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We consider stochastic approximation algorithms with constant step
size whose average ordinary differential equation (ODE) is cooperative
and irreducible. We show that, under mild conditions on the noise pro-
cess, invariant measures and empirical occupations measures of the pro-
cess weakly converge (as the time goes to infinity and the step size goes
to zero) toward measures which are supported by stable equilibria of the
ODE. These results are applied to analyzing the long-term behavior of a
class of learning processes arising in game theory.

0. Introduction. Stochastic approximation algorithms with constant step
size are discrete time stochastic processes whose general form can be writ-
ten as

Xε
n+1 −Xε

n = εf�Xε
n; ξn+1�;(1)

where Xε
n lives in Rm, �ξn�n∈N is a stochastic process, f is a suitable function

and ε a small positive parameter (the step size).
Processes described by (1) appear in a large variety of domains such as sys-

tem identification or control theory; they encompass several models of learning
and adaptive behavior in neural network, game theory and elsewhere.

To analyze the asymptotic behavior of (1) it is often convenient to introduce
an ordinary differential equation (ODE)

dx

dt
= F�x�(2)

obtained from (1) by suitable averaging. This method, called the method of
ordinary differential equation, was introduced by Ljung (1977) and widely
studied thereafter [see, e.g., Kushner and Clark (1978), Benveniste, Métivier
and Priouret (1990), Duflo (1997)]. Until recently, however, most of the work
in this direction has assumed the simplest dynamics for F (for example that
F is the negative of the gradient of a cost function), and little attention has
been paid to dynamical systems issues.

Recent works by Benaı̈m (1996a, b), Benaı̈m and Hirsch (1995, 1996), Duflo
(1996) and Fort and Pages (1997) have shown how the long-term behavior
of stochastic approximation algorithms can be precisely related to the long-
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term behavior of the associated ODE with a great deal of generality beyond
gradients or other dynamically simple systems.

The present paper is a contribution along this line of research. It is devoted
to a particular but fairly broad class of algorithms, namely those which are
associated to a cooperative and irreducible ODE (defined below). This condition
occurs naturally in various situations; an example from game theory will be
discussed in the paper.

Briefly speaking, our main result is that when F is cooperative and irre-
ducible, weak* limits of the empirical occupation measure of Xε

n (obtained as
n→∞, ε→0) have their supports in the set of stable equilibria of (2) even
though certain trajectories of (2) may have arbitrary complicated behavior (pe-
riodic, quasiperiodic, chaotic: : : ). Random perturbations of dynamical systems
with complicated dynamics have often been considered for hyperbolic or ax-
iom A systems [see, e.g., Kifer (1988)]. However, cooperative vector fields are
usually not axiom A and their limit sets cannot be expressed as a finite union
of basic sets.

The key to our results are rough large deviation properties for (1) com-
bined with some geometric properties of attractors and attractor-free sets of
cooperative vector fields.

Section 1 states the hypotheses and the main results. These hypotheses
are discussed in Section 2 and are shown to be satisfied for a large class of
processes. Geometric properties of the supports of limiting measures of (1) are
proved in Section 3. The main results are proved in Section 4. Section 5 is an
application to a class of learning processes which are associated to repeated
games of coordination.

Terminology. A (Borel) measure µ on Rm is a weak* limit point of a set
M of probability measures on Rm if there is a sequence �µn� in M such that
for every bounded continuous function fx Rm→ R,

lim
n→∞

∫
Rm
fdµn =

∫
Rm
fdµ:

In other words, µ is a limit point of M in the weak* topology on the space of
measures.

A family J of Borel probability measures on Rm is tight if for every η > 0
there exists a compact set K ⊂ Rm such that µ�K� ≥ 1− η for all µ ∈ J . By
the Prohorov theorem, a tight family is relatively compact for the topology of
weak* convergence.

The indicator function of a set B is defined as usual by 1B�x� = 1 if x ∈ B
and 1B�x� = 0 otherwise.

1. Hypotheses and main results. In this paper we are concerned with
three entities.

1. A family of discrete-time stochastic processesXε = �Xε
n�n∈N parameterized

by ε > 0, defined on a probability space ��;F ;P� and taking values in
Rm. [While we do not assume that �Xε

n� is given by (1), our results are
motivated by such processes.]
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For each ε we denote by X
εx R+ → Rm the continuous time interpolated

process defined by piecewise linear interpolation of Xε
n and step size ε. That

is, X
ε�nε� =Xε

n: We let Xε; x denote the process with initial condition Xε
0 = x

and X
ε; x

denote the associated interpolated process.

2. A C1 vector field Fx Rm→ Rm generating the solution flow

8x R×Rm→ Rm;

�t; x� → 8�t; x� = 8t�x�;
where t 7→ 8t�x0� is the solution to (2) such that x�0� = x0. In practice
F�x� is closely related to the family �Xε

n�. Our assumptions will imply, for
example, that for all δ > 0,

lim
ε→0

P
{

sup
0≤t≤T

��Xε;x�t� −8t�x��� ≥ δ
}
= 0:

We refer to F as the mean field associated to �Xε
n�.

3. Two measurable maps L− and L+:

Lσ x TRm ≡ Rm ×Rm→ �0;∞� = R+ ∪ �∞�; σ ∈ �−;+�
such that Lσ�x; v� = 0 if and only v = F�x�. We call L− a lower gauge and
L+ an upper gauge for the vector field F:

Let CT�Rm� denote the set of continuous functions hx �0;T� → Rm endowed
with the topology of uniform convergence induced by the uniform norm: ��h�� =
sup0≤t≤T ��h�t���. Given x ∈ Rm and T > 0 we construct the action functionals

L σ
x;Tx CT�Rm� → �0;∞�; σ ∈ �−;+�;

defined by

L σ
x;T�h� =

∫ T
0
Lσ�h�t�; h′�t��dt

if h is absolutely continuous and h�0� = x and L σ
x;T�h� = ∞ otherwise. This

measures the deviation of the path h�t� from the trajectory 8t�x� of F.
We call L σ

x;T a rate function [Varadhan (1984)] provided the set of paths
{
h ∈ CT�Rm�x L σ

x;T�h� ≤ s
}

is compact for every finite s ≥ 0:
For every Borel set A ⊂ CT�Rm� we let

L σ
x;T�A � = inf

{
L σ
x;T�h�x h ∈ A

}

and L σ
x;T�\� = ∞:

We now state our assumptions concerning �Xε
n�, F and L σ

x;T.

Hypothesis 1.1. There exists a metric space M, a family of Markov chains
�Zε

n�n∈N taking values in M indexed by ε > 0 and a Borel measurable map
5xM→ Rm such that Xε

n = 5�Zε
n�.

Concerning F we always assume the following.
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Hypothesis 1.2. F is cooperative, irreducible and dissipative.

Cooperative means

∂Fi

∂xj
�x� ≥ 0 for all x ∈ Rm and i 6= j;

and irreducible means that the Jacobian matrixDF�x� is irreducible for all x ∈
Rm: Recall that a m×m matrix D = �Di; j� is irreducible if the directed graph
with vertices �1; : : : ;m� and oriented edges �i; j� for Di; j 6= 0 is connected by
directed paths.

The vector field F is dissipative if there exists a compact invariant set
3 ⊂ Rm, called the global attractor, such that for every compact set K ⊂ Rm;

lim
t→∞

dist �8t�x�; 3� = 0

uniformly in x ∈K, where dist denotes the distance from a point to a set.
We now introduce a nondegeneracy condition which has the consequence

that the process t→ X
ε; x�t� has a nonzero probability of deviating from the

mean trajectory t→ 8t�x�.

Definition 1.3 Nondegeneracy condition. Let K ⊂ Rm be a compact in-
variant set. The lower gauge L− is nondegenerate at K (with respect to F) if
there exists a neighborhood U of K and real numbers r0 > 0, ρ > 1 such that

sup
x∈U;v∈Rm;0<��v��≤r0

L−�x;F�x� + v�
��v��ρ <∞:(3)

Our main assumption, expressed in Hypothesis 1.4(iii) below, is that X
ε

satisfies upper and lower large deviation principles, locally uniform in the
initial state.

