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POSITIVE CORRELATIONS IN THE FUZZY POTTS MODEL1

By Olle Häggström

Chalmers University of Technology

The fuzzy Potts model arises by taking the q-state Potts model, then
identifying r of the Potts spins with the fuzzy spin 0, and the remaining
q− r Potts spins with the fuzzy spin 1. Here we extend a result of Chayes
by showing that the fuzzy Potts model has positive correlations. We also
give an application to the percolation-theoretic behavior of the Potts model
on Z2.

1. Introduction. The q-state Potts model on a finite graph G = �V�E�
is a random assignment of �1� � � � � q�-valued spins to the vertices of G. The
Gibbs measure πG

q�β for the q-state Potts model on G at inverse temperature
β ≥ 0 is the measure on �1� � � � � q�V which to each ξ ∈ �1� � � � � q�V assigns
probability

πG
q�β�ξ� =

1

ZG
q�β

exp
(

2β
∑

	x�y
∈E
I�ξ�x�=ξ�y��

)
�(1)

Here 	x�y
 denotes the edge connecting x� y ∈ V, IA is the indicator function
of the event A, and ZG

q�β is a normalizing constant making πG
q�β a probability

measure. This model is much studied in probability theory and statistical
mechanics; see, for example, [9], [12], [10] and the references therein. The
case q = 1 is clearly trivial, so we will assume that q ≥ 2. The case q = 2 is
known as the Ising model.

The �r + s�-state fuzzy Potts model is obtained by taking the q-state Potts
model with q = r + s, then identifying r of the Potts spins with a single
fuzzy spin denoted 0, and the remaining s Potts spins with another fuzzy spin
denoted 1. A more precise description is as follows. Fix β ≥ 0 and integers r�
s ≥ 1, set q = r+s and pick a �1� � � � � q�V-valued random object X according to
the Gibbs measure πG

q�β. Then take Y to be the �0�1�V-valued random object
obtained from X by setting

Y�x� =
{

0� if X�x� ∈ �1� � � � � r��
1� if X�x� ∈ �r+ 1� � � � � q�

(2)

for each x ∈ V. We write µGr� s�β for the induced probability measure on �0�1�V
and call it the fuzzy Potts measure with parameters r, s and β.

Maes and Vande Velde [14] studied properties of the fuzzy Potts model
related to nongibbsianness and renormalization group pathologies (see, e.g.,
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[17] for a survey of that area). The fuzzy Potts model is also one of the sim-
plest and most natural examples of a hidden Markov random field (see [13])
and may serve as a testing ground for such systems. Hidden Markov random
fields have become popular, for example, in statistical image analysis, and it
is obviously of some importance to investigate what properties are implicitly
assumed through a specific model choice.

The main result of this paper (Theorem 1.3 below) is that the fuzzy Potts
model exhibits the fundamental property of positive correlations, also known
as the FKG property. To state the result precisely, we need a few more def-
initions. For any finite set T, let � denote the usual coordinatewise partial
order on �0�1�T, that is, for ξ� η ∈ �0�1�T we have ξ � η iff ξ�x� ≤ η�x� for
all x ∈ T. A fuction f� �0�1�T → R is said to be increasing if f�ξ� ≤ f�η�
whenever ξ � η.

Definition 1.1. A probability measure µ on �0�1�T is said to have positive
correlations if ∫

fgdµ ≥
∫
fdµ

∫
gdµ

for all increasing f and g.

Let Y be a �0�1�T-valued random object with distribution µ.

Definition 1.2. A probability measure µ on �0�1�T is said to be monotone
if for all x ∈ T and all ξ�η ∈ �0�1�T\�x� such that ξ � η we have

µ
(
Y�x� = 1 � Y�T \ �x�� = ξ

) ≤ µ
(
Y�x� = 1 � Y�T \ �x�� = η

)
�

It is well known that µ has positive correlations if it is monotone and assigns
positive probability to all elements of �0�1�T. This is essentially the FKG
inequality; see, for example, [10] for a formulation (and a proof) which fits the
present situation. We are now ready for the main result.

Theorem 1.3. For any finite graph G, any β ≥ 0 and any integers r� s ≥ 1�
we have that the fuzzy Potts measure µGr� s�β is monotone. In particular, µGr� s�β
has positive correlations.

