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IMPORTANCE SAMPLING FOR FAMILIES OF DISTRIBUTIONS

By Neal Madras1 and Mauro Piccioni2

York University and Universitá di L’Aquila

This paper analyzes the performance of importance sampling distribu-
tions for computing expectations with respect to a whole family of probabil-
ity laws in the context of Markov chain Monte Carlo simulation methods.
Motivations for such a study arise in statistics as well as in statistical
physics. Two choices of importance sampling distributions are considered
in detail: mixtures of the distributions of interest and distributions that are
“uniform over energy levels” (motivated by physical applications). We an-
alyze two examples, a “witch’s hat” distribution and the mean field Ising
model, to illustrate the advantages that such simulation procedures are
expected to offer in a greater generality. The connection with the recently
proposed simulated tempering method is also examined.

1. Introduction. Monte Carlo methods have long been an indispensable
tool in the field of statistical physics [see Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller (1953), Sokal (1989), Binder and Heerman (1992)]. More
recently, a similar view has been developing among statisticians [see, e.g.,
Smith and Roberts (1993), Besag and Green (1993), Tanner (1993), Gilks,
Richardson and Spigelhalter (1996), Robert (1996), Gamerman (1997)]. This
paper will discuss some procedures that attempt to alleviate two common
problems that arise in many Monte Carlo studies:

(i) The need to perform many Monte Carlo runs that differ only in the
value of some input parameter(s); and

(ii) A very slow approach to equilibrium of dynamic sampling schemes,
which are usually known in statistics as Markov chain Monte Carlo methods.

Many practitioners, in statistics as well as in physics, have observed that
suitable variations on the classical technique of importance sampling can of-
ten help to overcome both of these problems. For the most part, however, these
observations have been largely empirical, based upon experience with a partic-
ular set of models. Our main contribution in this paper is to perform a rigorous
asymptotic analysis of the behavior of such procedures in two model examples:
the mean field Ising model from statistical physics, and the “witch’s hat” dis-
tribution of Geyer and Thompson (1995). To this end, we establish some basic
general results about the efficiency of such implementations of importance
sampling, which are valid in general state spaces.
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The essential idea of importance sampling is the following. Suppose that
µ is a known probability measure on some measurable state space �����
(usually a subset of Rd), and let f be a real-valued integrable function on �.
We want to compute the expected value

�1�1� Eµf =
∫
�
f�x�µ�dx�

but we are unable to evaluate it either exactly or by standard numerical ap-
proximations, typically because either d is large or µ is very complicated. The
crude Monte Carlo solution is to generate a vector Xµn of i.i.d. µ-distributed
random variables Xµ1 � � � � �X

µ
n and to estimate Eµf by the empirical average

�1�2� f̂�Xµn� = n−1
n∑
i=1

f�Xµi ��

which is unbiased (its expectation isEµf) and strongly consistent (it converges
to Eµf almost surely as n→∞). Moreover if the variance of f�Xµ1 �, denoted
by σ2

µ�f�, is finite, then the central limit theorem holds,

�1�3� √
n
(
f̂n −Eµf

) →N(
0� σ2

µ�f�
)
�

making it possible to evaluate the error of the estimate (the variance being
likewise consistently estimated).

One can try to find an estimator with a smaller variance by sampling from
a different probability distribution ν on �����, such that µ is absolutely con-
tinuous with respect to ν (otherwise the sampling process will always miss
some nonnegligible part of �). If we can generate Xνn = �Xν1� � � � �Xνn� i.i.d.
with distribution ν, then the empirical average ĝ�Xνn�, where g = fdµ/dν is
the product of f with the importance sampling weights dµ/dν, is again an un-
biased and strongly consistent estimator of Eµf. Moreover, the central limit
theorem still holds, provided the variance σ2

ν �g� exists. It is clear that such
a variance depends on ν; a good choice of ν can make it dramatically smaller
than σ2

µ�f�. The classical guideline for a good choice is that ν should put weight
where µ is concentrated and simultaneously f is large, hence the name im-
portance sampling. However, in this paper our choice of ν is determined only
by the measure(s) µ, and we adopt a “worst case” approach with respect to
the variation of f. A quite different approach to importance sampling is used
in rare event simulation, where the choice of ν is heavily determined by the
event or function being estimated; see Bucklew (1990) for more on the subject.
We emphasize that the measure ν is completely artificial; it is chosen entirely
for the convenience of the Monte Carlo experimenter.

It is apparent how importance sampling can help with problem (i) from
above. Consider the above procedure if µ, and perhaps f, depend on a param-
eter θ ∈ �. Defining gθ = fθ dµθ/dν, observe that a single simulation from ν
enables us to compute the whole family ĝθ�Xνn� of estimators of Eνgθ = Eµθfθ
(for all θ ∈ �). However, these estimators cannot be expected to work uni-
formly well for all θ with a large but fixed value of n, unless ν “covers” all the
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parts of � where each of the µθ’s is concentrated. This is ensured, for example,
by a boundedness condition on the importance sampling weights

�1�4� dµθ
dν

�x� ≤ A for all x ∈ � and θ ∈ �.

The term “umbrella distribution” was coined by the physicists Torrie and
Valleau (1977) to describe an artificial sampling distribution that simultane-
ously “covered” a large range of physical distributions. The general idea of
reweighting a single Monte Carlo run to estimate quantities from a family of
distributions goes back to Trotter and Tukey (1956). More recently, Ferren-
berg and Swendsen (1988) [see also Swendsen and Ferrenberg (1990)] have
popularized this method in the statistical physics community.

The principles of importance sampling continue to hold if the Xνi ’s are sim-
ulated from an ergodic Markov chain with stationary distribution ν. This basic
fact is sometimes ignored in the statistical literature, where “importance sam-
pling” usually refers only to i.i.d. simulations [Evans and Swartz (1995)]. But
limiting consideration to distributions which are accessible to i.i.d. simula-
tions is generally too restrictive to take full advantage of the method. Fre-
quently there is no reasonable way to generate i.i.d. variables from a very
complicated high-dimensional distribution, but it could be easy to implement
a Markov chain whose equilibrium distribution is the desired one. A quite
general recipe for accomplishing this is the Metropolis–Hastings method, in-
troduced by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and
later generalized by Hastings (1970). Indeed, this method has a certain opti-
mality property which justifies its choice [Peskun (1973)]. Unfortunately, this
method can be inefficient if the Markov chain converges to its equilibrium very
slowly, as measured for example by a small “spectral gap” (see next section for
a precise definition). This is often described as a “slowly mixing” chain [e.g.,
Sokal (1989), Sinclair (1993)].

