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CONTROL AND STOPPING OF A DIFFUSION
PROCESS ON AN INTERVAL
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Consider a process X�·� = �X�t�; 0 ≤ t < ∞� which takes values in
the interval I = �0;1�, satisfies a stochastic differential equation

dX�t� = β�t�dt+ σ�t�dW�t�; X�0� = x ∈ I
and, when it reaches an endpoint of the interval I, it is absorbed there.
Suppose that the parameters β and σ are selected by a controller at each
instant t ∈ �0;∞� from a set depending on the current position. Assume
also that the controller selects a stopping time τ for the process and seeks to
maximize Eu�X�τ��, where ux �0;1� → < is a continuous “reward” function.
If λ x= inf�x ∈ Ix u�x� = maxu� and ρ x= sup�x ∈ Ix u�x� = maxu�, then,
to the left of λ, it is best to maximize the mean-variance ratio �β/σ2� or
to stop, and to the right of ρ, it is best to minimize the ratio �β/σ2� or to
stop. Between λ and ρ, it is optimal to follow any policy that will bring the
process X�·� to a point of maximum for the function u�·� with probability
1, and then stop.

1. Formulation of the problem. Suppose that for every x in the interval
I = �l; r� with −∞ < l < r < ∞; there is a nonempty subset K �x� of < ×
�0;∞� that specifies the drift–diffusion pairs �β;σ� available for controlling
the stochastic process X�·� at any time t ∈ �0;∞�, when the current position
is X�t� = x. We also set K �l� =K �r� = ��0;0��, meaning that the endpoints
of the interval I are absorbing barriers once they are reached.

More formally, consider a controlled diffusion process X�·� on a filtered
probability space ��;F ;P�, F = �F �t�; 0 ≤ t <∞�, and such that

dX�t� = β�t�dt+ σ�t�dW�t�; X�0� = x ∈ I:(1)

Here W�·� is an F-Brownian motion, and β�·�; σ�·� are F-progressively mea-
surable processes that satisfy

∫ t
0
��β�u�� + σ2�u��du <∞; �β�t�; σ�t�� ∈K �X�t��

almost surely, for all 0 ≤ t <∞.
Given an initial position X�0� = x ∈ I, let us denote by A �x� the set of all

processes X�·� that can be constructed this way (and are thus “available” to
the controller at the initial position x). For every such process X�·� ∈ A �x�,
let FX x= �F X�t�; 0 ≤ t < ∞� be the filtration generated by the process
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X�·�, where F X�t� x= σ�X�s�; 0 ≤ s ≤ t� denotes the “history” of the process
X�·� up to time t. Also, let SX be the class of FX-stopping times, namely
measurable functions τx � → �0;∞� with the property �τ ≤ t� ∈ F X�t�; for
every 0 ≤ t <∞: Finally, let ux �l; r� → < be a continuous “reward” function.

The “leavable” stochastic control problem (with discretionary stopping) ad-
dressed in this paper, is to find, for each x ∈ I, a process X∗�·� ∈ A �x� and an
FX∗ -stopping time τ∗ that attain the supremum

V�x� x= sup
X�·�∈A �x�; τ∈SX

Eu�X�τ��:(2)

Under mild regularity conditions, the problem of (2) admits a surprisingly
simple solution. This is presented in Section 4, after some preliminary mate-
rial on one-dimensional diffusions (Section 2) and on optimal stopping (Sec-
tion 3). The solution incorporates features of the theory of optimal stopping
for Markov processes [e.g., Dynkin and Yushkevich (1969), Fakeev (1971),
Shiryaev (1978)], as well as aspects of “controlling a diffusion process to a
goal” [cf. Pestien and Sudderth (1985)], in a rather unexpected way.

