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DEPENDENT RANDOM GRAPHS
AND SPATIAL EPIDEMICS

BY J. VAN DEN BERG, GEOFFREY R. GRIMMETT1

AND RINALDO B. SCHINAZI2

CWI, Statistical Laboratory, Cambridge
and University of Colorado

We extend certain exponential decay results of subcritical percolation
to a class of locally dependent random graphs, introduced by Kuulasmaa
as models for spatial epidemics on Zd. In these models, infected individu-

Ž .als eventually die are removed and are not replaced. We combine these
results with certain continuity and rescaling arguments in order to im-
prove our knowledge of the phase diagram of a modified epidemic model in
which new susceptibles are born at some positive rate. In particular, we
show that, throughout an intermediate phase where the infection rate lies
between two certain critical values, no coexistence is possible for suffi-
ciently small positive values of the recovery rate. This result provides a
converse to results of Durrett and Neuhauser and Andjel and Schinazi.
We show also that such an intermediate phase indeed exists for every

Ž .d G 1 i.e., that the two critical values mentioned above are distinct . An
important technique is the general version of the BK inequality for
disjoint occurrence, proved in 1994 by Reimer.

1. Introduction. The work reported in this paper originated as an
attempt to understand better the phase diagram of the following epidemic

w Ž .xmodel studied by Durrett and Neuhauser 1991 . At any time t, a vertex
d Ž . � 4x g Z is in a state j x which takes values in the set 0, 1, 2 , these statest

having the following interpretations: 0 means dead or removed, 1 means
Ž .susceptible or healthy, 2 means ill. The transition rates of j x , given thet

Ž Ž . d .entire configuration j s j y : y g Z , are defined to be 1 ª 2 at ratet t
Ž . Ž .a n x , 2 ª 0 at rate d taken to equal 1 , 0 ª 1 at rate b, where 0 - a - `,2

Ž . w0 F b F `, and n x is the number of ill neighbors of x in j i.e., the2 t
Ž .number of is nearest neighbors y on the hypercubic lattice for which j y st

x2 . We allow the value b s `, in which case the state of any vertex passes
instantaneously through the value 0; that is, recovery is immediate. We omit

Ža formal definition of the Markov process j and its ‘‘graphical representa-
. � 4Z d wŽ .tion’’ on the state space 0, 1, 2 , referring the reader to Liggett 1985 ,

xChapter 1 and Section III.6 .
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There is some difficulty in achieving a useful definition of critical values for
Ž .the process j when 0 - b - `, owing to a lack of provable monotonicity.

The following route is appealing but problematic. Writing P for the ap-a , b

propriate probability measure when the initial distribution is given by

2, if u s 0,
j u sŽ .0 ½ 1, if u / 0,

we let
< <1.1 u a , b s P C s ` ,Ž . Ž . Ž .a , b

where C is the set of vertices which are in state 2 at some time. We may
Ž .think u a , b as the probability that the infection continues forever. We let

1.2 a b s sup a : u a , b s 0 .� 4Ž . Ž . Ž .c

Ž .It may be proved that u a , b is a nondecreasing function of a when
� 4 Ž .b g 0, ` , whence 1.2 provides a useful definition of the critical point in

these two extreme cases. Unfortunately, we do not know whether or not
Ž .u a , b is monotonic in a when 0 - b - `, and therefore we have insufficient

information to describe the associated phase transitions.
Ž .When b s `, this model is effectively the well-known contact process

Ž .with possible states 1 and 2, and a ` is the critical infection rate. For thec
wŽ . xbasic properties of the contact model, see Liggett 1985 , Chapter 6 and

Ž .Bezuidenhout and Grimmett 1990 .
Ž .The other extreme case, b s 0, has been considered by Kuulasmaa 1982 .

Ž .This is an ‘‘epidemic without recovery.’’ Kuulasmaa showed that u a , 0 is
Ž .nondecreasing in a , and that 0 - a 0 - ` when d G 2; it is easy to see thatc

Ž .a 0 s ` when d s 1.c
Ž . Ž .It may be proved that a ` F a 0 , and one of our results is the strictc c

Ž . Ž .inequality a ` - a 0 , valid in any dimension. We prove this at Theoremc c
4.3 below, using a coupling of P and P .a , 0 a , `

It is apparently difficult to study the above epidemic model for general a , b
satisfying 0 - a , b - `, owing to the possibility of nonmonotonicity. There-
fore, we describe here certain approaches designed to understand the rele-

Ž . Ž .vance of the critical values a 0 , a ` . In particular, we are interested inc c
Ž . Ž Ž . . Ž .whether the parameter-pair a , b s a 0 , 0 lies on a hypothetical criticalc

surface of the general model. Since we do not know whether there exists a
unique critical curve, we restrict ourselves to a lesser question, namely,

Ž .whether arbitrarily small perturbations of a , b , in the neighborhood of
Ž Ž . .a 0 , 0 , may take the process into either of two phases, these phases beingc
characterised by the occurrence or not of ‘‘coexistence.’’ The property of
coexistence has been studied fairly widely in the theory of infinite particle
systems. In the present context, we say that ‘‘coexistence occurs’’ if there
exists an invariant measure n for the process j such that n is concentrated
on configurations which include at least one vertex in each of the states 0, 1
and 2. Rather than answer the above question in its exact form, we shall

Ž Ž . .show that a 0 , 0 is close to regions of ‘‘no coexistence’’ and ‘‘survival’’; thec
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latter term means that infection, beginning with a single ill individual in an
ocean of susceptibles, continues forever with a strictly positive probability
Ž .u a , b .

In Section 2, we introduce a class of locally dependent percolation models
Ž .in which directed edges of the lattice have random states with a certain

dependence structure. We present exponential-decay results for such sys-
tems, and note that these results generalise the corresponding statements for
independent percolation. See Theorem 2.1 and 2.2 below; the corresponding

Ž .results for independent percolation may be found in Grimmett 1989 . In
Section 3, we apply tese results to a locally dependent random graph arising
from the special case b s 0 of the epidemic model described above. In this
way, we obtain exponential-decay theorems for epidemics without recovery.