The Ising case r = s = 1 goes back to Fortuin, Kasteleyn and Ginibre [7].
Chayes [2] extended this to r = 1 and arbitrary s. Our proof for arbitrary
r and s is a refinement of Chayes’ method, which involves the use of the
Fortuin–Kasteleyn random-cluster representation [6] of the Potts model.

To argue that our result is not a trivial consequence of that of Chayes,
we note that there exist q-state models with the property that identifying
one of the states with 0 and the remaining q− 1 states with 1 gives positive
correlations, while identifying r ∈ �2� � � � � q − 2� of the states with 0 and
the others with 1 does not. To see this, consider the probability measure ν on
� = �North�East�South�West�2 which is simply uniform distribution over the
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subset of � obtained by disallowing configurations in which North sits next to
South or East sits next to West. For a subset S of �North�East�South�West�,
let µS be the probability measure on �0�1�2 obtained from ν by identifying
states in S with 0 and the others with 1. It is easy to check that µS has
positive correlations if S consists of a single spin, but not if S = �East�West�.

The proof of Theorem 1.3 is given in the next section. In Section 3, we apply
the result to obtain some conclusions about the percolation-theoretic behavior
of the Potts model on the square lattice Z2.

2. Proof of main result. A key ingredient in our proof of Theorem 1.3
is the use of the Fortuin–Kasteleyn random-cluster model, which has turned
out in the past decade to be an immensely useful tool for studying the Potts
model. The random-cluster model involves a random assignment of 0’s and 1’s
to the edges of G. The value 0 (resp., 1) is interpreted as the absence (resp.,
presence) of an edge. For p ∈ �0�1�� q > 0 and a finite graph G = �V�E�, the
random-cluster measure φG

p�q for G with parameters p and q is the probability
measure on �0�1�E which to each ζ ∈ �0�1�E assigns probability

qk�ζ�

ẐG
p�q

∏
e∈E

pζ�e��1 − p�1−ζ�e��

where ẐG
p�q is a normalizing constant, and k�ζ� is the number of connected

components (including isolated vertices) in the subgraph of G corresponding
to ζ.

The relation between random-cluster and Potts models is best understood in
terms of the following coupling P′, which was implicit in the work of Swendsen
and Wang [15] and made explicit by Edwards and Sokal [5]. Fix β ≥ 0 and an
integer q ≥ 2, and set p = 1− e−2β. Let P be the product probability measure
on �1� � � � � q�V × �0�1�E corresponding to letting each vertex independently
pick its spin uniformly from �1� � � � � q�, and each edge independently take
value 0 or 1 with respective probabilities 1 − p and p. Let A be the event
that each edge 	x�y
 linking two vertices with different spins, takes value
0. Finally, let P′ be the probability measure on �1� � � � � q�V × �0�1�E which
arises by conditioning P on the event A. Then the spin marginal of P′ equals
πG
q�β, and the edge marginal equals φG

p�q. This follows from a direct counting
argument.

Consequently, a spin configuration X ∈ �1� � � � � q�V distributed according
to the Gibbs measure πG

q�β can be obtained as follows. First pick an edge
configuration W ∈ �0�1�E according to the random-cluster measure φG

p�q, and
then obtain X from W by assigning independent spins, uniformly distributed
on �1� � � � � q�, to the connected components of Y.

Warmup. We are now ready for a simple proof that the fuzzy Potts measure
µGr� s�β has positive correlations for the special case where f and g are the fuzzy
spins of two given vertices x� y ∈ V; that is, f�η� = η�x� and g�η� = η�y� for
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all η ∈ �0�1�V. By the symmetry between different spin values in the Potts
model, we have ∫

fdµGr� s�β = πG
q�β

(
X�x� ∈ �r+ 1� � � � � q�) = s

q

and similarly for g, so that

∫
fdµGr� s�β

∫
gdµGr� s�β =

(
s

q

)2

�

To calculate
∫
fgdµGr� s�β, we take the configuration of Potts spins to be gen-

erated from the random-cluster model according to the procedure described
above. Let α be the φG

p�q-probability that x and y are in the same connected
component. Then∫

fgdµGr� s�β = πG
q�β

(
X�x� ∈ �r+ 1� � � � � q��X�y� ∈ �r+ 1� � � � � q�)

= α
s

q
+ �1 − α�

(
s

q

)2

and since α�s/q� + �1 − α��s/q�2 ≥ �s/q�2 we have the desired correlation
inequality. ✷

