cot() - i)(qﬁ - E)}
_ x —1/2+(i/2)cot 6
K(p,(2).£) = g_“—i;
(5.16b) P B %

X exp{%(cot 6 + i)(d; - g)}
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Equations (5.4) and (5.16), together with |p — u*| =|p — v*|, give
G. (%) - G_(x)

el g

(5.17) [p = v, (2)]
v ll—v |—1/2—(i/2)cot6|§_ |—1/2+(i/2)cot0
x [ - - de.
Moy 1- g
From (5.10) we get
(5.18) [{— v l=lp,— vt [{—pl=lp,— v (1 —2¢).

Theorem 5.2 follows from (5.17), (5.18) and the variable change (5.10). O

5.2. [G,(x) — G_(x)] in closed form. Theorem 5.3 evaluates [G,— G _]
in closed form. We obtain it from Theorem 5.2 via a series of lemmas.

LEMMA 5.2. Let —1 <Rea <0 and z €%, = z-plane minus [1,»). Then
11 —¢) e

(5.19) fo ———di= (1 —z) e*?

w

sinm(1+ a)’

Proor. Let I (z) be the integral in (5.19). For fixed «, I (z) is analytic in
#,. The right-hand side of (5.19) is also analytic in %;. Hence it suffices to
prove Lemma 5.2 for 0 < z < 1, (5.19) following for all other z by analytic
continuation.

Rewrite I (z) as

5.20 ey = () L4
(5.20) “(Z)_fo(l—t)l—t(l—zt) £
Letting u = (1 — 2)(¢/(1 — t)), (5.20) converts to
— _ —(a+1) = u” — _ 7(a+1)+
(5.21) [(2)=Q1-2) fo T u du=(1-2) sna(1ta)

For the evaluation of [j(x®/(1 + w)) du, see [6], page 105. O

Now let
i M= vy
- — = — —cotf -
a g ~ et =TT o
Let 7 be the integral on the right-hand side of (5.13). We obtain from Lem-
ma 5.2,

—1/2+(i/2)cot 6

™ 1 1-
(5.22) T = ( -

sin((7/2) — (im/2)cot 6) 1 — v,

1—-v,
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But

i i exp(mcot6) +1
= cos| —cot 0| = .

a
(5.23) sin(E - ?cot 0 -
2exp(§cot 9)

From (5.22) and (5.23), we obtain the following.

LEMMA 5.3. The quantity J is given by

11—y

1-vw,

a
2 exp(Ecot 0) 1
(5.24) T = (

—1/2+(i/2)cot 6
exp(mecotf) +11— v, )

We simplify (5.24).
LEMMA 5.4. The quantities n, and v, satisfy the identity

1 1—py
5.25
( ) 1—v+(1

)—1/2+(i/2)cot0 1/2

= mexp((qb — 6)cot 6).

- v,

Proor. Let ¢y = arg(l — v, ). In Figure 5, ¢ is depicted as an angle with
vertex at v*.

We have
(5.26) 1—wv,=[1-v,.le", 1—p,l=1-wvle
so that
1-wy ~2iy
(5.27) T =e , | — 2| < .
+
T
B /¢
P pir2 1

A

Fic. 5. The angles ¢, ¢ and 6.
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Equation (5.27) gives

—-1/2+(i/2)cot 6

1-vw,

(5.28)

= exp(y cot O + ¥i).

Equations (5.26) and (5.28) give

1—p,
1-vw,

= ex cot 6).
1] p( ¢ )

1 —-1/2+(i/2)cot 6 1
(5.29)
1-vw,

From v,= p/u,, we obtain

wi—p|  lv,—pl
(5.30) |1—y+|=‘+ ‘ .

o p'/?

and

(5.31) y=arg(l—v,) = argg —

My

+

Equation (5.31) implies that ¢ is also an angle with vertex at u, (see Fig-
ure 5). Thus 6, , m — ¢ are the three internal angles of the triangle
with vertices 0, u,, p. As these sum to 7, we have

(5.32) b= — 6.
Lemma 5.4 follows from (5.29), (5.30) and (5.32). O

Combining Theorem 5.2 and Lemmas 5.3 and 5.4, we obtain:

THEOREM 5.3. For x € I°
—2mwip'/? exp((2¢ — 6)cot 0)
|p— v, (x)° exp(meotd) +1

(5.33) G,(x) —G_(x)=

ProOOF OF THEOREM 1.1. From Theorems 2.1, 4.3 and 5.3, we get

P(w>t)=—-p**(1-p)