2. A brief review of one-dimensional diffusions. Consider a diffusion
process

dX�t� = b�X�t��dt+ s�X�t��dW�t�; X�0� = x ∈ I;(3)

where bx I→ <, sx I→ < are Borel-measurable functions that satisfy

s2�x� > 0;
∫ x+ε
x−ε

s−2�y��1+ �b�y���dy <∞ for some ε > 0(4)

at every x ∈ I. Under these conditions, the stochastic differential equation
(S.D.E.) of (3) has a weak solution which is unique in the sense of probability
law, up to the “explosion time”

S x= inf
{
t ≥ 0x X�t� /∈ I

}
= lim

n→∞
↑ Sn:(5)

We have set Sn x= inf�t ≥ 0x X�t� /∈ �ln; rn��, where the sequence �ln� de-
creases to the left endpoint l of I, and the sequence �rn� increases to the right
endpoint r of I [cf. Karatzas and Shreve (1991), page 341, Theorem 5.15].
On �S < ∞� we set X�t� x= X�S� for S ≤ t < ∞, so that both l and r are
absorbing barriers.

An important tool in the study of diffusion processes and for the solution
to our problem is the scale function

p�x� x=
∫ x
c

exp
[
−2

∫ ξ
c
�b/s2��u�du

]
dξ; x ∈ I(6)

(with arbitrary but fixed c ∈ I). The function p�·� is a one-to-one mapping of
the interval I onto the interval Ĩ = �l̃; r̃� with l̃ x= p�l+�, r̃ x= p�r−�; it is
continuous, with derivative

p′�x� = exp
[
−2

∫ x
c
�b/s2��u�du

]
> 0;(7)
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which is absolutely continuous, namely

p′�x� = 1+
∫ x
c
p′′�ξ�dξ where p′′�x� x= −2b�x�

s2�x�p
′�x�

for x ∈ I. The inverse mapping qx Ĩ → I satisfies p�q�y�� = y and has
derivative

q′�y� = 1
p′�q�y�� > 0; y ∈ Ĩ:

It is easy to see then that the process

Y�t� x= p�X�t��; 0 ≤ t <∞(8)

satisfies the S.D.E. with zero-drift (in “natural scale”)

dY�t� = s̃�Y�t��dW�t�(9)

with Y�0� = p�x� ∈ Ĩ, where

s̃�y� x= �p′s��q�y��; y ∈ Ĩ:(10)

Observe that s̃2�y� > 0 for every y ∈ Ĩ, by (4) and (7).

Remark 2.1. Under the conditions (4), the process X�·� exits from every
proper subinterval of I with probability 1 [cf. Karatzas and Shreve (1991),
page 344]. Hence, the process Y�·� exits from every proper subinterval of Ĩ
with probability 1.

Remark 2.2. Let us consider now the function

v�x� x=
∫ x
c
p′�y�

∫ y
c

2dz
p′�z�s2�z� dy; x ∈ I:(11)

Feller’s (1952) test for explosions states that a necessary and sufficient condi-
tion for the explosion time S of (5) to be infinite almost surely, is

v�l+� = v�r−� = ∞(12)

[cf. Karatzas and Shreve (1991), page 348]. Of course, S is also the time of
first exit for Y�·� from Ĩ; since this latter process is time-changed Brownian
motion, it is clear that (12) is satisfied, if

p�l+� = −∞; p�r−� = ∞:
Condition (12) fails if P�S <∞� is positive. We have in fact P�S <∞� = 1, if
and only if one of the following conditions

v�l+� <∞ and v�r−� <∞; or

p�l+� = −∞ and v�r−� <∞; or

v�l+� <∞ and p�r−� = ∞
(13)
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holds; cf. Karatzas and Shreve (1991), page 350. The first of these conditions
implies E�S� <∞, as well as

p�l+� > −∞ and p�r−� <∞:(14)

3. Optimal stopping of a diffusion process. Let X�·� be a diffusion
process as in (3), and let ux �l; r� → < be a continuous function. Define the
value function of the associated optimal stopping problem

Q�x� x= sup
τ∈SX

Exu�X�τ��; x ∈ I:(15)

Here and in the sequel, the superscript records the initial position of the
process under consideration; SX denotes the collection of FX-stopping times
τx �→ �0;∞�, and we are using the convention ξ�∞� x= lim supt→∞ ξ�t�.

