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It is widely accepted that the Gaussian assumption is too restrictive
to model either financial or some important macroeconomic variables, be-
cause their distributions exhibit asymmetry and heavy tails. In this paper
we develop the asymptotic theory for econometric cointegration processes
under the assumption of infinite variance innovations with different distri-
butional tail behavior. We extend some of the results of Park and Phillips
which were derived under the assumption of finite variance errors.

1. Introduction and summary of results. Stable non-Gaussian mod-
els have attracted the attention of economists, econometricians, probabilists,
statisticians and time series analysts. The use of heavy-tailed distributions
and of stable non-Gaussian models in econometrics and financial mathemat-
ics can be traced to the early papers of Mandelbrot (1963a, b) and Fama (1965)
from the 1960’s to the more recent papers of Akgiray and Booth (1988), Akgi-
ray, Booth and Seifert (1988), Koedijk and Kool (1992), Rachev, Kim and Mitt-
nik (1996). An extensive list of references and a review of various econometric
and time series models under the heavy-tailed non-Gaussian hypothesis may
be found in several recent papers [see Mittnik and Rachev (1993), Rachev,
Kim and Mittnik (1996)].

The concept of cointegration was introduced in the seminal work of Granger
(1981) and further developed by Engle and Granger (1987), Engle and Yoo
(1987), Stock and Watson (1988) and Johansen (1988,1991). The classical
method of removing the stochastic trend in nonstationary econometric time
series is to use differencing procedures. However, it is now recognized that
many econometric variables are “cointegrated,” meaning that the linear com-
bination of the integrated variables is stationary. The basic idea of a cointe-
grated process is that each of the processes considered is stochastically trended
(i.e., nonstationary) but some linear combination of the processes reduces the
order of integratedness and produces a stationary error process. More pre-
cisely, if all components of a multivariate econometric time series have a unit
root, there may exist linear combinations of the components that are without a
unit root. Typically, these linear combinations of the components are viewed as
long-term relations between the underlying economic variables. An econom-
ical interpretation is that, even though most macroeconomic variables, like
GNP and money stock, are themselves trended, the difference between them
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is constant in the long run. We may regard these series as defining a long-run
equilibrium relationship, as the difference between them is stationary. More-
over, the representation theorem [see Engle and Granger (1987)] states that
if a set of variables are cointegrated, then there exists a valid error correction
representation of the data. Granger (1981) analyzed the integrated processes
of economic time series and Nelson and Plosser (1982) reported strong evi-
dence of nonstationarity in U.S. macroeconomic time series. Rachev, Kim and
Mittnik (1996) studied the stochastic trends in economic univariate series un-
der the Paretian assumption.

One of the convienent representations for a cointegrated process was intro-
duced by Park and Phillips (1988). Let

�1:1� Yk = AXk + uk; k = 1;2; : : : ; n;

where Yk is p-dimensional random vector, A = �aij� is p×q matrix of coeffi-
cients and the q-dimensional vectors Xk, k ≥ 0, are generated by a random-
walk process

�1:2� Xk =Xk−1 + vk:
We shall use the following notation for the coordinates of the introduced vec-
tors

Yk =
(
yk1; : : : ; ykp

)′
; Xk =

(
xk1; : : : ; xkq

)′
;

uk =
(
uk1; : : : ; ukp

)′
; vk =

(
vk1; : : : ; vkq

)′
:

All vectors are vector columns and the sign ′ stands for transposition. Since
the results that we are interested in do not depend on the initial value X0 of
the process (1.2), we may assume that X0 is an arbitrary random variable (or,
in particular, a constant).

Let r = p + q and wk = �wk1; : : : ;wkr�′, where wki = uki if i = 1; : : : ; p
and wk;p+j = vkj for j = 1; : : : ; q.

