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Given two independent realizations of the stationary processes X =
�Xnyn ≥ 1� and Y = �Ynyn ≥ 1�, our main quantity of interest is the
waiting time Wn�D� until a D-close version of the initial string �X1;X2;
: : : ;Xn� first appears as a contiguous substring in �Y1;Y2;Y3; : : :�, where
closeness is measured with respect to some “average distortion” criterion.

We study the asymptotics of Wn�D� for large n under various mix-
ing conditions on X and Y. We first prove a strong approximation theo-
rem between logWn�D� and the logarithm of the probability of a D-ball
around �X1;X2; : : : ;Xn�. Using large deviations techniques, we show that
this probability can, in turn, be strongly approximated by an associated
random walk, and we conclude that: (i) n−1 logWn�D� converges almost
surely to a constant R determined by an explicit variational problem;
(ii) �logWn�D� − R�, properly normalized, satisfies a central limit theo-
rem, a law of the iterated logarithm and, more generally, an almost sure
invariance principle.

1. Introduction and main results. The problem of analyzing the as-
ymptotic behavior of waiting times between stationary processes has received
a lot of attention in the literature over the past few years [see Wyner and
Ziv (1989), Shields (1993), Szpankowski (1993), Marton and Shields (1995),
Kontoyiannis (1998) and the references therein], primarily because of its im-
portant applications in several fields, most notably in data compression and
the analysis of string matching algorithms in DNA sequence analysis. These
applications are outlined in the next section.

Let X = �Xnyn ≥ 1� and Y = �Ynyn ≥ 1� be two processes taking values in
the Product Borel spaces �A∞X;FX� and �A∞Y ;FY�, respectively, where Ax and
Ay are Polish spaces. Moreover, suppose X and Y are distributed according to
the probability measures P and Q, respectively. We will assume throughout
the paper that the processes X and Y are independent. By x = �x1; x2; : : :� ∈
A∞X we denote an infinite realization of X, and for 1 ≤ i ≤ j ≤ ∞ we write
x
j
i for the substring �xi; xi+1; : : : ; xj�. Similarly, we write Xj

i for the vector
�Xi; : : : ;Xj�; and likewise for Y.
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Given a measurable function ρ�·; ·�x AX × AY → �0;∞�, the “distortion”
between two finite strings xn1 ∈ An

X and yn1 ∈ An
Y is measured by

ρn�xn1 ; yn1� =
1
n

n∑
i=1

ρ�xi; yi�:(1)

For xn1 ∈ An
X and D ≥ 0 we write B�xn1 ;D� for the ball of radius D around xn1 ,

B�xn1 ;D� =
{
yn1 ∈ An

Yx ρn�xn1 ; yn1� ≤ D
}
:

Given D ≥ 0 and two independent infinite realizations x, y from X and Y,
respectively, our main quantity of interest is the waiting time Wn�D� until a
D-close version of xn1 first appears in y,

Wn�D� =Wn�xn1 ; y;D� = inf
{
k ≥ 1x yk+n−1

k ∈ B�xn1 ;D�
}
:

In the special case where AX and AY are finite sets and Wn stands for the
first time an exact copy of the string xn1 appears in y, it is known that Wn

increases exponentially with n,

1
n

logWn→ R; �P×Q�-a.s.;(2)

when X is stationary ergodic and Y satisfies certain mixing conditions [Wyner
and Ziv (1989), Shields (1993), Marton and Shields (1995), Kontoyiannis
(1998)]; here and throughout the paper log denotes the natural logarithm.
The constant R can be expressed in terms of relative entropy; for example,
when X is composed of independent and identically distributed random vari-
ables (an “i.i.d. process”) with marginal distribution P1, and Y is an i.i.d.
process with marginal Q1, then R = R�P1;Q1� =H�P1� +H�P1 �Q1�, where
H�P1� = E�− logP�X1�� is the entropy of X and H�·�·� denotes the relative
entropy between two probability measures

H�µ � ν� =





∫
dµ log

dµ

dν
; when

dµ

dν
exists;

∞; otherwise.

Moreover, under more restrictive conditions on the mixing properties of X and
Y, it is known that �logWn−nR� satisfies a central limit theorem (CLT) [Wyner
(1993)] and a law of the iterated logarithm (LIL), as well as the functional
counterparts of these results [Kontoyiannis (1998)].

Our purpose in this paper is to extend these asymptotic results to Wn�D�
(see Corollaries 1 through 4, below). Little has been done in this direction. Re-
cently, Yang and Kieffer (1998) showed that (2) holds for Wn�D� when AX and
AY are finite sets, withR = R�P1;Q1;D� given as the solution to a variational
problem in terms of relative entropy (see Theorem 2 below). Related results
were obtained by Łuczak and Szpankowski (1997), but neither of these papers
addressed the problem of determining the second-order asymptotic properties
of logWn�D�, and also left open the question of whether analogous results can
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be established for general spaces AX and AY. In this paper we address both
of these issues.

