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TREE AND FOREST WEIGHTS AND THEIR APPLICATION
TO NONUNIFORM RANDOM GRAPHS

By Brian D. Jones, Boris G. Pittel and Joseph S. Verducci
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For a complete graph Kn on n vertices with weighted edges, define the
weight of a spanning tree (more generally, spanning forest) as the product
of edge weights involved. Define the tree weight (forest weight) of Kn as
the total weight of all spanning trees (forests). The uniform edge weight
distribution is shown to maximize the tree weight, and an explicit bound
on the tree weight is formulated in terms of the overall variance of edge
weights as well as the variance of the sum of edge weights over nodes. An
application to sparse random graphs leads to a bound for the relative risk
of observing a spanning tree in a well-defined neighborhood of the uniform
distribution. An analogous result shows that, for each positive integer k,
the weight of all forests with k rooted trees is also maximized under the
uniform distribution. A key ingredient for the latter result is a formula
for the weight of forests of k rooted trees that generalizes Maxwell’s rule
for spanning trees. Our formulas also enable us to show that the number
of trees in a random rooted forest is intrinsically divisible, that is, rep-
resentable as a sum of n independent binary random variables εj, with
parameter �1+ λj�−1, λ’s being the eigenvalues of the Kirchhoff matrix.
This is directly analogous to the properties of the number of blocks in
a random set partition (Harper), of the size of the random matching set
(Godsil) and of the number of leaves in a random tree (Steele).

1. Introduction. Various classes C of objects, such as permutations,
groups, trees and directed graphs have natural representations in terms of
matrices. Several authors [e.g., Beran (1979), Verducci (1989)] have inves-
tigated probability models on these classes in terms of exponential families
based on such matrix representations. That is, if R�π� is a square matrix
representing object π and 2 is a parameter matrix of the same dimensions,
then

P�π� = exp�tr�R�π�′2��
ψ�2�(1)

is the probability density (with respect to Haar measure for continuous groups
or counting measure for finite classes) of the associated family.

An area of interest is the form of the normalizing constant

ψ�2� =
∑
π∈C

exp�tr�R�π�′2��:(2)

For example, when C is the symmetric group Sn of all permutations π of
�n� ≡ �1; : : : ; n� and R�π� is the corresponding permutation matrix, then
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ψ�2� is the permanent of A ≡ �exp�2ij��; that is,

ψSn�2� =
∑
π∈Sn

n∏
i=1

Aiπ�i�

[see Minc (1978) for a thorough treatment of permanents]. The recently proved
van der Waerden conjecture [see van Lint and Wilson (1992), Chapter 12]
asserts that ψ is minimized over all doubly stochastic matrices A when all
the entries of A are equal (i.e., A = �1/n�:) Extrema of ψC for other classes C
is of central focus to this paper.

Of particular interest is the situation where C consists of all nn−2 spanning
trees π on �n� (identified with the n vertices labelled 1;2; : : : ; n), and the
n× n symmetric matrix R�π� has �i; j� and �j; i� entries 1 if the tree π has
edge e = �i; j�, [that is, if e ∈ E�π�, the set of all edges in the tree π], and 0
otherwise. In this case, we can simplify notation by treating A as a symmetric
matrix (e.g., an adjacency matrix with entries indicating edge weights). Then
the n× n matrix A may be identified with its edge weights �ae; e ∈ E�Kn��,
and

ψtree�2� =
∑
π∈C

∏

e∈E�π�
ae

≡ t�A�
(3)

is called the tree weight of A. The tree weight t�A� is also called the tree
polynomial [Farrell (1981)] of the complete graphKn on n nodes with weighted
edges because it is a polynomial in the entries ae of A and the summation is
over all nn−2 spanning trees of Kn. Individual terms in (3) are called tree
products.

When A is the adjacency matrix of a simple graph G, then t�A� clearly
counts the number of spanning trees of G. In this paper, the tree weight t�A�
naturally arises with more general forms of A. For A = �oe� assigning odds oe
to all edges e of Kn, t�A� becomes the key to calculating the probability of ob-
serving a spanning tree on n nodes when edges e ∈Kn, appear independently
with probabilities pe = oe/�1+ oe�. Also, if pe = ce/n (generating a “sparse”
random graph), then the expected number of tree components having k nodes
is easily shown to be asymptotically equal to a weighted sum of t�AS�, where
S ⊂ �n�, �S� = k and AS = �aex e ∈ S×S�.