In Section 4, we combine the above observations with certain continuity
and rescaling arguments in order to obtain a new result for the epidemic

Ž .model with 0 - b - `, namely, the following. Durrett and Neuhauser 1991
Ž .showed that, if a ) a 0 and b ) 0, coexistence occurs when d s 2. On thec

Ž . Ž .other hand, Andjel and Schinazi 1996 have proved that a ) a ` if andc
Žonly if there exists b such that coexistence occurs. In this case, coexistence

.occurs for all sufficiently large values of b. One of our main current results is
Ž . Ž .that, if a ` - a - a 0 , then coexistence is not possible for b less than ac c

Ž .certain nontrivial threshold whose value depends on a ; see Theorem 4.4
Ž .below. This identifies a 0 as a genuine critical value for the general epi-c

demic model with recovery, thereby proving the existence of two distinct
Ž .critical values, the other one being a ` . Proofs of our results are given inc

Sections 5]8. See Figure 1 for a sketch of the phase diagram of the model.
We finish this section with a little notation. As usual, Ld denotes the cubic

Ž .lattice in d dimensions, where d G 1. For a vertex u s u , u , . . . , u , we1 2 d
define

d

< < < <u s u .Ý i
is1

d ² :An edge from u to v in L is denoted by u, v . When it is directed from u to
w : Žv, we write u, v . The surface of a set A of vertices i.e., the set of vertices in

.A which are adjacent to some vertex outside A is denoted by ­A. We write
w x d dL s yn, n , the box of Z having side length 2n.n

2. Exponential decay for locally dependent random graphs. In the
usual bond percolation process on Ld, the states of different edges are
independent random variables. One of the main results for subcritical perco-

wlation is the exponential decay of the connectivity function Aizenman and
Ž . Ž . Ž . xBarsky 1987 , Menshikov 1986 ; see also Grimmett 1989 , Chapter 3 . We

will state analogous results for a percolation-type model in which certain
dependencies are introduced between the states of different edges. Such

Ž .systems were studied by Kuulasmaa 1982 under the name ‘‘locally depen-
dent random graphs.’’
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FIG. 1. A sketch of the phase diagram of the epidemic model with parameters a and b, dashed
line indicates a critical curve separating the two phases characterised by ‘‘coexistence’’ and ‘‘no
coexistence,’’ but the existence of such a curve has not been proved. This sketch is valid for all

Ž .dimensions d G 1, except where noted otherwise; we point out that a 0 s ` when d s 1.c

We shall work on directed graphs rather than undirected graphs, and we
ªd dbegin by writing L for the directed graph obtained from L by replacing

Ž ² :each edge by a pair of oppositely directed edges i.e., the edge u, v is
w : w :.replaced by an edge u, v , together with an edge v, u .

Next, we introduce probabilities, in order to construct a random subgraph
ªd d �of L . Let e , e , . . . , e be the positive unit vectors of Z , and write EE s g e :1 2 d i

4g s ", 1 F i F d . We may think of EE as the set of neighbors of the origin of
Ld, or equivalently as the set of possible endpoints of edges directed out of the
origin. Let PP be the set of all probability measures on the set 2 EE of subsets of

EE w xEE. That is, PP contains all functions m: 2 ª 0, 1 satisfying

m A s 1.Ž .Ý
A:EE

For AA : 2 EE, we write

m AA s m A ,Ž . Ž .Ý
AgAA

and we call AA increasing if

2.1 A9 g AA whenever A : A9 and A g AA.Ž .
Ž . ŽFor m, n g PP, we say that m is stochastically dominated by n written

. Ž . Ž . EE Ž . Ž .m F n if m AA F n AA for all increasing subsets AA of 2 . If m AA - n AA for
all increasing AA : 2 EE with AA / B, AA / 2 EE, then we say that m is strictly
dominated by n .

ªd �Let m g PP. We now define a random subgraph of L as follows. Let N :u
d4u g Z be a collection of independent random subsets of EE, each being
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chosen according to the probability measure m. Our random subgraph has
d w :vertex set Z , and its edge set is precisely the set of all directed edges u, v

for which v y u g N . We denote the ensuing directed random graph by G,u
and write P for the associated probability measure.m

Ž . dLet u , u , . . . , u be the distinct vertices of a path in L . We call this0 1 m
Ž . w :sequence an open directed path if u , u lies in G for 0 F i - m. Wei iq1

write u ª v if there exists an open path from u to v, and u ª ` if there
exists an infinite open path from u.

The N have a natural interpretation in terms of a very general andu
Žsimple epidemic model in which infected individuals eventually die and are

. Žnot replaced and in which the notion of time is ignored that is, we record
only which individuals ever become ill, but not at which times this will

.happen : when an individual u becomes infected, he in turn sends germs to
Žexactly those individuals in the set u q N consequently, he infects exactlyu

.those individuals in this set which have not been infected previously . With
� 4this interpretation, the event u ª v is the set of configurations of the lattice

such that, if initially only u is infected, then the infection will eventually
reach v.

As a special case, assume for the moment that m is a product measure on
Ž . Ž .EE with density p. It is not difficult to see that P u ª v s P u l v , wherem p

Ž .P is the measure associated with bond percolation having density p , andp
� 4 Ž .u l v is the event that there exists an undirected open path from u to v.

Returning to the general case, we define the percolation and connectivity
functions in the usual way:

u m s P 0 ª ` , t u , v s P u ª v .Ž . Ž . Ž . Ž .m m m

Next follows our main result for the above locally dependent percolation
model.

THEOREM 2.1. Let m, n g PP, and assume that m is strictly dominated by n .
Ž . Ž .If u n s 0, then there exists a strictly positive constant g s g m, n such that

t u , v F eyg < vyu < for u , v g Zd .Ž .m

As observed above, this conclusion generalizes the exponential decay theo-
w Ž . xrem for ‘‘independent’’ percolation; see Grimmett 1989 , Theorem 3.4 . We

have presented the theorem for the lattice Ld, but this is not essential.
Our proof of Theorem 2.1 is based upon Menshikov’s proof for ‘‘indepen-

w Ž .xdent’’ percolation see Grimmett 1989 . However, there are some key differ-
ences, of which the most significant lies in the use of a ‘‘disjoint occurrence’’
inequality. Whereas the standard BK inequality suffices when the edge-states
are independent, the more general version, conjectured by van den Berg and