The first step in our analysis (carried out in Theorem 1) is to show that
the waiting time Wn�D� until a D-close match for Xn

1 occurs in Y is approx-
imately equal to the reciprocal of the probability Q�B�Xn

1 ;D�� that such a
match indeed occurs. In the case when no distortion is allowed, Q�B�Xn

1 ;D��
simply reduces to Q�Xn

1�, and applying the Shannon–McMillan–Breiman the-
orem and its second-order refinements, one gets a complete picture of the
asymptotic behavior of Wn [cf. Kontoyiannis (1998)]. But when distortion is
allowed, the asymptotic behavior (particularly the second-order behavior) of
the probabilities Q�B�Xn

1 ;D�� is not quite obvious a priori. The novelty in the
approach we employ here is the use of large deviations techniques to obtain
corresponding results for Q�B�Xn

1 ;D�� in place of Q�Xn
1�: Theorems 2 and 3

relate Q�B�Xn
1 ;D�� to an associated random walk on R induced by Xn

1 , and
they provide natural generalizations of the Shannon–McMillan–Breiman the-
orem and its subsequent refinements [by Ibragimov (1962) and by Philipp and
Stout (1975)] for processes with values in general spaces and to the case when
distortion is allowed.

Our first result is a strong approximation theorem stating that the wait-
ing time Wn�D� is asymptotically almost surely close to the reciprocal of the
probability Q�B�Xn

1 ;D��:

Theorem 1. Suppose Y is a stationary process with φ-mixing coefficients
that satisfy

∑
φ�k� < ∞, and assume that Q�B�Xn

1 ;D�� > 0 eventually P-
a.s. If �c�n�� is an arbitrary sequence of nonnegative constants such that∑
ne−c�n� <∞, then

∣∣log
[
Wn�D�Q�B�Xn

1 ;D��
]∣∣ ≤ c�n� eventually �P×Q�-a.s.

It will be evident from the proof of Theorem 1 that the result remains valid
for general sequences of distortion measures �ρn�, not necessarily of the form
of (1), under mild regularity conditions.

Recall that the φ-mixing coefficients of Y are defined by φ�k� =
sup��Q�B �A� −Q�B��� where the supremum is taken over all integers r ≥ 1
and all pairs of events A and B such that B ∈ σ�Y∞r+k�, A ∈ σ�Yr

1� and
Q�A� 6= 0; see Bradley (1986) for an extensive discussion.

From Theorem 1 we get that

logWn�D� −
[
− logQ�B�Xn

1 ;D��
]
= o�√n�; �P×Q�-a.s.(3)

In contrast with the case of exact matching (i.e., when no distortion is al-
lowed), here, − logQ�B�Xn

1 ;D�� cannot be readily expanded as the partial
sum of the logarithms of conditional probabilities. Nevertheless, we can relate
− logQ�B�Xn

1 ;D�� to a different random walk, which arises as a functional
of the empirical measure P̂n = n−1∑n

i=1 δXi
induced on AX by Xn

1 (Theo-
rems 2 and 3). From that, we can read off the exact asymptotic behavior
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of − logQ�B�Xn
1 ;D��, and, via (3), the behavior of the waiting times Wn�D�

(Corollaries 1 through 4).
Let

Dmin = EP

[
ess inf

Y1

ρ�X1;Y1�
]
;

and for simplicity, assume hereafter that Y is an i.i.d. process, and that

Dmax = ess sup
�X1;Y1�

ρ�X1;Y1� ∈ �Dmin;∞�:

For X stationary and ergodic, by the ergodic theorem, Wn�D� = 1 eventually
P × Q-almost surely for any D > Dav = Eρ�X1;Y1�, whereas Wn�D� = ∞
eventually P × Q-almost surely for any D < Dmin. Of interest is the range
D ∈ �Dmin;Dav� where Wn�D� exhibits exponential behavior.

Theorem 2. Let X be a stationary ergodic process and Y be an i.i.d. process.
Then for D ∈ �Dmin;Dav� we have,

− logQ�B�Xn
1 ;D�� − nR�P̂n� = o�

√
n�; P-a.s.;

where R�P̂n� = R�P̂n;Q1;D� is defined by the following variational problem:

R�P̂n;Q1;D� = inf
∫
H
(
ν�· �x�

∣∣Q1�·�
)
dP̂n�x�;

and the infimum is taken over all probability measures ν on AX × AY such
that the AX-marginal of ν is P̂n and

∫
ρ�x;y�dν�x;y� ≤ D:

See Proposition 1 in Section 3 for an alternative characterization of
R�P̂n;Q1;D�. An easy consequence of Theorem 2 is the following general-
ization of (2).

Corollary 1. Assume that X is stationary ergodic, Y is an i.i.d. process
and D ∈ �Dmin;Dav�. Then R�P̂n� → R�P1� P-almost surely, and hence

1
n

logWn�D� → R�P1;Q1;D�; �P×Q�-a.s.

Next we investigate the behavior of
√
n�R�P̂n�−R�P1��. As it turns out (see

Proposition 1 in Section 4), the function R�P1� = R�P1;Q1;D� is the convex
dual of the log-moment generating function 3P1

�λ�, where, for any probability
measure µ on AX and any λ ∈ R, 3µ�λ� is defined as

3µ�λ� =
∫

log
{∫

exp�λρ�x;y��dQ1�y�
}
dµ�x�:

Write 3�·� = 3P1
�·� when µ = P1, 3x�·� = 3δx�·� for any x ∈ AX and

3̄Xi
�·� = 3Xi

�·�−
∫
3x�·�dP1�x�. Theorem 3 provides an explicit approximation

of
√
n�R�P̂n� −R�P1�� by a random walk induced by Xn

1 . [Recall that the α-
mixing coefficients of X are defined by α�k� = sup��P�A∩B�−P�A�P�B��yA ∈
σ�Xr

1�; B ∈ σ�X∞r+k�; r ≥ 1�; see Bradley (1986) for details.]
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Theorem 3. Let X be a stationary process with α-mixing coefficients that
satisfy

∑
α�k� < ∞, let Y be an i.i.d. process, and D ∈ �Dmin;Dav�. Then for

λ = λ�D� < 0 such that 3′�λ� = D we have

n
[
R�P̂n� −R�P1�

]
+

n∑
i=1

3̄Xi
�λ� = o�√n�; P-a.s.