The authors conjectured [Jones (1995)] that, given the total edge weightw =∑
e ae, t�A� attains its maximum at the uniform weight distribution a∗e = w/N;

where N =
(
n
2

)
is the number of edges in the edge set E�Kn�. In Section 2 we

prove this conjecture and also obtain an upper bound for the ratio t�A�/t�A∗�
expressed in terms of the first and second empirical moments of the vertex
weights ai ≡

∑
e3i ae:

We use these results in Section 3 to investigate a sparse random graph
model. Specifically, we look at the probability that the random graph is a
spanning tree, comparing it to the uniform case with pe = c̄/n, c̄ =N−1∑

e ce.
The limiting ratio of the corresponding probabilities is bounded from above
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in terms of the first two empirical moments of the edge weights �ce� and the
vertex weights �ci�. The bound implies that, in a nondegenerate situation, the
probability is maximum in the uniform case for n large, provided that the
average edge weight c̄ strictly exceeds 4 in the limit. We conclude the section
with a simple example indicating that this bound for c̄ cannot be pushed below
2+
√

2.
In Section 4 we extend our study to rooted forests. Recall that a graph is

called a forest if it is a collection of tree components, or equivalently, it has no
cycles. A tree is said to be rooted if a single node in that tree is designated as
a root, and a rooted forest is a forest in which all trees are rooted. Let C (resp.,
Ck) denote the collection of all spanning rooted forests (consisting, resp., of k
trees). Let us define the corresponding forest weights by

f�A� =
∑
π∈C

∏

e∈E�π�
ae; fk�A� =

∑
π∈Ck

∏

e∈E�π�
ae:

We show that, like the tree weight t�A�, each of fk�A�, �1 ≤ k ≤ n� and f�A�
attain their maximum values at the uniform case A∗.

The formulas for fk�A� and f�A� are used to show that the number of
trees Xn in a random rooted forest (sampled with probability proportional
to its weight) is intrinsically divisible, that is, representable as a sum of n
independent Bernoulli random variables. More precisely, the success proba-
bility of the jth Bernoulli variable is 1/�1 + λj�; where λj, �1 ≤ j ≤ n�; are
the eigenvalues of the weighted Kirchhoff matrix corresponding to A. With
regard to this divisibility property, Xn is analogous to the number of sets in
the random set partition [Harper (1967)], the number of edges in the random
matching set [Heilmann and Lieb (1972), Godsil (1981)] and the number of
pendant vertices in a random tree [Steele (1987)]. We illustrate applicability
of the last result by showing that for the cube on n = 2k vertices, the ran-
dom variable Xn is asymptotically Gaussian with mean and variance close
to 2k/k.

2. Bounds on tree weight. The main results of this section are first, that
on the set of all edge-weight distributions A = �ae� of a given total weight w,
the tree weight function t�A� attains its maximum at the uniform distribution
A∗ = �a∗e = w/N�, N =

(
n
2

)
; and second, that a useful bound on t�A�/t�A∗�

can be formulated in terms of the vertex weights ai =
∑
e3i ae.

Theorem 1.

max
{
t�A�x

∑
e

ae = w
}
= t�A∗� =

(
w

N

)n−1

nn−2:

Theorem 2. For any weight distribution A = �ae�,

t�A� ≤ 1
n

( ∑
ai

n− 1

)n−1

exp
[
n− 1

2�n− 2� −
n− 1

2

∑n
i=1 a

2
i

�∑ai�2
]
:
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To prove the statements, first introduce the n × n Kirchhoff matrix M =
�mij�A�� associated with the weight distribution A:

mij =
{−a�ij�; if i 6= j;
ai; if i = j:(4)

Here are two well-known properties of M.

Lemma 1. M�A� is nonnegative definite.

Proof. Let xtr = �x1; : : : ; xn� ∈ Rn. Then

xtrM�A�x =
∑
i; j

aijx
2
i −

∑
i; j

aijxixj

= 1
2

∑
i; j

aij�xi − xj�2

≥ 0: 2

LetMi�A� denote the cofactor of the �i; i�th element inM�A�. The following
lemma is frequently called Maxwell’s rule [Maxwell (1892)].

Lemma 2. For each i ∈ �n�, t�A� =Mi�A�.

For a proof see, for instance, Moon (1970), Theorem 5.2. The next lemma
is a well-known result about the average value of diagonal minors. See, for
example, Godsil (1993).