A typical situation in which convergence is slow is one in which the target
distributions have densities with two (or more) peaks and their corresponding
Markov chains tend to stay in the neighborhood of a peak for a long time. In
such a case, we hope that we can improve the spectral gap by applying the
Metropolis method to a suitable artificial “flattened” simulation distribution
satisfying a condition such as (1.4), which guarantees that all the peaks are
covered. This is done and rigorously justified in the two examples that will be
presented. With the help of the basic result established in Section 2 (Propo-
sition 2.1), it is then possible to bound the performance of the importance
sampling estimator.

The two examples presented here concern two different choices of an impor-
tance sampling distribution. The first is taken from statistical physics, where
we often consider a family of probability measures µθ having a density pθ
(with respect to some reference measure m) belonging to a one-parameter
exponential family

�1�5� pθ�x� =
exp�−θH�x��
Z�θ� �
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Physically, θ ≥ 0 is the reciprocal of the temperature and H represents the
energy function of the system: then (1.5) is called a Gibbs distribution. Of
course the density decreases as the energy H increases (unless θ = 0), and
this is emphasized when θ is large (i.e., when the temperature is low). In
numerical experiments one is typically interested in plotting the derivatives
of the free energy logZ�θ� as a function of θ, but since these are the cumulants
of H with respect to µθ (up to a change of sign for those of odd order), this
problem is precisely of the kind mentioned at the beginning of this section.
(Here we useH to refer the random variableH�X� whereX has the indicated
distribution.) For example, physicists are often interested in values of θ where
the average energy per unit volume decreases suddenly, exhibiting either a
discontinuity or a slope of −∞ as the size of the system grows. Alternatively
one can look for values of θ where the variance of H under µθ, divided by
the size of the system, blows up. Values of θ where such things happen are
associated with phase transitions in the system [see, e.g., Thompson (1972)
for an overview].

In these problems it is convenient to choose ν to be absolutely continuous
with respect to m with a density which is only a function of H; in this way
dµθ/dν will also be a function of H only, and the importance sampling calcu-
lations will require only the evaluation of the energy of each sample. In many
applications it is easy to compute the change in energy at each step, and so
the calculation of the importance sampling weights is fast. The physicists’ sug-
gestion [Torrie and Valleau (1977), Berg and Neuhaus (1991)] is to make the
distribution ofH under ν uniform over a range of energy levels (which is large
enough to include all the energies which are typical for the values of θ we are
interested in). The physical intuition is to remove the energy barriers between
states, allowing the Markov chain to explore the state space unencumbered
by physically natural constraints.

In Section 3 we will show how this recipe works for the mean field Ising
model on N sites. This is not a physically realistic model, but it has the qual-
itative features of more realistic and more complex models. We will prove
that by using such a sampling distribution which is uniform over energies, in
conjunction with single-site Metropolis updates, one can get good estimates
of Eθf, for any inverse temperature θ > 0, in a time which is polynomial
in N. This is in contrast to the time needed for the crude “physical” Monte
Carlo sampler which is exponential inN for θ > 1 (at least for generic choices
of f). Computational experience strongly suggests that similar results hold
for a wide variety of physical systems that undergo phase transitions, even if
it remains an open (and difficult) problem to prove this rigorously for more
interesting physical models.

Before presenting the second example, in Section 4 we make a digression
concerning the recently proposed remedy to the problem of slowly mixing
Markov chains known as “simulated tempering” [Marinari and Parisi (1992),
Geyer and Thompson (1995)]. The premise is that there are some values of θ
for which a Metropolis Markov chain with stationary distribution µθ is slowly
mixing and others at which it is rapidly mixing. This often happens in models
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from statistical physics: at “high temperatures,” the model has weak correla-
tions and relaxes rapidly to equilibrium; but below some “critical temperature”
there is a qualitative change in behavior, and the system becomes much harder
to change, resulting in slowly mixing chains. In this case one can create a new
Markov chain on the augmented state space � × �. The chain will alternate
between changing the configuration as if θ were fixed and changing the value
of θ. Thus some of the time the chain will be free to mix rapidly (when θ is
in the “high temperature” range), but it will also spend some time sampling
parts of � that are typical of “low temperatures.” The hope is that the aug-
mented chain will itself be rapidly mixing. Alternatively simulated tempering
can be seen as a way of accelerating convergence when there is a single dis-
tribution µ∗ of interest, but the Markov chain at our disposal to sample from
it is slowly mixing. In such a case, one can try to build a family of distribu-
tions µθ, say with θ ∈ �0�1�, such that µ0 = µ∗ and the Markov chain for µ1
is rapidly mixing. Geyer and Thompson (1995) interpret simulated temper-
ing as a “pseudo-Bayes” approach and give several useful guidelines for its
implementation in statistical problems.

Little is known rigorously about the properties of simulated tempering.
The main purpose of Section 4 is to show that a natural implementation of
simulated tempering is essentially equivalent to importance sampling with
respect to a mixture of the µθ’s (Proposition 4.1). It is not hard to show that
a mixture with weights that are not too small will yield a bound of the form
(1.4) with a constant A that is not too large (see Section 2).

In Section 5 the performance of this importance sampling technique is con-
sidered with reference to an example from Geyer and Thompson (1995) of a
distribution over a high-dimensional state space for which the conventional
impementation of Markov chain algorithms is slowly mixing. Our rigorous
analysis explains the numerical results presented in their paper, which sup-
port the performance of simulated tempering. In the Appendix the same kind
of results are proved for the mean field Ising model example as well.

2. Importance sampling. In this section we review the basic issues con-
cerning importance sampling techniques in the dynamic sampling context and
prove a simple but general result which will turn out to be extremely useful
in the rest of the paper.

Suppose that for a candidate sampling distribution ν we can construct (for
example, by using the Metropolis method) a time-homogeneous Markov chain
�Xνi� i = 1�2 � � �� whose invariant distribution is ν. For the sake of simplicity,
denote by f̂νn the estimator �fdµ/dν�̂ �Xνn� of Eµf defined in (1.2). Suppose
that the chain is reversible, so that its Markov operator is self-adjoint onL2�ν�,
and that there is a gap ��Xν� between its largest eigenvalue 1 and the rest
of its spectrum. Then, provided fdµ/dν ∈ L2�ν�, the central limit theorem for
reversible Markov chains [Kipnis and Varadhan (1986)] ensures that, for any
initial state,

�2�1� √
n
(
f̂νn −Eµf

) →N(
0� vν�fdµ/dν�)�
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where the asymptotic variance vν satisfies

�2�2� vν�h� ≤
(

2
��Xν�

)
σ2
ν �h� for all h ∈ L2�ν�,

σ2
ν �h� being the variance of h according to ν. For a discussion of more gen-

eral assumptions which ensure that a central limit theorem holds for general
Markov chains, see Meyn and Tweedie (1993) and Chan and Geyer (1994).