Hypothesis 1.4.

(i) L− is nondegenerate on the global attractor 3 of F:
(ii) L σ

x;T is a rate function for every x ∈ Rm, T > 0 and σ ∈ �−;+�:
(iii) For every Borel set A ⊂ CT�Rm� and compact setK ⊂ Rm, the following

estimates hold:
(a) There exists a ∈K such that

lim inf
ε→0

ε
[

sup
x∈K

log P�Xε; x ∈ A �
]
≥ −L −

a;T�int �A ��:

(b) There exists b ∈K such that

lim sup
ε→0

ε
[

sup
x∈K

log P�Xε;x ∈ A �
]
≤ −L +

b;T�clos �A ��:

Main Results. We denote the equilibrium set of the vector field F by

E =
{
p ∈ Rmx F�p� = 0

}
:
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An equilibrium p is termed:

1. Stable if for each neighborhood V of p there exists a neighborhood V1 ⊂ V
of p such that 8t�V1� ⊂ V for all t ≥ 0.

2. Asymptotically stable if there exists a neighborhood N of p such that

lim
t→∞

dist �8t�x�; p� = 0

uniformly in x ∈N.
3. Unstable if p is not stable.

The set of stable equilibria is denoted by Estab.
We now state our main result.

Theorem 1.5. Assume Hypotheses 1.1, 1.2 and 1.4. Let I ε denote the set
of invariant probability measures of the Markov process �Zε

n�n∈N: Suppose the
family

J =
{
µε = νε ◦5−1x νε ∈ I ε; ε > 0

}

is tight. Let µ = limεi→0 µ
εi be a weak* limit point of J : Let H ⊂ Rm be any

connected component of the support of µ. Then H is contained in a simply
ordered arc (possibly degenerate) of stable equilibria of F. If Estab is finite or F
is real analytic, then H reduces to an asymptotically stable equilibrium.

This theorem has the important consequence—made precise by the next
corollary—that as ε→ 0, the process �Xε

n�n∈N tends under reasonable condi-
tions to spend most of the time in the neighborhood of the stable equilibria.

The empirical occupation measure of the process �Xε
n� is the random mea-

sure τεn defined by

τεn�A� =
1

n+ 1

n∑
i=0

1A�Xε
i �

for every Borel set A ⊂ Rm.
Let Cb�M� be the set of real-valued bounded continuous functions defined

on M. For f ∈ Cb�M� let

Pεf�z� = Ez�f�Zε
1�� = E�f�Zε

1��Zε
0 = z�:

The Markov process �Zε
n�n∈N is called Feller if the operator Pε maps Cb�M�

into itself. For instance, the process given by (1) when �ξn� are independent
identically distributed random variables is clearly Feller provided x 7→ f�x; ξ�
is continous for almost all ξ:

Corollary 1.6. Suppose that the assumptions of Theorem 1.5 hold. Sup-
pose furthermore that for every ε > 0:

(a) The process �Zε
n�n∈N is Feller.

(b) The map 5xM→ Rm is continuous.
(c) The sequence of random measures �τεn�n∈N is almost surely tight.
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Let U ⊂ Rm be a neighborhood of the set of stable equilibria of F. Then

lim
ε→0

lim inf
n→∞

τεn�U� = 1

with probability 1.

Proof. Given ω ∈ �, lim infn→∞ τεn�U� = limni→∞ τ
ε
ni
�U� for some subse-

quence �ni� (depending on ω) with ni→∞ as i→∞: By tightness of �τεn�n∈N
we can suppose that �τεni�i∈N converges (for almost all ω) for the topology
of weak* convergence, toward some probability measure τε: The condition
that �Zε

n�n∈N is Feller implies that τε is almost surely an invariant proba-
bility measure of �Zε

n�n∈N [see, e.g., Duflo (1996), I.IV.19, page 20]. Now, let
gx Rm → �0;1� be a continuous function which is 1 on Rm \U and is zero on
a neighborhood U′ ⊂ U of the stable equilibria. Then

lim
ni→∞

τεni�R
m \U� ≤ lim

ni→∞

∫
M
�g ◦5��z�τεni�dz� =

∫
M
�g ◦5�τε�dz�

=
∫

Rm
g�x�µε�dz�

with µε�·�= τε�5−1�·��; and Theorem 1.5 implies that limε→0
∫

Rm g�x�µε�dx�=
0: 2

Remark 1.7. If E is finite or F is real analytic, Corollary 1.6 holds where
U denotes any neighborhood of the set of asymptotically stable equilibria.

2. Discussion of hypotheses.

Tightness assumptions. The tightness assumptions in Theorem 1.5 and
Corollary 1.6 are automatically satisfied when M and 5�M� are compact. If
M is not compact, criteria based on the existence of a suitable Lyapounov func-
tion are particulary useful. The following proposition due to Fort and Pages
(1996) and Duflo (1996) gives a practical criterion well suited to stochastic
approximations with constant step size. For more details and further results,
we refer the reader to Section 1 of Fort and Pages (1996).

Proposition 2.1 [Fort and Pages (1996) and Duflo (1996)]. Suppose that
for every ε > 0:

(a) The process �Zε
n�n∈N is Feller.

(b) There exists a function HxM→ R+ (called a Lyapounov function) such
that

for all R ≥ 0 the set KR = �z ∈ Mx H�z� ≤ R� is compact
and there exists 0 < α�ε� < 1 and β�ε� ≥ 0 such that PεH ≤
α�ε�H+ β�ε�.

Then:

(i) Assumption (c) of Corollary 1.6 is satisfied and the set I ε of invariant
probability measures for �Zε

n�n∈N is nonempty.
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(ii) If there exists ε0 > 0 such that

sup
0<ε≤ε0

β�ε�
1− α�ε� <∞;

then the family

I =
⋃

ε0≥ε>0

I ε

is tight.
(iii) If 5x M → Rm is continuous, the tightness of I in (ii) implies the

tightness of the family J defined in Theorem 1.5.

Proof. Conclusion (i) is proved in Duflo [(1996), Proposition 1.III.14]. Con-
clusions (ii) and (iii) follow from Propositions 1 and 2 of Fort and Pages (1996).
If 5x M → Rm is continuous, the tightness of I implies that the family
�µε = νε�5−1�; νε ∈ I � is relatively compact. It is then tight by the Prohorov
theorem. 2

Large deviation assumptions. Precise large deviation theorems for the dy-
namical system (1) have been proved under various assumptions on the noise
process �ξn� and the function f by several authors including Azencott and
Ruget (1977), Freidlin (1978), Freidlin and Wentzell (1984) and Dupuis (1988).
The recent book by Dupuis and Ellis (1997) provides a comprehensive and uni-
fied introduction to this literature. For readers’ convenience we briefly describe
here the general model considered in Dupuis and Ellis [(1997), Chapters 5
and 6], generalizing the work of Azencott and Ruget (1977).

A Borel vector field is a measurable map vx Rm→ Rm: We let χ�Rm� denote
the space of Borel vector fields. It is equipped with the σ algebra generated
by the projections �ηxx x ∈ Rm� where ηxx v ∈ χ�Rm� → v�x� ∈ Rm:

Let P �Rm� denote the space of probability measures on Rm endowed with
the topology of weak* convergence and let µ be a continuous function

µx Rm → P �Rm�;
x→ µx:

Let �vn�n∈N be a sequence of i.i.d. random variables defined on some probabil-
ity space ��;F ;P� taking value in χ�Rm� such that for all x ∈ Rm and every
Borel set B ⊂ Rm

P�vn�x� ∈ B� = µx�B�:
The function µ being given, it is easy to construct such a sequence of random
vector fields [see, e.g., Azencott and Ruget (1977)]. However it is clear that µ
does not characterize the law of �vn�:

Consider a family �Xε
n� of processes defined on Rm, parametrized by ε > 0,

satisfying recursion of the form

Xε
n+1 −Xε

n = εvn�Xε
n�;(4)
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where Xε
0 = x ∈ Rm: Since the random vector fields �vn� are i.i.d., the process

�Xε
n�n∈N is a homogeneous Markov chain.
The mean field associated to (4) is the vector field Fx Rm→ Rm defined by

F�x� =
∫

Rm
vµx�dv�:

For each x ∈ Rm we let Sx denote the support of µx, conv�Sx� the convex
hull of Sx and ri�conv�Sx�� the relative interior of conv�Sx�: The cumulant
generating function of µx is defined as

H�x; α� = log
(∫

Rm
exp �α; v�µx�dv�

)

for all α ∈ Rm:
The next theorem follows from Theorem 6.3.3 of Dupuis and Ellis (1997).

