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SADDLEPOINT APPROXIMATIONS TO OPTION PRICES!

By L. C. G. ROGERS AND O. ZANE
University of Bath and First Chicago NBD

The use of saddlepoint approximations in statistics is a well-estab-
lished technique for computing the distribution of a random variable whose
moment generating function is known. In this paper, we apply the method-
ology to computing the prices of various European-style options, whose re-
turns processes are not the Brownian motion with drift assumed in the
Black—Scholes paradigm. Through a number of examples, we show that
the methodology is generally accurate and fast.

1. Introduction. We are going to be concerned with the pricing of a Euro-
pean put option on a share whose price at time ¢ is denoted exp(X,). According
to arbitrage-pricing theory, the time-0 price of the option is

(1.1) Price = E e T(e* — eX1)*,

where P is the (risk-neutral) pricing measure?, the expiry of the option is T,
and the strike is e®. For the time being, we assume a constant interest rate
r. In the case where X is a Brownian motion with constant drift, the price
is given by the Black—Scholes formula, but the assumptions underlying the
Black—Scholes analysis are often questioned, and various other models for the
returns have been considered; see [7] for a selection of the models considered.
Without attempting to pick out any “good” alternatives from the vast array
already on offer, what we shall do here is show how classical statistical tech-
niques for computing (approximations to) the tails of distributions may often
be applied to such pricing problems.
The first step is to rewrite the price (1.1) as

(1.2) Price = e "TP(X 1 < @) — e "TE[e*": X1 < a],

the difference of two terms. It will be our standing assumption that the
cumulant-generating function K of X 1, defined by

(1.3) Eexp(zX ) = exp(K(2)),

is finite in some open strip {z: a_ < #(z) < a,} containing the imaginary
axis, where #(z) denotes the real part of complex z, and a_ and ¢, > 1 may
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20f course, the examples we shall be discussing will be examples of incomplete markets, so
there is no unique equivalent martingale measure. We shall cut through the soul-searching and
assume we have reached an equivalent martingale measure we are happy to work with.
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be infinite. With this assumption, we can rewrite (1.2) in such a way that the
two parts of the expression appear quite similar, namely,

(1.4) Price = e* "TP(X 1 < @) — e "THEDP (X < @),
where we define the probabilities P, by
(1.5) E, exp(zX 1) = E[exp((z + y) X 1)] e ¥

for any y € (a_, a,). Clearly, the cumulant-generating function (CGF) of the
law PP, is given as

(1.6) K,(z) = K(y+2)— K(y),

so if we can find an (approximate) expression for P(X ; < «) using the CGF K,
we are in a position to find an approximate price for the put option. Computing
such approximations is the business of the classical saddlepoint method of
statistics; the main ideas of the method are explained with examplary clarity
by Daniels [2] and Wood, Booth and Butler [12], and we could not hope to better
these. In the Appendix, we summarize the method (without proof) and refer
to [2] or [12] for more details. For an extremely thorough presentation of the
entire method, see [8]. If we know the CGF of X, we can in principle compute
the price of the option by inverting the Fourier transform, and with the fast
Fourier transform this can be done reasonably rapidly. Indeed, the saddlepoint
method starts from the Fourier inversion formula, but by considering a well-
chosen contour of integration and approximating the principal contribution of
the integrand, it turns out that no numerical integration is needed to come up
with an approximation which is usually extremely accurate. The other virtue
of the saddlepoint method is that the approximation to the price is actually
an analytic expression, so it is possible to discover (for example) the local
behavior of the price as some parameter is varied.

In Section 2, we explore a number of examples where the log-price process
X is a process with stationary independent increments, or Lévy process (see
[10], Chapter VI or [1] for more background on Lévy processes). As a simple
first example, we take the situation where X is a drifting Brownian motion
plus a compound Poisson process. We compute the prices of the option, using
numerical integration (FFT), and compare with the saddlepoint approxima-
tion. Our next example takes X to be a gamma process, and computes the
price by FFT and by saddlepoint approximation, and our final example uses
the hyperbolic distribution of returns advocated by Barndorff-Nielsen, and
Eberlein and Keller [3]. Once again, we compute the price by exact means,
and compare with the saddlepoint approximation. Further examples of this
kind are left to the reader; [7] lists a number that have been studied in the
past. Gerber and Shiu [4] consider pricing of options on a share whose log
price is a Lévy process. They arrive at an expression ((2.15) in [4]) for the
price of a European call which is equivalent to (1.2) above and study a num-
ber of examples. They argue also that one can find a similar expression for
the price of an exchange option (Corollary 1 in [4]), and it is clear that the
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saddlepoint method can as well be used for computing the approximate value
of such an expression.