Lemma 3. Let K ⊂ �n� = �1; : : : ; n�, let M be an n × n symmetric matrix
with eigenvalues �λi� and let MK be the determinant of the �n− k� × �n− k�
matrix obtained by deleting from M the rows and columns indexed in K. Then

∑

K⊂�n�x �K�=k
MK =

∑

J⊂�n�x �J�=n−k

∏
j∈J

λj:

Proof of Theorem 1. Since 1 = �1;1; : : : ;1�tr is an eigenvector of M =
M�A� with eigenvalue 0, it follows from Lemma 1 that the smallest eigenvalue
λn of M is 0. From Lemma 2 and Lemma 3 with k = 1,

t�A� = 1
n

n∑
i=1

∏
j6=i
λj

= 1
n

n−1∏
i=1

λi

≤ 1
n

(
tr�M�
n− 1

)n−1
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= 1
n

(
2w
n− 1

)n−1

= t�A∗�:
This last equation can be seen either by noting that the eigenvalues of M�A∗�
are

λ∗i =
2w
n− 1

; i = 1; : : : ; n− 1

and λ∗n = 0, or by simply multiplying the number nn−2 of labelled trees by the
common tree product

(
2w

n�n− 1�

)n−1

: 2

Note. The essential parts of Theorem 1 appear in several earlier works; see
Grimmett (1976), Grone and Merris (1988). Nevertheless, Theorem 1 itself is
not stated in any previous work that we have found.

Proof of Theorem 2. As in the previous proof, let λ1 ≥ · · · ≥ λn = 0 be
the eigenvalues of the Kirchhoff matrix M�A�. Using Lemma 3 with k = 2,
we get

∑
1≤i<j≤n−1

λiλj =
∑

1≤i<j≤n
λiλj

=
∑

1≤i<j≤n
�aiaj − a2

ij�

≤
∑

1≤i<j≤n
aiaj

= 1
2

[(∑
i

ai

)2

−
∑
i

a2
i

]
:

Next, applying the geometric–arithmetic mean inequality to
(
n−1

2

)
numbers

λiλj, we get

( n−1∏
i=1

λi

)n−2

=
∏

1≤i<j≤n−1

λiλj ≤
[�∑i ai�2 −

∑
i a

2
i

2
(
n−1

2

)
]( n−1

2

)

;

which implies

n−1∏
i=1

λi ≤
(∑

i ai
n− 1

)n−1(n− 1
n− 2

)�n−1�/2(
1−

∑
i a

2
i

�∑i ai�2
)�n−1�/2

≤
(∑

i ai
n− 1

)n−1

exp
(

n− 1
2�n− 2� −

n− 1
2

∑
i a

2
i

�∑i ai�2
)
;

(5)
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where the last inequality comes from 1 + x ≤ ex. Finally, since t�A� =
�∏n−1

i=1 λi�/n, (5) implies the result of the theorem. 2

3. Application to spanning trees in sparse random graphs. Let
P = �pe� be a symmetric matrix, with each entry pe ∈ �0;1�. Introduce the
random graph model G �n;P� where edges appear independently and the
probability of an edge e being present equals pe, e ∈ E�Kn�. We will let G
denote a realization of the random graph model G : The special case in which
pe ≡ p is referred to as the uniform case, and we denote it G �n;p�. This case
has been studied extensively since the 1950s, with works by Gilbert (1959),
Kelmans (1972), Grimmett and McDiarmid (1975), Bollobás and Erdős (1976)
and Stepanov (1970), to cite some examples.

A random graph model closely related to G �n;p� is the model G �n;m�;
in which a fixed number of edges m = m�n� are distributed uniformly at
random among all N positions. For many graph properties, these two mod-
els are asymptotically equivalent as n → ∞ with m = pN, provided that
p�1 − p�N = o��pN�2�, meaning that the variance of the number of edges
in the random graph is negligible compared to its expected value. The model
G �n;m� was the focus of Erdős and Rényi’s cornerstone works (1959, 1960),
and later Stepanov (1969) undertook a detailed study of G �n;p�. An ever ex-
panding bibliography of random graph literature may be traced through the
texts by Bollobás (1985), Palmer (1985) and in a recent survey by Karoński
(1995).

Of special interest is the case when the edge probability p = c/n or m =
cn/2, both conditions meaning that the average vertex degree is asymptotic
to c. A major thrust of the Erdős–Rényi–Stepanov studies is that the random
graph can be in one of the three phases, namely subcritical, nearcritical and
supercritical, dependent on whether c < 1, c is close to 1 or c > 1. It is when
c slightly exceeds 1 that the birth of a giant component takes place; see also
Barbour (1982), Bollobás (1985), Pittel (1990), Janson, Knuth, Luczak and
Pittel (1993), Luczak, Pittel and Wierman (1994).

