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BOUNDS ON MEASURES SATISFYING MOMENT CONDITIONS

BY JEAN B. LASSERRE

LAAS-CNRS

Given a semialgebraic set S ⊂ Rn, we provide a numerical approxima-
tion procedure that provides upper and lower bounds on µ(S), for measures
µ that satisfy some given moment conditions. The bounds are obtained as
solutions of positive semidefinite programs that can be solved via standard
software packages.

1. Introduction. Given a set � of measures µ on the Borel sets of Rn,
that satisfy some given moment conditions

∫
xα dµ = γα , α ∈ �, and given a

Borel set S, we investigate the problem P → supµ∈�µ(S) of computing (or
approximating) Tchebycheff-type upper (and lower) bounds on µ(S).

For basic theoretical results on Tchebycheff-type bounds, the interested reader
is referred to the pioneering work of Isii [7], and later, among others, Anastas-
siou [1], Johnson and Taaffe [10], Bertsimas and Sethuraman [3], Bertsimas and
Popescu [2], Smith [15], Whitt [16], in particular, for examples of important ap-
plications, notably in queuing, probability and finance.

Some problems of this type have elegant, and sometimes exact, solutions via
the use of geometric probability techniques, provided the number of moment
conditions is small, say two or three. For a nice account of such results, the
interested reader is referred to [1]. However, as soon as the number of moment
conditions is larger than, say three, one may not invoke these techniques any more
since they involve the description of the convex hull of a “moment curve.”

In a more recent work, Bertsimas and Sethuraman [3] (based on Bertsimas and
Popescu [2]) have provided nice explicit solutions for the case where S is convex,
� includes all first-order moment conditions, and µ is supported on (Rn)+, and
the case where � includes all first- and second-order moment conditions and µ

is supported on Rn. In the latter case, solving P reduces to solving a convex
optimization problem in Rn, where one minimizes the “weighted distance” of the
point γ1 (with coordinates the first moments of γ ) to the set S, the “weighted
distance” being expressed via the matrix of second-order moments of γ . This
upper bound strictly improves the well-known Chebyshev bound in the scalar
case, which shows the potential of the approach. The methodology also applies if
S is the union of a finite number of disjoint convex sets. They use semidefinite
programming techniques applied to the dual problem D → inf{∑α∈� pαγα |
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p(x) ≥ 1S(x)}, which under an interior point condition, has same value as the
primal P. On the negative side, they also show that, in general, solving D to obtain
a tight upper bound is a NP-hard optimization problem that reduces to a separation
problem of Grötschel, Lovász and Schrijver [6].

However, bounds obtained under few moment conditions are poor and not
very informative (see for instance the discussion in Johnson and Taaffe [10] for
Tchebycheff systems on the line). Therefore, there is a need for efficient practical
computation of upper bounds (even not tight) in case of a larger number of moment
conditions.

In this paper, we use the fact that in typical applications, the set S is a
semialgebraic set (like a rectangle, an intersection of ellipsoids, . . .) which permits
us to derive an appropriate approximation procedure. Therefore, we restrict to the
case of an arbitrary semialgebraic set S (neither necessarily convex, nor connected)
and an arbitrary (finite) number of moment conditions. In contrast to the approach
in [3], we directly consider the primal problem P instead of the dual D. We
decompose µ into the sum ϕ + ψ of a measure ψ and a measure ϕ with support
contained in S, and P becomes the problem of maximizing ϕ(Rn), the total mass
of ϕ under the moment constraints. This permits immediately obtaining a family
{Qr} of relaxations of P, each Qr being a convex linear positive semidefinite
(psd) program with as variables, the unknown moments up to 2r of ϕ and ψ .
Each Qr can be solved by standard software packages like the MATLAB LMI
toolbox. The resulting sequence {supQr} provides better and better upper bounds
on supµ∈�µ(S). Under some additional assumption on S (but with no convexity
assumption) satisfied in most cases of interest, the sequence {supQr} converges to
a tight upper bound. In fact, as shown on a few examples, a tight upper bound may
be obtained at the first relaxation, even for nonconvex and nonconnected sets S.
If in addition, one wishes to restrict µ to have its support in some semialgebraic
Borel set K , one may easily add related necessary conditions stated in terms of
linear matrix inequalities (LMI).

In two special cases of importance, a tight upper bound is obtained directly at a
single LMI relaxation: The first is when one considers the real line R and S is an
interval [a, b] (here, we cannot invoke the theory of Chebyshev systems because of
the indicator function 1S). A tight upper bound is achieved even if γ is not in the
interior of the moment space. The second is when γ contains only first and second
moments (not necessarily all of them) and S is defined by linear and/or quadratic
concave polynomials. The first LMI relaxation provides a tight upper bound as in
the case of the algorithm of [3].

Interestingly enough, this methodology permits one to get some insight on the
impact of the moment conditions on upper bounds on µ(S) and on the sensitiv-
ity of the bound with respect to a change in the definition of the set S. When
solvable, each maxQr not only provides an upper bound on supµ∈�µ(S) but
also provides an upper bound on supµ∈�µ(S′) for sets S′ which can be much
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larger or much smaller than S, obtained by relaxing or enforcing some condi-
tions gk(x) ≥ 0 in the definition of S. For instance, with n = 1, S = [a, b] and
two moment conditions {1, γ1, γ2}, with γ1 > b (resp. γ1 < a), the tight upper
bound supµ∈�µ(S) is the same for sets S′ := [−∞, b] or S′ := [b − ε, b] (resp.
S′ := [a,∞) or S′ := [a, a + ε]). Only under more than four moment conditions,
a tight upper bound will be more discriminating. This is because a quadratic non-
negative univariate polynomial minimized outside [a, b] necessarily attains its
minimum on [a, b] at either a or b only, and a cubic univariate polynomial cannot
be nonnegative.

The same remark is valid for arbitrary n, and only first- and second-order
moment conditions.

For clarity of exposition, all of Section 5 is devoted to the proofs of the main
theorems.

2. Notation and definitions. For any two real-valued symmetric matrices
A,B , the notation 〈A,B〉 stands for the usual scalar product trace(AB), whereas
the notation A � B (resp. A � B) stands for A − B positive semidefinite (resp.
positive definite). For a vector y, the notation y′ stands for the transpose vector
of y.

Let B be the usual Borel σ -field of Rn and let M be the set of finite signed
Borel measures on B , with M+ its positive cone. Let � be a finite subset of Nn

and let {γα}α∈� be a given family of scalars (with γ0 = 1). Let � := {µ ∈M+ |∫
xα dµ= γα, α ∈ �}; that is, � is the set of probability measures (in short, p.m.)

on B that satify the moment conditions
∫
xα dµ= γα for all α ∈ �.