The assumptions on the innovation process wk, k ≥ 1 in Park and Phillips
(1988), roughly speaking, were the following [the exact formulation can be
found in Phillips and Durlauf (1986), Theorem 2.1]. Vectors wk were allowed
to be weakly dependent, satisfying some mixing conditions such that the mul-
tivariate invariance principle for appropriately normed sums

∑�nt�
k wk holds

with multivariate Wiener process as a limit. This means that all coordinates
ofwt has finite variances (and sometimes existence of moments of higher order
is assumed, which is rather usual, considering weakly dependent summands).
In our paper we relax this condition and consider the so-called case of “heavy-
tailed” innovations. Although we assume a rather restrictive condition thatwk,
k = 1;2; : : : are i.i.d. random vectors, we do not assume independence of coor-
dinates of the innovation vector and allow different tail behavior for different
coordinates. Thus we are dealing with a limit theorem with an operator-stable
law as a limit and allow diagonal matrix normalization. The last step toward
generality in this direction would be to consider innovations wk in the do-
main of attraction of a general operator-stable distribution. Precisely stated,
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our assumptions on the sequence �wk; k ≥ 1� generating the cointegrated
model are as follows. Let α = �α1; α2; : : : ; αr� be an multiindex, satisfying
1 < αi ≤ 2, i = 1; : : : ; r, Sn = Dn

∑n
i=1wi, where Dn = diag�n−1/α1; : : : ; n−1/αr�

and diag�d1; : : : ; dk� stands for a diagonal k × k matrix with entries di in
the diagonal. Since we assume that all αi > 1, then without loss of general-
ity we may assume that Ewk = 0, k ≥ 1. Here it is worth mentioning that
this assumption is made only because in practice it is difficult to interpret
innovations having infinite mean values.

Assumption A. Here wk, k ≥ 1 is a sequence of i.i.d. random vectors be-
longing to the domain of normal attraction (DNA) of an α-stable r-dimensional
vector ξ�1�; that is,

�1:3� Sn ⇒ ξ�1� in Rr;

where ⇒ stands for the weak convergence of distributions (or random ele-
ments).

Let Dr ≡ D��0;1�;Rr� be the space of Rr-valued cadlag functions defined
on �0;1� and equipped with the Skorokhod topology. Let

Zn�t� = S�nt�; 0 ≤ t ≤ 1

and let ξ�t�, 0 ≤ t ≤ 1, be an r-dimensional Lévy stable process, determined by
the α-stable random vector ξ�1�, appearing in Assumption A. In the Appendix
it is shown that (1.3) is equivalent to the following relation:

�1:4� Zn ⇒ ξ in Dr:

In Assumption A, instead of DNA we can use the domain of attraction (DA);
only the cumbersome calculations arising when dealing with slowly varying
functions have forced us to state our results in the framework of DNA.

More information about relations (1.3) and (1.4), some facts about Lévy
stable processes, and relations between spaces Dr and �D1�r will be given
in the Appendix [see, also, Samorodnitsky and Taqqu (1993), Gikhman and
Skorokhod (1969), Jacod and Shiryaev (1987)]. Here we only mention that we
do not exclude the case where some exponents, αj with j = im, 1 ≤ i1 < · · · <
ik ≤ r are equal to 2. Then the vector

(
ξi1�t�; : : : ; ξik�t�

)

will be the k-dimensional Brownian motion and will be independent of the
vector of the remaining coordinates �ξi�t�; i 6= ij; j = 1; : : : ; k�.

Since the vector wk consists of two parts of lengths p and q, then when
dealing with r × r matrices (r = p + q) it will be convenient to denote corre-
sponding blocks of the matrix in the following way: if B = �bij�i; j=1;:::;r then

B =
[
�B�11 �B�12

�B�21 �B�22

]
;

for example, �B�11 = �bij�i; j=1;:::;p, �B�21 = �bij�j=1;:::;p
i=p+1;:::;r.
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We consider the ordinary least-squares (OLS) regression estimator of the
matrixA, which will be denoted by Ân. Where it will not cause misunderstand-
ing, we suppress the subscript n and will simply write Â; the same remark
will apply to other variables as well. Denote

X′ = X′n = �X1;X2; : : : ;Xn�;
Y′ = Y′n = �Y1;Y2; : : : ;Yn�;
U′ = U′n = �u1; u2; : : : ; un�;
V′ = V′n = �v1; v2; : : : ; vn�:

Here X′ and V′ are q×n matrices and Y′ and U′ are p×n matrices. Then [see,
e.g., Park and Phillips (1988) or Phillips and Durlauf (1986)],