Our focus here is primarily on the nonuniform sparse model, when pe =
ce/n, and ce 6≡ c. With a notable exception of Stepanov (1970a, b) who stud-
ied the special case p�ij� = αiαj/n, not much is known about the behavior
of this random graph. Its analysis promises to be considerably more compli-
cated since the classical graph-enumerating techniques can no longer be used
freely.

In this section we investigate the probability that G, a random graph from
the model G �n; �ce/n��; is a spanning tree. Let C and P�C � denote the set of
all spanning trees on Kn and the probability in question. The probability that
G is a given spanning tree T ∈ C is

P�T� =
∏

e∈E�T�
pe

∏

e′ /∈E�T�
�1− pe′�

=
∏

e∈E�T�

pe
1− pe

∏

e′∈E�Kn�
�1− pe′�:

(6)
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Clearly then,

P�C � =
∑
T∈C

P�T�

= t�A�
∏

e∈E�Kn�
�1− pe�;

(7)

where

A ≡
[

pe
1− pe

]
:

In the uniform case �pe = c/n�, this probability simplifies to

P0�C � = nn−2�c/n�n−1�1− c/n�
(
n
2

)
−�n−1�

∼ c
2

n
�ce−c/2�n−3

= O
(

2
e

)n
:

Our intent is to show, in the sparse case �pe� = �ce/n� subject to some
mild balancing restrictions on �ce�, that P�C � also approaches 0 exponentially
fast, with the rate dominated by P0�C � in the sense that the relative risk
P�C �/P0�C � is asymptotically bounded.

We assume that �ce� depends on n in such a way that

lim sup
n→∞

max
e
pe < 1;(8)

and

lim
n→∞

c̄ = µc > 0;

lim
n→∞

N−1∑
e

�ce − c̄�2 = σ2
c ≥ 0;

lim
n→∞

n−1
n∑
i=1

�c̄i − c̄�2 = ν2
c ≥ 0 and

lim
n→∞
�nN�−1∑

e

�ce − c̄�3 = 0:

(9)

The meaning of (9) is that the sample mean and the sample variance of
�ce� and also the sample variance of the vertex-associated averages �c̄i� ≡
�∑e3i ce/�n − 1�� all have finite limits. The generality of the conditions is in
that, aside from the mild uniform restriction (8), they are of a global nature.
In particular, we may regard the values �ce� as being realized from a random
distribution with moment constraints given by (9).
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Theorem 3. Under conditions (8) and (9),

lim sup
n→∞

P�C �
P0�C �

≤ exp
{
σ2
c

(
1
µc
− 1

4

)
− ν2

c

2µ2
c

}
:

Corollary 1. For sufficiently large n; the uniform probability matrix
�pe = c̄/n� maximizes P�C � among all matrices satisfying conditions (8) and
(9) with µc > 4:

We begin by noticing that, according to (7),

P�C �
P0�C �

= t�A�
t�A0�

qn;(10)

qn ≡
∏
e�1− pe�
�1− p�N ; p = c̄/n(11)

where

A0 ≡
[

c̄/n

1− c̄/n

]
:

In view of (10), we need only to prove the following technical lemma.

Lemma 4. Under conditions (8) and (9),

lim sup
n→∞

t�A�
t�A0�

≤ exp
{
σ2
c

µc
− ν2

c

2µ2
c

}
;

lim
n→∞

qn = exp
{−σ2

c

4

}
:

Proof. From Theorem 2, we have

t�A� ≤ 1
n

(
trM
n− 1

)n−1

exp
{
n− 1

2�n− 2� −
n− 1

2

∑n
i=1m

2
ii

�trM�2
}
;(12)

where M = �mij� is the Kirchhoff matrix for A = �pe/�1− pe��: Therefore,

trM =
n∑
i=1

∑
e3i

pe
1− pe

= 2
∑
e

(
pe + p2

e

1
1− pe

)

= 2
∑
e

pe + 2
∑
e

p2
e +O

(∑
e

p3
e

)
;

(13)
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the last equality following from (8). However, with pe = ce/n and (9),
∑
e

p3
e =

∑
e

�pe − p̄+ p̄�3

= 1
n3

∑
e

�ce − c̄�3 +
3c̄
n3

∑
e

�ce − c̄�2 +
(
n

2

)
c̄3

n3

= o�1�:

Therefore, (13) implies

trM = 2
∑
e

pe + 2
∑
e

p2
e + o�1�

= 2
(
n

2

)
c̄

n
+ 2
n2

∑
e

c2
e + o�1�

= �n− 1�
{
c̄+ �nN�−1∑

e

�ce − c̄�2 +
c̄2

n

}
+ o�1�;

(14)

and thus

trM
n− 1

= c̄+ �nN�−1∑
e

�ce − c̄�2 +
c̄2

n
+ o�n−1�:(15)