We now proceed with the more involved task of proving the full statement
of Theorem 1.3. What we need to show is that for x ∈ V and η� η′ ∈ �0�1�V\�x�

such that η � η′, we have

µGr� s�β
(
Y�x� = 1 �Y�V \ �x�� = η

)
≤ µGr� s�β

(
Y�x� = 1 � Y�V \ �x�� = η′)�(3)

By considering a sequence η = η1 � η2 � · · · � ηn = η′ such that, for each
i ∈ �1� � � � � n− 1�, ηi and ηi+1 differ only at a single vertex, we have reduced
the problem to showing that (3) holds for all η � η′ which differ only at a single
vertex y ∈ V. This is the same as saying that Y�x� and Y�y� are conditionally
positively correlated given Y�V \ �x�y��. Hence Theorem 1.3 follows once the
following proposition has been established.

Proposition 2.1. For any x� y ∈ V and any η ∈ �0�1�V\�x�y�, we have

µGr� s�β
(
Y�x� = 1�Y�y� = 1 � Y�V \ �x�y�� = η

)
≥ µGr� s�β

(
Y�x� = 1 � Y�V \ �x�y�� = η

)
×µGr� s�β

(
Y�y� = 1 � Y�V \ �x�y�� = η

)
�

Proof. Fix x, y and η as in the proposition, and set V0 = �z ∈ V \
�x�y�� η�z� = 0� and V1 = �z ∈ V \ �x�y�� η�z� = 1�. Let B be the event that
X�z� ∈ �1� � � � � r� for all z ∈ V0 and X�z� ∈ �r+1� � � � � q� for all z ∈ V1. Let P′′

be the probability measure on �1� � � � � q�V × �0�1�E obtained by conditioning
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P′ on the event B. The spin marginal of P′′ (i.e., the projection of P′′ on
�1� � � � � q�V) is then equal to the measure π ′′ obtained by conditioning πG

q�β on
B. Note that the assertion of the proposition is the same as saying that

π ′′(X�x� ∈ �r+ 1� � � � � q��X�y� ∈ �r+ 1� � � � � q�)
≥ π ′′(X�x� ∈ �r+ 1� � � � � q�)π ′′(X�y� ∈ �r+ 1� � � � � q�)�(4)

so this is what we proceed to show. We consider separately the cases when x
and y are linked by an edge in G (Case 2) and when they are not (Case 1).

Consider first Case 1. Upon noting that P′′ alternatively can be described
as P conditioned on the event �A ∩B�, we can calculate the projection φ′′ of
P′′ on �0�1�E by counting, for each ζ ∈ �0�1�E, the number of elements of
�1� � � � � q�V that ζ can be paired with to produce a spin-edge configuration in
�A ∩B�. We get that φ′′, to each ζ ∈ �0�1�E, assigns probability

φ′′�ζ� = 1
Z′′ r

k0�ζ�sk1�ζ�qkx�ζ�+ky�ζ�ID
∏
e∈E

pζ�e��1 − p�1−ζ�e��(5)

Here Z′′ is a normalizing constant, k0�ζ� [resp., k1�ζ�] is the number of con-
nected components intersecting V0 (resp., V1), kx�ζ� is 1 if x is in a singleton
connected component and 0 otherwise, ky�ζ� is defined analogously, and D is
the event that no connected component in ζ intersects both V0 and V1.

The coupling P′′ shows that a spin configuration X ∈ �1� � � � � q�V with
distribution π ′′ can be obtained as follows. First pick an edge configuration
W ∈ �0�1�E according to φ′′, and then obtain X from W by assigning inde-
pendent spins to the connected components of W, in such a way that the spin
of a connected component � is taken according to uniform distribution on

�1� � � � � r�� if � intersects V0�

�r+ 1� � � � � q�� if � intersects V1�

�1� � � � � q�� if � is a singleton vertex x or y.

Next, define the function fx� �0�1�E → R as

fx�ζ� =




0� if �x intersects V0�

s

q
� if �x is a singleton�

1� otherwise,

where �x is the connected component of ζ containing x. Define fy analogously.
The significance of fx and fy is that fx�W� is the conditional probability that
X�x� ∈ �r+ 1� � � � � q� given W, and similarly for fy�W�.