We want to approximate

sup
µ∈�

µ(B) and inf
µ∈�µ(B)(2.1)

for a given semialgebraic compact set S ∈B , defined by polynomial inequalities;
that is,

S := {x ∈Rn | gi(x)≥ 0, i = 1, . . . ,m},(2.2)

where gi(x) : Rn→R is a polynomial for all i = 1, . . . ,m. Let

v(x)= 1, x1, x2, . . . , xn, x
2
1 , . . . , x

2r
n ,(2.3)

be a basis [of dimension denoted by s(2r)] for the vector space A2r of real-valued
polynomials p(x) : Rn→R of degree at most 2r , and write

x �→ p(x) :=∑
α

pαx
α = 〈p,v(x)〉,

where p = {pα} ∈Rs(2r) is the coefficient vector of p(x) in the basis (2.3).
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Moment matrix. Given an s(2r)-sequence {yα}, let Mr(y) be the moment-
like matrix of dimension s(r), with rows and columns labelled by (2.3). For
instance, for illustration purposes, and for clarity of exposition, consider the two-
dimensional case. The moment matrix Mr(y) is the block matrix {Mi,j (y)}0≤i,j≤r
defined by

Mi,j (y)=




yi+j,0 yi+j−1,1 · · · yi,j
yi+j−1,1 yi+j−2,2 · · · yi−1,j+1
· · · · · · · · · · · ·
yj,i yi+j−1,1 · · · y0,i+j


 .(2.4)

To fix ideas, when n= 2 and r = 2, one obtains

M2(y)=




y0 | y1,0 y0,1 | y2,0 y1,1 y0,2
− − − − − − −

y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2
y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2
y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3
y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4



.

If y is the sequence of moments of some measure µy , Mr(y) is called a moment
matrix, and one may define a bilinear form 〈., 〉y :Ar ×Ar →R by

〈q(x),p(x)〉y = 〈q,Mr(y)p〉 =
∫

q(x)p(x)µy(dx).(2.5)

This bilinear form also defines a positive semidefinite form on Ar since

〈q(x), q(x)〉y =
∫

q(x)2µy(dx)≥ 0.(2.6)

It is well known that Mi(y) � 0 is a necessary condition for y to be a truncated
moment sequence.

Localizing matrix. Given a polynomial θ(x) : Rn → R with coefficient vec-
tor θ , introduce the matrix Mr(θy) obtained from Mr(y) as follows. Let α(i, j) be
the index of yα =Mr(i, j). Then,

Mr(θy)(i, j)=
∑
α

θαyα(i,j )+α.

For instance, with x �→ θ(x) := a − x2
1 − x2

2 ,

M1(θy)=

 a− y20− y02 ay10− y30− y12 ay01− y21− y03
ay10− y30− y12 ay20− y40− y22 ay11− y31− y13
ay01− y21− y03 ay11− y31− y13 ay02− y22− y04


 .
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In Curto and Fialkow [5],Mr(θy) is called a localizing matrix. Again, if y is the
sequence of moments of a measure µy , then for every polynomial q(x) ∈Ar , with
coefficient vector q ,

〈q,Mr(θy)q〉 =
∫

θ(x)q(x)2µy(dx),(2.7)

so that if µy is concentrated on the set {θ(x)≥ 0}, one must have Mr(θy)� 0.
Before proceding further, we make the following remark.

REMARK 2.1. Introduce the following (linear) optimization problem

P �→



sup
µ≥0

µ(S),

∫
xα dµ= γα ∀α ∈ �,

(2.8)

and its dual

D �→




inf
λ

∑
α∈�

λαγα,

∑
α∈�

λαx
α ≥ 1S(x) ∀x ∈Rn

(2.9)

and we recall that if γα is an interior point of the moment space{(
µ(S),

∫
xα dµ,α ∈ �

) ∣∣∣µ ∈M+
}
,

then supP= inf D and in fact, in our case, since the primal problem is bounded, we
also have supP=min D (see, e.g., [7] and the duality theorem in [15], page 812).
Observe that this duality result does not depend on the structure of S. It happens
as soon as P has an admissible solution, no matter what S is. In particular, S does
not need to be convex.

Hence, an optimal solution of D is a nonnegative polynomial p∗(x) of degree
maxα∈�

∑n
i=1 αi , with p∗(x) ≥ 1 on S. If the primal problem P is solvable,

then by complementarity slackness, at an optimal solution µ∗, we must have
µ∗(p∗(x)= 1S(x))= 1.

Hence, by weak duality, solving D provides an upper bound on µ(S) and a tight
bound if strong duality holds. However, as noticed in [3], solving D is equivalent
(under certain conditions) to solving a separation problem (see Grötschel, Lovász
and Schrijver [6]), which, except in a few (but interesting) special cases, is a NP-
hard problem. Observe that in case of a duality gap between P and D, and if a
sequence of values of relaxations of P converges to supP, the bounds obtained
from the relaxations will become strictly better than any feasible solution of D.
We provide below such a sequence of LMI relaxations, and in general, a tight
upper bound is obtained at a particular relaxation.
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3. Upper bounds on µ(S). In this section we present a numerical procedure
to approximate a tight upper bound on µ(S) where S is the semialgebraic set
defined in (2.2).

Let {γα}, α ∈ � be a given finite sequence of moments, that is, there is a
measure µ on B such that∫

xα dµ(x)= γα ∀α ∈ �.

For convenience, it is assumed that γ0 = 1; that is, � is a subset of probability
measures. We first state the following result.

PROPOSITION 3.1. If γ is a (finite) vector of moments then for every p.m.
µ ∈�, there is a p.m. ν ∈� with all its moments finite, that is,∫

xα dν(x)= γα ∀α ∈ � and
∣∣∣∣
∫

xα dν(x)

∣∣∣∣<∞ ∀α,
and with ν(S)=µ(S).

PROOF. Let µ ∈� be fixed arbitrary. As {1S(x), {xα}α∈�} is a finite family of
real-valued measurable functions, each of them integrable with respect to µ, there
exists a p.m. ν with finite support and such that∫

1S dν =
∫

1S dµ and
∫

xα dν =
∫

xα dµ= γα ∀α ∈ �;
that is, ν ∈� and ν(S)=µ(S) (see, e.g., Theorem 2.1.1 in [1]). Moreover, as ν is
finitely supported, all its moments are finite. �

If odd (resp. even), let 2dk−1 (resp. 2dk) be the degree of the polynomial gk(x)
involved in the definition of the set S, and write

Mr(y)=
∑
|α|≤2r

yαBα, Mr−dk(gky)=
∑
|α|≤2r

yαC
k
α,(3.1)

for appropriate symmetric matrices {Bα,C
k
α}. For r ≥ maxk dk , consider the

following psd program:

Qr →




supy0,

Mr(y)� 0,
Mr(z)� 0,
Mr−dk(gky)� 0, k = 1, . . . ,m,
yα + zα = γα ∀α ∈ �,

(3.2)

where the moment-like matrices Mr(y),Mr(z) and the localizing matrices
Mr−dk(gky) have been defined in the previous section. The interpretation of Qr

is as follows. The constraints of Qr state:
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1. Necessary conditions for the variables {yα, zα} to be moments of some
measures µ and ν, respectively, with µ having its support contained in S;

2. That
∫
xα(d(µ + ν)) = γα for all α ∈ � (in particular, as 1 = γ0, µ + ν is

a probability measure).