Ž . Ž .Kesten 1985 and proved by Reimer 1997 , is necessary here.
Theorem 2.1 has an implication for the tail of the cluster-size distribution.
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THEOREM 2.2. Let m, n g PP, and assume that m is strictly dominated by n .
Ž . Ž .If u n s 0, then there exists a strictly positive constant z s z m, n such that

� 4the set C s v: 0 ª v satisfies

< < yz nP C G n F e for all n G 0.Ž .m

3. Application to the epidemic model without recovery. Theorems
2.1 and 2.2 may be applied to the epidemic model with b s 0, that is, the
model in which individuals are removed forever from the system once their
period of illness is completed. We take as initial configuration

2, if u s 0,3.1 j u sŽ . Ž .0 ½ 1, if u / 0,

which is to say that illness is introduced at the origin into an ocean of
Ž .susceptibles. Kuulasmaa 1982 made the interesting observation that the set

C of individuals which are ever infected may be represented as the cluster at
0 in a certain locally dependent percolation model. He proved also that
Ž . Ž < < . Ž .u a , 0 s P C s ` is nondecreasing in a ) 0 , and furthermore that, ifa , 0

d G 2, then the critical value

a 0 s sup a : u a , 0 s 0� 4Ž . Ž .c

Ž . Ž .satisfies 0 - a 0 - `; see 1.1 . We will show that Theorem 2.1, combinedc
with Kuulasmaa’s observations, yields the following result. We recall that

w x dL s yn, n .n

Ž . Ž . Ž .THEOREM 3.1. If a - a 0 , there exist g s g a and d s d a satisfyingc
g , d ) 0 such that, for all n,

P C l ­L / B F eyg n ,Ž .a , 0 n

< < yd nP C G n F e .Ž .a , 0

Next, we present an exponential decay theorem for the total time of the
epidemic. Let T denote the supremum of the set of times at which the state of
some vertex changes from 2 to 0.

Ž . Ž .THEOREM 3.2. There exists l s l a , satisfying l ) 0 when a - a 0 ,c
such that

P T ) t F eyl t for all t G 0.Ž .a , 0

4. The intermediate phase of epidemics with recovery. We now
Ž .turn to the epidemic with recovery or rebirth that is, the case b ) 0. As we

wrote in the Introduction, it is known that coexistence occurs:

for every positive b if a ) a 0 and d s 2,Ž .c

for no b if a - a ` ,Ž .c

for sufficiently large b if a ` - a - a 0 .Ž . Ž .c c
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See Figure 1. Our understanding of the ‘‘intermediate region,’’ described in
the third case, is far from complete, and this is the region in which we are
interested here. Our first step is to show that the intermediate region exists,

Ž . Ž .that is, a ` - a 0 .c c
Ž .Consider the model with parameters a , b and suppose we start as in 3.1

Ž . Ž .with one vertex ill in state 2 and all others susceptible in state 1 . Let
Ž .u a , b be the probability that infinitely many vertices become infected, as in

Ž . Ž .1.1 . It is likely, at least for ‘‘descent’’ graphs, that u a , b is nondecreasing
Žin a and b, but no proof is known except for the particular cases b s 0 and

.b s `, when monotonicity in a is easy to prove . This absence of monotonic-
ity greatly complicates the proofs, since we have no natural or useful generic

Ž .coupling of two models with different general a , b. Indeed, it is the absence
of such a coupling which adds much interest to the problem. In place of a
coupling, we have the following useful comparison result. The proof may be
found in Section 7.

Ž .PROPOSITION 4.1. Let d G 1. For each a , b ) 0, there exists « s « a , b, d
) 0 such that

u a , b G u a q « , 0 .Ž . Ž .

Moreover, for fixed d, we have that « is bounded away from 0 when a is
bounded away from 0 and from `, and b is bounded away from 0.

Ž .THEOREM 4.2. Let d G 2. If 0 - b F `, there exists a satisfying a - a 0c
Ž .such that u a , b ) 0.

Ž . Ž .PROOF. Kuulasmaa 1982 has shown that a 0 - ` if d G 2. We mayc
Ž . Ž .choose a sufficiently close to but strictly smaller than a 0 such thatc

Ž . Ž . Ž .« s « a , b, d , given in Proposition 4.1, satisfies a q « ) a 0 . Then u a , bc
) 0, which yields the result. I

Ž . Ž .THEOREM 4.3. For every d G 1, we have that a ` - a 0 .c c

Ž .PROOF. This is well known when d s 1, in which case a ` - ` andc
Ž .a 0 s `. When d G 2, it follows immediately from the case b s ` of Theo-c

rem 4.2. I

REMARK 1. Theorem 4.3 may be proved directly using the method of
Ž . Ž .Menshikov 1986 and Aizenman and Grimmett 1991 . It is not straightfor-

ward to achieve this, but the complications may be overcome. The basic idea
is to find a family of processes indexed by a parameter g taking values in
w x Ž . Ž . Ž0, 1 , such that a the case g s 0 resp. g s 1 corresponds to b s 0 resp.

. Ž .b s ` , and b the processes may be coupled in such a way that they are
Žmonotonic in g . We do not know how to prove Theorem 4.2 which is

.interesting in its own right by that method.
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REMARK 2. It is somewhat annoying that we have not been able to prove
the following natural ‘‘counterpart’’ of Theorem 4.2: for every finite b ) 0,

Ž . Ž .there exists an a satisfying a ) a ` such that u a , b s 0. This problem isc
related to the phase diagram in Figure 1, and particularly to the behaviour of

Ž Ž . .the process in a neighborhood of the point a ` , ` .c

REMARK 3. Another open question is whether we can, in Theorem 4.2,
Ž .replace the statement u a , b ) 0 by the statement ‘‘coexistence occurs.’’

w Ž . xMore generally: is survival in the sense that u a , b ) 0 equivalent to
�coexistence? We would allow some ‘‘occasional’’ cases when this is false, such

. Ž .as when b s 0. The paper by Durrett and Neuhauser 1991 gives a partial
answer, and indicates that a complete answer may be far from obvious.