In practice, the estimator f̂νn cannot be computed whenever µ or ν, or both,
is known only up to a normalization factor. In this case the estimator f̂νn
is divided by the sample average of the likelihood weights 1̂νn, so that the
normalization constants cancel and do not appear in the calculation. This
quotient will not be unbiased but will stay strongly consistent. Moreover by
using the above central limit theorem and the delta method [Ferguson (1996)],
it is obtained that if f�dµ/dν� and dµ/dν are both in L2�ν�, then

�2�3� √
n

(
f̂νn

1̂νn
−Eµf

)
→N(

0� sνµ�f�
)
�

where

�2�4� sνµ�f� �= vν
(
�f−Eµf�dµ/dν

)
�

The next result clarifies how a simulation distribution ν which appropriately
“covers” a family �µθ� θ ∈ �� could provide a reduction of the variance with
respect to more “physical” sampling schemes from each member of the family.

Proposition 2.1. Suppose that A is a constant such that

�2�5� dµθ
dν

�x� ≤ A for all x ∈ � and θ ∈ �
and that the samples are obtained from a reversible Markov chain �Xνn� having
the stationary distribution ν with a spectral gap ��Xν�. Then

�2�6� sνµθ�f� ≤
(

2A
��Xν�

)
σ2
µθ
�f�

for every f ∈ L2�µθ� and every θ ∈ �.

Remark. If f ∈ L2�ν�, then (2.5) implies that f ∈ L2�µθ� for every θ ∈ �.

Proof of Proposition 2.1. Fix θ ∈ � and f ∈ L2�µθ�. The bound (2.5)
implies that dµθ/dν and f dµθ/dν are both in L2�ν�, and that

�2�7� σ2
ν

((
f−Eµθf)dµθ

dν

)
≤ Aσ2

µθ
�f��

From the definition (2.4) and the inequality (2.2), sνθ�f� is bounded above by
the left-hand side of (2.7) times 2/��Xν�, from which (2.6) is immediately
obtained. ✷
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A simple application of this bound is the case of i.i.d. sampling from a
uniformly weighted mixture

ν = 1
D

(
µθ1

+ · + µθD
)
�

Clearly dµθi/dν ≤ D. Then (2.6) holds with A = D, and thus the D estimates
for Eµθi f obtained using nD i.i.d. samples from ν are at least as good as what
one gets by estimating Eµθi f using n i.i.d. samples from µθi independently for
each i = 1� � � � �D. In general, if the dynamic sampling scheme available for
ν is not too bad and if the importance sampling weights are not too big, then
importance sampling from ν via the ratio estimator f̂νn/1̂

ν
n is not much worse

than independent sampling from the “physical distribution” µθ (and could in
fact be much better than a slowly mixing Markov chain from it).

For another application, consider an exponential family of the type (1.4)
when the reference measure m is the counting measure on a discrete set. Let
M�h� be the number of sample points x whose “energy” H�x� is equal to h,
and let L be the number of values in the range of H. Define the probability
measure

ν��x�� = 1
LM�H�x�� �

That is, the probability is divided up equally among the L possible values of
the energy, and at each such value this probability is further divided up equally
among all x’s that share this particular energy value. This ν is the distribution
that is “uniform over energies” that was referred to in the Introduction. Since

M
(
H�x�)µθ��x�� = µθ{H =H�x�} ≤ 1

for every x, we see that (2.5) holds with A = L. The usual situation with
discrete spin systems is that ��� grows exponentially while L grows only poly-
nomially in the number N of sites.

In the following we will consider only reversible Markov chains. Our main
interest will be chains constructed by the Metropolis method, which is briefly
introduced below.

Suppose ν has a density p with respect to a reference measurem on �����
and let Q�x�dy� be a transition kernel such that the measure m�dx�Q�x�dy�
is symmetric. Also let α be a measurable function from �×� to �0�1�. We use
these to construct the following randomized algorithm: the transition kernel
Q “proposes” a move from x to y which is then “accepted” with probability
α�x�y�. This algorithm produces a Markov chain whose transition probability
kernel is

�2�8� P�x�dy� = α�x�y�Q�x�dy� +w�x�δx�dy��
where w�x� = 1 − ∫

α�x� z�Q�x�dz� is the probability of not accepting a pro-
posal from x. By construction, P is reversible with respect to ν if and only if

�2�9� p�x�α�x�y� = p�y�α�y�x� a.e.
[
ν�dx�Q�x�dy�]
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[Tierney (1998)]. When this holds we define the Dirichlet form

�2�10� E�g� = 1
2

∫
�×�

∣∣g�x� − g�y�∣∣2p�x�m�dx�P�x�dy�
for g ∈ L2�ν�. For kernels of the type (2.8), a popular choice for α is the
Metropolis kernel

�2�11� αMet�x�y� = min
{
p�y�/p�x��1}�

This is clearly maximal among all α’s satisfying (2.9), and it is known to be op-
timal in the sense that it minimizes asymptotic variances and maximizes the
spectral gap among all such α’s. This optimality follows from the maximality
of αMet and the following result.

Proposition 2.2. Let PA and PB be the transition kernels of two Markov
chains on � that are both reversible with respect to the same probability mea-
sure ν. Suppose also that PA�x�D \ �x�� ≤ PB�x�D \ �x�� for every x ∈ � and
every measurable set D. Then:

(i) For every f ∈ L2�ν�, the asymptotic variance vν�f� is smaller for the PB
chain than for the PA chain.

(ii) The spectral gap of the PB chain is greater than that of the PA chain.

Proposition 2.2(i) was originally proven by Peskun (1973) for finite state
spaces, and was extended to general state spaces by Caracciolo, Pelissetto and
Sokal (1990), Appendix, as well as by Tierney (1998). Part (ii) is also in Carac-
ciolo, Pelissetto and Sokal (1990), among other places, and is a consequence
of the following property that we shall need later. For chains Xν that are
reversible with respect to ν, it is well known that the spectral gap ��Xν� is
related to the Dirichlet form as follows:

�2�12� ��Xν� = inf
E�g�
σ2
ν �g�
�

where the inf is over all nonconstant functions g in L2�ν�. This is discussed
for example in Diaconis and Stroock (1991) for the case that � is finite; the
general case is very similar and is treated in the Appendix of Caracciolo,
Pelissetto and Sokal (1990).