We claim that the events X�x� ∈ �r + 1� � � � � q� and X�y� ∈ �r + 1� � � � � q�
are conditionally independent given W. To see this, suppose first that fx�W� =
fy�W� = s/r. Then x and y have to be in different connected components of
W, implying the asserted conditional independence. Otherwise at least one of
fx�W� and fy�W� is equal to 0 or 1, in which case the conditional independence
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is automatic. The left-hand side of (4) therefore equals
∫
fxfy dφ

′′. Since the
right-hand side equals

∫
fx dφ

′′ ∫ fy dφ′′, we are done with Case 1 if we can
show that

∫
fxfy dφ

′′ ≥
∫
fx dφ

′′
∫
fy dφ

′′�(6)

To this end, let us investigate the single-edge conditional probabilities in
φ′′. Partition E into seven sets E0, E1, E01, E0x, E0y, E1x, E1y as follows.
E0 (resp., E1) is the set of edges connecting two vertices in V0 (resp., V1).
E01 is the set of edges with one endpoint in V0 and the other in V1. E0x
contains those edges which have x as one endpoint and the other in V0, and
E0y, E1x, E1y are defined analogously. Since all edges in E01 are absent with
π ′′-probability 1, we view φ′′ as a probability measure on �0�1�E\E01 rather
than on �0�1�E. A direct application of (5) gives the single-edge conditional
probabilities,

φ′′�W�e� = 1 �W(
E \ �e�� = ζ

)

=



p� if there is a path in ζ between the

endpoints of e�
p

p+ �1 − p�r� otherwise�

if e ∈ E0;

φ′′(W�e� = 1 �W�E \ �e�� = ζ
)

=



p� if there is a path in ζ between the

endpoints of e�
p

p+ �1 − p�s� otherwise�

if e ∈ E1;

φ′′(W�e� = 1 �W�E \ �e�� = ζ
)

=




p� if there is a path in ζ between the
endpoints of e,

p

p+ �1 − p�r� if no such path exists, but some
e′ ∈ E0x \ �e� is present in ζ�

p

p+ �1 − p�q� if x is a singleton in ζ�

0� if some e′ ∈ E1x is present in ζ�
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if e ∈ E0x;

φ′′(W�e� = 1 �W�E \ �e�� = ζ
)

=




p� if there is a path in ζ between the
endpoints of e�

p

p+ �1 − p�s� if no such path exists, but some
e′ ∈ E1x \ �e� is present in ζ�

p

p+ �1 − p�q� if x is a singleton in ζ�

0� if some e′ ∈ E0x is present in ζ�

if e ∈ E1x; and similarly for e ∈ E0y and e ∈ E1y.
We see that φ′′ is far from being monotone in the sense of Definition 1.2.

However, an inspection of the above single-edge conditional probabilities show
that these have the following monotonicity-like property. For e ∈ �E0 ∪E0x ∪
E0y� the conditional probability φ′′�W�e� = 1 � W�E \ �e�� = ζ� increases as
edges in �E0 ∪E0x∪E0y� are added and edges in �E1 ∪E1x∪E1y� are deleted,
whereas for e ∈ �E1∪E1x∪E1y�, the same conditional probability increases as
edges in �E1 ∪E1x∪E1y� are added and edges in �E0 ∪E0x∪E0y� are deleted.
This means that if we define the auxiliary �0�1�E\E01 -valued random object
W̃ by setting

W̃�e� =
{

1 −W�e�� for e ∈ E0 ∪E0x ∪E0y�

W�e�� for e ∈ E1 ∪E1x ∪E1y�

and write φ̃′′ for the distribution of W̃, then φ̃′′ is monotone in the sense of
Definition 1.2. We wish to apply the FKG inequality to deduce that φ̃′′ has
positive correlations. Some care is needed, because φ̃′′ does not assign pos-
itive probability to all ζ ∈ �0�1�E\E01 . On the other hand, φ̃′′ is irreducible
in the sense that for any ζ� ζ ′ ∈ �0�1�E\E01 , we can move from ζ to ζ ′ via
successive single-edge flips without passing through configurations with zero
φ̃′′-probability. This property is in fact enough, in conjunction with monotonic-
ity, to be able to apply the FKG inequality (see [10]). Hence φ̃′′ has positive
correlations.