We are now ready to state a converse to the results mentioned at the
Ž .beginning of this section. Recall that a 0 s ` when d s 1.c

Ž Ž . Ž .. Ž .THEOREM 4.4. Let d G 1. If a g a ` , a 0 , there exists b a ) 0 suchc c c
Ž . Ž .that, when b - b a , then u a , b s 0 and coexistence does not occur. Morec

precisely, under these conditions, for any finite set A of vertices, there exists,
Ž .with probability 1, a finite random time T after which there will neverA

appear a 2 within A. Moreover, the quantities T may be chosen uniformly inA
the initial configuration j .0

The proof of Theorem 4.4 is based on a block construction together with
Theorems 3.1 and 3.2. It is presented in Section 8, and is related to a block

Ž .argument of Durrett and Schinazi 1993 .

5. Proofs of Theorems 2.1 and 2.2. We first present a version of the
generalized BK inequality. Let X , X , . . . , X be independent random vari-1 2 n
ables each taking values in some finite set S. Let A and B be events which
are defined in terms of the X . We say that A and B are perpendiculari
Ž .written A H B if they are defined in terms of disjoint subcollections of the

� 4X ; that is to say, if there exist J, K : 1, 2, . . . , n with K l L s B such thati
Ž . Ž . wthe indicator function 1 of A resp. 1 of B is a function of X : i g J resp.A B i

Ž .xX : i g K alone. The following theorem is equivalent to the general BKi
Ž . w Ž .xinequality proved by Reimer 1997 see also van den Berg 1997 .

THEOREM 5.1. Let L and M be finite sets, and let A and B be eventsl m
defined in terms of the X , for l g L and m g M. Theni

� 4P A l B F P A P B .D D Dl m l mž /ž /ž /
ml , m : A HB ll m

This inequality will be applied to a locally dependent random graph in the
following setting. Let V, W, V 9, W 9 be sets of vertices of a finite region L in

d ŽZ . We write V ª W for the event that there exists a directed open path of
.L joining some vertex of V to some vertex of W. We say that two directed
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paths having vertex sequences x , x , . . . , x and y , y , . . . , y are vertex-0 1 m 0 1 n
Ž . Ž . Ž .disjoint if x / y for all pairs i, j except possibly the pair i, j s m, n .i j

that is, we do not require that the final vertices of the two paths be distinct.
� 4 � 4We write V ª W ( V 9 ª W 9 for the event that there are two vertex-disjoint

directed open paths, one of which joins a vertex of V to a vertex of W, and the
other of which joins a vertex of V 9 to a vertex of W 9.

ªdŽ .Let L be an index set for the set of all directed paths in L of L from V to
Ž . ŽW and similarly, M indexes such paths from V 9 to W 9 . For l g L resp.

. Ž .m g M , let A resp. B be the event that the directed path indexed by ll m
Ž . w Ž .xresp. m lies in G defined beneath 2.1 . It follows by Theorem 5.1 that

� 4 � 45.1 P V ª W ( V 9 ª W 9 F P V ª W P V 9 ª W 9 .Ž . Ž . Ž .Ž .m m m

Note here that the symbol ( requires vertex-disjoint paths, whereas in bond
percolation it normally requires edge-disjoint paths.

PROOF OF THEOREM 2.1. We introduce an auxiliary parameter p as fol-
lows. Let n g PP, and let G be a graph sampled according to the measure P .n

We color each vertex u of Zd black with probability p; otherwise, we color it
white. Vertex colors are independent of one another and of the graph G. From
G we obtain another graph G according to the following rule. The graph Gp p

d w : w :has vertex set Z , and the directed edge u, v lies in G if and only if u, vp
lies in G and u is black. Thus, G is obtained from G by deleting all edgesp
emanating from white vertices. It is clear that G is a locally dependentp
percolation model distributed according to the measure P , where n g PP isn pp

given by

pn A , if A / B,Ž .
for A g EE , n A sŽ .p ½ 1 y p 1 y n B , if A s B.Ž .Ž .

ªdLet B be an increasing event, that is, a set of directed subgraphs of L
which is closed under the operation of increasing the edge-set. A vertex u of
Zd is called pivotal for B if B occurs when u is black, but B does not occur

Ž . Ž .when u is white. We write N B for the random number of pivotal vertices
for B. The usual Russo formula is easily adapted to obtain that, if B is
increasing and finite-dimensional, then

d d
< <P B s E P B G s E E N B GŽ . Ž . Ž .Ž .Ž .Ž .n np pdp dp

1 1
< <s E E N B 1 G s E N B B P B ,Ž . Ž . Ž .Ž .Ž .Ž .B n pp p

where E is the expectation operator of P . Therefore,n p

d 1
<5.2 log P B s E N B B .Ž . Ž . Ž .Ž .� 4n pdp p
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Ž .We shall use this formula in the following way. Assume that u n s 0. We
Ž . Ž .shall show that 5.2 implies the existence of a constant g s g p, n , satisfy-

ing g ) 0 if p - 1, such that

5.3 P 0 ª ­L F eyg n for n G 1,Ž . Ž .n np

� d < < 4where L s u g Z : u F n as usual. This implies the claim of the theorem,n
as follows. If m is strictly dominated by n , then, by an argument using the

Ž . Ž .continuity of n A for A : EE, and the fact that n s n , we may find p - 1p 1
such that m F n . For this value of p, we have thatp

P 0 ª u F P 0 ª u F eyg < u < ,Ž . Ž .m n p

as required.
Ž . � 4We turn now to the proof of 5.3 . Let A s 0 ª ­L . Assume thatn n

Ž . Ž . Žu n s 0, and further that P A ) 0 and p ) 0 the claim is trivial other-n n
. Ž .wise . We shall follow the proof of Theorem 3.4 of Grimmett 1989 , and we

shall refer to the notation as well as the equation, lemma and page numbers
Ž .of the last reference. Let N A be the number of pivotal vertices for A . Then n

Ž Ž . < . Ž .idea is to find a lower bound for E N A A , to substitute this into 5.2n n
with B s A and to integrate. The lower bound is obtained as follows in veryn

Ž .much the same way as in Grimmett 1989 ; there are certain differences
arising from the dependence structure of locally dependent random graphs,
but these may be overcome by use of Theorem 5.1 in place of the BK
inequality.