�1:5� Â = Y′X
(
X′X

)−1

and

�1:6� Â−A = U′X
(
X′X

)−1
:

In the case where the innovations uk and vk have finite variances (all αi = 2)
the normalization of the quantity (1.6) is simple �n�Ân−A��; in contrast, here
for each entry of the matrix Ân −A a different normalization is needed. To
this end, we introduce the diagonal matrices

�1:7�
T1 = T1; n = diag

(
n−1/α1; : : : ; n−1/αp

)
;

T2 = T2; n = diag
(
n−1/αp+1; : : : ; n−1/αp+q

)
:

It is not difficult to see that the proper normalizations for U′X and X′X are
T1U′XT2 and n−1�T2X′XT2�, respectively. Therefore the proper normalization
for the quantity (1.6) is

�1:8� n
(
T1�Â−A�T−1

2

)
:

It remains to introduce some notation describing the limit distribution of (1.8).
We recall that ξ�·� is a limiting process in (1.4), ξi�·�, i = 1;2; : : : ; r being its
coordinates. The notation

∫ t
0
ξ−i �s�dξj�s�

will stand for the Itô stochastic integral. Here x−�s� denotes the left limit
of the function x ∈ D�0;1� at point 0 < s ≤ 1. For simplicity of writing, we
shall suppress this superscript and write

∫ t
0 ξi�s�dξj�s� or simply

∫ t
0 ξi dξj

when there is no ambiguity in such notation. Then
∫ t

0 ξ�s�d�ξ�s��′, or simply,∫ t
0 ξ dξ

′ stands for the matrix with elements
∫ t

0 ξi dξj, i; j = 1; : : : ; r. Next we
denote

[
ξi; ξj

]
t
= ξi�t�ξj�t� −

∫ t
0
ξj dξi −

∫ t
0
ξi dξj;

[
ξ; ξ

]
t
=
{[
ξi; ξj

]
t

}
i; j=1;:::;r:
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Several monographs and textbooks are devoted to the theory of stochastic
integration, for example, Protter (1990), Elliott (1982) and Kopp (1984).

Our main result follows.

Theorem. Suppose that in the cointegrated processes model (1.1) and (1.2),
the sequence of innovations �wk; k ≥ 1� satisfies Assumption A, and therefore
the invariance principle (1.4) holds. Then for the estimated matrix Ân; given
by (1.5), the following limit relation �weak convergence in Rp×q� holds:

�1:9�
n
(
T1�Ân −A�T−1

2

)

⇒
[
ξ�1��ξ�1��′ −

∫ 1

0
ξ�s�d�ξ�s��′

]

12

{[∫ 1

0
ξ�s��ξ�s��′ ds

]

22

}−1

;

as n→∞; where the diagonal matrices Ti; i = 1;2 are defined in (1.7).

Remark 1. It is easy to see that the limit distribution in (1.9) can be writ-
ten in a different, but equivalent form, namely as

[(∫ 1

0
ξ�s�d�ξ�s��′

)′
+ �ξ; ξ�1

]

12

{[∫ 1

0
ξ�s��ξ�s��′ ds

]

22

}−1

:

Remark 2. The univariate model (1.1) with Yk−1 instead of Xk and with
p = 1 and A = 1 was considered earlier by Chan and Tran (1989) [see also
Phillips (1990)]. Caner (1995) studied the model (1.1) with A = I, Xk =
Yk−1, p ≥ 1, assuming a more complicated structure of the innovations ut.
One of the goals of the paper is to provide a mathematically rigorous proof
of the main asymptotic result in cointegration theory when the innovations
are i.i.d. and are in the domain of attraction of �α1; : : : ; αr�-stable law. The
novelty of our approach is the use of general results for the convergence of
stochastic integrals for semimartingales, proved by Jakubowski, Memin and
Pages (1989) and Kurtz and Protter (1991a,b), (1996a,b). This approach is new
even in the Gaussian case, and it promises to weaken the i.i.d. assumption and
allow the investigation of weakly dependent and nonidentically distributed
innovations. We believe that limit theorems based on verification of the UT
condition (using results from the above-cited papers and references therein)
may lead to simpler proofs of some existing limiting results in econometrics
as well as provide approaches to new results, such as asymptotic analysis of
Johansen’s cointegration model with stable innovations [see Johansen (1991)].