As a further application of the saddlepoint method, we remark that the
prices of options in various stochastic volatility—stochastic interest rate models
(as in [5] or [11], for example) can be computed, since all that is needed for
the saddlepoint method is a simple expression for the characteristic function.

2. Lévy returns.

2.1. Jump-diffusion processes. The first application of the method is to the
case in which the prices are modelled by a jump-diffusion process, specifically
X is a drifting Brownian motion plus a compound Poisson process in which
the size of the jumps is normal with mean a and variance y?. The function K
is then

0'2 'yz
(2.1) K(2)=T<cz+222+/\<exp<az+222>—1>>,
where

0’2 'yz
(2.2) C—r—z—)\<exp<a+2>—1>,

Let us fix the values of the parameters as in the following table:

o r Sy | A a vy

0.11005| 1 |5 | -0.001]0.1

and let T € {0.1 +0.05%};°, and a € {-0.11 + 0.01 k}2% . Figure 1 displays
the price surface obtained using the Lugannani and Rice saddlepoint approx-
imation.

In Figure 2 we can see the difference between the prices computed using the
saddlepoint approximation and the prices computed by numerical integration.

We then compute the volatilities that are implied by the LR prices. Recall
that the Black—Scholes option pricing formula for a put option with strike price
K, maturity T, volatility o, interest rate r and initial price of the underlying
asset S is

(2.3) Pgg(r,o,T,Sy, K)= Kexp(—r T)®(—dy) — Sy ®(—d;),
where

_ log(So/K) +(r+0%/2)T
- T

(2.4) d,
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FiGc. 1. Saddlepoint approximation option prices.
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FIG. 2. Difference between LR prices and numerical integration prices.
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Figure 3 displays the volatility surface obtained by computing the value
of the volatility parameter that is needed to obtain the LR price using the
BS formula when r,T,S,, K = exp(a) assume the same values in both
cases.

Finally, we match the variance of the log price in the standard BS model and
the BS model with jumps, by taking the BS volatility 6 = /o2 + A(a? + ¥2)
and compute the put option prices Pgpg(r, o, T, Sy, exp(«a)) using the Black
and Scholes formula. The results are displayed in Figure 4. As we can see, the
errors are ten times bigger if one tries to use the Black and Scholes formula
with the “volatility” obtained from the second moment of the jump diffusion
model.

We display some of the results in Table 1. [Note that the prices that are
reported in all tables are rounded if the fifth digit is greater than or equal to
5 and truncated otherwise; the relative error 100 (|pricey; — price; g |/pricey;)
is computed before such operation takes place.]

In Table 2 we give the volatility implied by the prices of Table 1.

2.2. Gamma processes. As a second example we consider the case in which
the returns of the stock are modeled by a subordinated process given by a
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FiG. 4. Difference between LR prices and prices computed using BS with volatility &.

gamma process subordinated to Wiener process (X (¢) := o W(G(t))). In this
case the cumulant generating function is given by

(2.6) K(z)=T ( +log (B—(fz/Z)zz))

where

B
c=r _10g<B—0'2/2>

The use of these kinds of processes has been suggested in [6] and [4].

TABLE 1
a=-0.05 a=0 «a=0.05
Time to
maturity LR NI % LR NI % LR NI %
0.25 0.0210 0.0208 1.21 0.0393 0.0388 1.06 0.0688 0.0684 0.51
0.5 0.0347 0.0346 0.44 0.0542 0.0540 0.44 0.0812 0.0809 0.27
1 0.0515 0.0514 0.13 0.0711 0.0710 0.12 0.0959 0.0958 0.09
2 0.0691 0.0690 0.03 0.0877 0.0877 0.03 0.1101 0.1101 0.02

5 0.0844 0.0844 0.00 0.0999 0.0999 0.00 0.1177 0.1177 0.00
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TABLE 2
Maturity a=-0.05 a=0 a=0.05
0.25 0.2314 0.2259 0.2306
0.5 0.2372 0.2358 0.2366
1 0.2408 0.2406 0.2408
2 0.2430 0.2429 0.2430
5 0.2443 0.2443 0.2443

The values for the parameters that have been used are

(o

r Sy

B

0.1

005 1

0.25
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Table 3 gives the results obtained using the Lugannani—Rice and the numer-

ical integration methods and shows the relative errors.

The values of the parameters (there is only one degree of freedom in the
choice) have been chosen in such a way that the implied volatilities are be-
tween 0.1 and 0.2, as Table 4 illustrates.

2.3. Hyperbolic returns.

As a last example we consider the case in which

the return of the share is modelled, at any time ¢, by a random variable with
hyperbolic distribution. This choice has been suggested by Barndorff-Nielsen
and has been analyzed in [3].