Ž .The critical lemma is Lemma 3.12 of Grimmett 1989 . Let y , y , . . . be0 1
the pivotal vertices for A , taken in their natural order from 0 to ­L . Wen n

< <have that y s 0. Let r s y y y . As at the bottom of page 49 in Grim-0 i i iy1
Ž . Ž .mett 1989 , and by 5.1 above,

� 4 � 4P r ) r l A F P 0 ª ­L ( D0 ª ­L� 4Ž . Ž .n 1 1 n n n r q1p p 1

F P A f r q 1 ,Ž . Ž .n n p 1p

Žwhere DS denotes the external boundary of a set S of vertices i.e., the set of
d d .vertices y of Z _ S such that y is adjacent in L to some vertex in S , and

Ž . Ž .where f m s P D0 ª ­L . Therefore,p n mp

<P r ) r A F f r q 1 , r G 0.Ž .Ž .n 1 1 n p 1 1p

Ž . Ž .Next, we turn to a proof of a version of 3.13 of Grimmett 1989 . The proof
given there has a minor imperfection which has been corrected in Grimmett
Ž .1996 . Fix a vertex u of L , and define D to be the set of all verticesn u
attainable from 0 along paths of G not using edges emanating from u; wep

� 4turn D into a graph by adding all edges of G emanating from D _ u . Fixu p u
Ž . kpositive integers k G 2 , r , r , . . . , r , such that Ý r F n, and let B be1 2 k is1 i u

Ž .the event that the following statements hold: a u lies in D , and u is black,u
Ž . Ž . � 4b D contains no vertex of ­L , c the pivotal vertices for the event 0 ª uu n

< <are, taken in order, y , y , . . . , y , where y y y s r for 1 F i - k y 1,0 1 ky2 iy1 i i
< <and furthermore, y y u s r .ky2 ky1
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We now define the event B s D B . If A l B occurs, then there exists au u n
Ž . Žunique random u such that B occurs. Now, arguing as in Grimmett 1989,u

.1996 , but using Theorem 5.1 in place of the usual BK inequality, we obtain
that, for each positive integer k, and all positive integers r , . . . , r with1 k
Ýk r F n,is1 i

<P r ) r , r s r for 1 F i - k AŽ .n k k i i np

<F f r q 1 P r s r for 1 F i - k A .Ž . Ž .p k n i i np

This leads, as before, to the inequality
n

<5.4 E N A A G y 1.Ž . Ž .Ž .n n n1 q Ý f iŽ .is1 p

Now
5.5 f m F 2 dP A for m G 1.Ž . Ž . Ž .p n my1p

Ž . Ž . Ž . Ž . Ž .We substitute 5.5 into 5.4 and 5.2 to find that g n s P A satisfiesp n np

d n
log g n G y 1.Ž .� 4p ndp 1 y 2 dÝ g iŽ .is0 p

Ž .The proof now proceeds as before, and 5.3 follows. I

PROOF OF THEOREM 2.2. The proof is a straightforward adaptation to this
Ž .setting of the first part of Theorem 1 of Kesten 1981 . We omit all details.

The overall argument is roughly as follows. We have from Theorem 2.1 that
the radius of C has an exponentially decaying tail. This implies that the

w x dy1 w xchance of an ‘‘easy-way crossing’’ of the box 0, 3N = 0, N may be made
as close to zero as desired by choosing N sufficiently large. We call the point 0

w x i w x w x dy iy1good if one of the boxes 0, 3N = 0, N = 0, 3N , 0 F i F d y 1, has
an ‘‘easy-way crossing.’’ This definition of ‘‘good’’ may be extended, by transla-

Ž .tion, to any point of the form k N, k N, . . . , i N for integers k , k , . . . , k .1 2 d 1 2 d
< <Now, if C G n, then there exists a connected cluster of ‘‘good points on

renormalized lattice,’’ where the scale of the renormalisation is N, this latter
cluster having size at least An for some constant A. The number of possible
renormalized clusters of cardinality m is less than B m for some B. Combin-
ing these estimates, and choosing N sufficiently large, we obtain an exponen-

Ž .tial estimate for the tail of C. For the details, see Kesten 1981 . I

6. Proofs of Theorems 3.1 and 3.2. Let b s 0. Following Kuulasmaa
Ž . Ž d .1982 , we may construct the epidemic process as follows. Let T : u g Z beu
a family of independent exponentially distributed random variables with
parameter 1; T may be taken as the length of the period of infection at u,u
given that infection ever reaches u. After infection, a vertex u attempts to

Ž d .infect its neighbors. Let I : u g Z , v g EE be independent random vari-u, v
ables having the exponential distribution with parameter a . We say that u

Ž .infects its neighbor u q v where v g EE if I - T . For each u, there is a setu, v u
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Ž d .u q N of neighbors of u which are infected by u. The sets N : u g Z areu u
independent and identically distributed according to some probability mea-
sure on EE, and we denote this measure by m .aªd w :Consider the random subgraph G of L given by: u, v is an edge of G if
and only if u infects v. Then the set C of all vertices which may be reached
from 0 along directed paths of G has the same distribution as the set of
vertices which are ultimately infected in the epidemic system with parameter
a and b s 0.

Ž .PROOF OF THEOREM 3.1. Let a - a 0 and pick a 9 such that a - a 9 -c
Ž . Ž .a 0 . Then P 0 ª ` s 0. Also, m is strictly dominated by m , whencec a 9, 0 a a 9

the claims follow from Theorems 2.1 and 2.2. I

PROOF OF THEOREM 3.2. We have that

T F T ,Ý u
ugC

where the T are given above. Now,u

`

P T ) t s P T ) t , C s GŽ . Ž .Ý Ýa , 0 a , 0
ms1 < <G : G sm

m

< <F P T ) t q P C G M ,Ž .Ý Ý Ýa , 0 i a , 0ž /
mFM < < is1G : G sm

where T , T , . . . are independent exponentially distributed random variables1 2
with parameter 1. Therefore,

M
M yd MP T ) t F D P T ) t q e ,Ž . Ýa , 0 a , 0 iž /

is1

Ž .where d is given in Theorem 3.1, and D ) 1 is a constant depending on the
dimension d. Using Markov’s inequality,