Theorem 2.2 (Dupuis and Ellis). Suppose that:

(a) The sets ri�conv�Sx�� are independent of x ∈ Rm.
(b) 0 ∈ ri�conv�Sx��.
(c) For each α ∈ Rm, supx∈RmH�x; α� <∞:

Then the process �Xε
n� satisfies Hypotheses 1.4(ii) and (iii) with the gauges

L+�x; v� = L−�x; v� = L�x; v� where L�x; ·� is the the Legendre transform of
H�x; ·�: That is,

L�x; v� = sup
α∈Rm

��α; v� −H�x; α��:

Proof. Let F ⊂ CT�Rm� be a closed set and K ⊂ Rm a compact set. Given
any C > 0,

sup
x∈K

P�Xε; x ∈ F � ≤ P�Xε; x�ε� ∈ F � + e−C/ε

for some x�ε� ∈K: Since log�u+ v� ≤ log�2� + sup�log�u�; log�v�� we have

lim sup
ε→0

sup
x∈K

ε log�P�Xε; x ∈ F �� ≤ sup
(
−C; lim sup

ε→0
ε log�P�Xε;x�ε� ∈ F ��

)
:

Let εk→ 0 be such that

lim sup
ε→0

ε log�P�Xε; x�ε� ∈ F �� = lim
εk→0

εk log�P�Xεk; x�εk� ∈ F ��:

By compactness of K we can suppose that x�εk� → x∗ for some x∗ ∈K: There-
fore the uniform Laplace principle proved in Dupuis and Ellis [(1997), Theo-

rem 6.3.3, page 165], implies that �Xεk; x�εk��k∈N satisfies the Laplace princi-
ple on CT�Rm� with rate function Lx∗;T: Since the Laplace principle and the
large deviation principle are equivalents [Dupuis and Ellis (1997), Theorems
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1.2.1 and 1.2.3] �Xεk; x�εk��k∈N satisfies the large deviation principle with rate
function Lx∗;T: Therefore

lim sup
ε→0

sup
x∈K

ε log�P�Xε; x ∈ F �� ≤ sup�−C;−Lx∗;T�F ��:(5)

If inf x∈K Lx;T�F � < ∞, choose C > inf x∈K Lx;T�F � and a ∈ K such that
La;T�F � ≤ inf �C;Lx∗;T�F �: It then follows from (5) that

lim sup
ε→0

sup
x∈K

ε log�P�Xε; x ∈ F �� ≤ −La;T�F �:

If inf x∈K Lx;T�F � = ∞, it suffices to let C→∞ in inequality (5). This proves
that Hypothesis 1.4(iii)(b) is satisfied. The proof of Hypothesis 1.4(iii)(a) is
similar. 2

Conditions (a), (b), (c) of Theorem 2.2 are easily verified but the rate func-
tional is usually difficult to compute. The next proposition gives rough esti-
mates of this functional and provides a sufficient condition ensuring that the
nondegeneracy condition (Definition 1.3) holds.

Let Fn denote the σ field generated by the random variables �v0; v1; : : : ;
vn−1� and let

Uε
n+1 = vn�Xε

n� −F�Xε
n�:

It is clear that Uε
n is measurable with respect to Fn and satisfies

E�Uε
n+1�Fn� = 0:

Let g+x R+→ R+ be a C2 nonnegative convex function with g+�0� = 0 [hence
g′+�0� = 0]. We say that �Uε

n� is of type g+ if for all θ ∈ Rm,

E�exp��θ;Uε
n+1���Fn�� ≤ exp�g+���θ����:

For instance, if ��Uε
n�� ≤M for all n ∈ N, then it is well known that �Uε

n� is of
type g+ with g+�u� =M2u2/2:

The Legendre transform of g+ is the function g∗+x R→ R+∪�∞� defined by

g∗+�x� = sup
t∈R+

tx− g+�t�:

It is a nonnegative strictly convex function �meaning that it is strictly convex
on the interval Dom �g∗+� = �x ∈ Rx g∗+�x� <∞�� and vanishes at the origin.

Proposition 2.3. Suppose that �Uε
n� is of type g+.

(i) Then �Xε
n� satisfies Hypothesis 1.4(b) with the upper gauge

L+�x; v� = g∗+���v−F�x����:
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(ii) Suppose furthermore that the eigenvalues of the covariance matrices

E��Uε
n+1��Uε

n+1�T�Fn�

are bounded below by some positive constant γ2: Then there exists a C2 strictly
convex function g−x R+ → R+ with g−�0� = g′−�0� = 0 and g′′−�0� > 0 such
that �Xε

n� satisfies Hypothesis 1.4(a) with the lower gauge

L−�x; v� = g∗−���v−F�x���� =
1

2g′′−�0�
��v−F�x���2 + o���v−F�x���2�:

(iii) If supn; ε ��Uε
n�� ≤M, for g+ and g− we can choose the functions

g+�u� =
M2

2
u2;

g−�u� =
γ2

2M

[
u+ 1

2M
�e−2Mu − 1�

]
;

with the Legendre transforms

g∗+�x� =
1

2M2
x2;

g∗−�x� =
γ2

4M2
f

(
2M
γ2

x

)
;

where f�u� = log�1− u��1− u� + u for u < 1 and f�u� = ∞ otherwise.

To prove this result we need the following lemma.

Lemma 2.4. Suppose �Uε
n� is of type g+ and suppose furthermore that the

eigenvalues of the covariance matrices E��Uε
n+1��Uε

n+1�T�Fn� are bounded be-
low by some positive constant γ2 or in other words,

E��θ;Uε
n+1�2�Fn� ≥ γ2��θ��2

for all θ ∈ Rm: Then there exists a C2 strictly convex function g−x R → R+
with g−�0� = g′−�0� = 0 and g′′−�0� > 0, such that

E�exp�θ;Uε
n+1���Fn� ≥ exp�g−���θ����:

In case supn; ε ��Un�� ≤M we can choose for g+ and g− the functions given in
Proposition 2.3(iii).

Proof. To shorten notation, let U = Uε
n+1, X = �θ;Uε

n+1� and write E�·�
for E�·�Fn� and P�·� for P�·�Fn�:

Let k�t� = log�E�etX�� for t ≥ 0: It is well known (and easy to verify) that
k�0� = k′�0� = 0 and

k′′�t� = Et��X−Et�X��2�;
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where Et is the operator defined by Et�Y� = E�Y�etX/E�etX���: Thus

k′′�t� ≥ E��X−Et�X��2 exp�tX�� exp�−g+�t��θ����
≥ E

[
�X−Et�X��21�t�X�≤M�

]
exp�−�M+ g+�t��θ�����:

We claim that there exists a continuous function Mx R+→ R+ such that

E
[
�X−Et�X��21�t�X�>M�t��θ����

]
≤ 1/2γ2��θ��2:

Suppose for the moment that the claim is true. Set ψ�s� = M�s� + g+�s�:
Because E�X� = 0 we have

E��X−Et�X��2� = E�X2� +Et�X�2 ≥ E�X2� ≥ γ2��θ��2:
Therefore

k′′�t� ≥ 1/2γ2��θ��2 exp�−ψ�t��θ����:
Let ρ�s� = 1/2γ2e−ψ�s�: By successive integrations we find that

k�1� ≥ ��θ��2
∫ 1

0

∫ t
0
ρ�s��θ���dsdt = g−���θ���;

where

g−�t� =
∫ t

0

∫ r
0
ρ�s�dsdr:

It is clear that g− is a C2 nonnegative strictly convex function vanishing at
the origin. This proves the result.