We now express
∑
im

2
ii in terms of �ce�: Observe that

mii =
∑
e3i

pe
1− pe

= 1
n

∑
e3i
ce +O

(
n−2∑

e3i
c2
e

)

= c̄i�1+O�n−1�� +O
(
n−2∑

e3i
c2
e

)
;

(16)

since c̄i = �
∑
ce�/�n− 1�; hence

m2
ii = c̄i2�1+O�n−1�� +O

(
c̄in
−2∑

e3i
c2
e

)
+O

(
n−4

(∑
e3i
c2
e

)2)
:(17)

Now choose α ∈ �0; 1
2� and set β = 2 − α: Applying the geometric–arithmetic

mean inequality we have

2c̄in
−2∑

e3i
c2
e = 2c̄in

−αn−β
∑
e3i
c2
e

≤ c̄i2n−2α + n−2β
(∑
e3i
c2
e

)2

;

(18)
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and therefore

m2
ii = c̄i2�1+O�n−1 + n−2α�� +O

(
�n−2β + n−4�

(∑
e3i
c2
e

)2)

= c̄i2�1+O�n−2α�� +O
(
n−2β

(∑
e3i
c2
e

)2)
;

(19)

since 2α < 1 and 2β < 4: Then it follows that
n∑
i=1

m2
ii =

n∑
i=1

c̄i
2 +O

(
n−2α

n∑
i=1

c̄i
2
)
+O

(
n−2β

n∑
i=1

(∑
e3i
c2
e

)2)
:(20)

To bound the last term in (20), clearly
n∑
i=1

(∑
e3i
c2
e

)2

≤
(

2
∑
e

c2
e

)2

≤
(

4
∑
e

�ce − c̄�2 + 2n2c̄2
)2

≤ 16
(∑

e

�ce − c̄�2
)2

+ 8
(∑

e

�ce − c̄�2
)
n2c̄2 + 4n4c̄4

≤ 4n4
[
N−1∑

e

�ce − c̄�2 + c̄4
]

= O�n4�;

(21)

the last estimate following from the second condition in (9). Combining (20)
and (21),

1
n− 1

n∑
i=1

m2
ii = �1+O�n−2α�� 1

n− 1

n∑
i=1

c̄i
2 +O�n3−2β�

= �1+O�n−2α��
[

1
n

n∑
i=1

�c̄i − c̄�2 + c̄2
]
+O�n3−2β�:

(22)

But 3 − 2β < 0; and thus by (9), the limit of (22) as n → ∞ is ν2
c + µ2

c : The
exponential term in (12) can now be evaluated completely:

exp
{
n− 1

2�n− 2� −
n− 1

2

∑n
i=1m

2
ii

�trM�2
}

= exp
{
n− 1

2�n− 2� −
1
2

∑n
i=1m

2
ii/�n− 1�

�trM/�n− 1��2
}

→ exp
{

1
2
− ν

2
c + µ2

c

2µ2
c

}

= exp
{
− ν2

c

2µ2
c

}
:

(23)



TREE AND FOREST WEIGHTS 207

Recalling the definition of A0 and (15), we obtain

1
n

(
trM
n− 1

)n−1 1
t�A0�

= 1
n

[
c̄+ 1

n

{
N−1∑

e

�ce − c̄�2 + c̄2
}
+ o�n−1�

]n−1 �1− c̄/n�n−1

nn−2�c̄/n�n−1

=
[
1+ 1

n

{
�c̄N�−1∑

e

�ce − c̄�2 + c̄
}
+ o�n−1�

]n−1

�1− c̄/n�n−1:

(24)

Since c̄ → µ > 0, c̄ is asymptotically bounded away from 0, o�n−1�/c̄ =
o�n−1� and the above expression converges to

exp
{
σ2
c

µc
+ µc

}
exp�−µc� = exp

{
σ2
c

µc

}
:(25)

Therefore,

lim sup
n→∞

t�A�
t�A0�

≤ exp
{
σ2
c

µc
− ν2

c

2µ2
c

}
(26)

holds.
Turning our attention to the asymptotic value of qn, defined in (15), we may

use condition (8) to write

log qn =
∑
e

log
(

1− ce
n

)
−
(
n

2

)
log

(
1− c̄

n

)

=
∑
e

[
−ce
n
− c2

e

2n2
+O

(
c3
e

n3

)]
−
(
n

2

)
log

(
1− c̄

n

)