For the remainder of this section we shall consider only Metropolis Markov
chains, that is, chains of the form (2.8) with the choice (2.11) for α. For such
chains, we can express the Dirichlet form (2.10) as

�2�13� E�g� = 1
2

∫
�×�

∣∣g�x� − g�y�∣∣2m�dx�min�p�y�� p�x��Q�x�dy��

It is useful to notice that the spectral gap for Metropolis chains does not
depend too sensitively on ν, as the following proposition shows.

Proposition 2.3. Let νi�dy� = pi�y�m�dy�, i = 1�2 be two probability dis-
tributions and let �Xν1n � and �Xν2n � be the corresponding stationary Metropolis
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Markov chains with kernels Pi�x�dy� [as defined in (2.8) and (2.11)] with the
same proposal kernel Q and p = pi, for i = 1�2. Assume

�2�14� a ≤ p1�x�
p2�x�

≤ b

for all x ∈ � such that p1�x� and p2�x� do not vanish simultaneously. Then

�2�15� ab−1��Xν2� ≤ ��Xν1� ≤ ba−1��Xν2��

Proof. Notice that L2�ν1� = L2�ν2� because of (2.14). LetEi be the Dirich-
let form for Pi. Then it is immediately seen from (2.13) that (2.14) implies

aE2�g� ≤ E1�g� ≤ bE2�g� for g in L2�ν1� = L2�ν2�.
The proposition is then a straightforward consequence of Lemma 3.3 in Dia-
conis and Saloff-Coste (1996). ✷

3. Example 1. The mean field Ising model. In this section we apply
the results of Section 2 to the simplest example of a spin system which ex-
hibits a phase transition and the corresponding slow mixing rate for local
dynamics. Ising models are introduced below; for more details, the reader can
consult Thompson (1972) or Ellis (1985). We will consider here a simulation
distribution which is uniform over energy levels.

The general Ising model represents N particles (magnets) which can have
either positive or negative spin xi ∈ �−1�+1�, i = 1� � � � �N. These particles sit
on the nodes of a graph, and each particle interacts with all of its neighbors.
In the mean field Ising model, the graph is the complete graph on N nodes
(i.e., every pair of nodes are neighbors). Thus every particle interacts equally
with every other particle. We will take N to be even, since this will simplify
the notation in the sequel. The energy of the configuration x = �x1� � � � � xN� ∈
�N = �−1�+1�N is given by

�3�1� HN�x� = − ∑
�i� j�
xixj −N/2 = −S2

N�x�/2�

where the sum is over all pairs �i� j�, and SN�x� =
∑N
i=1 xi is the total spin.

The corresponding Gibbs distribution µβ�N with inverse temperature β > 0
is defined by the probability masses

�3�2� pβ�N�x� =
exp

(−βN−1HN�x�
)

ZN�β�
� x ∈ �N�

where ZN�β� is the appropriate normalizing constant (“partition function”).
The total spin SN assumes even values not larger thanN in absolute value,

with probabilities

�3�3� ρβ�N�j� �= µβ�N�SN = j� =
(

N

�N+ j�/2
)

exp
(
βj2/�2N�)
ZN�β�

�
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We are interested in the asymptotic behavior of ρβ�N��sN�� as N→ ∞ for a
fixed s ∈ �−1�1�. By using Stirling’s formula it is easily obtained that

�3�4� ρβ�N��sN�� ∼
√

2
(
π�1 − s2�N)−1/2 exp

(
Niβ�s�

)
ZN�β�

�

where

�3�5� iβ�s� = log 2 + 2−1{βs2 − �1 − s� log�1 − s� − �1 + s� log�1 + s�}�
Moreover, since the number of values for the total spin is O�N�, it is easily
seen that

�3�6� lim
N→∞

N−1 logZN�β� = max
s∈�−1�1�

iβ�s��

We are thus led to the study of the function iβ. This is clearly symmetric
around zero with iβ�0� = log 2 and iβ�−1� = iβ�1� = β/2. Moreover the first
and second derivatives are

i′β�s� = βs− 2−1 log �1 + s�/�1 − s��
i′′β�s� = β− �1 − s2�−1�

Since i′′β�s� is always negative for β ≤ 1 (except for s = 0 when β = 1), the
function iβ is strictly concave and uniquely maximized at 0. This is not true
anymore for β > 1. In fact by equating i′β�a� to zero, it is obtained that

2βs = log
1 + s
1 − s�

that is, tanhβs = s. This equation always has 0 as a solution, but for β > 1
two other solutions appear, which we call s�β� and −s�β�. It is easily seen that
these are maximum points for iβ when β > 1, whereas 0 becomes a local
minimum point. This is an example of a phase transition with critical value
β = 1.

In particular, for β > 1 and s = 0 it is obtained from (3.4) and (3.6) that
balanced configurations became quite rare, that is,

�3�7� lim
N→∞

N−1 log ρβ�N�0� = iβ�0� − iβ
(
s�β�

)
�

where the right-hand side is strictly negative. For an explicit computation see
Thompson (1972).

Next consider the Metropolis dynamics associated to µβ�N where the under-
lying symmetric transition matrix is the single spin flip: Q�x�y� = N−1 if x
and y differ for a single spin and = 0 otherwise. First, we show that for β > 1
this chain is slowly mixing, since its spectral gap can be bounded from above
by a function which decreases exponentially in N. To do this, it is enough to
show the same property for the conductance [Sinclair (1993)]

�3�8� Cβ�N = min
A�µβ�N�A�≤1/2

∑
x∈A

∑
y∈Ac pβ�N�x�Pβ�N�x�y�
µβ�N�A�

�
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In fact, consider the set A = AN of all configurations that have positive total
spin. It is clear that A has probability tending to 1/2 from below, because of
(3.7). Moreover,

�3�9� ∑
x∈A

∑
σ∈Ac
pβ�N�x�Pβ�N�x�σ� = 2−1µβ�N�SN = 0� = 2−1ρβ�N�0��

Since ρβ�N�0� decays exponentially by (3.7), this establishes the promised re-
sult. In fact, this kind of argument applies to more general spin systems. On
the other hand, by using the Dobrushin criterion described below, it is easy to
prove that for β < 1 the spectral gap decays like O�N−1�.