(5.34) o (Lo exp((2¢ — O)cot )  exp(xt) I
,[p71/2+1]2 eXp(’?T cot 0) +1 |p — y+(x)|2x '

The map

(5.35) x=—[1-2p"2cos 0+ p '] =%|p—v+|2

takes [0, 7] to I. Theorem 1.1 follows from (5.34) by performing the variable
change (5.35). O

6. Proof of Theorem 1.2. We prove Theorem 1.2 giving the asymptotic
behavior of P(w > t) as t - ». The method used is known as Laplace’s
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method (see [2], page 249). The basic idea is to show that, for large ¢, the
behavior of the integral in (1.1) depends only on the behavior of the integrand
near 6 = 0. We first make the variable change 6 = 6(y), 0 <y < 4p~1/2,
where 6(y) is inverse to

(6.1) y=2p Y*(1—cosf), 0<6<m.
Then (1.1) converts to

(62) P(w> 1) =exp(~(p /2 = 1)'t) [*" "h(0(y))exp(~ty) dy.
where

(1—p)p /2 exp((2¢ — 6)cot 0)
[1-2p "2 cos 6+ p_1]2 exp(mcot 0) + 1

(6.3)  h(6) =

LEMMA 6.1. If 6 — 0, then

(6.4) h(0) ~cyexp(—m/0),
where
3/2 1/2 1/2
p??(1+ p'/?) 1+p
(6.5) co = (- p1/2)3 exp( T 77 |-
Proor. We have
0
cot0=5—§+-~, 0 small.
From Figure 5 we get
sin 6
¢ = arctan cos 6= p72 |’ O0<¢p<m,
which implies
0
dp~——-5 as6—0.
1- pl/2

Hence, as 6 — 0,

exp((2¢ — 6)cot 6)
exp(mcot ) + 1

¢
~ exp((2; - 1)6c0t6— a cot 6

(6.6) Ly g2

~ exp| —5 |exp(—7/0).
1 _pl/Z)

Lemma 6.1 follows from (6.3) and (6.6). O

LEMMA 6.2. Ify — 0, then
(6.7) h(6(y)) ~ coexp(—mp /4y 1/2).
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Proor. Expanding cos 6 into powers of 62 and inverting (6.1), we obtain

1+ ) a,y"

n=1

(6.8) 6= pl/tyl/? , for y small

for certain coefficients a4, a,, ... .
Lemma 6.2 follows from (6.4) and (6.8).
Let

(6.9)  k(y)=

h(6(y)) s - .
C—exp('np 174y 1/2), 0<y<d4p V2,
0

From (6.7) we get
(6.10) k(0) = limk(y) = 1.
y—0
Equations (6.2) and (6.9) give

P(w>t) =c, exp(—(p’l/2 - 1)2t)

(6.11) o

><f exp( — [mp~1/4y~1/2 4 ty])k(y) dy.
0

Let
(6.12) J(t) = faexp(—(clyfl/2 +ty))dy wherea,c; > 0.
0
To prove Theorem 1.2, we obtain the asymptotic behavior of J(¢) as ¢ — «
(it does not depend on a), and show that the asymptotic behavior of the
integral of (6.11) is unaffected when k(y) is replaced by 1.

LEmMMA 6.3. Fort > 0,

A7\ /2 c 1/3 c,\2/3

1 ~ 2T () 4576 exp| — (_1) 3|
(6.13) J(2) (3) (2) t exp(32 t

ProOF. The change of variable v = ¢2/3y converts (6.12) to
(6.14) J(t) =t72/3 /Oatwexp(—tl/3g(v)) dv,
where
(6.15) g(v)=cv ?+v, 0<v<c.
Differentiation gives
(6.16) g'(v)=—2cv 32 +1, g"(v)=32cv %2

Equation (6.16) shows that g(v) is a positive convex function for 0 < v < o,
and has an absolute minimum at v, = (¢,/2)*/?, where g'(v,) = 0. Assume
that v, < at?® and split the integral of (6.14) into the three parts:

2/3 -8 +68 2/3
(6.17) JE =
0 0 vo—d vt d
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where 0 < § < v, at*? — v,. We estimate these parts, beginning with /2"
The Taylor expansion for g(v) is

(6.18) g(v) =g(v,y) + g (200) (v —vy)* + O(lv — v*) asv - v,
From (6.16) we get

c.\2/3 3/¢ 2/3
(6.19) s =3(2) . a0 -(2)

For 0 < £ < (g"(v,)/2), choose 0 < 8(¢) <v,, so that (6.18) gives the in-
equalities

g0 + [E52 — e o0

8" (vy)
2

(6.20)

+ e (v—vo)2

for [v — vyl < 8(¢).