The dual of Qr is the psd program

Q∗r →




inf
X,Z,{Wk}�0,λ

∑
α∈�

λαγα,

〈X,Bα〉 − λα1�(α)+
m∑

k=1

〈Wk,C
k
α〉 =

{−1, if α = 0,
0, otherwise,

〈Z,Bα〉 − λα1�(α)= 0.

(3.3)

Denote by supQr and inf Q∗r the optimal values of Qr and Q∗r , respectively (and
maxQr and min Qr if the optimal value is attained).

The interpretation of the dual psd program Q∗r is as follows. Let (X,Z,W,λ)

be a feasible solution of Q∗r , and write the first constraint as

1α=0+ 〈X,Bα〉 +
m∑

k=1

〈Wk,C
k
α〉 = λα1�(α) ∀α.(3.4)

Using spectral decomposition, write X = ∑
i qiq

′
i and Wk = ∑

l vklv
′
kl , k =

1, . . . ,m. Then, from (3.4), the polynomial x �→ p(x)=∑
α∈� λαxα satisfies

p(x)= 1+∑
i

qi(x)
2 +

m∑
k=1

gk(x)
∑
l

vkl(x)
2,

with the polynomials {qi(x), vkl(x)} having respective coefficient vectors {qi, vkl}.
Therefore, p(x) ≥ 1 on S. Similarly, with Z = ∑

j pjp
′
j and from the second

constraint,

〈Z,Bα〉 − λα1�(α)= 0,

it also follows that p(x) is a sum of squares
∑

j pj (x)
2, and hence, nonnegative.

In other words, from a feasible solution of Q∗r , we exhibit a polynomial

p(x) :=∑
α∈�

λαx
α ≥ 1S(x);

that is, p(x) is a feasible solution of D in Remark 2.1. That D is a relaxation
of Q∗r follows from the fact that in Q∗r , p(x) is required to be a sum of squares,
whereas in D, p(x) is only required to be nonnegative. Therefore, we must have
inf D ≤ inf Q∗r . In the multivariate case, and in contrast to the univariate case, not
every nonnegative polynomial is a sum of squares.

PROPOSITION 3.2. (a) Let S have a nonempty interior. If there is some µ ∈�

with a strictly positive density with respect to the Lebesgue measure and with all
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moments finite, then each psd program Q∗r is solvable and there is no duality gap,
that is, supQr =min Q∗r for all r .

(b) If Q∗r has a strictly admissible solution X,Z,Wk � 0, then Qr is solvable
and there is no duality gap; that is, maxQr = inf Q∗r .

PROOF. (a) Let µ ∈� be a p.m. equivalent to the Lebesgue measure . (noted
µ∼.). Write

µ(B)= ϕ(B)+ψ(B) ∀B ∈B,

with

ϕ(B) := µ(B ∩ S); ψ(B) := µ(B ∩ Sc) ∀B ∈B.

Denote by y and z the vector of moments up to order 2r of the measures ϕ and ψ ,
respectively. From the definition of ϕ and ψ , it follows that Mr(y),Mr(z)� 0 and
Mr−dkgk(y)� 0, so that the pair (y, z) is a feasible solution of Qr . From µ∼.,
we must have Mr(y),Mr(z) � 0 and Mr(gky) � 0 (as int(S) �= ∅). Therefore,
Qr has a strictly admissible solution. Morevover, Q∗r has always a feasible solution.
Take X = 0, Wk = 0 for all k = 1, . . . ,m, Z = ee′ [with e= (1,0, . . . ,0)), λα = 0
for all 0 �= α ∈ �, and λ0 = 1. As both solutions have finite values, from a standard
result in convex optimization, there is no duality gap and Q∗r is solvable.

(b) Let µ ∈ � be arbitrary. From Proposition 3.1 we may assume that µ is
finitely supported, so let ϕ and ψ be as in the proof of (a) [except that now we
only have Mr(y),Mr(z)� 0 and Mr−dk(gky) � 0] so that (y, z) is an admissible
solution of Qr . The rest is a simple consequence of the same standard result in
convex optimisation invoked in (a). �

We now provide a sequence of upper bounds. Let d :=maxk dk.

THEOREM 3.3. (a) As r→∞,

supQr ↓ ρ∗ ≥ sup
µ∈�

µ(S).(3.5)

(b) In addition, assume that Qr is solvable, and let (y∗, z∗) be an optimal
solution of Qr . If

rankMr(y
∗)= rankMr−d(y∗) and rankMr(z

∗)= rankMr−1(z
∗)

then

maxQr =max
µ∈�µ(S).(3.6)
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A detailed proof is postponed until Section 5. Observe that in Theorem 3.3(a)
we do not assume that the vector γ of moment conditions is in the interior of the
moment space. In this case, inf Q∗r might provide an upper bound strictly larger
than supQr . Hence, if there is a duality gap between P and D, the upper bounds
{supQr} might be strictly better than those obtained from inf D (and of course
from inf Q∗r ). To illustrate Theorem 3.3, consider the following examples.

EXAMPLE 1. Let n= 2 and let

γ := (1,20,20,500,390,500)= (1, γ10, γ01, γ20, γ11, γ02)

be the vector of first- and second-order moment conditions and let S be the ball
x2+y2 ≤ 1. Solving Q1 yields the optimal value 0.1079 and an optimal solution y,
the vector of moments of the Dirac measure at the point (

√
2/2,

√
2/2) on S with

mass 0.1079. Thus, at the first relaxation, we have maxQ1 = maxµ∈�µ(S) =
0.1079. If we instead consider the ellipsoid x2/2 + y2 ≤ 1 we now obtain
maxQ1 = maxµ∈�µ(S) = 0.10944 with optimal solution y, the Dirac measure
at the point (1.1454,0.5865) on S, with mass 0.10944. That in this case, the
relaxation Q1 is enough to get a tight upper bound is consistent with Theorem 3.7
below.

EXAMPLE 2. Now, consider the more interesting case where γ contains
higher order moments. For instance, let

γ := (1,20,20,500,390,500,251000,251000)

= (1, γ10, γ01, γ20, γ11, γ02, γ40, γ04).

The first relaxation to consider is Q2 since we have fourth-order moments. For the
case of the sphere, solving Q2 yields an optimal value 0.003274 and an optimal
solution y, the vector of moments of Dirac measure at the point (

√
2/2,

√
2/2)

on S. Thus, at the first relaxation, we already have maxQ2 = maxµ∈�µ(S) =
0.003274. Observe how the upper bound has decreased significantly with only
two other fourth-order moment conditions.

With S the ellipsoid x2/2 + y2 ≤ 1 and the same moment conditions, we
obtain supQ2 = 0.003284 and an optimal solution y, the vector of moments
of the Dirac measure at the point (1.2766,0.4303) on S. Again, at the first
relaxation, we already have maxQ2 =maxµ∈�µ(S). If one puts very large fourth-
order moments, one nearly retrieves the upper bound 0.10944 obtained with only
second-order moments, showing that the four-moment conditions have almost no
influence in this case.