In particular, combining (3) with Theorems 2 and 3 gives

[
logWn�D� − nR�P1;Q1;D�

]
+

n∑
i=1

3̄Xi
�λ� = o�√n�; P×Q-a.s.;(4)

and it is now straightforward to harvest a series of corollaries. The following
is an immediate consequence of combining (4) with well-known CLT results
[see, for example, Theorem 1.7 in Peligrad (1986)].

Corollary 2 (CLT). Let X be a stationary process with α-mixing coeffi-
cients such that

∑
α�k� < ∞, let Y be an i.i.d. process and D ∈ �Dmin;Dav�.

Then, for λ = λ�D�, the following series converges:

σ2 = EP

{
3̄X1
�λ�2

}
+ 2

∞∑
k=2

EP

{
3̄X1
�λ�3̄Xk

�λ�
}
;(5)

and

logWn�D� − nR�P1�√
n

→D N�0; σ2�:

Moreover, when σ2 > 0, the sequence of processes,
{
w�ntyD�
σ
√
n
y t ∈ �0;1�

}
; n ≥ 1;

converges in distribution to standard Brownian motion, where w�tyD� =
�logW�t��D� − �t�R�P1;Q1;D�� for t ≥ 1, and w�tyD� = 0 for t < 1.

Similarly, Corollary 3 is a consequence of (4) combined with the LIL [Rio
(1995)].

Corollary 3 (LIL). Let X be a stationary process with α-mixing coefficients
such that

∑
α�k� < ∞, Y be an i.i.d. process and D ∈ �Dmin;Dav�. Then, for

σ2 as in (5), with P×Q-probability 1, the set of limit points of the sequence
{

logWn�D� − nR�P1�√
2n log log n

}
; n ≥ 3

coincides with the interval �−σ;σ�. Moreover, when σ2 > 0, with P × Q-
probability 1, the sequence of sample paths

{
w�ntyD�√
2n log log n

y t ∈ �0;1�
}
; n ≥ 3;
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is relatively compact in the topology of uniform convergence on D�0;1�, and
the set of its limit points is the collection of all absolutely continuous functions

rx �0;1� → R, such that r�0� = 0 and
∫ 1

0 �dr/dt�2 dt ≤ σ2.

Finally, Corollary 4 follows from (4) and an almost sure invariance principle
proved by Philipp and Stout (1975), Theorem 4.1.

Corollary 4 (Almost sure invariance principle). Let X be a stationary
process with φ-mixing coefficients that satisfy

∑√
φ�k� < ∞; Y be an i.i.d

process and D ∈ �Dmin;Dav�. Then, with σ2 > 0 as in (5), there exists a Brow-
nian motion �B�t�y t ≥ 0� such that

w�tyD� − σB�t� = o�
√
t�; �P×Q�-a.s.(6)

As usual we interpret (6) as saying that, without changing its distribution,
w�tyD� can be redefined on a richer probability space that contains a Brownian
motion such that (6) holds. For some of the numerous corollaries that can be
derived from almost sure invariance principles like the one in (6), see Strassen
(1964) and Chapter 1 of Philipp and Stout (1975).

Remark 1. In Corollary 1, Wn�D� can be replaced by 1/Q�B�Xn
1 ;D�� to

give a natural generalization of the Shannon–McMillan–Breiman theorem
(analogous to the one obtained by Yang and Kieffer for finite sets AX, AY)
for the case when distortion is allowed and for processes with values in gen-
eral spaces. In a similar fashion, from Corollaries 2 and 4 we can obtain cor-
responding generalizations of Ibragimov’s (1962) CLT-refinement and Philipp
and Stout’s (1975) almost sure invariance principle, respectively.

Remark 2. Similar results as those obtained for the waiting times Wn�D�
can also be obtained for the sequence of recurrence times Rn�D�: given D ≥ 0
and a realization x from a doubly infinite process X = �Xnyn ∈ Z�, Rn�D� is
defined as the first time a D-close version of x−1

−n appears in x∞0 ,

Rn�D� = Rn�x;D� = inf
{
k ≥ 0x xk+n−1

k ∈ B�x−1
−n;D�

}
:

Theorems 2 and 3 remain valid in this case with Xn
1 replaced by X−1

−n and
Q = P; which forces us to assume that X is an i.i.d. process. Under this as-
sumption, it is easy to see that Theorem 1 also remains essentially unchanged,
so that, combining Theorems 1, 2 and 3 as before, we recover the exact same
asymptotic behavior for Rn�D� as that for Wn�D� (Corollaries 1 through 4).

In the next section we outline two areas of applications of our results, in
Section 3 we prove Theorem 1, in Section 4 we prove our main results, Theo-
rems 2 and 3 and in Section 5 we prove Theorem 4.