<8(0) <8(00) + |

The variable change z = t'/5(v — v,)) and (6.20) give the estimates
1/6 1/3) [8t"° _ 8"(vo) 2
t~ /% exp(—g(vy)t )f 1/6 p( [ 3 + e|2?| dz
vyt o
21 <
621) ="

1/6 "(v
<t /6 exp(—g(vo)tl/s)fm/ exp(—[g (%) - 3}22) dz.

—5t1/6 2

Next, we estimate [{°~° and flj”i/; . Since g(v) is decreasing over [0, v, — ],
(6.22) 0< f <vyexp(—g(v, — 8)¢'/?).

As g’(v) is positive and increasing over [v,, »), the variable change w = g(v)
gives

0 < fat2/3 < foo exp(—tl/sw) dw
- vo+ 8 - g(vy+8) g’(v)

$-1/8

< —
g'(vy +9)

(6.23)
exp(—g(vy + 8)t'/?).
Let

J(t)

S(t) = .
2 V2m/(g" (vy))t™°/% exp(—g(vy)t'/?)
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From (6.21), (6.22) and (6.23) and the inequalities

g(vy) <g(vo +9),

Msliminfs(t)sﬁms‘lps(t)
8"(vo) + 26 £ e
SV ooy 0.
8" (vy) — 2¢

Letting ¢ — 0 in (6.24), we conclude that lim, ,, S(¢) = 1; that is,

we obtain

(6.24)

(6.25)  J(t) ~

t 5/ exp(—g(v,)tY3) ast — .
g//(vo) ( ( 0) )

Equation (6.25) becomes (6.13) after inserting (6.19). O
PrROOF OF THEOREM 1.2. For given & > 0, choose 0 < a(e) < 47 1/2 so

that

(6.26) 1-e<k(y)<l+e forO<y<a(e).
Split the integral of (6.11) into

47~ 1/2 a(e) 4p~1/2
6.27 = + .
( ) '/0 ’[0 /(-l(é‘)

We estimate the integrals on the right-hand side of (6.27). Let M =
max,_, .4, 12 k(y). Then

Me—a(s)t
t

IA

4p~1/2 R
6.28 M e Vdy =
( ) fa(s) '/(;(8)

Let
~ Lo exp(—(c,y " + ty)k(y)) dy
(47/3)"*(e1/2)"*t /% exp(—3(c,/2)**t"/?)’

R(t)

where ¢, = mp~!/*. From (6.13), (6.26) and (6.28), we obtain
(6.29) 1-e<liminfR(t) < limsup R(¢) <1+ e.

t—oo» t—>

Letting ¢ — 0, we get
(6.30) limR(t) = 1.

t—

Theorem 1.2 follows from (6.5), (6.11) and (6.30). O
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7. Proof of Theorem 1.3. We prove Theorem 1.3, which compares the
distribution of the waiting time w of a stable M /M /1 queue, in the station-
ary state, for FIFO and ROS. For these disciplines, denote w, respectively, by
w, and w, and let

gi(t)y=P(w;>t) fort>0,i=1,2.
LEMMA 7.1. At t =0, we have
85(0) <g1(0).
ProOOF. The variable change
x=1-2p Y2cos 0+ p!
converts (1.1) to
d
(7.1) gy(t) = [H(x)e*'dx, ¢=0,
where
c=(p2-1)7", d=(p2+1)

and H(x) is continuous on [c, d], positive on (¢, d), and 0 at ¢ and d. From
(7.1), we conclude that g,(¢) is infinitely differentiable for ¢ > 0. From (1.4)
and (7.1) we obtain

(7.2a) 81(0) = = (1 - p),
(7.2b) g4(0) = —fcdxH(x) dx.

Let E; = E(w,), i = 1,2. From (1.4) and (7.1),
2

(7.32) B, = [ gi(t)dt = -

dx.

(7.3b) E, =f:g2(t)dt= /cdH(x)[/:oe—xtdt] dx =de(x)

¢ x

The expected length of the queue is the same for FIFO and ROS. Hence, by
Little’s law [1],

(7.4) E, —E,.
Equations (7.3) and (7.4) give

aH(x) p’
(7.5) [ . dx—l_p.