Different runs also confirmed that adding a third moment condition to the
second-order conditions (and with no fourth-order condition) does not improve
the bound. This is because a cubic polynomial p(x) cannot be nonnegative. Thus,
the coefficients λα of the cubic terms in an optimal solution p(x) of D, are all zero.
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EXAMPLE 3. Finally, consider the case of a nonconvex and not connected
set S defined by x2/2+y2 ≤ 1 and x2+y2/2≥ 1. The set S being the intersection
of an ellipsoid S1 with the complement of another ellipsoid S2 that intersects S1,
consists of two disconnected nonconvex sets. Let

γ := (1,0,0,20,0,20,500,500)= (1, γ10, γ01, γ20, γ11, γ02, γ40, γ04).

Solving Q2 yields the optimal value 0.2111 and an optimal solution y, the vector
of moments of the measure

0.2111

[
1
4

4∑
i=1

δxi

]
,

where the xi are the intersection points of the two ellipsoids defining the set S.
As this measure is supported in S, it follows that maxQ2 = maxµ∈�µ(S). If
γ02 = 10 instead of 20, one also obtains an optimal solution y, moments of a
measure equally supported on S at points ±(√2,0) with mass, the optimal value,
maxQ2 = 0.23585. If γ11 = 5 instead of 0, we obtain the same solution. With
S defined by x2/100 + y2 ≤ 1 and x2/50 + y2/2 ≥ 1, and the same moment
conditions, we also obtain maxQ2 =maxµ∈�µ(S).

COROLLARY 3.4. Let Q∗r be solvable, and let (X,Z, {Wk}, λ) be an optimal
solution with Wk = 0 for some indices k ∈ I ⊂ [1, . . . ,m]. Then with S′ :=
{gk(x)≥ 0, k /∈ I } ⊃ S, one has

sup
µ∈�

µ(S)≤ sup
µ∈�

µ(S′)≤ inf Q∗r .

PROOF. Let Q∗r (S) [resp. Q∗r (S′)], be the dual problem Q∗r associated with S

(S′, respectively). As every admissible solution of Q∗r (S′) is admissible for Q∗r (S),
it follows that inf Q∗r (S′) ≥ inf Q∗r (S). But since the optimal solution of Q∗r (S) in
Corollarly 3.4 is also admissible for Q∗r (S′) (as Wk = 0 whenever k ∈ I ), the result
follows. �

REMARK 3.5. If in P, one wishes to restrict the measure µ to have its support
in a semialgebraic set 5⊃ S [as, e.g., (Rn)+] defined by polynomial inequalities
θj (x)≥ 0, j = 1, . . . , p, it suffices to include in the psd program Qr , the additional
LMI inequalities Mr(θj z)� 0, j = 1, . . . , p. Indeed, if one writes µ= ϕ+ψ , the
latter constraints are necessary for ψ to have its support contained in 5 (whereas
Qr already contains necessary conditions for ϕ to have its support contained in
S ⊂5).

Before proceding further, we consider two special cases of importance.
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3.1. The real line case. In this section we consider uper bounds on a p.m.
µ on the Borel sets of the real line R. In this case, we slightly modify the psd
program Qr . Introduce the matrices

Mr(y) :=



y0 y1 y2 · · · yr
y1 y2 · · · · · · yr+1
· · · · · · · · · · · · · · ·
yr yr+1 · · · y2r−1 y2r


 ,

Br(y) :=




y1 y2 · · · yr+1
y2 y3 · · · yr+2
· · · · · · · · · · · ·
yr+1 yr+1 · · · y2r+1


 ,

Cr(y) :=




y2 y3 · · · yr+1
y3 y4 · · · yr+2
· · · · · · · · · · · ·
yr+1 yr+2 · · · y2r


 .

The Hankel matrix Mr(y) is just the moment-like matrix introduced before when
n= 1. With [a, b] compact, the psd program Qr now reads

Qr →




supy0,

Mr(y)� 0,
Mr(z)� 0,
(a + b)Br−1(y)� abMr−1(y)+Cr(y),

yα + zα = γα ∀α ∈ �.

(3.7)

THEOREM 3.6. Let n = 1 (univariate case) and let S be the interval [a, b]
⊂R. Let the vector of moments γ be such that |α| ≤ 2r for all α ∈ �. Then,

supQr = sup
µ∈�

µ(S);(3.8)

that is, supQr is a tight upper bound.
Let [a, b] ⊂R+ and include the additional constraint Br−1(z)� 0 in Qr . Then:

supQr = sup
µ∈�,µ(R+)=1

µ(S).(3.9)

The proof is postponed to Section 5.2. Observe that there is no assumption on γ

(except it must be a vector of moments). The result follows from the fact that in
the univariate case, Mr(y),Mr(z) can be shown to be moment matrices of some
measures µ and ν, respectively, with the support of µ contained in [a, b]. The
additional constraint Br−1(z)� 0 will ensure that we restrict ourselves to measures
µ with support on the positive half-line.

Theorem 3.6 provides a simple and easy way to compute bounds on an interval
[a, b]. It is specially interesting when one has at least four moment conditions.
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Indeed, otherwise, with only two moment conditions (1, γ1, γ2), the tight upper
bound (here supQ1) does not depend on a if γ1 > b (resp. b if γ1 < a). Hence
the tight upper bound would be the same for S′ := (−∞, b] or S′ := [a,∞)

if γ1 /∈ [a, b] (see Corollary 3.4). This is because an optimal solution of D is
a quadratic polynomial p(x) ≥ 1S(x) and an optimal solution µ of P satisfies
µ(p(x) = 1[a,b](x)) = 1. As p(x) is nonnegative quadratic and must vanish at
some point ξ /∈ [a, b], it necessarily attains its minimum on [a, b] at either a or b.
This can also be deduced from a direct inspection of the formula in [3] which, for
example, in the case γ1 > b gives supµ∈�µ([a, b]) = (1+ (γ1 − b)/γ 2

2 )
−1 (see

Theorem 15.3.3 in [3]).
If p(x) has degree at least four, then p(x) may attain its global minimum at

two points outside [a, b], and a global minimum 1 on S, at both points a and b

(cf. Example 4) or a global minimum at some point outside [a, b] and a global
minimum on [a, b] at two points of [a, b] (cf. Example 5).

EXAMPLE 4. Let γ be the vector of moment conditions (1,2,10,15,150),
and [a, b] = [1,3]. With only two conditions (γ1, γ2), supµ∈�µ([a, b]) = 1 for
γ1 ∈ [a, b]. With the four conditions, maxµ∈�(µ([a, b])=maxQ2 = 0.8815 with

y = (0.8815,2.4502,7.1564,21.2749,63.6303)

= 0.8815 · (1,2.7796,8.1183,24.1344,72.1828)

and (1,2.7796,8.1183,24.1344,72.1828) is the vector of the first four moments
of the measure

ϕ := αδ{1} + (1− α)δ{3} with α = 0.1102,

finitely supported in [1,3] at the points {1} and {3}. Thus the four-degree
polynomial p(x), optimal solution of D, vanishes at two points outside [1,3] and
takes its minimum value 1 on [a, b] at the points 1 and 3.