2. Applications. In this section we outline two potential applications of
our results about the asymptotic behavior of Wn�D�.
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2.1. Data compression. The analysis of several data compression schemes
based on string matching, such as the celebrated Lempel–Ziv algorithm, is
typically reduced to studying the following idealized scenario [see Wyner and
Ziv (1989, 1991), Steinberg and Gutman (1993), the discussion in Yang and
Kieffer (1998), Łuczak and Szpankowski (1997) and the references therein]:
an encoder and a decoder have available to them a common infinite “database”
y = �y1; y2; : : :� generated by an i.i.d. process Y ∼ Q, and the encoder’s task
is to communicate the “message” xn1 = �x1; x2; : : : ; xn� to the decoder, within
some prescribed accuracy D with respect to a sequence �ρn� of distortion
measures of the form of (1). This is done as follows: the encoder scans the
database until a D-close version of xn1 is found in y, and then “tells” the
decoder the position Wn�D� where this match occurs. To describe Wn�D� it
takes logWn�D� +O�log logWn�D�� nats (or bits, if the logarithms are taken
to be base-2), and therefore the limiting compression ratio of the code in nats-
per-symbol (by Corollary 1) is given by

logWn�D� +O�log logWn�D��
n

→ R�P1;Q1;D� a.s.

For example, in the case of lossless coding of an i.i.d. “message source” X,
R�P1;Q1;0� reduces to H�P1� +H�P1 �Q1�, which is interpreted as the op-
timal limiting compression ratio H�P1�, plus the additional “penalty” term
H�P1 �Q1� induced by the fact that the database was generated by the sub-
optimal distribution Q instead of P. Similarly, in the case of lossy coding we
may choose to generate the database y according to the product measure Q for
whichR�P1;Q1;D� is minimal; for an i.i.d. process X the limiting compression
ratio of this code, r�D� = infQ1

R�P1;Q1;D�, equals the optimal compression
ratio, namely, the rate-distortion function of X with respect to �ρn� [see Berger
(1971) for details].

Once the compression ratio is identified, from Corollaries 2, 3 and 4 we get
further information about the rate at which it is achieved (the “redundancy”
of the code), about the limiting distribution of the size of the encoded data and
so on.

2.2. DNA sequence analysis. In the analysis of DNA or protein sequences,
the following problem is of interest [see Karlin and Ost (1988), Pevzner, Bor-
odovsky and Mironov (1991), Arratia and Waterman (1994) and the references
therein]: given a template x1; x2; : : : and a long but finite “database” sequence
ym1 , find the longest contiguous substring in the database that matches an ini-
tial portion xl1 of the template within accuracy D, with respect to the average
of some score function ρ�·; ·�. The length Lm�D� of the longest such match is
of interest here:

Lm�D� = Lm�x;y;D�

= sup
{
n ≥ 1x yj+n−1

j ∈ B�xn1 ;D�; for some j = 1;2; : : : ;m
}
:
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Clearly, there is a duality relationship between Lm�D� and Wn�D�: Lm�D� ≥
n if and only if Wk�D� ≤ m for some k ≥ n. This relationship is exploited
in the last section, where we read off the asymptotics of Lm�D� from the
corresponding results for Wn�D�, explicitly identifying the asymptotic mean,
variance and distribution of Lm�D�.

Theorem 4. (i) Under the assumptions of Corollary 1,

Lm�D�
logm

→ 1
R�P1;Q1;D�

; �P×Q�-a.s.

(ii) Under the assumptions of Corollary 2, with σ2 > 0 as in (5) and R =
R�P1;Q1;D�,

Lm�D� − �logm�/R√
logm

→D N�0; σ2R−3�:

(iii) Under the assumptions of Corollary 3, with σ2 > 0 as in (5) and R =
R�P1;Q1;D�,

lim sup
m→∞

Lm�D� − �logm�/R√
2 logm log log logm

= σR−3/2; �P×Q�-a.s.

3. Strong approximation.

Proof of Theorem 1. Write P for the product measure P × Q, and for
each integer m ≥ 1; let Gm = �xx Q�B�xn1 ;D�� > 0 for all n ≥m�.

For the upper bound we use a standard second-moment blocking argument
[similar to the one by Yang and Kieffer (1998)]. Choose and fix any integer
m ≥ 1, pick an arbitrary x ∈ Gm and let n ≥m be large enough so that ec�n� ≥
n+1. LetK ≥ n+1 and write Sn =

∑V�K;n�
j=0 In�j�, where In�j� is the indicator

function of the event �Y�j+1�n
jn+1 ∈ B�xn1 ;D��, and V�K;n� = ��K− 1�/n�. Then

P
(
Wn�D� > K �Xn

1 = xn1
)
≤ Q�Sn = 0� ≤ VarQ�Sn�

�EQSn�2
:(7)

By stationarity,

EQSn =
[
V�K;n� + 1

]
Q
(
B�xn1 ;D�

)
(8)

and EQ�In�0�In�j�� ≤ Q�B�xn1 ;D���φ��j− 1�n+ 1� +Q�B�xn1 ;D���, so that

VarQ�Sn� =
V�K;n�∑
j; k=0

CovQ
(
In�j�; In�k�

)

≤
[
V�K;n� + 1

]
Q
(
B�xn1 ;D�

)[
1+ 2

V�K;n�∑
j=1

φ
(
�j− 1�n+ 1

)]
:

(9)
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Writing 8 = 1+ 2
∑
φ�k�, and substituting (8) and (9) in (7), we get