M yu te
P T ) t F for u - 1.Ýa , 0 i Mž / 1 y uŽ .is1

1 ? @ Ž Ž ..We may take u s , and we set M s tr , where r - 1r 2 log 2 D , thereby2

obtaining the required exponential estimate. I

7. Proof of Proposition 4.1. This proof was inspired by ideas in Men-
Ž . Ž .shikov and Pelikh 1990 and van den Berg and Ermakov 1996 . We do not

present all details, but we hope that the following broad account will satisfy
most readers. The basic idea is to use the fact that any second infection
period of a vertex strictly increases the capacity of that vertex to propagate
infection. When correctly phrased, this enables a comparison of the process
with another process having an increased infection rate but allowing no
recovery.
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Let 0 - a , b - `. In a manner similar to the first part of Section 6, we set
out to assign random variables to reach vertex u in order to describe the
evolution of the process. In fact, our variables will only partially describe the
process, but this is sufficient for our purpose. To each vertex u, we assign a
random element v which, roughly speaking, describes the ‘‘actions’’ of uu

Ž .between the moment it is infected for the first time if u is ever infected up
to the end of its second infectious period. More precisely, v consists of theu
following three components. The first component is a marked Poisson point

Ž .process p 1 on the positive half-line, where the possible marks are theu
Ž .elements v g EE each of which occurs with intensity a and the special mark

Ž0, which occurs with intensity 1 the set EE was defined at the beginning of
.Section 2 . This point process, up to the time of the first occurrence of a point

with mark 0, describes the infection attempts by u during its first infectious
period. The second component of v is an exponentially distributed randomu

Ž . Žvariable R with parameter b , denoting the first removal period of u i.e.,u
the length of the time-interval subsequent to its first infection, during which

. Ž .u is in state 0 . Finally, the third component is a point process p 2 with theu
Ž . Ž .same distribution as p 1 . This point process p 2 , at times up to the firstu u

occurrence of a point with mark 0, describes the infection attempts by u
during its second infectious period.

The v , u g Zd, are independent and identically distributed, and for eachu
Ž . Ž .u, we specify that R p 1 and p 2 are independent of each other. Weu u u

continue to write P for the appropriate probability measure, and we leta , b

Ž d .v s v : u g Z . Any point marked m in a point process is called anu
m-point.

The realizations of the point processes after the occurrence of the first 0
Žare without meaning for the time being, but later they or at least part of

.them will be useful in the construction of a certain mapping.
Ž . Ž .In the following, T 1 and T 2 will denote the length of the first andu u

w Ž .second infectious periods of u, respectively i.e., T 1 is the position of theu
Ž . Ž . Ž .xfirst 0 in p 1 and T 2 that of the first 0 in p 2 . For v g EE, we say that uu u u

Ž . Ž . wtries to infect u q v in its first resp. second infectious period if p 1 resp.u
Ž .x Ž Ž .. w Ž Ž ..xp 2 has a v-point in the interval 0, T 1 resp. 0, T 2 .u u u
Suppose we start with only the origin 0, ill, and all other susceptible. In

order to describe the evolution completely, we need of course much more than
the above information, but this limited information allows us to construct an
appropriate directed graph G such that, if there is a path from 0 to a vertex v
in this graph, then v is ill at some time.

We perform this construction step by step as follows. First, suppose we are
provided with some fixed total order on Zd. We shall construct a directed
graph by means of a sequence of iterations. Let G be the directed graph0
which comprises the single vertex 0 only; we speak of 0 as having been
selected. At step 1, we draw an arrow from 0 to all v g EE for which 0 tries to
infect v during its first infectious period, and we call these vertices children

Ž .of 0 and 0 their parent ; the consequent directed graph is denoted G . Note1
that, although we cannot conclude that each such v is infected directly by 0,
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Žwe may conclude that they are infected by some vertex this is similar to the
. Ž .case b s 0 . Some children v are special: if p 1 has two v-points in the0

Ž Ž .. Ž . Žinterval 0, T 1 at distance larger than T 1 q R from each other i.e., if0 v v
the period between the first and the lst time during its first period of illness

.that 0 tries to infect v is larger than the first illness and recovery cycle of v ,
Žthen a few moments of reflection that v is infected at least twice although

.not necessarily by 0 . We then call v a good child of 0.
More generally, in the construction of G at step k q 1, we do thekq1

Žfollowing. We select the smallest vertex u with respect to the predefined
.order which has not been selected during the construction of G , G , . . . , G ,0 1 k

and which can be reached from 0 along directed paths of G . Let v g EE bek
such that u q v is not a vertex of G . If u tries to infect u q v during its firstk
infectious period, we can, as in the first step, conclude that u q v will be
infected at some time. There is another situation in which u q v is infected,
namely, if u is a good child of its parent, and u tries to infect v during its
second infectious period. In either case, we say that u q v is a child of u, and
we draw an arrow from u to u q v. We denote by G the directed graphkq1
obtained by augmenting G with all such arrows and all incident vertices.k

Ž . Ž Ž ..Finally, as in step 1, if p 1 has two v-points in the interval 0, T 1 atu u
Ž .distance larger than T 1 q R from each other, then we call u q v auqv uqv

Ž .good child of u and conclude that it is infected at least twice .
Ž .In this way, we construct an increasing sequence G s G v of directedk k

Ž .graphs, and it is not difficult to show by induction that every vertex of every
G is infected at some time. For later purposes, we note the following.k
Conditional on a vertex u being selected at some given stage, then v isu

Ž .independent of the v for vertices x selected earlier. In particular, T 1 ,x u
Ž .T 2 and R may be regarded as ‘‘fresh,’’ independent exponentially dis-u u

tributed random variables having parameters 1, 1 and b, respectively. Also
note that if, in the construction above, we were to decide to draw an edge
from u to its neighbor v only when u tries to infect u q v during its first
infectious period, then we would obtain exactly the model without recovery of
Sections 3 and 6. In order to prove our theorem, we have to show that, at each
step, with u denoting the vertex selected at that step, the set

X s v : u tries to infect u q v during its first infectious period , or� Ž .u

u is good and u tries to infect u q vŽ
during its second infectious period 4.

is ‘‘uniformly stochastically strictly larger’’ than the corresponding set we
Ž .would have in the case a , 0 , that is, the set

� 4Y s v : u tries to infect u q v during its first infectious period ;u

Ž .this will imply by continuity that there exists g ) 0 such that X isu
uniformly stochastically larger than Y with a replaced by a q g . Thisu
implies the claim of the theorem.