From the above result and the discussion of Section 2, we conclude that
for any specified β > 1 there exists a function fN with σ2

β�N�fN� = 1 whose
asymptotic variance vµβ�N�fN� (corresponding to the Metropolis’ sampling
scheme described above) grows (at least) exponentially in N. We now pro-
ceed to exhibit a simulation distribution such that the asymptotic variance of
any such function cannot grow more than polynomially in N.

First we shall set some notation. Suppose that ν is a probability measure
on �N. For any x = �x1� � � � � xN� ∈ �N and any set A ⊂ �1� � � � �N�, let xA be
the configuration obtained by flipping the spins of x that lie in A (i.e., xi �= xAi
if and only if i ∈ A). For i = 1� � � � �N, let P�i��x� ·� be the heat bath (Gibbs
sampler) kernel on �−1�+1� for the update of the ith spin

P�i��x�y� = ν�y�
ν�x� + ν�xi�

∏
j �=i
δxj� yj �

Now let Xν�HB be the Markov chain obtained by applying the heat bath to a
randomly chosen site; in other words, it is the chain whose transition proba-
bility kernel is

�3�10� PN�x�dy� =
1
N

N∑
i=1

P�i��x�dy��

LetXν�Met be the Markov chain corresponding to the Metropolis scheme whose
proposals are randomly chosen single-site flips and equilibrium measure ν.

Now we let νN be the distribution “uniform over energy levels” described
in Section 2. By (3.1), values of HN correspond to values of SN, except for
ambiguity of sign; so for simplicity we shall modify the construction of Sec-
tion 2 slightly. LetM�h� be the number of configurations whose total spin SN
is equal to h and define the masses

νN�x� =
{
LNM�SN�x��

}−1
�

where LN = N + 1 is the number of values assumed by SN. As in Section 2,
we get

�3�11� dµβ�N

dν
�x� ≤N+ 1 for every β ≥ 0 and x ∈ �N.
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Moreover, M�s� = (
N

�N+s�/2
)
. Then the transition probability of the heat bath

chain XνN�HB is

PN�x� xi� =N−1
(
SN�x� +N+ 2

2�N+ 1� δ−1� xi +
N−SN�x� + 2

2�N+ 1� δ1� xi

)
�

We are now ready to prove the promised bound.

Theorem 3.1. Let νN be the probability measure which is uniform over
energy levels for the N-site mean field Ising model. Then

�3�12� �
(
XνN�Met) ≥ �(XνN�HB) ≥ 2

N�N+ 1� �

Therefore, for either the heat bath or Metropolis chain, the asymptotic variance
of the importance sampling estimator for Eµβ�Nf satisfies

�3�13� sνNµβ�N�f� ≤ �N+ 1�3σ2
µβ�N

�f� for every β ≥ 0 and every f.

Proof. The key to the proof is the classical Dobrushin’s criterion, which
gives a bound for a heat bath kernel PN with respect to some measure ν on
�N. Namely, let cN = supi

∑
j �=i cij, where

cij = sup
x

∣∣PN�x� xi� −PN�xj� xi� j�∣∣�
then

�3�14� ��XνN�HB� ≥ 1 − cN
N

(see Lemma A.1 in the Appendix).
In the case of the heat bath chain, it is easy to compute that the coefficient

cN satisfies

�3�15� cN ≤ �N− 1� sup
x� i� j

∣∣PN�x� xi� −PN�xj� xi� j�∣∣ = N− 1
N+ 1

�

Inserting the right-hand side of (3.15) back into (3.14), we obtain the right-
hand inequality of (3.12). The left-hand inequality of (3.12) is a consequence of
Proposition 2.2(ii), as was first observed by Peskun (1973). Now (3.13) follows
from (3.11), (3.12) and Proposition 2.1. ✷

We finally observe that an analogous theorem holds for the case where ν
is a finite mixture of fixed-temperature distributions µβ�N. The proof of this
result is more technical, so it is left to the Appendix.

Theorem 3.2. Let N be even. There exist positive numbers β̃Nk �k = 0� � � � �
N/2� such that the mixture

�3�16� µF�N =
(
N

2
+ 1

)−1 N/2∑
k=0

µβ̃Nk �N
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satisfies

�3�17� dµβ�N

dµF�N
≤ 1

2�N+ 2�2 for every β ≥ 0

and

�3�18� ��XµF�N�Met� ≥ 4�N+ 2�−4�

Therefore, for the Metropolis chain XµF�N�Met, the asymptotic variance of the
importance sampling estimator for Eµβ�Nf satisfies

s
µF�N
µβ�N �f� ≤ 1

4�N+ 2�6σ2
µβ�N

�f� for every β ≥ 0 and every f.

4. Simulated tempering and sampling from mixtures. Consider
again the problem of the computation of the expectation of some function f
with respect to D probability distributions µθi where µθi�dx� = pi�x�m�dx�,
for i = 1� � � � �D. From some symmetric transition kernel Q�x�dy� with re-
spect to m we can construct Metropolis’ algorithms for each of the µθi ’s, some
of which could be slowly mixing. We have already noticed that in order to
cover all the important parts of the sample space it is quite natural to take
simulations from a mixture ν = ∑D

i=1 aiµθi , for some roughly uniform choice of
the weights ai. A sampling process from ν can be obtained by the Metropolis
kernel Pmix defined by (2.8) and (2.11) with density

�4�1� p�x� ≡ pmix�x� =
d∑
i=1

aipi�x�

with respect to m. An alternative to importance sampling is offered by sim-
ulated tempering, a technique recently introduced by Marinari and Parisi
(1992). The idea behind simulated tempering is to augment the sample space
� by including a label variable taking values in the set of labels �1� � � � �D�
of the physical distributions µθi of interest. The overall probability is given
by its density φ with respect to the product of m and the counting measure,
which is taken to be

�4�2� φ�i� x� = aipi�x��
It is then obvious that the ai’s represent exactly the probabilities of the var-
ious labels and that the marginal distribution of the configuration variable
x is exactly the mixture pmix defined in (4.1). Next a Markov process on
� × �1� � � � �D� for sampling from φ is obtained in the following way. Given
the configuration x ∈ � at the kth stage of the process, a label is selected by
giving to i = 1� � � � �D the probabilities

�4�3� aipi�x�∑D
k=1 akpk�x�

= φ�i � x��

which are the conditional probabilities of the various labels given the config-
uration x, according to the joint distribution φ. Then a step of the Metropolis
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method is performed from the transition kernel Pi corresponding to the se-
lected value of i, producing the �k+ 1�th configuration.