Proposition. Assume the conditions (4) and (14). Then the function Q�·�
is continuous on �l; r� and can be written as the lower envelope of all affine
transformations of the scale function p�·� that dominate u�·�; namely,

Q�x� = inf
{
α+ βp�x�x α;β ∈ <; α+ βp�·� ≥ u�·�

}
; x ∈ I:(16)

The stopping time

τ∗ x= inf
{
t ≥ 0x u�X�t�� = Q�X�t��

}
(17)

belongs to SX; and attains the supremum in (15).

Remark 3.1. The optimal stopping region 6 x= �x ∈ Ix u�x� = Q�x�� is a
closed subset of the interval I, and τ∗ is the time of first entry for the process
X�·� into this region. From Remarks 2.2 and 2.1, respectively, it should be clear
that τ∗ is almost surely finite if condition (13) holds [since τ∗ is no greater than
the time it takes X�·� to leave the interval I], or if

there exists ε > 0, such that the intervals
�l; l+ ε� and �r− ε; r� are included in 6.

(18)

Under either of these two conditions, one can restrict attention to stopping
times in SX that are almost surely finite, without changing the value of the
supremum in (15).

For the special case that X�·� is Brownian motion, an elegant and elemen-
tary proof of the proposition is given by Dynkin and Yushkevich (1969). More
general treatments of optimal stopping problems for continuous-time pro-
cesses can be found in Shiryaev (1973, 1978), Fakeev (1970, 1971), El Karoui
(1981). The arguments in Dynkin and Yushkevich (1969) apply with only mi-
nor changes to the diffusion-with-zero-drift process Y�·� of (8) and (9), and it
is easy to pass from the optimal stopping problem for Y�·� to that for X�·�, as
we now demonstrate.
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Clearly X�·� and Y�·� generate the same filtration: FX = FY. Consequently,
with SY denoting the class of FY-stopping times and setting

ũ�y� x= u�q�y��;(19)

Q̃�y� x= sup
τ∈SY

Eyũ�Y�τ��(20)

for y ∈ Ĩ, we have

Q�x� = sup
τ∈SY

Ep�x�u�q�Y�τ��� = Q̃�p�x��:(21)

The proposition is thus immediate from the lemma below.

Lemma. Under the conditions (4) and (14), the function Q̃�·� is concave
and continuous on the interval �l̃; r̃� and is the lower envelope of all the affine
functions that dominate ũ�·�;

Q̃�y� = inf
{
α+ βyx α; β ∈ <; α+ βξ ≥ ũ�ξ� for all ξ ∈ Ĩ

}
; y ∈ Ĩ:(22)

The stopping time τ∗ of (17) can also be written as

τ∗ = inf
{
t ≥ 0x ũ�Y�t�� = Q̃�Y�t��

}
;(23)

and attains the supremum in (20).

Sketch of the Proof. The process Y�·� of (9) with Y�·� = y is a local
martingale, and takes values in the compact interval �l̃; r̃� [thanks to (9), (14)].
It is thus a bounded martingale and, if ϕ�·� is an affine (or even concave)
function dominating ũ�·�, we have by Jensen’s inequality and the optional
sampling theorem,

Eũ�Y�τ�� ≤ Eϕ�Y�τ�� ≤ ϕ�E�Y�τ�� = ϕ�y�;(24)

for every τ ∈ SY. It follows that Q̃�·� ≤ ϕ�·� and that the right-hand side of
(22) dominates the left. On the other hand, Q̃�·� ≥ ũ�·� since we can choose
τ ≡ 0 in (20), and Q̃�·� is concave [cf. Dynkin and Yushkevich (1969), page 115].
Thus Q̃�·� dominates the right-hand side of (22), as this latter coincides with
the smallest concave majorant of ũ�·�, and the equality in (22) is proved.