The function K is given by

a—\/a2+a'20'gz(1—z)
2.7 K(z)=T|rz+ 3 .
0
We consider the following parameter values:
g r SO (o)) a
0251005 1 |07]1
TABLE 3
a=-0.05 a=0 a=0.05
Time to
maturity LR NI % LR NI % LR NI %
0.25 0.0084 0.0114 26.39 0.0145 0.0218 33.58 0.0519 0.0565 8.15
0.5 0.0179 0.0199 10.04 0.0309 0.0337 832 0.0592 0.0620 4.61
1 0.0310 0.0319 2.85 0.0468 0.0477 1.98 0.0704 0.0714 1.32
2 0.0466 0.0448 0.65 0.0604 0.0606 0.47 0.808 0.0811 0.34
5 0.0546 0.0547 0.09 0.0675 0.0675 0.07 0.0828 0.0828 0.06
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TABLE 4
Maturity a=-0.05 a=0 a=0.05
0.25 0.1722 0.1391 0.1676
0.5 0.1751 0.1616 0.1692
1 0.1830 0.1786 0.1793
2 0.1901 0.1890 0.1890
5 0.1962 0.1959 0.1959
TABLE 5
a=-0.05 a=0 a=0.05
Time to
maturity LR NI % LR NI % LR NI %
0.25 0.0150 0.0198 24.35 0.0316 0.0368 14.29 0.0609 0.0662 8.01
0.5 0.0312 0.0336 6.99 0.0496 0.0521 4.86 0.0762 0.0788 3.30
1 0.0500 0.0510 2.01 0.0689 0.0700 1.58 0.0933 0.0945 1.22
2 0.0692 0.0696 0.58 0.0876 0.0880 0.49 0.1097 0.1102 0.41
5 0.0865 0.0866 0.11 0.1020 0.1021 0.10 0.1197 0.1199 0.09
TABLE 6
Maturity a=-0.05 a=0 a=0.05
0.25 0.2254 0.2157 0.2191
0.5 0.2331 0.2289 0.2291
1 0.2397 0.2379 0.2375
2 0.2442 0.2435 0.2432
5 0.2478 0.2475 0.2474

Table 5 gives the results obtained using the Lugannani—Rice and the numer-
ical integration methods and shows the relative errors.

Once more, the values of the parameters have been chosen in such a way
that the implied volatilities are around 20% as Table 6 illustrates.

3. Conclusions. We have shown how the saddlepoint method can be used
to price European puts on assets whose return process is more general than
the standard Gaussian model. The key feature is that the moment generating
function of returns must be sufficiently explicit that we can analyze it. Various
examples with Lévy returns have been shown to be amenable to this approach,
which also embraces many stochastic volatility—stochastic interest rate models
discussed in the literature. The accuracy of the approximation improves as
the expiry increases; this is not surprising, since for longer expiry, the return
distribution will be a better approximation to the Gaussian base used in the
saddlepoint approximation. For expiry one year or more, we get accuracy of
the order of 2%, comparable to the accuracy of parameter estimates (or even
a lot better!). Thus the approximation is good enough to be useful and is
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able to compute thousands of options a second, so it is very fast. There is
scope for improving the accuracy considerably, by more cunning choice of the
comparison distribution, but this choice would depend on just what return
distribution one wished to work with, and this is more an econometric issue,
for which there are no clear answers.

APPENDIX

We give the briefest explanation of the saddlepoint method, without any
attempt at proof. Jensen [8] gives a careful account.

As explained above, our goal is to approximate the tail probabilities P(X >
a), where X is a random variable whose distribution is known through its
cumulant generating function (CGF) K:

Eexp(z X) = exp K(2).

The CGF K is assumed analytic in some strip containing the imaginary axis.
Typically, K will be reasonably tractable, but the distribution F of X will
not be.

By Fourier inversion,

P(X >a)= lig)l /Oo exp(—e(x —a)) I,.q F(dx)
(A1) - .
— lim exp(—ita)

dt
KGon2t
im | i SPEGDNG

since the Fourier transform of x — exp(ea —ex) Iy, oy ist — exp(ita)(e —
it)L
Now letting £ | 0 in (A.1) may be problematic because we have a pole at

zero, but by Cauchy’s theorem we have for any ¢ > 0 in the strip of analyticity
of K,

/ioo exp{—za+ K(2)} dz _ /C+’°°exp{ za+ K(z)} dz

(A.2) —ioo e+ z 21 e+ z 21
’ cticvexp{—za + K(z)} dz
L [remtza K@) A

and the key to the saddlepoint method is a cunning choice of ¢. In fact, we
choose ¢ so that the function K(x) — a x is minimized:

K'(c) = a.