P
(
Wn�D� > K �Xn

1 = xn1
)
≤ 8

�V�K;n� + 1�Q�B�xn1 ;D��
:(10)

Choosing K = ec�n�/Q�B�xn1 ;D�� we have �V�K;n� + 1�Q�B�xn1 ;D�� >
ec�n�/2n, and (10) yields

P
(
log�Wn�D�Q�B�Xn

1 ;D��� > c�n� �Xn
1 = xn1

)
≤ 28ne−c�n�:

Since the above bound is uniform over x ∈ Gm and summable, by the Borel–
Cantelli lemma we obtain that

log
[
Wn�D�Q�B�xn1 ;D��

]
≤ c�n�

eventually for P×Q-almost all �x;y� ∈ Gm ×A∞Y :
(11)

For the lower bound, we observe that for an arbitrary constant K > 1 and
any x ∈ Gm,

P
(
Wn�D� < K �Xn

1 = xn1
)
≤
�K�∑
j=1

Q�Yj+n−1
j ∈ B

(
xn1 ;D�

)

≤KQ
(
B�xn1 ;D�

)
:

(12)

Since Wn�D� ≥ 1, this inequality holds also for K ∈ �0;1�. In particular,
setting K = e−c�n�/Q�B�xn1 ;D�� gives

P
(
log�Wn�D�Q�B�Xn

1 ;D��� < −c�n� �Xn
1 = xn1

)
≤ e−c�n�;

and summing this over n, by the Borel–Cantelli lemma we get

log
[
Wn�D�Q�B�Xn

1 ;D��
]
≥ −c�n�

eventually for P×Q-almost all �x;y� ∈ Gm ×A∞Y .
(13)

Finally, combining (11) and (13) with the assumption that P�∪mGm� = 1
completes the proof. 2

4. Large deviations. Lemma 1 below provides some easily checked facts
needed in the proofs of Theorems 2 and 3. The variational characterization of
the rate function R in terms of relative entropy is established next in Propo-
sition 1, and the proofs of Theorem 2, Corollary 1 and Theorem 3 are given.

Lemma 1. Let µ be an arbitrary probability measure on AX, λ ∈ R and
define 0 ≤ Dµ

min < D
µ
av < D

µ
max <∞ like Dmin, Dav and Dmax, respectively, with

X1 ∼ µ.

(i) �3µ�λ�� ≤ �λ�Dµ
max.

(ii) The Fenchel–Legendre transform of 3µ,

3∗µ�x� = sup
λ∈R
�λx− 3µ�λ��

exists and is finite for all x ∈ �Dµ
min;D

µ
av�.
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(iii) 3µ ∈ C∞, 3′µ�0� = D
µ
av, 3′′µ�λ� > 0 for all λ ∈ R and 3′µ�λ� ↓ D

µ
min as

λ→−∞.
(iv) For each D ∈ �Dµ

min;D
µ
av�, there exists a unique λ < 0 such that 3′µ�λ� =

D and 3∗µ�D� = λD− 3µ�λ�.
(v) For µ-almost any x ∈ AX, 3x ∈ C∞, and its derivatives are uniformly

bounded over µ-almost all x ∈ AX and all λ in a compact subset of R.

Proposition 1. In the notation of Lemma 1, let µ be an arbitrary proba-
bility measure on AX and D ∈ �Dµ

min;D
µ
av). Then, R�µ;Q1;D� = 3∗µ�D�, that

is,

inf
∫
H�ν�·�x��Q1�·��dµ�x�

= sup
λ∈R

[
λD−

∫
log

{∫
exp�λρ�x;y��dQ1�y�

}
dµ�x�

]
;

(14)

where the infimum is taken over all probability measures ν on AX ×AY such
that the AX-marginal of ν is µ and

∫
ρ�x;y�dν�x;y� ≤ D.

Proof of Proposition 1. By Lemma 1 we may fix λ < 0; for which the
supremum on the right side of (14) is achieved. Consider the probability mea-
sure ν defined by

dν�x;y�
dµ×Q1

= dν�y�x�
dQ1

= exp�λρ�x;y��∫
exp�λρ�x; z��dQ1�z�

in the left side of (14). The AX-marginal of ν is µ,
∫
ρ�x;y�dν�x;y� = 3′µ�λ� =

D, and
∫
H�ν�·�x��Q1�·��dµ�x� = λD−

∫
log

[∫
exp�λρ�x;y��dQ1�y�

]
dµ�x�

= 3∗µ�D�;

and hence the left side of (14) is no greater than 3∗µ�D�. To prove the reverse
inequality, we recall that for any probability measure ν and any bounded
measurable function φx AY→ R,

H
(
ν�·�x� �Q1�·�

)
≥
∫
φ�y�dν�y �x� − log

{∫
eφ�y� dQ1�y�

}

[cf. Lemma 3.2.13 in Deuschel and Stroock (1989)]. In particular, choosing
φ�·� = λρ�x; ·� and then integrating both sides with respect to µ yields the
required inequality and completes the proof. 2

Proof of Theorem 2. Let D�n�av =
∫
ρ�x;y�dP̂n�x�dQ1�y�, so that, by the

ergodic theorem,

D
�n�
av → Dav; P-a.s.(15)
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Similarly let D�n�min = EP̂n
�ess infY1

ρ�X1;Y1��; so that

D
�n�
min → Dmin; P-a.s.(16)