To see that the stopping time τ∗ of (17) is optimal for the problem (20),
introduce the function

h�y� x= Eyũ�Y�τ∗��; y ∈ Ĩ

and argue [as in Dynkin and Yushkevich (1969), pages 117 and 118] that h�·�
is a concave majorant of ũ�·�; hence, h�·� ≥ Q̃�·�. The reverse inequality is an
immediate consequence of the definition (20) of Q̃�·�. The continuity of Q̃�·�
on the open interval Ĩ = �l̃; r̃� follows from concavity; its continuity at the
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endpoints l̃ and r̃ requires a special argument, which is provided in Dynkin
and Yushkevich [(1969), pages 116 and 117]. 2

From elementary properties of concave functions [e.g., Karatzas and Shreve
(1991), Section 3.6], Q̃�·� has left- and right-derivatives D±Q̃�·� everywhere
on Ĩ; these latter functions are decreasing and left- (resp., right-) continuous,
and satisfy

D+Q̃�y� ≤ D−Q̃�y�; y ∈ Ĩ:(25)

The inequality is strict for at most countably many points.
From (21) and (24), we have

D±Q�x� = p′�x�D±Q̃�p�x��(26)

and thus

D−Q�x� −D+Q�x� = p′�x��D−Q̃�p�x�� −D+Q̃�p�x��� ≥ 0; x ∈ I:(27)

Again, strict inequality occurs on a set which is at most countable.
Let us introduce now the smallest and largest locations of the maximum

u∗ x= max
x∈�l; r�

u�x�(28)

of the reward function u�·�, namely,

λ x= inf
{
x ∈ Ix u�x� = u∗

}
; ρ x= sup

{
x ∈ Ix u�x� = u∗

}
;(29)

respectively, and their counterparts

λ̃ x= p�λ� = inf
{
y ∈ Ĩx ũ�y� = u∗

}
; ρ̃ x= p�ρ� = sup

{
y ∈ Ĩx ũ�y� = u∗

}
:

From the fact that Q̃�·� is the smallest concave majorant of ũ�·� (cf. the
Lemma), we have





D+Q̃�·� ≥ 0; on �l̃; λ̃�;
D−Q̃�·� ≤ 0; on �ρ̃; r̃�;
Q̃�·� = u∗; on �λ̃; ρ̃�:

(30a)

By virtue of (21), these lead to




D+Q�·� ≥ 0; on �l; λ�;
D−Q�·� ≤ 0; on �ρ; r�;
Q�·� = u∗; on �λ; ρ�:

(30b)

4. Solution of the problem. Consider again the stochastic control prob-
lem of Section 1. We shall assume that there exist two pairs �br; sr� and �bl; sl�
of Borel-measurable, real-valued functions on I, each of which satisfies the
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conditions of (4) and (14), as well as

�bl�x�; sl�x�� ∈K �x�; �br�x�; sr�x�� ∈K �x�;(31)

bl�x�
s2
l �x�

= sup
{
β

σ2
x �β;σ� ∈K �x�

}
;(32)

br�x�
s2
r�x�

= inf
{
β

σ2
x �β;σ� ∈K �x�

}
;(33)

for all x ∈ I. Consider the corresponding diffusion processes Xl�·�, Xr�·� with
these parameters, namely,

dXl�t� = bl�Xl�t��dt+ sl�Xl�t��dW�t�;

dXr�t� = br�Xr�t��dt+ sr�Xr�t��dW�t�
as in (3), and let Ql�·� = supτ∈SXl

E·u�Xl�τ��, Qr�·� = supτ∈SXr
E·u�Xr�τ�� be

the value functions for the associated optimal stopping problems in (15) with
the same reward function u�·�.

Theorem. With the above assumptions and notation, the value function
V�·� for the stochastic control problem of (2) satisfies

V�x� =





Ql�x�; x ∈ �l; λ�;
Qr�x�; x ∈ �ρ; r�;
u∗; x ∈ �λ; ρ�:

(34)

In other words, the theorem states the following.