It is quite clear that the choice (4.3) preserves the marginal distribution
of the labels and since the Metropolis step preserves the distribution over
the configurations conditional to label i (which is clearly µθi itself), the joint
distribution φ is preserved. Of course, (4.3) is not the only possible choice; but
it simplifies our analysis since the label selected at the kth step is not taken
into account for producing either the label or the configuration at step �k +
1�. By consequence the sequence of configurations produced by the sampling
process is by itself a Markov process, with transition probabilities given by

�4�4a� Pst�x�dy� = pst�x�y�Q�x�dy� + δx�dy�wst�x��
where

�4�4b� pst�x�y� =
∑D
k=1 akpk�x�min�pk�y�/pk�x��1�

p�x�
and where wst is obviously defined in order to make Pst�x� ·� a probability.
Here and in the following we will use p∗�x�y� to denote the density of a
transition probability kernel P∗�x� ·� with respect to Q�x� ·�.

Proposition 4.1. (i) For any x �= y� the transition densities with respect
to Q�x� ·� are related by

�4�5� pmix�x�y� ≥ pst�x�y��
from which the corresponding asymptotic variance forms satisfy

�4�6� vst�h� ≥ vmix�h� ∀h ∈ L2�ν��
(ii) Suppose that for all pairs of configurations x and y and labels i and j,

�4�7� �pi�x� − pi�y���pj�x� − pj�y�� ≥ 0�

Then Pmix = Pst.

Proof. It suffices to notice that, from its definition (4.4a), for x �= y the
transition density with respect to Q�x�dy� satisfies

pst�x�y� ≤ min�∑Dk=1 akpk�y��
∑D
k=1 akpk�x��

p�x� = min
{

1�
p�y�
p�x�

}
�

where the inequality is obtained by shifting the minimum out of the sum.
From the above, (4.5) is obtained. Under the additional assumption of (ii), it
is immediately obtained that

p�y�
p�x� ≥ 1 if and only if

pi�y�
pi�x�

≥ 1 for every i = 1� � � � �D�

meaning that the two algorithms will accept a move proposed by the transi-
tion Q only simultaneously. Thus the equality of the two kernels holds. The
assertion (4.6) follows from Proposition 2.2(i). ✷
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The condition of Proposition 4.1(ii), under which simulated tempering be-
comes equivalent to a direct Metropolis algorithm for the desired mixture, is
of course fulfilled whenever each pi is of the form pθi as given by (1.5) and
the θi’s all have the same sign.

Proposition 4.1 is formally restricted in scope, yet it is highly suggestive.
On the one hand, it is somewhat restricted because it only addresses a specific
implementation of simulated tempering. For example, Geyer and Thompson
(1995) updated the labels by Metropolis instead of heat bath; and Marinari and
Parisi (1992) did not use Metropolis to update the configurations for fixed θ.

On the other hand, the proposition is suggestive because it says that if we
are considering using such an implementation of simulated tempering, then
we cannot do worse by using importance sampling (via Metropolis) with a
distribution of the form

∑
i aipθi , and perhaps we can do much better with

an importance sampling distribution of some other form (e.g., the distribution
that is “uniform over energies” introduced before). In practice, even when a
theoretical analysis is difficult, distributions of this kind are something to aim
for.

It may also seem that the above proposition proves that the specified im-
plementation of simulated tempering can have no advantage as a sampling
process. This is not necessarily true, because it must be taken into account
that in order to fit our analysis into the scheme discussed before, we are not
allowed to use the samples from the label process in the estimator. But in
principle these can carry additional information. In order to appreciate this
point, let us imagine that we need to compute Eµθ1f. If �Xνi� Ii� is the output
of the simulated tempering process, then our recipe to estimate Eµθ1f is to
use f̂n = f̂νn/1̂νn, where

�4�8� f̂νn = n−1
n∑
i=1

f�Xνi�
p1�Xνi�∑D

k=1 akpk�Xνi�
�

However, there is another natural asymptotically unbiased estimator which
makes use of the label process, which is f̃n = f̃1

n/1̃
1
n, where

�4�9� f̃1
n = n−1

n∑
i=1

f�Xνi�a−1
1 δIi�1�

which is the average of f over the samples labeled 1. Notice by a direct inspec-
tion that (4.8) is obtained by taking the conditional expectation of each sum-
mand in (4.9) with respect to the current configuration Xνi� i = 1� � � � � n. This
Rao–Blackwellization technique [Arnold (1993)] certainly reduces the var-
iance in the i.i.d. case, since then

�4�10� f̂νn = E
(
f̃1
n �Xνi� i = 1� � � � � n

)
�

But this is not true anymore when the sampling scheme for the configurations
is Markovian [for a particular situation in which this continues to hold, see
Liu, Wong and Kong (1994)].
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Another open question concerns the choice of the weights ai, i = 1� � � � �D.
The choice of equal weights is not necessarily optimal: in fact, some of the
θi’s could have been added only in order to speed up the simulated tempering
process. On the other hand a direct minimization of the asymptotic variance
of (4.8) with respect to the weights seems completely unfeasible. Even if the
optimal weights were known, the fact that the densities pθi are known only
up to normalization constants makes the implementation of both simulated
tempering and direct Metropolis from the mixture technically impossible. It is
easy to see that at least the ratios between these normalization constants need
to be known. But in many applications, the problem of interest is precisely
the evaluation of these ratios. This is true in statistical physics as well as
in statistics [e.g., Bennett (1976), Meng and Wong (1996)]. It is however easy
to get first estimates for these quantities through a preliminary sampling
process. More precisely, observe that if pk�x� = hk�x�/Zk, for k = 1� � � � �D, the
Zk’s being unknown, we are forced to choose ak = P�I1 = k� to be proportional
to ckZk for some choice of the positive constants ck, k = 1� � � � �D. This means
that strongly consistent estimators of Zk/Zj are given by

�4�11�
∑n
i=1

(
hk�Xi�/

∑D
l=1 clhl�Xi�

)
∑n
i=1

(
hj�Xi�/

∑D
l=1 clhl�Xi�

)
if Metropolis sampling from the marginal mixture distribution Pmix is used, or

�4�12� cj
∑n
i=1 δIi� k

ck
∑n
i=1 δIi� j

if simulated tempering Pst is used.
By Proposition 2.3 it is not so important for these estimates to be very

precise. A more elegant approach would be to estimate such constants on the
same sample we are using for the estimation of the desired expected values.
The theory of recursive stochastic algorithms [Duflo (1996)] seems an indis-
pensable tool for this purpose.