Given a realization of the X process such that both (15) and (16) hold, for
n large enough, the given D will be strictly between D

�n�
min and D

�n�
av , so by

Lemma 1 we can choose, for each n, a negative λn such that 3′
P̂n
�λn� = D,

3∗
P̂n
�D� = λnD − 3P̂n�λn� and 3′′

P̂n
�λn� > 0. We similarly choose λ < 0 such

that 3′�λ� = D and claim that

λn→ λ; P-a.s.(17)

To see this suppose, for example, that with positive probability lim infn→∞ λn ≤
λ − ε, for some ε > 0, so that λnk ≤ λ − ε/2 for some nk → ∞. Then by the
ergodic theorem and the strict monotonicity of 3′ we get a contradiction,

D = lim inf
n→∞

3′
P̂n
�λn� ≤ lim sup

n→∞
3′
P̂n
�λ− ε/2�

= lim
n→∞

n−1
n∑
i=1

3′Xi
�λ− ε/2� = 3′�λ− ε/2� < 3′�λ� = D:

The case lim supn→∞ λn > λ is ruled out similarly.
Before we move to the main part of the proof, we need to show that

3′′
P̂n
�λn� → 3′′�λ� > 0; P-a.s.(18)

Writing

∣∣3′′
P̂n
�λn� − 3′′�λ�

∣∣ ≤ 1
n

n∑
i=1

∣∣3′′Xi
�λn� − 3′′Xi

�λ�
∣∣

+
∣∣∣∣
1
n

n∑
i=1

3′′Xi
�λ� − 3′′�λ�

∣∣∣∣;
(19)

we can bound the first term above P-almost surely, for any ε > 0 and n large
enough, by

ess sup
X1

∣∣3′′X1
�λn� − 3′′X1

�λ�
∣∣ ≤ �λn − λ� ess sup

X1

sup
λ−ε≤ξ≤λ+ε

∣∣3′′′X1
�ξ�
∣∣

and this converges to zero, by (17) and part �v� of Lemma 1. As for the second
term of (19), by the ergodic theorem it converges to zero, P-almost surely.

Now choose and fix a realization �xi� of X such that the statements (15),
(16), (17) and (18) all hold. Define ζi = ρ�xi;Yi�, Tn =

∑n
i=1 ζi and T̂n = Tn/n,

with µn denoting the law of ζn1 . With a slight abuse of notation, we write P̂n
for the (nonrandom, since x∞1 is fixed) empirical measure induced by xn1 on
AX. In this notation, Q�B�xn1 ;D�� = Pr�T̂n ≤ D�, and, if we define

Jn = exp�n3∗
P̂n
�D��Pr�T̂n ≤ D�;

then in view of Proposition 1 the statement of the theorem can be rephrased as

logJn = o�
√
n�; P-a.s.(20)
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The upper-bound part of (20) follows from

Jn = exp�n3∗
P̂n
�D��E

{
1�T̂n≤D�

}
≤ exp�n3∗

P̂n
�D��E

{
exp�nλn�T̂n −D��

}

= exp
(
n�3∗

P̂n
�D� − λnD�

)
E
{
exp�λnTn�

}
= 1

(by the choice of λn and the definition of 3P̂n ).
Turning to the proof of the lower bound, suppose n is large enough so that

λn exists, and define a new probability measure νn by

dνn
dµn
�zn1� = exp

{
λn

n∑
i=1

zi − n3P̂n�λn�
}
:

Let

Gn = −
∑n
i=1�ζi −Eνn

ζi�√
n3′′

P̂n
�λn�

when ζn1 ∼ νn:

It is easy to see that Gn is a partial sum process of zero mean random vari-
ables, normalized so that Var�Gn� = 1. Observe that when ζn1 is distributed
according to νn,

T̂n
D=D−

√
3′′
P̂n
�λn�
n

Gn;

so that we can expand

Jn = exp
(
n3∗

P̂n
�D�

)
Eνn

{
1�T̂n≤D� exp

(
−nλnT̂n + n3P̂n�λn�

)}

= Eνn

{
1�Gn≥0� exp�λn

√
n3′′

P̂n
�λn�Gn

)}

≥ Eνn

{
1�0<Gn<δ� exp�−βn

√
nGn�

}

≥ exp�−βn
√
nδ�Prνn�0 < Gn < δ�;

(21)

for any δ > 0, and where βn = −λn
√
3′′
P̂n
�λn� > 0 and βn = O�1�, by (17)

and (18).
Since the random variables ζi are uniformly bounded, and also 3′′

P̂n
�λn� is

bounded away from zero by (18), it is easy to check that the Lindeberg condi-
tion for the CLT is satisfied by Gn, from which it follows that the probability
Prνn�0 < Gn < δ� → ρ > 0 as n→∞. Now choose M> 0 large enough so that
M− βn is bounded away from zero, and get from (21) that

lim inf
n→∞

log
[
exp�M√nδ�Jn

]
≥ log ρ > −∞;

that is,

lim inf
n→∞

√
n

[
Mδ+ 1√

n
logJn

]
> −∞;
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from which we conclude that

lim inf
n→∞

1√
n

logJn ≥ −Mδ:

Since δ > 0 was arbitrary and M > 0 was chosen independent of δ, letting
δ ↓ 0 completes the proof. 2

Proof of Corollary 1. SinceD > Dmin, by (16) alsoD > D
�n�
min eventually

P-almost surely. Consequently, Q�B�Xn
1 ;D�� > 0 eventually P-almost surely.