=
(
n

2

)[
− c̄
n
− 1

2n2
(
n
2

)
∑
e

c2
e +

c̄

n
+ c̄2

2n2
+O�n−3�

]
+ o�1�

= − 1
2n2

(
n

2

)[
1(
n
2

) ∑
e

c2
e − c̄2

]
+O�n−1�

→ −σ
2
c

4
:

(27)

Thus

lim
n→∞

qn = exp
{−σ2

c

4

}
;(28)

and the lemma is proved. 2
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Proof of Theorem 3. Theorem 3 now follows easily from (10) and the
limiting bounds (26) and (28):

lim sup
n→∞

P�C �
P0�C �

= lim sup
n→∞

t�A�
t�A0�

qn

≤ exp
{
σ2
c

(
1
µc
− 1

4

)
− ν2

c

2µ2
c

}
: 2

(29)

The corollary now follows since σ2
c and ν2

c are nonnegative quantities.
Note. Having proved Theorem 3, we first thought that the uniform distri-

bution might (asymptotically) maximize P�C � for �ce� in a broader range of
µc, perhaps even for µc > 1. As the example below shows, however, if �ce�
is subject to the restrictions (9) only, then the lower bound for µc cannot be
pushed below 2+

√
2.

Example 1. Two-Component Graph. Let n = 2m;C = �1;2; : : : ;m�, C̄ =
�m+ 1;m+ 2; : : : ;2m� and let c1; c2 be two positive constants. For e = �i; j�,
set

ce =
{
c1; if i and j are both in the same component C or C̄,
c2; if i and j are in different components.

An easy computation shows that, besides the zero eigenvalue, the Kirchoff ma-
trix M�A� with A = �pe/�1−pe�� has an eigenvalue m�a1+a2� (of multiplicity
2m− 2), and another eigenvalue 2ma2 (of multiplicity 1). Here

ai =
ci/n

1− ci/n
; i = 1;2:

It follows then from Lemma 2 and Lemma 3 that

t�A� ∼ n−1c2

(
c1 + c2

2

)n−2

exp
(
c2

1 + c2
2

c1 + c2

)
; n→∞:

The matrix �ce� satisfies (9) with

µc =
c1 + c2

2
; σ2

c =
�c1 − c2�2

4
; νc = 0:

So, using (10) and the formula for limqn from Lemma 4, we obtain

P�C � ∼ n−1c2µ
n−2
c exp

(
c2

1 + c2
2

2µc
− σ

2c

4

)

and

P0�C � ∼ n−1µn−1
c exp�µc�:
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Taking the ratio and simplifying,

lim
n→∞

P�C �
P0�C �

= c2

µc
exp

[
1− c2

µc
+ σ2

c

(
1
µc
− 1

4

)]

≤ exp
[
σ2
c

(
1
µc
− 1

4

)]
;

(30)

where the last inequality (expected according to our theorem) follows from
xe−x ≤ e−1. Notice that for ρ ≡ σc/µc small, the limiting ratio in (30) becomes

exp
[
−ρ

2

4
�µ2

c − 4µc + 2� +O�ρ3�
]
:(31)

Thus, to guarantee that this quantity falls below 1, we need to have

µc < 2−
√

2 or µc > 2+
√

2:

Thus, somewhat counterintuitively, the “bad” µc’s fill the interval �2 −
√

2;
2+
√

2�. We thought about a possibility to push the lower bound above 2+
√

2
by partitioning �n� into r > 2 equal size blocks. Surprisingly, this didn’t change
(31) and 2+

√
2 didn’t budge! Could it be that (31) is actually true for a much

broader class of �ce�?
Note. For any class C of graphs on �n�, the random graph model G �n;P�

induces a probability distribution of the form given in (1) with the graph π
being represented by its adjacency matrix R�π� and the canonical parameter
matrix 2 having �i; j� = e entry 2e = log�PG �e�/�1−PG �e��. In this case, the
normalizing constant in (2) becomes ψ�2� ∝ PG �C �. The model derived from
these choices in (1) gives the conditional probability under G �n;P� of a graph
π given that π ∈ C . In the remainder of the paper, we investigate PG �C � for
various classes C of rooted forests. For such classes, we find a remarkable
factorization of the model that takes the form of (1), but with 2e = logPG �e�.

4. Extension to forests. Recall some basic definitions: a tree is said to
be rooted if it contains a specific node that is identified as a root. A spanning
forest on the node set �n� is a set of disjoint trees (some of which may be
isolated nodes) whose node sets form a partition of �n�.

Let K ⊂ �n� with �K� = k; let CK be the collection of spanning forests con-
sisting of k trees, each rooted at one of the nodes in K and let Ck =

⋃
K⊂N CK.