Likewise, if one is working with importance sampling from a general dis-
tribution, one can start from an initial guess and then adjust the distribution
itself during preliminary runs so as to get some desired property, such as a
uniform histogram of energies [see Valleau (1991) and Janse van Rensburg
and Madras (1997)].

Finally, we remark that there are closely related methods which do not
require knowledge of the normalizing constants of the pθi ’s. Geyer (1991) pro-
posed running a chain at each θi and trying to swap states of different chains.
Another approach is Neal (1996).

5. Example 2. The witch’s hat. In this section we examine the perfor-
mance of mixture sampling for the “witch’s hat” distribution, following the
implementation of Geyer and Thompson (1995).

The target density is a mixture of the uniform distribution on the unit
d-dimensional hypercube �0�1�d and the uniform distribution on a smaller
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hypercube �0� α0�d, with weights such that this latter hypercube has proba-
bility α0. The probability α0 of this subcube is much larger than its volume
αd0 , and this slows down the convergence of the Gibbs’ sampler and similar
single-coordinate Markov chain updating schemes. For example, for the case
considered by Geyer and Thompson (α0 = 1/3 and d = 30), the mixing time of
the Metropolis algorithm (with uniform choice of the variable to be updated
and its value) is at least 329 ! 7 × 1012 (see next paragraph).

For α in �0�1�, let u�·�α� be the uniform density (with respect to Lebesgue
measure) on �0� α�d and let

�5�1� r�·�α� = α− α
d

1 − αd u�·�α� +
1 − α
1 − αdu�·�1�

be the family of possible target or interpolating densities. Notice that �0� α�d
has probability α under r�·�α�. Our choice for the proposal kernel in the
Metropolis algorithm is to let Q�x�dy� be the uniform distribution on the
points of the hypercube �0�1�d that differ from x in exactly one coordinate.
We now show that if α < 1 and d is large, then the Metropolis algorithm for
r�·�α� is slowly mixing. By (2.12), the spectral gap is the infimum of

�5�2�
∫ ∫ (
f�x� − f�y�)2 min

{
r�x�α�� r�y�α�}Q�x�dy�m�dx�

2σ2
r�·�α��f�

over all nonconstant square integrable functions on �0�1�d [recall that σ2
q�f� is

the variance of f�X� whenX is distributed according to the density q]. Taking
f to be the indicator function of �0� α�d, we see that σ2

r�·�α��f� = α�1 − α�, and
the numerator of (5.2) equals

∫
x∈�0� α�d

∫
y/∈�0� α�d

1 − α
1 − αdQ�x�dy�m�dx� =

αd�1 − α�2

1 − αd ≤ αd�1 − α��

Therefore the spectral gap is bounded above by 2αd−1. So, for fixed α, the
Metropolis algorithm applied directly to r�·�α� is exponentially slow in d.

Next choose an integer D > 1, and define the constants αi = α1−i/D
0 , for

i = 0� � � � �D, and the mixture density

�5�3� pmix�x� =
1
D+ 1

D∑
i=0

r�x�αi��

As viewed by Geyer and Thompson (1995), r�·�α0� is the target density, r�·�αD�
= r�·�1� is the “hot” distribution (uniform on �0�1�d in our case, which permits
rapid mixing) and the r�·�αi�’s are the interpolating densities. The crucial step
for our analysis is to rewrite pmix as a new mixture

�5�4� pmix�x� =
D∑
i=0

bipi�x��
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with pi�x� = u�x�αi� (i = 0� � � � �D),

bi =
αi − αdi

�D+ 1��1 − αd� � i = 0� � � � �D− 1

and bD = 1 −∑D−1
j=0 bi.

We shall write �mix for the spectral gap for the Metropolis algorithm for
pmix, with proposal kernel Q. To bound �mix we use the following result, due
to Madras and Randall (1999).

Proposition 5.1. Let p0� � � � � pD be probability densities (with respect to a
common reference measure m) and let b0� � � � � bD be positive numbers that add
up to 1. Define the mixture density

�5�5� pmix =
D∑
j=0

bjpj�

Let Q�x�dy� be a proposal kernel symmetric with respect to m. Let �j (respec-
tively, �mix) be the spectral gap of the Metropolis chain for pj (respectively,
pmix) whose proposal chain is Q. Finally, assume that neighboring pj’s have
some “overlap”: that is, assume

�5�6�
∫

min
{
pj�x�� pj+1�x�

}
dx ≥ δ� j = 0� � � � �D− 1

for some δ > 0. Then

�5�7� �mix ≥
δ

2D
min
j=0� ����D

bj�j�

In order to apply Proposition 5.1 to our case, observe first that

�5�8� 1
D+ 1

≥ bi ≥
αi

�D+ 1��1 + αi�
≥ α0

�D+ 1��1 + α0�
� i = 0� � � � �D− 1

and bD ≥ 1/�D+ 1� [by the leftmost inequality in (5.8)]. Therefore

�5�9� min�b0� � � � � bD� ≥
α0

�1 + α0��D+ 1� �

We now check the “overlap” condition: for j = 0� � � � �D− 1,

�5�10�

∫
min�pj�x�� pj+1�x��dx =

∫
�0� αj�d

pj+1�x�dx

= αdj

αdj+1

= αd/D0 �

Now we must compute the spectral gap �i for the Metropolis algorithm
sampling from pi with the proposal kernel Q above. We claim that

�5�11� �i = αi�D = αi
d
� i = 0� � � � �D�
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The first equality of (5.11) is a consequence of pi�x� = pD�x/αi�. For the
second equality, we shall now prove that �D = 1/d.

Let us write the proposal operator as Q = �∑dk=1Rk�/d, where for each
k = 1� � � � � d, we define the operator Rk on L2��0�1�d� by

Rkf�a1� � � � � ad� =
∫ 1

0
f�a1� � � � � ak−1� xk� ak+1� � � � � ad�dxk�

By definition, �D is the spectral gap of the operator Q on L2��0�1�d�. Let Vk
be the set of functions in L2��0�1�d� with the property that f�x1� � � � � xd� does
not depend on xk. It is easy to see that f is in Vk if and only if Rkf = f;
in fact, Rk is the operator of orthogonal projection onto Vk. Next, for each
S ⊂ �1� � � � � d�, define

US =
(⋂
i∈S
Vi

)
∩
(⋂
i/∈S
V⊥
i

)

In particular U�1� ���� d� is the set of constant functions. Notice that if f ∈ US,
then Rif = f for every i ∈ S, and Rif = 0 for every other i; hence Qf =
��S�/d�f. Since the US’s are mutually orthogonal subspaces whose direct sum
is all of L2, we have completely determined the spectrum of Q, and it follows
that �D = 1/d.