This value of ¢ will be strictly positive if and only if ¢ > K’(0) = E X, which
we assume from now on. If a < E X, we estimate P(X < a) mutatis mutandis.
[Incidentally, the name “saddlepoint” comes from the fact that the function
z— K(c+2z)—a(c+ 2z) looks like %22 K"(c) for small z, and the real part of
this is the saddle-shaped function (x, y) > $K"(c) (x% — ¥?).]

The saddlepoint approximation is achieved by comparison with some “base”
distribution with CGF K. Classically, this is the Gaussian distribution, for
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which K(z) = 122, but it is important to realize that one may use other
base distributions. The base distribution is assumed nice enough that we can
find the distribution F quite explicitly. By shifting and scaling F, we may
transform K, to z —» —¢z+ Ky(Az) = K,(2), say, for real constants ¢, A,
which we may choose to make the minimum of K, at ¢ and to match the
second derivatives of K, and K there. This turns out not to be the right thing
though, because, although the behavior at z = ¢ is well approximated, the
behavior at z = 0 is not. Instead we pick ¢ so that

min Ky(x) — éx =min K(x) —ax

and then suppose that we have an analytic map z — w(z) such that
(A.3) Kyw)—¢éw=K(2)—az.

We have in particular that 0 = w(c) is the place where Ky(x) — £ x is mini-
mized, and w(0) = 0. Hence by change of variable in (A.2), with I the image
of ¢ + iR under w,

1dz d
P(X > a) = [ exp{Ko(w) — §w} - 2=
1 d
= [ exp{Ko(w) - £w} - 5

w27l

+ [eplKo(w) - gw} (5 52 -2 ) o

zdw w

2mi

The first term is nothing other than 1 — Fy(¢), and for the second term, we
note that there is no singularity of the integrand at w = 0; since w(0) = 0,
we have that z = w(dz/dw)(0) + O(w?) for small w. So this allows us to
expand the term (1/z)(dz/dw) — 1/w about w = w and collect terms; the
power-series expansion for z = z(w) about w = & can be evaluated to any
desired order using (A.3), since the power-series expansions of K, and K are
assumed known.

The resulting integrals of the form [ w” exp{K((w) — £ w} dw can be writ-
ten down in terms of the (known) density of F, and its derivatives. Rather
surprisingly, for many practical applications, one term is enough; in this case,
the expansion gives the celebrated Lugannani—Rice formula (see [9]).
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REFERENCES

[1] BERTOIN, J. (1996). Lévy Processes. Cambridge Univ. Press.

[2] DANIELS, H. E. (1987). Tail probability approximations. Internat. Statistical Rev. 55 37—48.

[3] EBERLEIN, E. and KELLER, U. (1995). Hyperbolic distributions in finance. Bernoulli 1 281—
299.

[4] GERBER, H. U. and SHIU, E. S. W. (1994). Option pricing by Esscher-transforms. Trans. Soc.
Actuaries 46 99-140.



[5]

[6]
[7]

[8]
[9]

APPROXIMATIONS TO OPTION PRICES 503

HESTON, S. (1993). A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options. Rev. Financial Studies 6 327-343.

HESTON, S. (1993). Invisible parameters in option prices. J. Finance 48 933-947.

HursT, S. R., PLATEN, E. and RACHEV, S. T. (1995). A comparison of subordinated asset price
models. Preprint.

JENSEN, J. L. (1995). Saddlepoint Approximations. Oxford Univ. Press.

LUGANNANI, R. and RICE, S. (1980). Saddlepoint approximations for the distribution of the
sum of independent random variables. Adv. Appl. Probab. 12 475-490.

[10] ROGERS, L. C. G. and WILLIAMS, D. (1987). Diffusions, Markov Processes, and Martingales
2. Wiley, Chichester.

[11] ScoTT, L. O. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility
and interest rates: applications of Fourier inversion methods. Math. Finance 7 413—
426.

[12] WooD, A. T. A., BoOTH, J. G. and BUTLER, W. (1993). Saddlepoint approximations to the
CDF of some statistics with nonnormal limit distributions. J. Amer. Statist. Assoc. 88
680-686.

DEPARTMENT OF MATHEMATICAL SCIENCES QUANTITATIVE RESEARCH

UNIVERSITY OF BATH FIrsT CHICAGO NBD

BATH BA2 TAY 1 TRITON SQUARE

ENGLAND LoNDON NW1 3FN

E-MAIL: legr@maths.bath.ac.uk ENGLAND

E-MAIL: ozane@uk.fenbd.com