Thus, Corollary 1 follows by combining Theorem 2 with (3), provided we show
that R�P̂n� → R�P1� almost surely, or, equivalently (by Proposition 1), that
3∗
P̂n
�D� → 3∗�D� almost surely. Recall that for all n large enough, 3∗

P̂n
�D� =

λnD − 3P̂n�λn� and 3∗�D� = λD − 3�λ�, as in the proof of Theorem 2, where
λn→ λ almost surely by (17). So we only have to show that 3P̂n�λn� → 3�λ�;
which comes from an obvious adaptation of the derivation of (18). 2

Proof of Theorem 3. Let λ and �λn� be chosen as in the beginning of the
proof of Theorem 2, so that, in particular, 3∗�λ� = λD−3�λ� and 3′′�λ� > 0. By
the continuity of 3′′ we can choose constants δ;η > 0 such that 3′′�λ+ θ� > η
whenever �θ� < δ: Also, from (17), we can pick N = N�X∞1 � < ∞ P-almost
surely, such that �λn − λ� < δ for all n ≥N.

In view of Proposition 1 it suffices to show that
√
n
{
�3∗

P̂n
�D� − 3∗�D�� − �3�λ� − 3P̂n�λ��

}
→ 0:(22)

From the definition of 3∗
P̂n

and our choice of N, 3∗
P̂n
�D� is given by the

supremum of �θD− 3P̂n�θ�� over all θ ∈ �λ− δ; λ+ δ�, so (22) is the same as
√
n sup
�θ�<δ

[
θD− 3P̂n�θ+ λ� + 3P̂n�λ�

]
→ 0:(23)

Since this supremum is always nonnegative (take θ = 0), (23) is equivalent to

lim inf
n→∞

√
n inf
�θ�<δ

1
n

n∑
i=1

[
f�θ;Xi� − f�0;Xi�

]
≥ 0;(24)

where f�θ; x� = 3x�λ + θ� − �λ + θ�D. By Taylor’s theorem we can expand
g�θ� = n−1∑n

i=1 f�θ;Xi� around θ = 0 to obtain

1
n

n∑
i=1

[
f�θ;Xi� − f�0;Xi

]
= θAn +

θ2

2
Bn�θ�;(25)

where An = n−1∑n
i=1 f

′�0;Xi� and Bn�θ� = �1/n�
∑n
i=1 f

′′�ξn;Xi� for some
ξn�θ� such that �ξn� < δ.

The family of functions �f′′�ξ; ·�y ξ ∈ �−δ; δ�� is uniformly bounded and
equicontinuous (by Lemma 1), so by the uniform ergodic theorem [Rao (1962),
Section 6],

sup
�ξ�<δ

∣∣∣∣
1
n

n∑
i=1

f′′�ξ;Xi� −EPf
′′�ξ;X1�

∣∣∣∣→ 0; P-a.s.
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Therefore, P-almost surely, by the choice of δ,

lim inf
n→∞

inf
�θ�<δ

Bn�θ�

≥ lim inf
n→∞

{
inf
�ξ�<δ

EPf
′′�ξ;X1� − sup

�ξ�<δ

∣∣∣∣
1
n

n∑
i=1

f′′�ξ;Xi� −EPf
′′�ξ;X1�

∣∣∣∣
}

≥ inf
�ξ�<δ

EPf
′′�ξ;X1� = inf

�ξ�<δ
3′′�λ+ ξ� ≥ η > 0:

(26)

By our choice of λ, we have EPf
′�0;X1� = 3′�λ� −D = 0, so An is the partial

sum corresponding to the zero-mean stationary process �f′�0;Xn�yn ≥ 1�.
Since

∑
α�k� < ∞ and the random variables f′�0;Xi� are bounded, the LIL

[Rio (1995)] implies that
√
nA2

n→ 0 P-almost surely. Since the infimum over
�θ� < δ of the right side of (25) is bounded below by −A2

n/ inf �θ�<δBn�θ�, com-
bining this with (26) gives (24) and completes the proof. 2

5. Duality: match lengths. Let R denote R�P1;Q1;D�. Define Tn�D� =
inf k≥nWk�D� and T̃n�D� = minn≤k≤2nWk�D�. As mentioned in Section 2,
there is a duality relationship between Tn�D� and Lm�D�,

Lm�D� ≥ n ⇐⇒ Tn�D� ≤m:(27)

When combined with Lemma 2 below, (27) allows us to deduce (i), (ii) and (iii)
in Theorem 4 from corresponding results for T̃n�D�, namely, in the notation
and under the corresponding assumptions of Theorem 4:

(i′)
log T̃n�D�

n
→ R; �P×Q�-a.s.;

(ii′)
log T̃n�D� − nR√

n
→D N�0; σ2�;

(iii′) lim inf
n→∞

log T̃n�D� − nR√
2n log log n

= −σ; �P×Q�-a.s.

Lemma 2. Assume that X is stationary ergodic, Y is an i.i.d. process and
D ∈ �Dmin;Dav�. Then, Tn�D� = T̃n�D� eventually P×Q-almost surely.