EXAMPLE 5. Let γ be the vector of moment conditions (1,3.5,15,70,550),
and [a, b] = [−100,3]. Solving Q2 yields maxQ2 = 0.888 with optimal value

y = 0.888 · (1,2.9683,9.3841,20.9023,172.4339),

and one may show that (1,2.9683,9.3841,20.9023,172.4339) is the vector of the
first four moments of the measure

ϕ := αδ{−15.1349} + (1− α)δ{3} with α = 0.0017.

An optimal solution of D is a four-degree polynomial that vanishes at x = 7.7156
and is minimized at x =−15.1349 and x = 3 on [−100,3].

In both cases, the optimal value is sensitive to both parameters a, b because
there are more than three moment conditions.
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3.2. The case of second-order moment conditions. We now consider the case
where the vector of moment conditions γ contains only first- and second-order
moments, but not necessarily all of them. The polynomials defining the set S are
assumed to be linear and/or quadratic polynomials; that is, S is the intersection of
half-spaces and/or ellipsoids.

In this case, for r = 1, the dual Q∗1 in (3.3) has the special form,

Q∗1 →




inf
X,Z,wk�0,λ

∑
α∈�

λαγα,

〈X,Bα〉 − λα1�(α)+
m∑

k=1

wk(gk)α =
{−1, if α = 0,

0, otherwise,

〈Z,Bα〉 − λα1�(α)= 0,

(3.10)

where {(gk)α} is the coefficient vector of the linear or quadratic polynomial gk(x),
k = 1, . . . ,m.

THEOREM 3.7. Let S be compact, convex, with nonempty interior, and let
the polynomials gk(x) defining S be linear and/or quadratic. Let γ contain only
moments up to order 2. If γ is in the interior of the moment space then

supQ1 =minQ∗1 = sup
µ∈�

µ(S),(3.11)

that is, minQ∗1 is a tight upper bound.
If in addition, γ contains all the second-order marginal moments, then

min Q∗1 =maxQ1.

The first statement is already proved for more general convex sets S in [3].
However, for more general convex sets S, one has to invoke a separation algorithm
of Grötschel, Lovsz and Schrijver as indicated in [3]. The second statement
provides a simple condition to ensure the solvability of Q1.

Observe that in the case of Theorem 3.7, an optimal solution of D is a quadratic
nonnegative (hence convex) polynomial p(x). Therefore, it must have a global
minimum x0 /∈ S and attains its minimum on S at some point ξ of S. Only those
constraints gk(x) binding at ξ [i.e., such that gk(ξ) = 0] are relevant. Indeed, let
S′ ⊃ S be the larger set defined by only those gk(x) binding at ξ . By inspection of
the proof in Section 5, p(x) is still an admissible solution of D (for the problem
with S′ instead of S). As inf Q∗1(S′)≥ inf Q∗1(S) (there are less variables wk), the
equality follows (see also Corollary 3.4).

For the same reasons, the smaller set S′ ⊂ S defined by gk(x)≥ gk(ξ) will also
have the same tight upper bound.

We now return to the general case. Theorem 3.3 provides a sequence of upper
bounds. In some cases, it provides a tight upper bound at some relaxation but this
is not guaranteed. To get that in the limit, this sequence of upper bounds provides
a tight upper bound, we make the following assumption on the set S.
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ASSUMPTION 3.8. The set S is compact with nonempty interior and there
exists a real-valued polynomial u(x) : Rn → R such that {u(x) ≥ 0} is compact,
and

u(x)= u0(x)+
r∑

k=1

gi(x)ui(x) ∀x ∈Rn,(3.12)

where all the polynomials ui(x), i = 0, . . . , r , are sums of squares.

This assumption is satisfied in a number of interesting cases. For example, when
{gi(x) ≥ 0} is compact for some index i, or when all the polynomials gi(x) are
linear and S is compact. The latter case is of great importance as one is often
interested in rectangles; that is, when S is the rectangle ai ≤ xi ≤ bi , i = 1, . . . , n.
Another case of importance is when S is an ellipsoid (or an intersection of
ellipsoids).

The reason why we introduce Assumption 3.8 is because if a polynomial
p(x) : Rn → R is strictly positive on S which satisfies Assumption 3.8, then it
can be written as a weighted sum of squares; that is,

p(x)= q(x)+
m∑

k=1

gk(x)vk(x),

with {q(x), vk(x)} polynomials that are sums of squares (see, e.g., Putinar [13],
Jacobi [8], Jacobi and Prestel [9]). This property will be used to prove that with
ε > 0 fixed, arbitrary, from every polynomial p(x), optimal solution of D, one may
construct an admissible solution of Q∗r (provided r is sufficiently large), with value
bounded from above by min D+ ε.

Let θ(x) : Rn→R be the quadratic polynomial A(r)−‖x‖2 with A(r) > 0 and
limr→∞A(r)=+∞, say, for instance, A(r)= r , and write

Mr(θz)=
∑
α≤2r

zαDα

for appropriate symmetric matrices Dα .
Consider the psd programs (with r ≥maxk dk),

Qr →




supy0,

Mr(y)� 0,
Mr(z)� 0,
Mr−1(θz)� 0,
Mr−dk(gky)� 0, k = 1, . . . ,m,
yα + zα = γα, α ∈ �.

(3.13)
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The dual psd program of Qr is the psd program

Q∗r →




inf
X,Z,Wk,:�0

∑
α∈�

λαγα,

〈X,Bα〉 − λα1�(α)+
m∑

k=1

〈Wk,C
k
α〉 =

{−1, if α = 0,
0, otherwise,

〈Z,Bα〉 + 〈:,Dα〉 − λα1�(α)= 0, |α| ≤ 2r.

(3.14)

The interpretation of the psd programs Qr is similar to the one previously
introduced, except that now, the measure ν with associated moment vector z

is required to have its support contained in the ball Br := {‖x‖2 ≤ A(r)}. The
reason why we introduce this additional constraint is because, as Br satisfies
Assumption 3.8, every polynomial p(x) : Rn→ R strictly positive on Br , can be
written

p(x)= q(x)+ θ(x)g(x),

with both q(x) and g(x) sums of squares. We will use this property for the
polynomial p(x) in Remark 2.1.

THEOREM 3.9. Let S be a compact semialgebraic set with nonempty interior,
that sastisfies Assumption 3.8 and assume that the vector γ is in the interior of the
moment space. Then as r→∞,

supQr → ρ∗ = sup
µ∈�

µ(S).(3.15)

In addition, if supP=maxP, then supQr ≥ ρ∗ for all r sufficiently large.

Theorem 3.9 permits to get an upper bound, arbitrary close to the tight upper
bound ρ∗. Note that S is not required to be convex.

REMARK 3.10. Under the assumptions stated in Theorem 3.9, supP=minD.
Therefore, every optimal solution of D is a polynomial p(x) that satisfies p(x)≥
1S(x). As Br and S are both compact sets that satisfy Assumption 3.8, every
polynomial q(x) strictly positive, and such that q(x)− 1 > 0 on S can be written

q(x)=



1+ v(x)+
m∑

k=1

gk(x)hk(x),

and w(x)

with v(x),h(x),w(x) all sums of squares. As p(x) ≥ 0 and p(x)− 1 ≥ 0 on S,
it is often possible to write p(x) as above (despite the nonstrict positivity). In
that case, one may construct from p(x) an admissible solution to Q∗r with value
min D, so that min D=min Q∗r = supQr ; that is, a tight upper bound is attained at
a particular relaxation. Otherwise, we only have the asymptotic result (3.15).