The probability that the queue is empty in the stationary state is g,(0),
which equals p. Hence we obtain from (7.1)

(7.6) [H(x) dx = £,(0) = p.
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Equations (7.5), (7.6) and the Schwarz inequality yield

(17 p*= [fdxl/le/zﬂ(x) dx 2< fdxH(x) dx} [de(xx) dx}
p?
= [fcdxH(x) dx} [1 — Pl
so that
(7.8) ['xH(x) dx> 1 p.

Lemma 7.1 follows from (7.2) and (7.8). O
ProOF OF THEOREM 7.1. Let r(¢) = g,(¢)/g,(¢). From (4.1) and (7.1),
1 .4
(7.9) r(t) = — [(H(x)exp(—(x — p~* + 1)) dx.
Pc
Differentiating, we get
1 1 d -1 2 -1
(710) r"(t) = — [“(x = p~ " + 1) H(x) exp(—(x — p~* + 1)¢) dt.
pP-e
Equation (7.10) shows that r”(¢) > 0 for ¢ > 0. Hence r(¢) is a convex
positive function for ¢ > 0. We have g,(0) = g,(0) = p, so we conclude from
Lemma 7.1 that g,(¢) < g,(#) or r(¢) < 1 for small ¢ > 0. On the other hand,
we conclude from (1.3) and (1.4) that r(¢) > 1 for large ¢ > 0. Theorem 1.3

then follows from the convexity of r(#) and the intermediate value property of
continuous functions. O

APPENDIX

We prove Theorem 4.1, stated in Section 4. We treat separately the cases
s—>xand s > —(p /% + 1)%

THEOREM 4.1a. For s — » we have

(A.1) G(s) =0(%|).

ProoF. From (3.1) we obtain, for s — o,

(A.2a) u(s)=1+p+ps+0

i)
sl )’

(A.2b) v(s) =0

sl
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We estimate the factors in (3.8) for F(s, ¢). From (3.5), (3.6) and (A.2), we
obtain

lim ¢(s,t) = pt, lim £(s,¢) PO/ RO _
(A.3) lim £(s,¢) = pt,  limé(s, )

uniformly for 0 < ¢ < 1.
Also, by Lemma 3.2,
(A.4) g7/ (rmn)] = ¢ReC/(u=v) < ¢~ /2 for (s,t) €Z X(0,1].
From (A.2)-(A.4) and (3.8), we get

-1/2

sl

(A5)  |F(s,t)|= O( ) as s — o, uniformly for 0 < ¢ < 1.
Equation (A.5) gives
1 1
G(s)=]F(s,t)dt=o(—) as s — . O
0 |s

THEOREM 4.1b. Fors » —(p Y2 + 1)?, we have

(A.6) G(s) =0

1
1 .
0g|s n (p71/2 + 1)2|]

Theorem 4.1b will be derived from the following estimate for F(s, ¢).

THEOREM A.1. For (s,t) € # X [0, 1] and s sufficientlycloseto —(p~1/% +
1)2,
12 g7
5
p1/2(1 _ p1/2)
To prove (A.7), we rewrite (3.8) as
1 1 1(t)””“”

(A7) |F(s,t)| <

A.8 F(s,t) = — |-
(48) (s,9) m—pl=—ygél€
and estimate each factor in (A.8). Only the last factor proves difficult, and we
establish some preliminary lemmas which give an upper bound for it.

Divide % into four quarters by means of the real axis and the line
Res = —(p ! + 1), which is the perpendicular bisector of the slit I. We label
these quarters in the counterclockwise manner by I-IV, with I labelling the

northeast quarter.

LEMMA A.1.

(1) Im >0 ifsellVlV,
n—=v

(ii) Im <0 ifselUlll

m—v
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ProoF. (i) = p/v gives v/(u — v) = v2/(p — v?), which we rewrite as

14

(A9) =mnofoz,

m—v
where z = v(s), ¢ =22, n=£¢/(p — &). Respectively, z maps II, IV to the
portions of |z| < p'/? contained in the third and first quadrant of the z-plane.
The two portions are mapped by £ to the upper half of the disk |£| < p and 5
maps the latter to the upper half of the half-plane Ren > — 3. We conclude
from (A.9) that Im(v/(pu — v)) = 0if s € IT U IV.

The proof of (ii) proceeds in a similar manner. O

LEMMA A.2. For s €% and sufficiently close to —(p~1/% + 1)?, we have

n—v
(i) Im >0 ifselUlll,
r=p
n—v
(ii) Im <0 ifsellUIV.
m—p

Proor. (i) From u = p/v, we get

w—v p— v W% —pp+p—v
(A.10) = = 3
p—p p(l-v) pll — vl

2

Equating imaginary parts, we get

m—vo (|V|2-|—p)1mv—1m1/2

Im

w=—p pll — v?
(A.11)
(Ivl2 +p—2Re v)Im v
- pll — v|?