We now prove the claim. Let

A�M� = E
[
�X−Et�X��21�t�X�>M�

]
:

We have

�X−Et�X��2 ≤ 2�X2 +Et�X�2� ≤ 2��θ��2
[
��U��2 + �Et���U����2

]

≤ 2��θ��2
[
��U��2 +E���U��2� E�e

2tX�
�E�etX��2

]

by the Hölder inequality. Let r = g+�t��θ��� + log�4�;
E�etX� ≥ E

(
exp�tX�1t�X�≤r

)
≥ exp�−r��1−P�t�X� > r��

≥ exp�−r��1− 2 exp�−r� exp�g+�t��θ����� = 1/8 exp�−g+�t��θ����:
Also

E���U��k� ≤ k!E�exp���U���� ≤ k!E
(
exp�√m sup

i

�Ui��
)

≤ k!2m exp�g+�
√
m��:

Thus E���U��k� ≤ eak for some constant ak > 0: It follows that

E���U��2� E�e
2tX�

�E�etX��2 ≤ e
φ�t��θ���
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with φ�s� = a2 + g+�2s� + 2g+�s� + 6 log�2�: Therefore

A�M� ≤ 2��θ��2
[
E���U��4� + exp�φ�t��θ����

]
P�t�X� >M�

≤ 4��θ��2 exp�a4 +φ�t��θ��� + g+�t��θ��� −M�:
It now suffices to choose M�s� = a4 +φ�s� + g+�s� + c with c large enough to
prove the claim.

In case ��U�� ≤ M we have k′′�t� = Et�X2� −Et�X�2 ≤ Et�X2� ≤ M2��θ��2
and k′′�t� ≥ E��X−Et�X��2�e−2Mt ≥ γ2��θ��2e−2Mt: Then we get

γ2

2M

[
��θ�� + 1

2M
�e−2M��θ�� − 1�

]
≤ k�1� ≤ 1

2
M2��θ��2

by integration. 2

Proof of Proposition 2.3. The proof of Proposition 2.3 is now straight-
forward. By definitions H�x; α� and Uε

n we have

L�x; v� = sup
α∈Rm

�α; v� −H�x; α� ≤ sup
α∈Rm

�α; v−F�x�� − g+���α���

= sup
t∈R+

t��v−F�x��� − g+�t�:

Thus L�x; v� ≤ g∗−���v−F�x����; and similarly L�x; v� ≥ g∗+���v−F�x����:

3. Limiting measures and attractor-free sets.

Limiting measures. The following result is essential to our analysis. It is
similar to Theorem 1.1 of Kifer (1988).

Proposition 3.1. Assume Hypotheses 1.1 and 1.4(iii)(b). Let I ε denote the
set of invariant probability measures of �Zε

n�n∈N: Suppose that the family

J =
{
µε = νε ◦5−1x νε ∈ I ε; ε > 0

}

is tight. Then any limit point µ = limεi→0 µ
εi of J is an invariant measure of

the flow 8:

Proof. First remark that Hypothesis 1.4(iii)(b) implies the following av-
eraging property: Let K ⊂ Rm be a compact set, T ≥ 0 and δ > 0; then

lim
ε→0

sup
x∈K

P
(

sup
0≤t≤T

��Xε; x�t� −8t�x��� ≥ δ
)
= 0:(6)

Indeed, it suffices to apply Hypothesis 1.4(iii)(b) to the set

A =
{
h ∈ CT�Rm�x sup

0≤t≤T
��h�t� −8t�x��� ≥ δ

}
:

Here A is a closed set and for any b ∈ K the infimum of L +
b;T on A is

positive. It easily follows that µ is an invariant measure of the flow 8 [see,
e.g., Corollary 3.2 of Benaı̈m (1998) for more details]. 2
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A set A ⊂ Rm is an attractor provided A is a nonempty compact invariant
set that has a neighborhood N such that limt→∞ dist �8t�x�;A� = 0 uniformly
in x ∈N: The basin of attraction of A is the open set

B�A� =
{
x ∈ Rmx lim

t→∞
dist �8t�x�;A� = 0

}
:

A compact invariant set K ⊂ Rm is called attractor-free if the restricted flow
8�K admits no attractor other than K itself. By a result of Conley (1978), K
is attractor-free if and only if K is connected and every point of K is chain-
recurrent for 8�K:

The following proposition is an immediate consequence of the Poincaré re-
currence theorem.

Proposition 3.2. Let µ be a an invariant Borel probability measure of the
flow 8 generated by a dissipative vector field. Then each component of the
support of µ is attractor-free.

Proof. Let X ⊂ Rm denote the support of µ: By the Poincaré recurrence
theorem, µ�x ∈ Rmx x ∈ ω�x�� = 1 where ω�x� denotes the omega limit set
of x: Therefore X = clos �x ∈ Xx x ∈ ω�x��: Hence every point of X is chain
recurrent for 8�X: 2

Properties of attractor-free sets. The vector order in Rm is written x ≥ y;
with the meaning that xi ≥ yi for all i: If x ≥ y and x 6= y then we write x > y:
If xi > yi for all i then we write x� y: For a cooperative and irreducible vector
field, the flow 8 enjoys the fundamental property of being strongly monotone
[Hirsch (1985), Kunze and Siegel (1994), Smith (1995)]. That is, x > y implies

8t�x� � 8t�y�
for all t > 0:

Given two subsets A;B ⊂ Rm we write A ≥ B (A > B; A � B) if a ≥ b
(a > b; a � b) for all a ∈ A; b ∈ B: A set A is called unordered if no two of
its points are related by >.

The following theorem is proved in Hirsch (1996).

Theorem 3.3. Let K ⊂ Rm be an attractor-free set for the flow 8 generated
by a the vector field F as in Hypothesis 1.2. Then either K is unordered, or
K is a simply ordered C1 arc of equilibria whose relative interior points are
stable.

Let K ⊂ Rm be a compact unordered invariant set. Define

H+�K� =
{
x ∈ Rmx ∃ y ∈K; s ≥ 0x 8s�x� � y

}

and

H−�K� =
{
x ∈ Rmx ∃ y ∈K; s ≥ 0x 8s�x� � y

}
:
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The sets H+�K� and H−�K� are open positively invariant sets whose bound-
aries V+�K� = ∂H+�K� and V−�K� = ∂H−�K� are closed invariant un-
ordered hypersurfaces homeomorphic to Rm−1 which contain K. [See, e.g.,
Hirsch (1988a) and Takáč (1992)]. Recently Tereščák (1994) proved that these
hypersurfaces are smooth (C1).

Corollary 3.4. Let K ⊂ Rm be an unordered attractor-free set that con-
tains more than one point. Then there exists an attractor A+�K� �K whose
basin of attraction contains H+�K�: Similarily there exists an attractor
A−�K� �K whose basin contains H−�K�:

Proof. Let �K;∞�=�x ∈ Rmx x ≥ K� and let p ∈ Rm be the minimal
element of �K;∞� for the vector ordering ≥. Clearly, �K;∞�= �p;∞�:

Since K is unordered, p is not in K: Therefore p > K; and by strong
monotonicity and invariance of K we have 8t�p� � p for t > 0: It follows that
the set �K;∞�= �p;∞� is mapped into its interior by 8t for all t > 0: This
last property together with the fact that the flow is dissipative imply that the
set

A+�K� =
⋂
t≥0

8t��K;∞��

is an attractor whose basin of attraction B�A+�K�� contains �K;∞�:
To show that H+�K� ⊂ B�A+�K��, it suffices to show that if x � y for

some y ∈K, then ω�x� ≥K:
Let y ∈K and x� y: By the limit set dichotomy [see Smith (1996)] either

ω�x� � ω�y� or else ω�x� = ω�y� = �e� for some equilibrium e.
Suppose ω�x� = ω�y� = e: Let λ1�e� denote the largest real part of the

eigenvalues of DF�e�: Since DF�e� is irreducible, the Perron–Frobenius the-
orem applied to DF�e� + aI for large a > 0 implies that λ1�e� is a simple
eigenvalue whose corresponding eigenspace is spanned by a positive vector
u � 0: Now by monotonicity, the open set �zx x � z � y� is attracted by e:
Therefore λ1�e� ≤ 0 and all other eigenvalues have negative real parts. This
implies that e is an attractor for 8�V+�K�: This is contradictory because K is
attractor-free and K 6= �e�:

Now suppose ω�x� � ω�y�: Set W = �w ∈ Kx w � ω�x��: Then W is
a nonempty open subset of K positively invariant. Also 8t�clos �W�� ⊂W for
t > 0 by strong monotonicity. Thus W contains an attractor for 8�K: Therefore
W =K: 2

The next proposition gives a result similar to Corollary 3.4 for unstable
equilibria.