In order to achieve this, suppose we observe the evolution of the sequence
Ž .G , but that we do not know the underlying ‘‘fine-structure’’ v. Suppose,k
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Ž .at step K, we have obtained that G s G , G , . . . , G is given by G sK 0 1 Ky1 K
Ž .g , where g s g , g , . . . , g is a specified sequence of directed graphK K 0 1 Ky1

Ž . �g . Suppose further that u s u G is the selected vertex. Write A s v:i K
Ž . 4G v s g .K K
Let p denote the parent of u, and let w s u y p. Write B for the event

Ž . Ž Ž ..that p 1 has, in the interval 0, T 1 , two w-points at distance larger thanp p
1 1 EE� Ž . 4 � 41 from each other. Also, let E s T 1 - , and E s R - . Let AA : 21 u 2 u2 2

be increasing and AA / 2 EE, AA / B. Finally, let
X � 4Y s v : u tries to infect u q v during its second infectious periodu

Ž .compare with X and Y defined above . Clearly, if B l E l E holds, thenu u 1 2
u is good. Therefore, dropping the subscripts a , b of P for a moment, we
have that

< < X <P X g AA A s P B l E l E A P Y j Y g AA A l B l E l EŽ . Ž . Ž .u 1 2 u u 1 2

c c
< <q P B l E l E A P Y g AA A l B l E l EŽ . Ž .Ž . Ž .1 2 u 1 2

< <G P B l E l E A = P Y g AA A l B l E l EŽ . Ž .1 2 u 1 2

X <qP Y f AA, Y g AA A , B , E , EŽ .u u 1 2

c c
< <q P B l E l E A P Y g AA A l B l E l EŽ . Ž .Ž . Ž .1 2 u 1 2

<s P Y g AA AŽ .u

< X <q P B l E l E A P Y f AA, Y g AA A l B l E l E .Ž . Ž .1 2 u u 1 2

Ž .It is clear that the occurrence of A resp. B is completely determined by the
set of v for which the vertex x was selected before step K, while, as notedx
before, v is independent of the family of such v . Therefore, the first term inu x

Ž .the final expression equals P Y g AA , and the second term equalsa , b u

< X <P B A P E P Y g AA P Y f AA E ,Ž . Ž . Ž . Ž .a , b a , b 1 a , b u a , b u 1

which in turn equals

< XP B A P E P Y g AA P Y f AA, E .Ž . Ž . Ž . Ž .a , b a , b 2 a , b u a , b u 1

Since the last three factors are strictly positive and do not depend on A, it
Ž < . Žsuffices to prove that P B A is uniformly over all events A of the forma , b

.given above bounded away from 0. This final statement is proved using the
following ‘‘modification’’ argument.

Let A be the subset of A containing all v which satisfy the followingw
four properties:

Ž . Ž Ž . Ž . .1. p 1 has a w-point in the interval T 1 , T 1 q 1 and in the intervalp p p
Ž Ž . Ž . .T 1 q 2, T 1 q 3 .p p

Ž . Ž .2. If p is not a good child for the configuration v , then p 1 has no pointsp
Ž Ž . Ž . .in the interval T 1 , T 1 q 3 with marks other than w.p p

� 4 Ž .3. If p is a good child, then, for each y g EE _ w such that p 2 has ap
Ž Ž .. Ž .y-point in the interval 0, T 2 and p 1 has no y-point in the intervalp p
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Ž Ž .. Ž . Ž Ž . Ž .0, T 1 , then p 1 has exactly one y-point in the interval T 1 , T 1 qp p p p
. Ž .3 , and besides w, these are the only marks in p 1 occurring in thep

Ž Ž . Ž . .interval T 1 , T 1 q 3 .p p
Ž . Ž . Ž .4. p 1 has no point at position T 1 q 3, and its only point at position T 1p p p

is the one with mark 0.

REMARK. The fourth property may appear superfluous since it has proba-
bility 1, but we include it in order to make precise our argument involving the

Ž . Ž . Ž .map H below. Note that 2 ] 4 imply that p 1 has no 0-point in thep
Ž Ž . Ž . xinterval T 1 , T 1 q 3 .p p

Ž . Ž . Ž .It may be seen that P A G gP A , where g s g a is given bya , b w a , b

2 dy1yk2ya y3 y3k a y3aw xg s 1 y e e min e e 3a .Ž . ½ 5
0FkF2 dy1

w Ž .The first factor comes from 1 , the second from the required absence
Ž Ž . Ž . x Ž .of 0-points in the interval T 1 , T 1 q 3 , and the third factor from 2p p

Ž . xand 3 .
Now, let H be the mapping which assigns to each v g A the elementw
Ž . Ž .H v obtained by shifting the first 0-point in p 1 distance 3 to the right.p

Ž .Using the note in the remark above, this map H: A ª H A is one]onew w
Ž Ž .. Ž .and measure-preserving, in the sense that P H A s P A . There-a , b w a , b w

fore, we have that

P H A s P A G gP A .Ž . Ž . Ž .Ž .a , b w a , b w a , b

Ž . Ž .Moreover, it may be checked that the properties 1 ] 4 of A guarantee thatw
Ž . Ž Ž .H A : A in particular, property 3 guarantees that, although the possiblew

goodness of p may be disturbed by the map, this has no serious conse-
. Ž .quences , and that H A : B. It follows thatw

P H AŽ .Ž .a , b w
< <P B A G P H A A s G g a ,Ž . Ž . Ž .Ž .a , b a , b w P AŽ .a , b

which completes the proof. I

8. Proof of Theorem 4.4. Throughout this section, we think of the
epidemic process as being generated by its graphical representation. That is
to say, we are given appropriate families of Poisson processes which may be
used to couple together the different epidemic processes corresponding to
different initial conditions. Such constructions are standard, and may be

Ž . Ž . Ž .found in Bezuidenhout and Grimmett 1990 , Griffeath 1979 , Harris 1978 ,
wŽ . xLiggett 1985 , Section III.6 and elsewhere. We shall continue to use the

notation P to denote the relevant probability measure; this notation is nota , b

Ž .entirely appropriate, since the initial configuration 3.1 is not germane to the
following discussion.



DEPENDENT RANDOM GRAPHS AND SPATIAL EPIDEMICS 333

Let A be a finite subset of Zd. We shall show that the following holds for
Ž .small positive b. There exists an a.s. finite random time T such that theA

w . Ž d w ..space]time region A = T , ` : Z = 0, ` contains no 2’s. This statementA
implies the clam of the theorem. We prove this under the assumption that
d s 2, in order to avoid more cumbersome notation; the case d s 1 is simpler,
and no essentially new difficulty emerges when d G 3.