To conclude Case 1, note that fx�W� and fy�W� are increasing functions of
the auxiliary configuration W̃, so that the positive correlations property of φ̃′′

implies (6).
We continue with Case 2, where x and y are linked by an edge 	x�y
 in G. If

	x�y
 is removed from G, then we are back in Case 1, where we have already



1156 O. HÄGGSTRÖM

established (4), which may be rewritten as∑
ξ∈B

ξ�x�∈�r+1�����q�� ξ�y�∈�r+1�����q�

πG
q�β�ξ�

∑
ξ∈B

ξ�x�∈�1�����r�� ξ�y�∈�1�����r�

πG
q�β�ξ�

≥ ∑
ξ∈B

ξ�x�∈�r+1�����q�� ξ�y�∈�1�����r�

πG
q�β�ξ�

∑
ξ∈B

ξ�x�∈�1�����r�� ξ�y�∈�1+r�����q�

πG
q�β�ξ��

(7)

Reinserting the edge 	x�y
 into G has two effects on the above expressions.
First, the normalizing constant in µGr� s�β changes, but this has no influence on
the inequality due to cancellation. Second, µGr� s�β�ξ� is multiplied with exp�2β�
for all ξ such that ξ�x� = ξ�y�. However, all such ξ appear on the left-hand
side of (7), so the inequality remains, and Case 2 is taken care of. ✷

This concludes the proof of Theorem 1.3. The result (and the proof) goes
through in the somewhat greater generality where the interaction in the un-
derlying Potts model may be of different strength at different edges; this
amounts to having a positive constant Jxy in each term of the sum in (1).
The corresponding random-cluster representation then has different values of
p for different edges. In fact, Chayes [2] formulated his proof for r = 1 in that
generality.

Another direction of generalization is the following. The fuzzy Potts model
with parameters r, s and β can be obtained directly from the random-cluster
model with parameters p = 1−e−2β and q = r+s instead of going through the
Potts model. To do this, one first picks an edge configuration according to the
random-cluster measure φG

p�q, and then assigns spin 0 or 1 independently to
each connected component with respective probabilities r/q and s/q. This pro-
cedure does not require r and s to be integers, and by taking them to be positive
reals rather than just integers we obtain the fractional fuzzy Potts model. Our
proof of Theorem 1.3 works also in this setting, as long as r ≥ 1 and s ≥ 1. We
do not expect the fractional fuzzy Potts model to have any simple description as
a hidden Markov random field, but the model may still be of some mathemat-
ical interest; some motivation for this is given at the end of the next section.

3. The Potts model on Z2. We consider the Potts model on the square lat-
tice Z2 with edges connecting (Euclidean) nearest neighbors. Gibbs measures
are defined in the usual DLR sense: a probability measure π on �1� � � � � q�Z2

is
said to be a Gibbs measure for the q-state Potts model at inverse temperature
β if it admits conditional probabilities such that for all finite regions , ∈ Z2,
all ξ ∈ �1� � � � � q�, and all ξ′ ∈ �1� � � � � q�Z2\,, we have

µ
(
X�,� = ξ �X�Z2 \ ,� = ξ′

)
= 1

Z
,�ξ′
q�β

exp

(
2β

∑
	x�y

x�y∈,

I�ξ�x�=ξ�y�� + 2β
∑

	x�y

x∈,�y∈Z2\,

I�ξ�x�=ξ′�y��

)

where the normalizing constant Z,�ξ′
q�β may depend on ξ′ but not on ξ.
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It is well known that there is a critical value βc = βc�q� > 0 such that for
β < βc there is a unique Gibbs measure, while for β > βc there are multiple
Gibbs measures. It has been conjectured, based on nonrigorous random-cluster
arguments, that βc�q� = 1

2 log�1+√
q�, but this is so far only known for d = 2

and for d sufficiently large (see [18] and [11]). In the nonuniqueness regime
of the parameter space, there is, for each j ∈ �1� � � � � q�, a particular Gibbs
measure π

j
q�β which arises as a limit of finite volume Gibbs measures with

boundary condition “all j” (see, e.g., [9], [12] or [10] for the details of this
construction). In the uniqueness regime, we write simply πq�β for the unique
Gibbs measure.