Proposition 3.5. Let p ∈ Rm be an unstable equilibrium for 8: Then at
least one of the two following conditions hold.

(i) There exists an attractor A+�p� � p whose basin contains H+�p�; or
(ii) There exists an attractor A−�p� � p whose basin contains H−�p�:
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If p is linearly unstable, both conditions (i) and (ii) hold. If p is an endpoint of
a simply ordered arc of equilibria J ⊂ E , then condition (i) holds if p = inf J
and (ii) holds if p = supJ:

Proof. By a theorem of Mierczyński (1994), there exists a C1 connected
one-dimensional manifold W1 = W1�p� through p defined in a neighborhood
of p with the following properties: W1 is tangent to the line Lp at p, W1 is
simply ordered by � and W1 is locally invariant in the sense that for every
neighborhood N of p small enough, there exists t0 > 0 such that that 8t�W1∩
N� ⊂ W1 for �t� ≤ t0: Since W1 is one-dimensional and simply ordered, for
every x ∈ W1 ∩N either 8t�x� ≤ x for all 0 < t ≤ t0 or 8t�x� ≥ x for all
0 < t ≤ t0:

Let x;y ∈ W1 ∩N with x � p and y � p: Suppose that 8t�x� ≤ x and
8t�y� ≥ y for 0 < t ≤ t0: Then 8t�x� ≤ x and 8t�y� ≥ y for all t ≥ 0 by
local invariance, and by monotonicity the set �y;x� = �zx y ≤ z ≤ x� defines a
positively invariant neighborhood of p:

Therefore, the assumption that p is unstable implies the existence of a
neighborhood N of p and a positive number t0 such that for all x;y ∈W1 ∩N
with x � p and y � p 8t�x� > x for all 0 < t ≤ t0 or 8t�y� < y for all
0 < t ≤ t0: Suppose, for example, that the first condition holds. Then there
exists an equilibrium e � p such that for all x ∈ W1 ∩ N with x � p,
limt→∞8t�x� = e: Choose x0 ∈ W1 ∩N with x0 � p: Strong monotonicity
implies that 8t�x0;∞�⊂ int ��x0;∞�� for all t > 0: Thus by an argument sim-
ilar to the one used in the proof of Corollary 3.4, we deduce the existence of
an attractor A+�p� whose basin contains �x0;∞�: Let now x ∈ H+�p�: We
have 8t�x� � p for some t ≥ 0: Thus 8t�x� � y for some y ∈ W1 ∩N: Thus
ω�x� ≥ limt→∞8t�y� = e� x0. Therefore x is in the basin of A+�p�: 2

The arguments used in the proof of Proposition 3.5 can be easily adapted
to prove the following.

Proposition 3.6. Let p be a stable equilibrium of F. Suppose that there
exists a neighborhood N of p such that E ∩N is unordered. Then p is asymp-
totically stable.

In addition, we have the following proposition.

Proposition 3.7. Suppose F is real analytic in an open set U ⊂ Rm. Let
p ∈ U be a stable equilibrium for F. Then p is asymptotically stable.

The proof is a consequence of a result in Jiang (1991), implying that a
real analytic dissipative vector field F is cooperative and irreducible, then it
cannot have a nondegenerate, compact, totally ordered arc of equilibria; see
also Lemma 3.3 and Theorem 2 in Jiang and Yu (1995), and Chow and Hale
[(1982), page 321].
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4. Proof of main results. In this section we will prove the following
result (Theorem 4.1), and from it deduce Theorem 1.5. Throughout this section,
Hypotheses 1.1, 1.2 and 1.4(ii) and (iii) are implicitly assumed.

Theorem 4.1. Let νε be an invariant measure of �Zε
n�n∈N and let µε =

νε ◦5−1: Let K ⊂ Rm be an attractor-free set for 8 which contains either
a nonequilibrium point or an unstable equilibrium point. Suppose that L−

is nondegenerate at K: Then there exists a neighborhood U of K such that
limε→0 µ

ε�U� = 0:

The key point needed to prove Theorem 4.1 is given by Lemma 4.4 below. In
order to prove Lemma 4.4 we need some preliminary technical results given
by the next two lemmas.

Lemma 4.2. Let u � 0 be a positive vector. For r ∈ R; let 8r;u denote the
flow induced by the ordinary differential equation

dx

dt
= F�x� + ru:

For all t > 0, r0 > 0 the set

0�x; r0; t; u� =
{
8r;u�t; x�x − r0 ≤ r ≤ r0

}

is a C1 simply ordered arc.

Proof. The fact that 0�x; r0; t; u� is a C1 arc follows from standard re-
sults on the smoothness of solutions of differential equations depending on a
parameter. Let x;y ∈ Rm with x ≥ y: We claim that for r > r′ and t > 0,
8r;u�t; x� � 8r

′; u�t; y�:
Let K = �8r;u�t; x�x 0 ≤ t ≤ 1; �r� ≤ r0� ∪ �8r;u�t; y�x 0 ≤ t ≤ 1; �r� ≤ r0�:

Continuity of the map t; r; z→ 8r;u�t; z� makes K a compact set. Set h�t� =
8r;u�t; x� −8r′; u�t; y�: For 0 ≤ t ≤ 1; a Taylor formula gives

h�t� = h�0� + th′�0� +O�t2� = x− y+ t�F�x� −F�y�� + t�r− r′�u+O�t2�

=
∫ 1

0
�x− y+ tDF�x+ sy��x− y��ds+ t�r− r′�u+O�t2�:

Since nondiagonal entries of DF�z� are nonnegative, there exists α > 0 such
that Id + tDF�x + sy� ≥ 0 for 0 ≤ t ≤ α and 0 ≤ s ≤ 1: Also, there exists
0 < β ≤ 1 such that t�r − r′�u +O�t2� � 0 for 0 < t ≤ β: Then 8r;u�t; x� −
8r

′; u�t; y� � 0 for 0 < t ≤ η = min�α;β�: If now t > η, it suffices to write
t = pη + t′; p ∈ N; 0 ≤ t′ < η and to use the flow property to show that
8r;u�t; x� − 8r′; u�t; y� � 0: This proves the claim and Lemma 4.2 follows by
choosing y = x: 2
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LetK ⊂ Rm be as in Theorem 4.1. By Theorem 3.3 one of the three following
conditions holds:

(i) K is unordered and is not an equilibrium, or
(ii) K = �p� is an unstable equilibrium, or

(iii) K is a subarc of a simply ordered arc of equilibria with an unstable
endpoint p and p ∈K:
Now, define the set K+ �K as follows. If K is as (i) or (ii) then K+ = A+�K�
where A+�K� is given by Corollary 3.4 in case (i) and Proposition 3.5 in case
(ii). If K is as in (iii) we may assume that p is the upper endpoint of K
(the other case being similar) and we set K+ = A+�p� with A+�p� given by
Proposition 3.5.

Finally, we let U1 and U2 denote disjoint compact neighborhoods of K and
K+ and we choose U1 small enough to be contained in the neighborhood given
by Definition 1.3.