One may also relax the interior point condition on γ by the weaker condition
“P is solvable.”
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4. Lower bound on µ(S). In this section, we provide psd programs that yield
a sequence of lower bounds that converges to a tight lower bound.

We cannot simply replace “max” by “min” in the psd program Qr previously
defined. Indeed, if we decompose µ into the sum ϕ + ψ , with the support of ϕ

contained in S, we now must impose ψ to have its support in Sc, otherwise we
would obtain min Qr = 0 with ϕ ≡ 0 (as soon as 0 ∈ S).

But, since the lower bound case amounts to maximize µ(Sc), and as Sc can be
expressed as the union

⋃
i <i of semialgebraic sets <i (not necessarily disjoint),

one still may use similar arguments as in the maximizing case. The measure µ is
now written as the sum ϕ+∑i ψi , with the support of each measure ψi contained
in <i . The resulting psd program Qr is more complicated since it involves
a moment-vector yi , a moment-like matrix Mr(y

i) and a localizing matrices
Mr−dik (g

i
ky

i) for each ψi (when <i is defined by {gik(x) ≥ 0, k = 1, . . . , pi}).
Then one has the analogue of Theorem 3.3 for maximizing µ(Sc); that is,

supQr ↓ ρ∗ ≥max
µ∈�µ(Sc)= 1−min

µ∈�µ(S).

EXAMPLE 6. Consider the case where Sc is the set defined by x2/100+ y2 ≥
1 and the moment vector γ is given by

γ := (1,0,0,0.1,0,0.1,0.5,0.5)= (1, γ10, γ01, γ20, γ11, γ02, γ40, γ04).

As Sc is defined by a single polynomial gk(x)≥ 0, Qr has exactly the same form
as in the maximizing case.

Solving Q2 yields an optimal value of 0.1010, whereas solving Q3 yields also
an optimal value 0.1010 but with no minimizer (the yi’s are unbounded). To
get a bounded approximate solution, we penalize with ε very small, say ε :=
10−6, the higher marginal moments of order 6. With this modified criterion, Q3
yields the same value 0.1010 with an optimal solution y such that rankM3(y) =
rankM2(y)= 4. One observes that y is indeed the moment vector of a measure ψ

with support contained in Sc . In fact, y is the vector of moments of the measure ψ

with mass 0.101 and supported on the points ±(√0.9901,0) and ±(0,√0.9901)
on Sc . Thus, maxQ3 = ρ∗ =maxµ∈�µ(Sc). Observe also that the bound supQ2
was already very good.

However, in order to ensure ρ∗ = maxµ∈�µ(Sc), we cannot invoke Theo-
rem 3.9 for the set Sc does not satisfy Assumption 3.8 (as Sc is not compact).
Therefore, if one wishes to get a sequence of lower bounds that converges to a
tight lower bound, as in the maximizing case, one needs to address the minimizing
case minµ∈�µ(S) directly, instead of considering maxµ∈�µ(Sc).

The resulting psd programs in the lower bound case slightly differ from the
preceding Qr in Theorem 3.3. Indeed, in the minimizing case, if we write µ as the
sum ϕ + ψ of two measures ϕ,ψ , with ϕ having its support contained in S, we
now must impose that the support of ψ is contained in Sc (which is not necessary
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in the maximizing case). Therefore, we need to introduce additional constraints.
For simplicity of exposition, we restrict it to the case where S is an ellipsoid.

Therefore, let S be defined by θ(x) ≥ 0 where θ(x) is a strictly concave
quadratic polynomial, and with ε > 0 fixed, let θr(x) be the polynomial x �→
θ(x) + ε(r) and θr (x) be the polynomial x �→ ε(r)−1 + θ(x), where ε(r) > 0
and ε(r) ↓ 0 as r→∞.

For r ≥ 1, introduce the psd programs

Qr →




infy0,

Mr(y),Mr−1(θy)� 0,
Mr(z),Mr−1(−θrz),Mr−1(θ

rz)� 0,
yα + zα = γα ∀α ∈ �.

(4.1)

We write

Mr(θy)=
∑
α

yαCα, Mr(−θrz)=
∑
α

zαEα and Mr(θ
rz)=∑

α

zαFα.

The dual psd program of Qr reads

Q∗r →




sup
X,V,W1,W2�0

∑
α∈�

λαγα,

〈X,Bα〉 + 〈V,Cα〉 + 1�(α)λα =
{

1, if α = 0,
0, otherwise,

〈Z,Bα〉 + 〈W1,Eα〉 + 〈W2,Fα〉 + 1�(α)λα = 0 |α| ≤ 2r.

(4.2)

The LMI constraints of the psd program Qr state:

1. Necessary conditions for the variables {yα, zα} to be moments of some
measures ϕ and ψ , respectively.

2. Necessary conditions for the measures ϕ,ψ to have their support in {θ(x)≥ 0}
and {−ε(r)−1 ≤ θ(x)≤−ε(r)}, respectively.

3. That
∫
xαd(ϕ +ψ)= γα for all α ∈ �.

THEOREM 4.1. Let S be the ellipsoid {θ(x) ≥ 0} with nonempty interior.
Assume that γ is in the interior of the moment space. Then, as r→∞,

inf Qr → ρ∗ = inf
µ∈�µ(S).(4.3)

In addition, if inf P=min P, then inf Qr ≤ ρ∗ for all r sufficiently large.

5. Proofs.

PROOF OF THEOREM 3.3. The first statement follows from the fact that each
Qr has an admissible solution and from an admissible solution (y, z) of Qr+1,
one may construct by truncation of the vectors y and z, and admissible solution
of Qr with same value. As the optimal values supQr are bounded from above,
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supQr ↓ ρ∗. That ρ∗ ≥ supµ∈�µ(S) follows from Proposition 3.1. Indeed, from
Proposition 3.1, there is a measure ν ∈ � with all its moments finite, and with
ν(S)=µ(S). Let ν1 (resp. ν2) be the restriction of ν to S (resp. Sc). Let y (resp. z)
be the vector of moments of ν1 (resp. ν2) up to order 2r (guaranteed to exist). It is
immediate that (y, z) is admissible for Qr , with value y0 = ν1(X)= ν(S)=µ(S).
Hence supQr ≥ supµ∈�µ(S).

Next, assume that Qr is solvable. Let (y∗, z∗) be an optimal solution of Qr .
If rankMr(y

∗) = rankMr−d(y∗) (recall d := maxk dk), it follows that Mr(y
∗) is

a so-called flat positive extension of Mr−d(y∗) from which it follows that both
Mr(y

∗) and Mr−d(y∗) are moment matrices. Moreover, as Mr−dk(gky∗) � 0 for
all k = 1, . . . ,m, y∗ is the moment vector of an atomic measure ϕ supported in S.
(Theorem 1.1 in [5], is stated in dimension 2 for the complex plane, but is valid
for n real or complex variables; see comments on page 2 in [5].) With the same
argument, Mr(z

∗) is a moment matrix. Therefore, there exist two measures ϕ,ψ ,
with ϕ supported in S, and such that∫

xαdϕ(x)= y∗α;
∫

xαdψ(x)= z∗α ∀α with
n∑

i=1

αi ≤ 2r.