1. To the left of λ, it is best either to maximize the mean-variance ratio �β/σ2�,
or to stop [when this is optimal in the stopping problem (15) for the diffusion
process Xl�·�].

2. To the right of ρ, it is best either to minimize the mean-variance ratio
�β/σ2�, or to stop [when this is optimal in the stopping problem (15) for the
diffusion process Xr�·�].

3. In the interval �λ; ρ�, it is optimal to follow any policy that will bring the
state-process X�·� arbitrarily close to a point of maximum of the function
u�·�, with probability 1—for example, by following the dynamics of either
Xl�·� or Xr�·�—and then stop.

Notice that any one of the intervals �l; λ�, �ρ; r� or �λ; ρ� could be empty.

Remark 4.1. It was shown by Pestien and Sudderth (1985) that the best
way to control a diffusion, so as to maximize the probability of ever reach-
ing the right-hand endpoint of an interval (“goal”), is to maximize the mean-
variance ratio �β/σ2�. By analogy then, the best way to maximize the chance
of reaching a “goal” on the left, is to minimize this same ratio. Thus, the strat-
egy described in 1–3 above seeks to maximize the chance of moving toward the
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location of a maximum of the reward function u�·�, or to stop. For the problem
of Section 1, it is not obvious a priori that one should follow such a strategy
everywhere on I, even in the vicinity of local maxima of u�·�.

Proof of the theorem. Let H�·� be the function on the right-hand side
of (34). Then H�·� ≤ V�·� on I because, for every x ∈ I, H�x� is the expected
payoff from the policy described in 1–3 above. Thus, it remains to be shown
that V�·� ≤H�·�.

Clearly from (34), it suffices to show V�·� ≤ Ql�·� on the interval �l; λ� [a
similar methodology will show as well that V�·� ≤ Qr�·� holds on the interval
�ρ; r�]. Thus, let us fix x ∈ �l; λ� and observe that the value function of (2) can
also be written then as

V�x� = sup
X�·�∈A �x�; τ∈SX

Eu�X�τ ∧ τXλ ��; x ∈ �l; λ�;(35)

where we have set

τXλ x= inf�t ≥ 0x X�t� = λ�(36)

for any given process X�·� ∈ A �x�. Indeed, once the nearest global maximum
of the reward function u�·� has been reached, there is no point in proceeding
any further.

On the other hand, let us consider the bounded processes

ξl�t� x= pl�X�t��; 0 ≤ t <∞(37)

and

ηl�t� x= Q̃l�ξl�t�� = Ql�X�t��; 0 ≤ t <∞:(38)

From Itô’s rule and (6), (32) we conclude that

ξl�t� = pl�x� +
∫ t

0
p′l�X�s��dX�s� +

(
1
2

) ∫ t
0
p′′l �X�s��σ2�s�ds

= pl�x� −
∫ t

0

[
bl�X�s��
s2
l �X�s��

− β�s�
σ2�s�

]
p′l�X�s��σ2�s�ds

+
∫ t

0
p′l�X�s��σ�s�dW�s�; 0 ≤ t <∞

is a supermartingale. It is an easy consequence of Jensen’s inequality that
a concave, bounded and increasing function of a supermartingale is again a
supermartingale; therefore, from (38) and (30), we deduce that

the process ηl�· ∧ τXλ � is a supermartingale:(39)

It follows then, from (39) and the optional sampling theorem, that we have

Ql�x� = ηl�0� ≥ Eηl�τ ∧ τXλ � = EQl�X�τ ∧ τXλ �� ≥ Eu�X�τ ∧ τXλ ��(40)
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for arbitrary X�·� ∈ A �x� and τ ∈ SX. Taking the supremum in (40) over
X�·� ∈ A �x� and τ ∈ SX, we obtain in conjunction with (35) the inequality

Ql�x� ≥ V�x�;
as promised. 2
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