Proof of Lemma 2. Note that Tn�D�≤ T̃n�D�≤Wn�D� and that Tn�D� =
T̃n�D� whenever T2n�D� > Wn�D�. Therefore, if

lim inf
n→∞

n−1 logT2n�D� ≥
4R
3
; �P×Q�-a.s.(28)

then, by Corollary 1, Tn�D� = T̃n�D� eventually P×Q-almost surely. For any
x∞1 ∈ A∞X, for any positive integer m and any n large enough, by the union
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bound and (12),

P
(
T2n�D� ≤m �X∞1 = x∞1

)
≤
∑
k≥2n

P
(
Wk�D� ≤m �Xk

1 = xk1
)

≤m
∑
k≥2n

Q
(
B�xk1;D�

)
:

(29)

It follows from Theorem 2 and Corollary 1 that, with P-probability 1,

lim
k→∞

k−1 logQ�B�Xk
1;D�� = −R:

In particular, eventually P-almost surely, supk≥n k
−1 logQ�B�Xk

1;D�� ≤
−3R/4. Substituting this in (29) with m = exp�4Rn/3� gives

P�T2n�D� ≤ exp�4Rn/3� �X∞1 = x∞1 � ≤ C exp�−nR/6� eventually P-a.s.,

for some fixed C < ∞. Hence, by the Borel–Cantelli lemma, T2n�D� >
exp�4Rn/3� eventually P×Q-almost surely, implying (28) and the conclusion
of the lemma. 2

Proof of Theorem 4. As already stated, it suffices to prove (i′)–(iii′). To
this end, first observe that combining Theorem 1 and Theorem 2,

lim
n→∞

1
n

min
n≤k≤2n

[
logWk�D� − kR�P̂k�

]
= 0; �P×Q�-a.s.;(30)

and from Corollary 1 it follows that

1
n

min
n≤k≤2n

kR�P̂k� → R; �P×Q�-a.s.(31)

By (30) and (31) we have

1
n

log T̃n�D� ≥
1
n

min
n≤k≤2n

[
logWk�D� − kR�P̂k�

]

+ 1
n

min
n≤k≤2n

kR�P̂k� → R; �P×Q�-a.s.

Since T̃n�D� ≤ Wn�D�, the corresponding upper bound also holds by Corol-
lary 1, proving (i′).

Next let ε > 0 arbitrary, so that in the notation of Corollary 2,

P
{

log T̃n�D�√
n

− logWn�D�√
n

< −ε
}

= P
{

inf
1≤t≤2

[
w�ntyD�
σ
√
n
− w�nyD�

σ
√
n
+
(�nt� − n

σ
√
n

)
R

]
≤ − ε

σ

}
:

For any δ > 0 and n large enough, this is bounded above by

P
{

inf
1≤t≤1+δ

[
w�ntyD�
σ
√
n
− w�nyD�

σ
√
n

]
≤ − ε

σ

}

+P
{

inf
1+δ≤t≤2

[
w�ntyD�
σ
√
n
− w�nyD�

σ
√
n

]
≤ − ε

σ
−K√n

}
;

(32)
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where K = δR/�2σ�. By the functional CLT of Corollary 2 (extended in the
obvious way to t ∈ �0;2�), the first term of (32) converges, as n → ∞, to
Pr�inf 0≤t≤δBt ≤ −ε/σ�, where �Bt� is standard Brownian motion, and this
can be made arbitrarily small by taking δ small enough. Similarly, for any C >
0 the second term in (32) is asymptotically bounded above by Pr�inf 0≤t≤1Bt ≤
−C�; which can also be made arbitrarily small by taking C large enough.
Combining these with the fact that T̃n�D� ≤Wn�D� implies that �log T̃n�D�−
logWn�D�� = o�

√
n� in probability, which, together with Corollary 2, gives (ii′).

We similarly obtain (iii′) by applying the functional LIL instead of the func-
tional CLT: set sn = σ

√
2n log log n; noting that

log T̃n�D�
sn

− logWn�D�
sn

= inf
1≤t≤2

[
w�ntyD�

sn
− w�nyD�

sn
+
(�nt� − n

sn

)
R

]
:

For any δ > 0 and n large enough this is bounded below by

min
{

inf
1≤t≤1+δ

[
w�ntyD�

sn
− w�nyD�

sn

]
; inf

1+δ≤t≤2

[
w�ntyD�

sn
− w�nyD�

sn

]

+K
√

n

log log n

}
:

(33)

By the functional LIL of Corollary 3 (extended in the obvious way to t ∈ �0;2�),
the first term in (33) is asymptotically P×Q-almost surely bounded below by

inf
r

inf
1≤t≤1+δ

[
r�t� − r�1�

]
≥ −
√
δ;

where the outermost infimum is taken over all absolutely continuous functions
r with

∫ 2
0 �dr/dt�2 dt ≤ 1 and r�0� = 0. Similarly,

lim inf
n→∞

inf
1+δ≤t≤2

[
w�ntyD�

sn
− w�nyD�

sn

]
≥ inf

r
inf

1+δ≤t≤2

[
r�t� − r�1�

]

≥ −1 �P×Q�-a.s.,

so that the second term in (33) converges to +∞ with probability 1, and hence

lim inf
n→∞

log T̃n�D�
σ
√

2n log log n
− logWn�D�
σ
√

2n log log n
≥ −
√
δ; �P×Q�-a.s.

Letting δ ↓ 0, recalling that T̃n�D� ≤ Wn�D� and applying Corollary 3 gives
(iii′) and completes the proof. 2
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