Lemma 4.3. Given η > 0 and V2 ⊂ U2 a neighborhood of K+: There exist
a neighborhood of K, V1 ⊂ U1; times T1 ≥ T0 ≥ 0 and a continuous map

ψx V1 ×R+→ Rm;

�x; t� → ψx�t�
such that for all x ∈ V1:

(a) ψx�0� = x and ψx�t� ∈ V2 for all t ≥ T1;
(b) L −

x; t�ψx� ≤ η for all t ≥ 0;
(c) The Lebesgue measure of set �t ≥ 0x ψx�t� ∈ V1� is bounded by T0:

Proof. We will consider two cases.
Case 1. K is as in (i) or (ii) above. By the nondegeneracy condition and

the choice of the neighborhood U1 there exist numbers r0 > 0, C > 0 and a
unit positive vector u � 0 such that L−�x;F�x� + ru� ≤ C for all x ∈ U1,
�r� ≤ r0: Let t0 = η/C: Using the notations of Lemma 4.2, for each x ∈ U1,
let Jx denote the ordered arc Jx = 0�x; r0; t0; u� and let e�x� = 8r0; u�t0; x�
the right endpoint of J�x�: By Lemma 4.2, e�x� � x: Thus, for every x ∈ K,
e�x� ∈ H+�K�: Also, since K is compact and unordered there exists α > 0
such that for every x ∈K, dist �e�x�;V+�K�� > α: Set

V1 = U1 ∩ e−1({e ∈H+�K�x dist �e;V+�K�� > α
})
:

Since H+�K� is open and x→ e�x� is continuous, V1 defines a neighborhood
of K:

Given x ∈ V1 we now define a continuous function9xxR+→ Rm by9x�t� =
8
r0; u
t �x� for 0 ≤ t ≤ t0 and 9x�t� = 8t�e�x�� for t > t0: With this choice for

9x, assertion (a) of Lemma 4.3 is satisfied because, according to Propositions
3.4 and 3.5, t→ 8t�e�x�� converges toward K+; and clos�e�V1�� is a compact
subset of the basin of attraction of K+:
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To verify assertion (b) write

L −
x; t�9x� =

∫ t0
0
L−�8r0; u

s �x�;F�8r0; u
s �x��+r0u�ds+

∫ t
t0

L−�8s�x�;F�8s�x���ds:

The second integral in the right-hand side of this equality is zero and the first
integral is bounded by

∫ t0
0 Cds = η:

To prove (c) it suffices to show that the amount of time spent by the forward
trajectory �8t�e�x��; t ≥ 0� in V1; is bounded by some constant independent
of the choice of x ∈ V1: This is obvious because clos �e�V1�� is a compact subset
of the basin of attraction of K+ and V1 is disjoint from U2: This proves the
lemma in this case.

Case 2. K is as in (iii). Let p be the upper endpoint of K and let q ∈W1�p�
with q � p where W1�p� is a C1 connected invariant manifold through p
as used in the proof of Theorem 3.5. Set J = K ∪ �W1�p� ∩ �p;q��: Since K
and W1�p� are C1 and ordered, there exists a piecewise C1 map 2x �0;1� →
Rm such that 2��0;1�� = J, 2�1� = q and 2�s� � 2�t� for s < t: We let
Sx J → �0;1� denote the inverse of 2 and we define the constant A = 2�1 +
sup0≤t≤1 ��2′�t����:

Let ξ > 0: Because K consists of equilibria, there exists 0 < δ < 1 such
that for all x ∈ Uδ�K� = �x ∈ Rmx dist �x;K� ≤ δ�, ��F�x��� ≤ ξ: Choose
m ∈ J ∩ Uδ�K� with m � p and set V1 = �x ∈ Uδ�K�x x ≤ m�: Now for
each x ∈ V1 let cx ∈ K be such that dist �x;K� = ��x − cx�� and define a
function hxx �0;1� → Rm by hx�t� = x + 2t�x − cx� for 0 ≤ t ≤ 1/2 and
hx�t� = 2�S�x�+�2t−1���S�m�−S�x�� for t ≥ 1

2 . Hence hx�0� = x, hx�1� =m
and ��h′x�t��� ≤ max�2δ;2 sup0≤t≤1 ��2′�t���� ≤ A:

Now, set 9x�t� = hx�ξt� for t ≤ 1/a and 9x�t� = 8t�x� for t ≥ 1/ξ:
Since m belongs to the basin of K+, assertion (a) of Lemma 4.3 is satisfied,

and since m ∈ W1�p� we must have 8t�m� � m ≥ V1 for all t > 0. Thus
assertion (c) of Lemma 4.3 is also satisfied. For ξ > 0 small enough ��F�9x�t��−
9′x�t��� ≤ ξ +Aξ ≤ r0: Thus by the nondegeneracy condition (Definition 1.3)
we get that L�9x�t�;9′x�t�� = O�ξα�:

Then for all t > 0,

Lx; t�9x� ≤ Lx;1/ξ�9x� = O�ξα−1�:

Since α > 1 we can obviously choose ξ such that Lx; t�9x� ≤ η: 2

Next we follow Freidlin and Wentzell (1984) by introducing a convenient
induced chain.

For any Borel set V ⊂ Rm set Ṽ = 5−1�V� ⊂M: Then define the induced
chain on Ṽ as the Markov chain �Zε; Ṽ

n �n∈N living in Ṽ whose transition prob-
abilities P̃εz�·� are given by

P̃εz�B� = P�Zε
TṼ
∈ B�Zε

0 = z�;

where TṼ = inf�n ≥ 1x Zε
n ∈ Ṽ� and B is any Borel subset of Ṽ:
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Lemma 4.4. There exists a neighborhood of K; V1 ⊂ U1; a neighborhood
of K+; V2 ⊂ U2; positive constants δ > η > 0 and an integer-valued function
ε→ n�ε� ∈ N such that for V = V1 ∪V2; the induced chain on Ṽ satisfies:

(i) lim inf ε→0 ε log�P̃εz�n�ε�;V2�� ≥ −η uniformly in z ∈ Ṽ1:

(ii) lim supε→0 ε log�P̃εz�n�ε�;V1�� ≤ −δ uniformly in z ∈ Ṽ2:

Here P̃εz�n; ·� denotes the transition kernel of the induced chain in n steps.

Proof. since K+ is an attractor, we can choose a compact neighborhood
of K+;V2 ⊂ U2 with the property that

inf�dist �8t�x�; ∂U2�x x ∈ V2; t ≥ 0� > 0:

Fix an open neighborhood of K+; V′2 ⊂ V2 such that

dist �V′2;V2
c� > 0:

Let τ > 1 be such that the time spent in U2 \V′2 by any forward trajectory of
8 is bounded by �τ − 1� and 0 < ε0 < 1 such that

ε0 sup���F�x���x x ∈ U2� < dist �V′2;V2
c�:

Given x ∈ V2 let 0ε; x denote the event that �Xε; x
n � leavesU2 before reentering

V2: That is,

0ε; x =
{
∃ k ≥ 1x ∀1 ≤ i ≤ kXε; x

i 6∈ V2 and Xε; x
k 6∈ U2

}
:

Our first goal is to estimate the probability of 0ε; x: Define closed sets

A1 =
{
h ∈ Cτ�Rm�x h�t� ∈ ∂U2 for some 0 ≤ t ≤ τ

}
;

A2 =
{
h ∈ Cτ�Rm�x ∀ε0 ≤ t ≤ τ h�t� ∈ U2 \V′2

}

and

A3 =
{
h ∈ Cτ�Rm�x V�h; ε0; τ� ≥ dist �V′2;Vc

2�
}
;

where

V�h; ε0; τ� = sup
{
��h�t+ s� − h�t���x 0 ≤ t ≤ t+ s ≤ τ; 0 ≤ s ≤ ε0

}
:

Clearly for ε < ε0,

0ε; x ⊂
{
X
ε; x ∈ A1

}
∪
{
X
ε; x 6∈ A1 and ∀ j = 1; : : : ; �τ/ε�Xε; x�jε� 6∈ V2

}

⊂
{
X
ε; x ∈ A1

}
∪
{
X
ε; x ∈ A2

}
∪
{
X
ε; x ∈ A3

}
:

Thus by the upper large deviation principle Hypothesis 1.4(iii)(b), there exist
ai ∈K such that

lim sup
ε→0

[
sup
x∈V2

ε log�P�0ε; x�
]
≤ − inf

i=1;2;3
L +
ai; τ
�Ai� = −δ;(7)

where δ > 0 because for all i = 1;2;3 the forward trajectory t→ 8t�ai� is not
in Ai:
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Fix 0 < η < δ/2: Now that V2 and η have been chosen, Lemma 4.3 provides
us a neighborhood V1 of K and we define V as V = V1 ∪V2:

Using the notation of Lemma 4.3, set T = T0 + T1 and n�ε� = �T/ε� and
let O = �h ∈ Cτ�Rm�x ��h− ψh�0��� < α�: Here O is an open set of paths and it
is easy to see that

{
X
ε;x ∈ O

}
⊂
{
Z
ε; Ṽ
n�ε� ∈ Ṽ2

}

for all x ∈ V1 provided α > 0 is small enough. Thus, by the large deviation
principle [Hypothesis 1.4(iii)(a)] there exists a ∈ V1 such that

lim inf
ε→0

ε log
(
P̃εz�n�ε�;V2�

)
≥ −L −

a;T�9a� ≥ −η

uniformly in z ∈ Ṽ1: This proves inequality (i) of the lemma.
To prove inequality (ii) observe that inequality (7) implies

lim sup
ε→0

ε log
(
P̃εz�Ṽ1�

)
≤ −δ(8)

uniformly in z ∈ Ṽ2: Now, by the Chapman–Kolmogorov formula we have

P̃εz�n; Ṽ1� =
∫
Ṽ2

P̃εz�dy�P̃εy�n− 1; Ṽ1� +
∫
Ṽ1

P̃εz�dy�P̃εy�n− 1; Ṽ1�

≤ sup
y∈Ṽ2

P̃εy�n− 1; Ṽ1� + P̃εz�Ṽ1� ≤ n sup
y∈Ṽ2

P̃εy�Ṽ1�:(9)

Since n�ε� ≤ T/ε; lim supε→0 ε log�n�ε�� = 0: Therefore inequalities (8) and
(9) yields the desired inequality. 2

The end of the proof is now a straightforward application of an argument
used in Freidlin and Wentzell (1984). Let νε be an invariant measure of �Zε

n�:
Let V be as in Lemma 4.4. If νε�Ṽ� 6= 0; set ν̃ε = νε/νε�Ṽ�: By Proposition 5.3
of Kifer (1988), ν̃ε is an invariant measure of the induced chain. Now, for
i; j ∈ �1;2� and i 6= j, define

mε
i; j =

1

ν̃ε�Ṽi�

∫
Ṽi

P̃εz�n�ε�; Ṽj�ν̃ε�dz�

if ν̃ε�Ṽi� 6= 0 and mε
i; j = 0 otherwise. Set mε

1;1 = 1−mε
1;2 and mε

2;2 = 1−mε
2;1:

Since ν̃ε is an invariant measure of the induced chain, the probability vector
πε = �πε1; πε2� defined by πεi = ν̃ε�Ṽi�, i = 1;2, is an invariant probability
vector of the 2×2 Markov chain defined by the transition matrix �mε

i; j�i; j=1;2:
Thus

πε2m
ε
2;1 = πε1mε

1;2:

This equality combined with Lemma 4.4 shows that

πε1
πε2
=
mε

2;1

mε
1;2
≤ C exp

(
η− δ
ε

)
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for some constant C > 0: Therefore ν̃ε�Ṽ1� [and consequently νε�Ṽ1�] goes to
zero as ε→ 0: This concludes the proof of Theorem 4.1. 2

If one looks carefully at the proof of Theorem 4.1, one can see that we use
the full strength of the nondegeneracy assumption only in case K is a subarc
of simply ordered arc of equilibria (Case 2 of Lemma 4.3).

Under a milder nondegeneracy assumption we have the following.

Theorem 4.5. Let νε be an invariant measure of �Zε
n�n∈N and let µε =

νε ◦5−1: Let K ⊂ Rm be an attractor-free set for 8: Assume K is an unstable
point or K contains a nonequilibrium point. Assume furthermore that K sat-
isfies the following mild nondegeneracy condition: there exists a neighborhood
U of K, a unit positive vector u� 0 and a real number r0 > 0 such that

sup
x∈U; �r�<r0

L�x;F�x� + ru� <∞:

Then there exists a neighborhood U of K such that

lim
ε→0

µε�U� = 0:

Proof of Theorem 1.5. Let µ = limεi→0 µ
εi be a limit point of �µε� and H

a component of µ: By Proposition 3.2,H is attractor-free. SupposeH contains a
nonequilibrium point or an unstable point. Then by Theorem 4.1, there exists a
neighborhood U of H such that limε→0 µ

ε�U� = 0: We can always suppose that
µ�∂U� = 0: Thus tightness of �µε�ε>0 implies that µ�U� = limεi→0 µεi�U� =
0: This is contradictory with the fact that H is contained in the support of
µ: Now Theorem 3.3 implies that H is either a stable equilibrium or a C1

subarc of a maximal arc of stable equilibria. In case E is finite or F is real
analytic, Propositions 3.6 and 3.7 show that H is an asymptotically stable
equilibrium. 2

5. Application: learning in coordination games. In this section we
apply our results to study a class of learning or evolutionary processes which
arise in game theory [Fudenberg and Levine (1998), Weibull (1995)].

We first set up the notation. Consider a strategic game in normal form in
which a group ofm players i = 1; : : : ;m play a stage game against one another.
We assume that each player has two pure strategies or actions denoted by 0 and
1. In a one-shot game each player i chooses an action si ∈ �0;1� independently
of the other players. As a result of these choices player i receives a payoff
Ui�s� ∈ R where s = �s1; : : : ; sm� denotes the pure strategy profile of the
players.

As usual in game theory we allow the possibility that players randomize
their choices. The set of mixed strategies for player i is the unit interval �0;1�
which is identified with the space of probability distributions over �0;1�. Thus
a mixed strategy 0 ≤ σi ≤ 1 can be interpreted as the probability of playing
action 1 by player i.
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The payoff to player i corresponding to the mixed strategy profile σ =
�σ1; : : : ; σm� is the average payoff

Ui�σ� =
∑

s∈�0;1�m
Pσ�s�Ui�s�;

where

Pσ�s� =
m∏
j=1

�σjsj + �1− σj��1− sj��

denotes the probability of the pure strategy profile s = �s1; : : : ; sm� correspond-
ing to σ .

Given a mixed strategy profile σ for all the players, we denote by σ−i the
corresponding strategy profile for the players other than i. We let U0

i �σ−i�
[respectively, U1

i �σ−i�] denote the payoff obtained by player i when she plays
0 (respectively, 1) and her opponents play the mixed strategy profile σ−i.

We assume players act on beliefs as follows. If player i believes her oppo-
nents will play the mixed strategy profile σ−i, then the probability that she
takes action 1 is given by a function BRix �0;1�m−1 → �0;1� of the form

BRi�σ−i� = 9i

[
U1
i �σ−i� −U0

i �σ−i�
]
;

where 9ix R→ �0;1� is some probability distribution function: an increasing
function with limt→∞9i�t� = 1 and limt→−∞9i�t� = 0. We assume BRi is
smooth and call it smooth best response function for player i.

There are several interpretations for the use of smooth best response func-
tions. One is that players attempt to choose actions that optimize expected
payoffs, but make random mistakes. Another is that players decide to ran-
domize their choice to avoid the possibility that their opponents exploit their
choices [see Section 4.7 of Fudenberg and Levine (1998)]. A third interpreta-
tion, proposed by Fudenberg and Kreps in the spirit of Harsanyi’s theory, is
to assume that payoffs are subjected to small random perturbations. For more
details and further game theoretic explanations we refer the interested reader
to Chapter 4 of Fudenberg and Levine (1998).