We define two space]time regions:

2 2w x w x w x w xAA s y2 L, 2 L = 0, 2T , BB s yL, L = T , 2T ,

where L and T are integers to be chosen later. Define CC to be the part of the
‘‘boundary’’ of the box AA:

< < < <CC s m , n , t g AA: m s 2 L or n s 2 L or t s 0 .� 4Ž .

We will compare the process j to a certain dependent percolation process ont
2 � 4 Ž .the set LL s Z = Z , where Z s 0, 1, 2, . . . . We say that the site k, m, nq q

Ž .in LL is wet if there exist no 2’s in the box kL, mL, nT q BB regardless of the
Ž . �Ž .states of sites in the boundary kL, mL, nT q CC. Note that the event k, m, n

4 Ž .is wet depends only on the existence or not of paths of infection within AA.
We shall require this uniformity on the states of the boundary in order to
ensure that the percolation process in LL , although dependent, has an inter-
action with only finite range. Sites which are not wet are called dry.

Ž . Ž .Let a ` - a - a 0 , and « ) 0. We will now show that there exist L, Tc c
Ž .and b ) 0 depending on a , « such thatc

P k , m, n is dry F « if b - b .Ž .Ž .a , b c

We start by showing the above property when b s 0. Then, using a con-
tinuity argument, we shall deduce that the inequality remains true for
small positive b. By translation-invariance, it suffices to consider the site
Ž .0, 0, 0 g LL .

Ž . Ž .Suppose that x, y, t g BB is such that j x, y s 2. Then there must existt
Ž . Ž . Ž . Ž .some point x9, y9, t9 g CC such that a j x9, y9 s 2, and b there exists at 9

Ž . Ž .‘‘chain’’ of infection from x9, y9, t9 to x, y, t lying entirely within AA. Such
Ž . Ž .x9, y9, t9 must lie either on the ‘‘bottom’’ of CC i.e., have t9 s 0 or on one of

Ž .its ‘‘sides’’ i.e., have t9 / 0 . In the former case, the infection originating at
Ž .x9, y9, t9 must have survived at least time T before it reaches BB, while in
the latter case, it must have radius at least L. We propose to use Theorems
3.1 and 3.2 to control the probability of these possibilities. However, these
theorems were proved under the assumption that infection originated in a
single vertex having state 2, surrounded by an ocean of 1’s. The effect of
augmenting the original configuration by adding extra infected vertices is to
diminish the set of the points in space]time reached by the infection starting

Ž .at x9, y9, t9 ; this holds when b s 0 since any extra initial infections may
cause the subsequent removal of points which might otherwise have assisted

Ž .the spread of infection from x9, y9, t9 .
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We may therefore apply Theorems 3.1 and 3.2 to deduce that there exist g ,
l ) 0 such that

2yg L ylTP 0, 0, 0 is dry F 8T 4L q 1 e q 4L q 1 e .Ž . Ž . Ž .Ž .a , 0

We may take L s T sufficiently large such that

1P 0, 0, 0 is dry F « .Ž .Ž .a , 0 2

As observed above, the state of any site in LL depends only on the graphical
representation within the appropriate copy of AA. Since this region is bounded,
the density of wet sites is a continuous function of a and b. Therefore, there

Ž .exists b s b a , « ) 0 such thatc c

8.1 P 0, 0, 0 is dry F « if b - b .Ž . Ž .Ž .a , b c

Ž .We choose b accordingly, noting that we may take b a , « to be a strictlyc c
Ž Ž ..positive and continuous function of a on 0, a 0 .c

We now position oriented edges between sites in LL in order to obtain a
Ž . Ž .percolation model. Let AA k, m, n s kL, mL, nT q AA. For each pair

Ž . Ž . Ž .k, m, n g LL , we draw an oriented edge from k, m, n to x, y, z if and only
Ž . Ž .if n F z and AA k, m, n l AA x, y, z / B. The wet sites on the ensuing

Ž .directed graph constitute a dependent percolation model. There exists an
Žabsolute constant K, depending only on the numbr d of dimensions here,

.d s 2 , such that any set of sites of LL have independent states whenever the
Žgraph-theoretic distance between any pair of such sites exceeds K this

distance is to be measured on the undirected graph obtained from LL by
.removing the orientations . Furthermore, there exist positive finite constants

d , n such that the following two statements hold. First, the number of
self-avoiding oriented paths on LL , having length r and any given endpoint, is
no larger than d r. Second, any self-avoiding path of length r contains at least
n r sites, the distance between any pair of which exceeds K.

2 Ž .Let x g Z and let T be the supremum of all times t such that j x s 2.x t
We claim that T is a.s. finite if b is sufficiently small. The theorem willx

�follow from this statement, since the T given there satisfy T s max T :A A x
4x g A . It will suffice to prove that T is a.s. finite, since the argument is0

‘‘translation-invariant.’’
Ž .Suppose that T ) TM. Then there exists m G M y 1 with the property0

Ž .that 0, 0, m is the endpoint of an oriented dry path of LL whose other
Ž . 2endpoint has the form x, y, 0 for some x, y g Z . By the above remarks,

8.2 P T ) TM F d rhn r ,Ž . Ž . Ý Ýa , b 0
mGMy1 rGm

ŽŽ . . Ž . Ž .where h s P 0, 0, 0 is dry . By 8.1 , we may choose b s b a such thata , b c c
Ž .the right-hand side of 8.2 is finite whenever b - b and M G 2. When thisc

holds, the right-hand side approaches 0 as M ª `, implying that T is a.s.0
finite as required.
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Since the estimates presented above depend only on the graphical repre-
sentation, and not on the initial configuration, we may deduce also that
Ž .u a , b s 0 under the conditions of the theorem.

The above proof is related in part to Theorem 2 of Durrett and Schinazi
Ž .1993 . Using further arguments based on the shape theorem for oriented
percolation, one may obtain linearly growing estimates for cones in space]time
which are devoid of vertices having state 2. Similar arguments have been

Ž .used by Durrett 1992 in the context of the Greenberg]Hastings and cyclic
color models. I
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