If a forest π ∈ Ck is represented by its n × n adjacency matrix R�π�, then,
analogously to the tree weight, we define the k-forest weight fk of A = �ae� by

fk�A� =
∑
π∈Ck

∏

e∈E�π�
ae:(32)

Note that when k = 1; we have f1�A� = nt�A�; where the factor n arises
because a single tree on �n� may be rooted at any of its n nodes.

Given K ⊂ �n�, let fK�A� denote the total weight of all forests of trees,
each tree having exactly one vertex from K. [So f�n��A� = t�A�, in particular.]
Then we may formulate the following theorem.
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Theorem 4.

fK =MK:

Consequently,

fk�A� =
∑

K⊂�n�x �K�=k
MK�A�;

where, we recall, MK�A� denotes the determinant of the submatrix of M�A�
with rows and columns indexed by the nodes from Kc.

Note. For ae ≡ 1, the second relation can be read out from Biggs (1974),
Chapter 6, Theorem 7.5. For the general case, Moon (1970) attributes the first
relation (with �K� = 2) to Percival (1953). Our proof combines elements from
Biggs and Moon.

Proof. Let I be the n×N incidence matrix of Kn. Its rows are indexed by
the nodes and the columns by the edges. A column labelled e = �i; j� has two
nonzero entries, Iie = −Ije, both of unit absolute value. It is well known that
I is unimodular; that is, all nonsingular square submatrices of I have their
determinants equal to ±1. Introduce a reduced incidence matrix IK obtained
from I by deleting the rows labelled by the nodes from K.

Lemma 5. Let B be a square submatrix of order n−k of IK, where k = �K�.
Then B is nonsingular if and only if:

(i) the edges corresponding to the �n−k� columns ofB determine a spanning
subforest of Kn that consists of k trees; and

(ii) each of the k trees contains exactly one node from K.

For a proof, see Biggs (1974), Chapter 2, Lemma 7.4.
Let D be a diagonal N×N matrix, with Dee = ae, and define JK = IKD1/2.

Then, applying the Binet–Cauchy theorem,

det�IKDItr
K� = det�JKJtr

K�

=
∑
B

�det B�2y(33)

here the sum is over all �n− k� × �n− k� submatrices B of JK. Each such B
determines the corresponding submatrix B of IK, so that

det2 B =
[∏

e

ae

]
det2B;

where the product is over all the edges e ∈ EB that correspond to the �n− k�
columns of B. Now, by Lemma 5, �detB� = 1 or 0, dependent upon whether
the corresponding �n−k� edges are the edges of a forest of k trees each having
exactly one vertex from K. We conclude that

det�IKDItr
K� = fK�A�:
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Finally, for i ∈Kc,

�IKDItr
K�ii =

∑

e∈E�Kn�
�IK�ieae�Itr

K�ei

=
∑

e∈E�Kn�
��IK�ie�2ae

=
∑

e∈E�Kn�x e3i
ae

=mii;

(34)

and for j ∈Kc, j 6= i;
�IKDItr

K�ij =
∑

e∈E�Kn�
�IK�ieae�Itr

K�ej

=
∑

e∈E�Kn�
�IK�ie�IK�jeae

= −a�i; j�:

(35)

Therefore,

det�IKDItr
K� = det�mij�i; j∈Kc =MK: 2

The following is a generalization of Theorem 1 to the forest weight.

Theorem 5. max�fk�A�x
∑
e ae = w� = fk�A∗� = �w/N�n−k

(
n
k

)
knn−k−1:

Proof. Recall that

fk�A� =
∑

K⊂Nx �K�=k
MK�A�

=
∑

J⊂Nx �J�=n−k

∏
j∈J

λj;

where the λ′s are the eigenvalues of the Kirchhoff matrix for the weighted
adjacency matrix A: But fk�A� is a Schur concave function on �λ1; : : : ; λn−1�
(recall λn = 0) [see, e.g., Marshall and Olkin (1979), page 61)]. Hence

∑

J⊂Nx �J�=n−k

∏
j∈J

λj ≤
(
n− 1
n− k

)(∑n
i=1 λi
n− 1

)n−k

=
(
n− 1
n− k

)(
tr �M�
n− 1

)n−k

=
(
w

N

)n−k(n
k

)
knn−k−1:

(36)

The inequality on line one becomes the equality in the uniform case A∗ =
�w/N�. 2
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Let f�A� denote the total weight of all forests of rooted trees, that is,

f�A� =
n∑
k=1

fk�A�:

Corollary 2. max�f�A�x ∑e ae = w� = f�A∗� = �1+wn/N�n−1:

For the general edge-weight distribution, summing both sides of the equa-
tion

fk�A� =
∑

J⊂Nx �J�=n−k

∏
j∈J

λj

from k = 1 to n, we get

f�A� = ∏n
j=1�1+ λj� =

n−1∏
j=1

�1+ λj�

= det�In +M�A��:
(37)

Note. Chung and Langlands (1996) [see also Chung (1997)] proved (for unit
edge weights) that the number of rooted forests spanning an induced sub-
graph equals the product of its vertex degrees and the Dirichlet eigenvalues
of the corresponding Laplacian operator. With the vertex degrees replaced by
the vertex weights, the corresponding formula would certainly hold for the
weighted case, too. If we consider Kn as a subgraph of Kn+1, with each of the
extra n edges being of unit weight, then (37) is a consequence of that general
identity.

5. On the intrinsic divisibilty of the number of rooted trees in a
random forest. Formula (37) leads to a surprisingly concise description of
the distribution of the number of tree components in a random spanning forest
generated from model (1). That is, suppose we pick a forest of rooted trees
with probability proportional to its weight. Then pk, the probability that the
random forest consists of k (rooted) trees is given by

pk =
∑
Jx �J�=n−k

∏
j∈J λj∏n

j=1�1+ λj�
:

Consequently, the probability generating function (p.g.f.) of X; the number of
trees in the forest, is

E�xX� =
∑n
k=1 x

k∑
Jx �J�=n−k

∏
j∈J λj∏n

j=1�1+ λj�

=
∏n
j=1�x+ λj�∏n
j=1�1+ λj�

=
n∏
j=1

(
λj

1+ λj
+ x 1

1+ λj

)
:
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This formula means that X has the same distribution as the sum of n inde-
pendent, binary random variables εj, with

Pr�εj = 0� = 1− Pr�εj = 1� = λj

1+ λj
:

Thus the number of trees in the random rooted forest possesses what we would
like to call an intrinsic divisibility property. Among previously discovered ran-
dom variables with this property are the number of blocks in a random set
partition [Harper (1967)], the number of edges in the random matching set
[Heilmann and Lieb (1972), Godsil (1981)], the number of edges common for
a fixed edge set and the random spanning tree [Godsil (1984)] and the num-
ber of leaves in a random tree [Steele (1987)]. The distribution of the latter
turned out to be intimately connected to that of the number of blocks in Harper
(1967). Jeff Kahn (1997) has pointed out to us that our result could also have
been obtained from that of Godsil (1984), via the embedding of Kn into Kn+1.
For a highly readable survey of the area, the reader is referred to Pitman
(1997). In it probabilistic methods are used to get strong bounds on the coeffi-
cients of polynomials whose roots are all real. In our case where the roots are
non-negative, it is well-known that the coefficient sequence is unimodal.

Whenever intrinsic divisibility is established, it quickly leads to various
results, including the asymptotic behavior of the distribution in question; see
Harper (1967), Godsil (1981) and Kahn (1996), for instance. In our case, since

VarX =
n∑
j=1

Pr�εj = 0�Pr�εj = 1�

=
n∑
j=1

λj

�1+ λj�2
;

we obtain: if the matrix A changes with n→∞ in such a way that
n∑
j=1

λj

�1+ λj�2
→∞;

then �X−E�X��/Var1/2X converges, in distribution, to the standard normal
variable [Durrett (1991)].

Example 2. Consider the d-dimensional cube Qd. Assume that all its
d2d−1 edges are of unit weight. The nonzero eigenvalues of the Kirchhof
matrix in this case are 2m of multiplicity

(
d
m

)
; �1 ≤ m ≤ d� [see Chung

(1997)]. Let Xd be the number of trees in a random rooted forest which spans
Qd. Then, using standard tricks, we obtain

EXd =
2d−1∑
j=1

1
1+ λj

=
d∑

m=1

(
d

m

)
1

1+ 2m

= 2d

d
�1+O�d−1�y(38)
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VarXd =
2d−1∑
j=1

λj

�1+ λj�2

=
d∑

m=1

(
d

m

)
2m

�1+ 2m�2

= 2d

d
�1+O�d−1��:

Thus we can claim that �Xd − EXd�Var−1/2Xd converges, in distribution, to
the standard normal variable. As a weak consequence of this result we can
claim that almost all trees in the random spanning forest are of order d, the
dimension of the cube.

Although it might seem plausible that the number of trees in a random
forest of unrooted trees is also representable as a sum of binary random vari-
ables, this is easily seen not to be the case, since for n = 3 the corresponding
p.g.f. is �x3 + 3x2 + 3x�/7, which has complex roots.
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