Definition 5.1. A mixed strategy profile σ is called a Nash distribution
equilibrium if σi = BRi�σ−i� for all i = 1 : : :m.

We shall now consider a classical model of learning or evolution whose idea
goes back to Nash in his Ph.D. dissertation. Consider a finite population of
size N divided in m groups of players. Let Ni = piN denote the size of group
i where pi > 0 and

∑
ipi = 1: A population state is a vector x = �x1; : : : ; xm�

where 0 ≤ xi ≤ 1 is the fraction of players in group i adopting strategy 1:
At each time k = 1;2; : : : ; exactly m players, one in each group, are

randomly chosen to play the strategic game. Let ε = 1/N and let Xε
k =

�xε1�k�; : : : ; xεm�k�� be the population state at time k: Since player i (the
player chosen in group i) does not know her opponents she sees �Xε

k�−i as the
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mixed strategy profile of her opponents at time k: Therefore, at time k + 1
she plays action si�k+ 1� ∈ �0;1� according to the probabilities

P�si�k+ 1� = 1� = 1−P�si�k+ 1� = 0� = BRi��Xε
k�−i�:

At the end of the round k + 1, all the players observe the strategies which
have been played.

The processXε is thus a discrete-time Markov chain taking value in a finite
lattice Lε ⊂ �0;1�m: It satisfies the recursion

Xε
k+1 −Xε

k = εf�k;Xε
k�;

where f�k; x� = �f1�k; x�; : : : ; fm�k; x�� and �fi�k; x�x i = 1; : : : ;my k =
1;2; : : :� are independent random variables which verify

P�fi�k; x� = 1/pi� = �1− xi�BRi�x−i�;

P�fi�k; x� = −1/pi� = xi�1−BRi�x−i��

and

P�fi�k; x� = 0� = �1− xi��1−BRi�x−i�� + xiBRi�x−i�:

An important question about this kind of learning process is to investigate
the long-term behavior of �Xε

k� and to verify whether or not players learn
to play a Nash equilibrium. For two players and two strategies games, the
process is always (in a sense to be made precise) a convergent process [see
Benaı̈m and Hirsch (1997)]. However, for games with more that three players
and without further assumption on the game to be played, there is no reason
to expect such a “convergent” behavior. It is possible to construct examples
where fictitious play leads to cyclic behavior and players do not learn to play
Nash equilibria.

We shall now apply the mathematical results obtained in this paper to
analyze the long term behavior of the process for a broad class of game that
we now define.

Definition 5.2. Given two distinct players i; j and a pair of actions a; b ∈
�0;1�, let Ti; ja; bx �0;1�m→ �0;1�m be the map defined by

T
i; j
a; b�s� =

(
s1; : : : ; si−1; a; si+1; : : : ; sj−1; b; sj+1; : : : ; sm

)
:

We say that player i coordinates with j if the function

Ci; j =
[
Ui
◦Ti; j1;1 +Ui

◦Ti; j0;0

]
−
[
Ui
◦Ti; j0;1 +Ui

◦Ti; j1;0

]

is nonnegative. We say that i strictly coordinates with j if Ci; j is nonnegative
and is not identically zero.
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The game will be called a coordination game if all players coordinates. To a
coordination game we can associate a directed graph with vertices �1; : : : ;m�
and oriented edges �i; j� if i strictly coordinates with j. We call a coordination
game irreducible if this graph is irreducible.

Lemma 5.3. Assume:

(a) The game is an irreducible game of coordination.
(b) The maps 9i are smooth �C1� and verify 0 < 9i < 1 and 9′i > 0.

Then the dynamical system defined on �0;1�m by

dxi
dt
= 1
pi
�−xi +BRi�x−i��(10)

is a C1 cooperative and irreducible vector field with a compact attractor
3⊂�0;1�m.

Proof. The fact that this vector field is cooperative and irreducible easily
follows from Definition 5.2 and the conditions on 9i. Since 0 < 9i < 1; the
vector field points inward �0;1�m at each point of the boundary of �0;1�m. This
implies the existence of a global attractor 3⊂�0;1�m. 2

Observe that the equilibria of (10) are the Nash distribution equilibria of
the game.

Theorem 5.4. Suppose that the assumptions (a) and (b) of Lemma 5.3 hold.
Let E ⊂ �0;1�m denote the set of stable equilibria of (10). Then for every neigh-
borhood U of E ,

lim
ε→0

lim
n→∞

P�Xε
n ∈ U� = 1:

If, furthermore, the 9i are real analytic we can choose for E the set of asymp-
totically stable equilibria of (10).

Proof. For x ∈ �0;1�m; E�f�k; x�� = F�x�whereF is the vector field given
by (10) and the covariance matrix of f�k; x� is the diagonal matrix whose ith
entry is

γ2
i �x� = �1− xi�xi + �1−BRi�x−i��BRi�x−i� ≥ �1−BRi�x−i��BRi�x−i�:

By assumption (b) of Lemma 5.3, there exists γ2 > 0 such that γ2
i �x� ≥ γ2:

Therefore, statements (i), (ii) and (iii) of Proposition 2.3 apply. Also, assump-
tion (b) of Lemma 5.3 again, makes Xε a finite aperiodic irreducible Markov
chain. Thus it has a unique invariant measure µε and limn→∞P�Xε

n ∈ U� =
µε�U�: The result then follows from Proposition 3.2 and Theorems 3.3 and 4.1.
In case E is finite or 9i real analytic, we use Propositions 3.6 and 3.7. 2
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Benaïm, M. and Hirsch, M. W. (1997). Information games, Dynamical systems and stochastic
approximation. Discussion paper for IIASA workshop Oct 17–20.

Benveniste, A. Métivier, M. and Priouret, P. (1990). Stochastic Approximations and Adaptive
Algorithms. Springer, New York.

Chow, S. N. and Hale, J. (1982). Methods of Bifurcation Theory. Springer, New York.
Conley, C. C. (1978). Isolated Invariant Sets and the Morse Index. Amer. Math. Soc., Providence,

RI.
Duflo, M. (1996). Algorithmes Stochastiques. Springer, Berlin.
Duflo, M. (1997). Random Iterative Models. Springer, New York.
Dupuis, P. (1988). Large deviations analysis of some recursive algorithms with state dependent

noise. Ann. Probab. 6 1509–1536.
Dupuis, P. and Ellis R. S. (1997). A Weak Convergence Approach to the Theory of Large Devia-

tions. Wiley, New York.
Fort, J. C. and Pages, G. (1996). Asymptotics behaviour of a Markovian constant step size algo-

rithm. Siam J. Control Optim. To appear.
Freidlin, M. I. (1978). The averaging principle and theorems on large deviations. Russian Math.

Surveys 33 117–176.
Freidlin, M. I. and Wentzell, A. D. (1984). Random Perturbation of Dynamical Systems.

Springer, New York.
Fudenberg, D. and Levine, D. (1998). Theory of Learning in Games. MIT Press.
Hirsch, M. W. (1985). Systems of differential equations that are competitive or cooperative II:

convergence almost everywhere. SIAM J. Math. Anal. 16 423–439.
Hirsch, M. W. (1988a). Systems of differential equations which are competitive or cooperative III:

competing species. Nonlinearity 1 51–71.
Hirsch, M. W. (1988b). Stability and convergence in strongly monotone dynamical systems.

J. Reine Angew. Math. 383 1–53.
Hirsch, M. W. (1996). Chain transitive sets for smooth strongly monotone maps. Preprint, Univ.

California, Berkeley.
Jiang, J.-F. (1991). Attractors for strongly monotone flows. J. Math. Anal. Appl. 162 210–222.
Jiang, J.-F. and Yu, S.-X. (1995). Stable cycles for attractors of strongly monotone discrete-time

dynamical systems. Comm. Appl. Nonlinear Anal. 2 455–458.
Kifer, Y. (1988). Random Perturbation of Dynamical Systems. Birkhäuser, Boston.
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