Inserting (5.9), (5.10) and (5.11) into the bound of Proposition 5.1, we get
that the spectral gap �mix for the Metropolis sampler from pmix has a lower
bound

�mix ≥
α
�d/D�+2
0

2dD�D+ 1��1 + α0�
�

The last step is to apply Proposition 2.1, plugging �mix into the estimate (2.6)
with A = D+ 1, this time using the representation of pmix as a mixture with
uniform weights. The result is summarized in the following theorem.

Theorem 5.1. Let pmix be the probability distribution defined by (5.3),
and let f be any function in L2��0�1�d�. Then the asymptotic variance of the
Metropolis importance sampling estimator for Er�·�α0�f satisfies

s
pmix
r�·�α0��f� ≤

4dD�D+ 1�2�1 + α0�
α
�d/D�+2
0

σ2
r�·�α0��f��

Thus, if the number of distributions D is of the order of d, then we need
O�dD2� steps of our chain [i.e., O�D2� sweeps through the d coordinates]
to get an “independent observation” from pmix; therefore we need O�dD3�
steps (or O�D3� sweeps) to get an “independent observation” from the target
distribution r�·�α0�.
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APPENDIX

In this Appendix, we give proofs of two technical results. The first of these,
Dobrushin’s criterion, is well known in various forms. Our presentation here is
motivated by completeness as well as by our inability to find it in the literature
expressed in the precise form that we need.

Lemma A.1 (Dobrushin’s criterion). Consider a heat bath Markov operator
PN on �N = �−1�+1�N. Define cij = supx∈�N �PN�x� xi� − PN�xj� xi� j�� for
i �= j, and let cN = supi

∑
j �=i cij. Then

�A�1� ��Xν�HB� ≥ 1 − cN
N
�

Proof. For any index j and function f on �N, define

δj�f� �= sup
x∈�N

∣∣f�x� − f�xj�∣∣�
It is then not hard to show [e.g., equations (4.3)–(4.5) of Gross (1979)] that

�A�2� δj�P�i�f� ≤
{
δj�f� + cijδi�f�� if j �= i,
0� if j = i.

Next, on the subspace of L2�ν� of functions having zero mean, define the norm

���f��� = ∑
j

δj�f��

By summing (A.2) over j, we get

���P�i�f��� = ∑
j

δj�P�i�f� ≤ ∑
j �=i

{
δj�f� + cijδi�f�

}
and summing this over i yields

���Pf��� ≤ 1
N

∑
i� j� i�=j

{
δj�f� + cijδi�f�

} ≤ (
1 − 1 − cN

N

)
���f����

Since the heat bath dynamics is irreducible and reversible, the spectral gap
equals 1 − λ2, where λ2 is the second largest eigenvalue of P. By taking f to
be the corresponding eigenvector, we immediately get (A.1). ✷

Remark. By suitably generalizing the definition of cij, Lemma A.1 extends
to Gibbs sampler dynamics for much more general multivariate state spaces.
See, for example, Gross (1979).

Proof of Theorem 3.2. Our goal is to make the induced distribution of
energy levels

PF�N�SN = 2i−N� = PF�N�SN =N− 2i� =� ρF�N�i�� i =N/2� � � � �N



1222 N. MADRAS AND M. PICCIONI

as close as needed to a uniform distribution. Note that

ρβ�N�i+ 1�
ρβ�N�i�

=
(
N
i+1

)
(
N
i

) exp
(
β

2N

(�2i+ 2 −N�2 − �2i−N�2))

= N− i
i+ 1

exp
(

2β
N

�2i−N+ 1�
)

for any i ∈ �N/2� � � � �N−1�. By using some simple algebra it is easily obtained
that for i =N/2� � � � �N− 1,

�A�3� ρβ�N�i+ 1� ≤ ρβ�N�i� if and only if β ≤ βNi+1�

where we have defined

βNi+1 �=
N

2�2i−N+ 1� log
i+ 1
N− i �

Next, we claim that βNi is increasing in i = N/2 + 1� � � � �N. Set A �=
1 +N−1, and define the function

b�r� �= 1
2�2r−A� log

r

A− r for r ∈ �A/2�A�.

Note that b�i/N� = βNi for i =N/2 + 1� � � � �N. Next for D > C > 0�

logD− logC < 2−1�D−C�
(

1
D

+ 1
C

)
�

which follows from convexity: the left-hand side is the area below the curve
y = 1/x over the interval �C�D�, whereas the right-hand side is the area below
the line joining the endpoints �C�1/C� and �D�1/D�. Now let us differentiate
the function b�r� and apply this last inequality with D = r and C = A− r to
obtain

b′�r� = −1
�2r−A�2

log
r

A− r +
1

2�2r−A�
(

1
r
+ 1
A− r

)
> 0

for A/2 < r < A. This proves the claim.
Now define βNN/2 = 0 and βNN+1 = +∞. Suppose that i ∈ �N/2� � � � �N� and

βNi ≤ β ≤ βNi+1. Then it follows from the claim of the preceding paragraph and
from (A.3) that ρβ�N�j� is decreasing in j for i ≤ j ≤ N and increasing in j
for N/2 ≤ j ≤ i. In particular, the maximum occurs at j = i, and so

�A�4� ρβ�N�i� ≥
1

N+ 1
�
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Next, for k = 0� � � � �N/2, choose β̃Nk to be any point belonging to the interval
�βNN/2+k� βNN/2+k+1�. Then for i =N/2� � � � �N, we have because of (A.4)

�A�5� ρF�N�i� ≥
1

�N/2 + 1�ρβ̃Ni−N/2�i� ≥
1

�N/2 + 1��N+ 1� �

Now we consider the ratio of probability masses of the mixture µF�N de-
fined by (3.16) and the measure νN uniform over energies from Theorem 3.1.
Because of (A.5) we see that

�A�6� µF�N��x��
νN��x��

= �N+ 1�ρF�N
(
N+SN�x�

2

)
∈
[

1
�N/2� + 1

�N+ 1
]
�

Now (3.17) follows from (A.6) and (3.11). Also, (A.6) allows us to apply Propo-
sition 2.3 (with a = �N/2+1�−1 and b =N+1) and use Theorem 3.1 to obtain
(3.18). The final assertion of the theorem follows immmediately from (3.18)
and Proposition 2.1. ✷
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