We are interested in percolation-theoretic properties of these Gibbs mea-
sures. A subset S of �1� � � � � q� is said to percolate in the Gibbs measure π
if π assigns positive probability to the existence of an infinite self-avoiding
path in Z2� all of whose vertices take spin values in S. Coniglio, Nappi,
Peruggi and Russo [4] considered the Ising case q = 2, and characterized the
Gibbs multiplicity regime in terms of percolation as follows: In the uniqueness
regime, neither of the two spins percolate in π2� β, whereas in the nonunique-
ness regime, spin 1 (but not spin 2) percolates in π1

2� β. Chayes [2] extended
this picture to arbitrary q by showing that no single spin percolates in πq�β in
the uniqueness regime, that 1’s percolate in π1

q�β in the nonuniqueness regime,
and moreover that the latter percolation is so “dominant” that even the com-
bined efforts of the spins �2� � � � � q� fail to percolate. (Related results for the
so-called Ashkin–Teller model on Z2 appear in [3].) The particular geometry of
Z2 is crucial for this kind of sharp dichotomy, as already in three dimensions
a single spin may percolate in the uniqueness regime, as shown in [1].

When a single spin fails to percolate, it is natural to ask how many spins
are needed to percolate. We offer the following bound, which says that strictly
more than half of the spins are needed.

Theorem 3.1. Consider the q-state Potts model on Z2 at inverse temper-
ature β < βc, and set S = �1� � � � � r�. If r ≤ q/2, then S does not percolate
in πq�β.

Proof. Pick X ∈ �1� � � � � q�Z2
according to πq�β, and obtain the fuzzy Potts

configuration Y ∈ �0�1�Z2
from X using (2) with r ≤ q/2. Write µr� s�β for the

distribution of Y. We need to show that 0’s do not percolate in µr� s�β.
Following the approach of [2], we make use of a theorem of Gandolfi, Keane

and Russo [8], stating that if µ is a probability measure on �0�1�Z2
which:

(i) is invariant under translations and axis reflections,
(ii) is ergodic under horizontal and vertical translations (separately), and

(iii) has positive correlations,

then 0’s and 1’s cannot both percolate in µ.
Suppose now for contradiction that 0’s do percolate in µr� s�β. Since r ≤ q/2,

we have r ≤ s, and since πq�β is symmetric under permutations of �1� � � � � q�,
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we have that the set of 0’s is stochastically dominated by the set of 1’s in µr� s� q.
Hence 1’s percolate as well, so in order to get the desired contradiction we just
need to verify that µr� s�β satisfies properties (i)–(iii) above. Properties (i) and
(ii) are immediate from the corresponding properties of πq�β, which are well
known and easy to check. To see that µr� s�β also satisfies (iii), we recall that

πq�β arises as a weak limit of measures π
,i

q�β, where �,1� ,2� � � �� is any in-
creasing sequence of finite subgraphs of Z2 converging to Z2 in the usual way.
It follows that µr� s�β is a weak limit of µ,i

r� s� β as i→ ∞. The measures µ,i

r� s� β

have positive correlations by Theorem 1.3, and since the positive correlations
property is preserved under weak limits we are done. ✷

If we set rc�q�β� to be the minimal number of spins needed to percolate in
πq�β, we thus have

rc�q�β� >
q

2
�(8)

It would be interesting to gain a better understanding of how rc�q�β� behaves
as a function of β on �0� βc�. It is not clear whether it should be increasing
or decreasing (or neither). For β sufficiently close to 0, one may argue as in
the final section of [1] to deduce that r spins suffice (resp., do not suffice) if
r/q > pc (resp., r/q < pc), where pc is the critical value for independent site
percolation on Z2. The value of pc is believed to be around 0.59, and the cur-
rently best rigorous bounds are 0�556 < pc < 0�680, due to [16] and [19]. The
upper bound thus barely fails to show that r = 2 suffices to percolate when
q = 3 and β is small. Is r = 2 sufficient for percolation throughout �0� βc�
when q = 3? More generally, is r = q− 1 sufficient throughout �0� βc�?

As with the case of finite graphs, we can again consider also the fractional
fuzzy Potts model. For β < βc, the fractional fuzzy Potts measure µr� s�β is
obtained by picking an edge configuration for Z2 according to the (unique)
infinite-volume random-cluster measure φp�q with q = r+ s and p = 1 − e−2β

(see [11]), and then assigning i.i.d. spins (0 or 1 with respective probabilities
r/q and s/q) to the connected components. We can then define rc�q�β� to be a
real-valued infimum rather than an integer-valued minimum. The inequality
in (8) then still holds provided q ≥ 2, except that we can no longer prove that
the inequality is strict.
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