In addition, y∗α + z∗α = γα for all α ∈ �. Therefore, µ := ϕ +ψ ∈�, and from

µ(S)≥ ϕ(S)= y∗0 =maxQr ≥ sup
ν∈�

ν(S),

it follows that y∗0 =maxµ∈�µ(S). �

PROOF OF THEOREM 3.6. Let supQr = ρ∗. As in the proof of Theorem 3.3,
Qr is a relaxation of P for all r , and we have ρ∗ ≥ supµ∈�µ(S). Now, fix ε > 0
arbitrary and let (y, z) be an admissible solution of Qr with y0 ≥ ρ∗ −ε. As n= 1,
Mr(y) and Mr(z) are moment matrices. Let ϕ,ψ be measures associated with y

and z, respectively, and let µ := ϕ +ψ . From the condition

(a+ b)Br−1(y)� abMr−1(y)� Cr−1(y),

it follows that ϕ is supported on [a, b]. (It follows from a result of Krein and
Nudel’man [11]; see, e.g., Remark 4.4 in Curto and Fialkow [4].) Therefore,
y0 = ϕ(S)≥ ρ∗ − ε. Moreover, the measure µ= ϕ +ψ satisfies yα + zα = γα for
all α ∈ �; that is,

∫
xα dµ = γα for all α ∈ �. In addition, as µ(S) ≥ ϕ(S) = y0,

we obtain µ(S)≥ ρ∗ − ε, and the result follows since ε was arbitrary. �

PROOF OF THEOREM 3.7. Let ρ∗ := supµ∈�µ(S). We have already seen that
supQ1 ≥ ρ∗ (as the psd programs Qr are relaxations of P for all r). Moreover, as
the vector γ is in the interior of the moment space, there is no duality gap between
P and D in Remark 2.1.

Let p(x) ≥ 1S(x) be a polynomial, optimal solution of D in Remark 2.1 and
write p(x)=∑

α∈� λαxα . Hence, as
∑

α∈� λαγα = ρ∗ = inf P, it suffices to show
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that from p(x), one may exhibit an optimal solution (X,Z,wk,λ) of Q∗1 with
value

∑
α∈� λαγα = ρ∗. We will use the fact that, as p(x) is of degree 2 and

is nonnegative, it is a sum of squares. Therefore, p(x) = ∑
j qj (x)

2 for some
linear polynomials {qj (x)}. Let Z be the symmetric matrix

∑
j qjq

′
j , with {qj }

the vectors of coefficients of the polynomials {qj (x)} in the basis (2.3). Hence,

〈Z,Bα〉 = λα1�(α) ∀α.
Moreover, let x∗ be a global minimizer of p(x) on S (guaranteed to exist as S is
compact), with associated Kuhn–Tucker multipliers wk ≥ 0 (guaranteed to exist as
S is convex and Slater’s condition holds). Let L(x,w) := p(x)−∑m

k=1 wkgk(x)

be the associated Lagrangian. As L(x,w) is a quadratic convex polynomial and x∗
is minimizer, we have

L(x,w)−L(x∗,w)= 〈x − x∗,H(x − x∗)〉,
with H := ∇2

xxL(x,λ)� 0. Equivalently, as L(x∗,w)= p(x∗)= 1,

p(x)− 1= 〈x − x∗,H(x − x∗)〉 +
m∑

k=1

wkgk(x) ∀x ∈Rn.(5.1)

As 〈x − x∗,H(x − x∗)〉 is a nonnegative quadratic polynomial, it is a sum of
squares of linear polynomials {hj(x)}. Let X := ∑

hjh
′
j with {hj } being the

vectors of coefficients of the linear polynomials hj(x) in the basis (2.3). From (5.1)
it follows that

〈X,Bα〉 +
m∑

k=1

〈wk(gk)α〉 − λα1�(α)=
{−1, if α = 0

0, otherwise,

and 〈Z,Bα〉−λα1�(α)= 0, that is, (X,Z,wk,λ) is an admissible solution of Q∗1,
with value

∑
α∈� λαγα = ρ∗.

We next prove that when γ contains all the second-order marginal moments,
Q1 is solvable. Let wk > 0 be fixed arbitrary. Choose a sufficiently large scalar
M > 0 to ensure that

M +M
∑
j

x2
j −

m∑
k=1

wkgk(x)− 1 > 0

[remember that the gk(x) are concave quadratic]. Therefore,

h(x) :=M +M

n∑
j=1

x2
j −

m∑
k=1

wkgk(x)− 1=∑
j

hj (x)
2,

for some linear polynomials {hj(x)}, with X :=∑
j hjh

′
j � 0. Let p(x) :=M +

M
∑m

j=1 x
2
j so that

p(x)=M

(
1+∑

j

pj (x)
2

)
,
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with pj (x) := x2
j for all j , and Z :=∑

j pjp
′
j � 0. We thus have

p(x)− 1=∑
j

hj (x)
2 +

m∑
k=1

wkgk(x).

As γ contains all the second-order marginal moments, p(x) = ∑
α∈� pαx

α for
some vector {pα}. Moreover, it easily follows that with the above definitions of
X,Z,wk,p and X,Z � 0, wk > 0, (X,Z,wk,p) is a strictly admissible solution
of Q∗1, and as Q1 has a feasible solution, it follows that supQ1 = maxQ1, by a
standard duality result in convex optimization. �

PROOF OF THEOREM 3.9. Let ε > 0 be fixed, and let µ ∈ � be such that
µ(S) ≥ ρ∗ − ε, with ρ∗ = supP. From Proposition 3.1, there is a p.m. ν ∈ �,
finitely supported and such that ν(S)=µ(S)≥ ρ∗ − ε. Let ϕ,ψ be the restriction
of ν to S and Sc , respectively. As ν is finitely supported, and A(r)→∞, there
is some r0 such that the support of ψ is contained in Br = {‖x‖2 ≤ A(r)} for all
r ≥ r0. Therefore, with (y, z) the respective vectors of moments of ϕ,ψ , up to
order 2r , we have

Mr(y)� 0, Mr(z)� 0, Mr−1(θz)� 0, Mr−dk(gky)� 0, k = 1, . . . ,m,

for all r ≥ r0. Hence, (y, z) is an admissible solution of Qr for all r ≥ r0, and thus
supQr ≥ ρ∗ − ε.

Next, from Remark 2.1, supP = min D. Let p(x) ≥ 1S(x) be an optimal
solution of D, and write

p(x)=∑
α∈�

pαx
α.