Rewrite (A.11) as

PP ey T Y
' K=p pll — v|? '

Let s€1 and s close to —(p /2 — 1)2. Then Im »(s) < 0, and »(s) is
close to p/2. As |1 — p¥/2> = (1 — p) = 2(p — p'/?) < 0, we obtain |1 — »|* —
(1 — p) <0, and conclude from (A.12) that Im((u — »)/(u — p)) = 0.

Let s € III and s close to —(p 172 + 1)2. Then Im »(s) > 0 and v(s) is
closeto —p/2. As 1 + pV2> = (1 — p) = 2(p + p'/2) > 0, we obtain [1 — »|*
— (1 — p) > 0, and conclude from (A.12) that Im((x — v)/(u — p)) = 0, thus
proving ().

The proof of (ii) proceeds in a similar manner. O
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LEMMA A3. If s €%, then
-V
Re -
m=p

> 0.

Proor. Equating real parts in (A.10), we get

n—v 1
(A.13) Re = .
p=p  pll—vl

Since Re v2 < |v|?, (A.13) gives

[p—Rer—(p—|V|2)Rev].

m— v 1 9
A.14 Re > p—|vI")(1 — Rev).
By Lemma 3.1, |v| < p'/2 for s €%, hence Lemma A.3 follows from A.14).

O
We now give the following proof.

ProoF oF THEOREM A.1. We upper bound the factors in (A.8).
Use

[Z(s,t)[ < p™? <| u(s)l
to obtain the bounds

AL 1 1 1 1
. < R < .
( ) w—p p1/2_p 1_§ 1_p1/2
To upper bound (¢/&)"/(*~*) use
(t )V/(/U.V) ¢ Re(v/(pn—v)) v ¢
- == exp(—Im arg(—))
-V
A1 £ £ W ¢
¢ Re(v(p—v)) v
=|- exp(Im arg §)
& m— v
and rewrite (3.6) as
n—v
(A.17) E=t+(1-1%) .
w—p
By Lemmas A.1 and A.2, we get
v v —v
Im Im¢=(1~-¢)Im Im <0
(A.18) m=v N

for s sufficiently close to —( p~'/% + 1)2.
Since (Im £)(arg ¢) > 0, we obtain from (A.18),

(A.19) Im arg £ <0 for s sufficiently close to —(p~ /2 £ 1)2.

n—v
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By Lemma (A.3) and (A.17), we get
(A.20) €l > Reé>t
so that (A.16), (A.19), (A.20) and Lemma 3.2 give

-1/2
t

<|—

¢ v/(pu—v)
) for s sufficiently close to —(p /2 + 1)%

A21 -
s |

Theorem A.1 then follows from (A.8), (A.15) and (A.21). O

ProOF oOF THEOREM 4.1b. Let z=(v— w)/(p— n). By Lemma A.3,
Re z > 0, and from (3.1),

9 (1/2 )
(a2 z=oflss (2517 asen (p1)f
Let
A(z) = flt’l/th +(1-t)z| 'V ar.
0

From Theorem A.1 and (3.7),

A(z)
G(s)] < 1/2 1/2)2
(A.23) p/2(1 = p'/?)
for s sufficiently close to —( p~'/% £ 1)2.
We upper bound A(z). We have

(A.24) lt +z| > Re(t +2z) =t + Rez>t¢.
Hence

(A25) |t+(1—-t)z|= > [t + z[(1 - |z).

(¢ +z)(1 - %)

Also

(A.26) lt+2z2=¢2+ 21> +2tRez > t2 + 2|~

For |z| < 1, (A.25) and (A.26) give

(A.27) lt+ (1-t)z] < (e +12P) @ - la) VR

Hence

(A.28) A(z) = (=12 [T 17222 +1217) "
0

The variable change ¢ = |z|r converts (A.28) to
dr

r1/2(1 + rz)

1/4

(A.29) A(z) < (1—z]) 77 jol/‘z'
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Let I(z) be the integral appearing in (A.29). As

P21+ )~ r asr oo

we obtain

1
I(z) ~log— asz—0

|z ]
and we conclude from (A.29) that
1
(A.30) A(z) = O(logﬁ) as z - 0.
z

Theorem 4.1b follows from (A.22), (A.23) and (A.30). O
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