As S is a compact set that satisfies Assumption 3.8, and p(x)− 1+ ε > 0 on S,
the polynomial

p′(x) := p(x)+ ε = ε+∑
α∈�

pαx
α =∑

α∈�
p′αxα

can be written

p′(x)− 1=∑
j

qj (x)
2 +

m∑
k=1

gk(x)
∑
j

vkl(x)
2,(5.2)

for some polynomials {qj (x), vkl(x)}. Let r1 be such that

sup
j

degqj (x)
2 ≤ 2r1 and sup

k,l

2dk + degvkl(x)
2 ≤ 2r1.

Similarly, as p(x) is nonnegative, p′(x) > 0 on Br , and thus, p′(x) can be written

p′(x)=∑
j

pj (x)
2 + θ(x)

∑
i

vi(x)
2.(5.3)
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Let r2 be such that

sup
j

degpj (x)
2 ≤ 2r2 and 2+ sup

i

degvi(x)
2 ≤ 2r2,

and let r = max[r0, r1, r2]. Let {qj ,pj } be the coefficient vectors of the
polynomials {qj (x),pj (x)} in the basis of dimension s(r); let {vi} be the
coefficient vectors of the polynomials {vi(x)} in the basis of dimension s(r − 1),
and let {vkl} be the coefficient vectors of the polynomials {vkl(x)} in the basis of
dimension s(r − dk), k = 1, . . . ,m. Define the matrices

X :=∑
j

qjq
′
j ; Z :=∑

j

pjp
′
j ; : :=∑

i

viv
′
i; Wk :=

∑
l

vklv
′
kl, k=1, . . . ,m.

From (5.2) and (5.3) it follows that

〈X,Bα〉 +
m∑

k=1

〈Wk,C
k
α〉 − p′α =

{−1, if α = 0,
0, otherwise,

(5.4)

and

〈Z,Bα〉 + 〈:,Dα〉 − p′α = 0 ∀α;(5.5)

that is, (X,Z,Wk,:,p′) is an admissible solution of Q∗r with value∑
α∈�

p′αγα = ε+∑
α∈�

pαγα = ε+ ρ∗.

By weak duality supQr ≤ ρ∗ + ε. In addition, since supQr ≥ ρ∗ − ε, it follows
that

ρ∗ + ε ≥ supQr ≥ ρ∗ − ε.

As ε > 0 was arbitrary, the result follows.
Finally, if supP = maxP, there is a p.m. µ ∈ � with µ(S) = ρ∗, and with

arguments already developed, one may assume that µ is finitely supported. In
particular, the support of µ is contained in Br for all r sufficiently large. The
vectors y, z of the moments up to order 2r of the restrictions of µ to S and Sc

respectively, are feasible for Qr , from which supQr ≥ ρ∗ follows. �

PROOF OF THEOREM 4.1. The proof mimics that of Theorem 3.9. Let ρ∗ :=
inf P where now

P→ inf
µ∈�µ(S) and D→

{
sup

∑
α∈�

λαγα

∣∣∣∣∣
∑
α∈�

λαx
α ≤ 1S(x), ∀x ∈Rn

}
.

With the same arguments as in the proof of Theorem 3.9, one easily proves that
with ε > 0 fixed, arbitrary, there is some r0 such that inf Qr ≤ ρ∗ + ε for all r ≥ r0.
Indeed, let µ ∈ � be such that µ(S) ≤ ρ∗ + ε. From Proposition 3.2, there is a
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p.m. ν ∈ � finitely supported and with ν(S) = µ(S) ≤ ρ∗ + ε. Let ϕ,ψ be the
restrictions of ν to S and Sc, respectively. As ψ is finitely supported, S is closed
and ε(r) ↓ 0 as r →∞, we must have −ε(r)−1 ≤ θ(x) ≤ −ε(r) for all x in the
support of ψ , as soon as r ≥ r0, for some r0. Therefore, with (y, z) the vectors of
moments up to order r of ϕ and ψ , respectively, we have Mr(y),Mr(z) � 0 and
Mr−1(θy)� 0 as well as Mr−1(θr (z),Mr−1(θ

r (z)� 0, so that (y, z) is admissible
for Qr with value y0 = ϕ(S)= ν(S) ≤ ρ∗ + ε.

From the hypothesis on γ , there is no duality gap between D and P and P is
solvable. Therefore, let p(x)=∑

α∈� pαx
α be an optimal solution of P with value

ρ∗ = infµ∈�µ(S).
We next show that we can construct an admissible solution of Q∗r with value∑

α∈�
pαγα − ε = ρ∗ − ε,

provided r is sufficiently large. As inf Qr ≤ ρ∗ + ε for all r ≥ r0, the result will
follow from a simple application of weak duality between Q∗r and Qr .

From −p(x)≥−1S(x) it follows that with

p′(x) := −p(x)+ ε =∑
α∈�

p′αxα,

the polynomial p′(x) satisfies

p′(x)+ 1 > 0 on S and p′(x) > 0 on Sc.

Moreover, S satisfies Assumption 3.8, since {θ(x) ≥ 0} is compact. The same is
true for the set S′ := {−ε−1 ≤ θ(x)≤−ε} ⊂ Sc . Hence, as p′(x)+ 1 > 0 on S, it
can be written

p′(x)+ 1=∑
j

qj (x)
2 + θ(x)

∑
k

vk(x)
2,(5.6)

for some polynomials {qj (x), vk(x)}. Similarly, as p′(x) > 0 on S′, it can be
written

p′(x)=∑
j

uj (x)
2 + θε(x)

∑
k

w1
k(x)

2+ θε(x)
∑
k

w2
k(x)

2(5.7)

for some polynomials {uj (x),w1
k(x),w

2
k(x)}.

Let r1 be the maximum degree of the polynomials {qj (x), uj (x)} and r2

the maximum degree of the polynomials {vk(x),w1
k(x),w

2
k(x)}, and let r :=

max[r0, r1, r2 + 1]. Let {qj , uj , vk,w1
k,w

2
k} be the coefficient vectors in the

basis of dimension s(r) of the polynomials {qj (x), uj (x), vk(x),w1
k(x),w

2
k(x)},

respectively.
Introduce the matrices

X :=∑
j

qjq
′
j , V :=∑

k

vkv
′
k
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and

Z :=∑
j

uju
′
j ; W1 :=

∑
k

w1
k(w

1
k)
′, W2 :=

∑
k

w2
k(w

2
k)
′.

From (5.6) it follows that

〈X,Bα〉 + 〈Vk,Cα〉 − p′α =
{

1, if α = 0,
0, otherwise,

and from (5.7) it follows that

〈Z,Bα〉 + 〈W 1,Eα〉 + 〈W 2,Fα〉 − p′α = 0 ∀α ≤ 2r,

which proves that (X,Z,V,W 1,W 2,p′) is an admissible solution of Q∗r with
value ∑

α∈�
−p′αγα =−εγ0+

∑
α∈�

pαγα =−ε+ ρ∗.

Therefore, as infQr ≤ ρ∗ + ε, from weak duality, one obtains

ρ∗ − ε ≤ inf Qr ≤ ρ∗ + ε.

As ε was arbitrary, the result follows.
Finally, the last statement in Theorem 4.1 can be proved with the same

arguments as in the proof of the analogue statement in Theorem 3.9. �
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