Remark 3. As was pointed out by an Associate Editor, there is another
possible approach to our limiting problem; namely, instead of using limit the-
orems for partial sums, one can apply convergence results for point processes
generated by the innovations. Although the functionals arrising in this ap-
proach are also discontinuous, there are various ways to deal with these types
of obstacles; see Davis and Resnick (1985) and Resnick (1987).
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2. Proofs. We can write

n
(
T1�Â−A�T−1

2

)
= �T1U′XT2�

(
n−1�T2X′XT2�

)−1y
therefore it is clear that the main step in the proof of the theorem is the
following lemma.

Lemma 1. Under Assumption A, we have as n→∞,

�2:1�

(
T1U′XT2; n

−1�T2X′XT2�
)

⇒
[
ξ�1��ξ�1��′ −

∫ 1

0
ξ�s�d�ξ�s��′

]

12
;

{[ ∫ 1

0
ξ�s��ξ�s��′ ds

]

22

}−1

;

in Rqr.

By the continuous mapping theorem and (2.1), taking into account that

P

{
det

[∫ 1

0
ξ�s��ξ�s��′ ds

]

22
= 0

}
= 0;

we obtain (1.9). Before proving (2.1) we make the following comments. Without
mentioning it, we shall use repeatedly the following well-known result [see,
for example, Billingsley (1968), Theorem 4.4]: if Xn ⇒ X0, Yn →p a, then
�Xn;Yn� ⇒ �X0; a� and, in particular, if addition is defined and is a contin-
uous operation, then Xn +Yn ⇒ X0 + a. Here random elements Xn and Yn

are with values in a separable metric space, and we shall use this result in
the case of multidimensional spaces and a = 0.

The next comment concerns the idea of the proof of (2.1). This relation is of
the form

Wn ⇒W0;

where Wn and W0 are qr-dimensional random vectors. Since Wn is some func-
tion of the process Zn and we have (1.4), one may get the impression that the
continuous mapping theorem gives us (2.1) without difficulties. Unfortunately,
this is not the case, for the following reason. The part of coordinates of the
right-hand side vector in (2.1) are in the form of stochastic integrals

∫ 1

0
ξi�t�dξj�t�

and generally we cannot prove the limit relation using the continuous mapping
theorem, unless the integrals under consideration can be understood as path-
by-path Stieltjes integrals. In order for the last situation to hold, at least one
of the processes ξi or ξj must be of finite variation with probability 1. It is
known (unfortunately, we did not find a relevant reference for this fact; on the
other hand it is not difficult to prove it) that Lévy stable processes with index
α > 1 are of unbounded variation on every bounded interval a.s., therefore the
limit relation (2.1) cannot be obtained using the continuous mapping theorem
only. There were earlier papers dealing with such a problem [see, e.g., Chan
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and Wei (1988), Jeganathan (1991)]. Here we propose the following approach
to overcome the above dificulty, and we explain the idea (which is a simple one
and sends a message: use the powerful results from stochastic analysis) in a
simple two-dimensional situation. Suppose that we have a sequence �Xn;Yn�
of two-dimensional processes and �Xn;Yn� ⇒ �X0;Y0� in D2. Let fx D2 →
R2, f = �f1; f2�, Zn = f�Xn;Yn�, Z0 = f�X0;Y0�. We want to prove that
Zn ⇒ Z0, but we know that the relation

f1�Xn;Yn� ⇒ f1�X0;Y0�

cannot be obtained by the continuous mapping theorem [one reason for this
can be that f1 is not continuous on the support of �X0;Y0�]. Let us denote
Un = f1�Xn;Yn�, U0 = f1�X0;Y0�. Suppose that we can prove the relation

�2:2� �Xn;Yn;Un� ⇒ �X0;Y0;U0� in D2 ×R:

When the functional f1 is a stochastic Itô integral (and this case is of interest
to us) there is a vast literature devoted to limit theorems of such a type [see, for
example, Kurtz and Protter (1991a), (1996a,b), Stricker (1985), Jakubowski,
Memin and Pages (1989)]. Now we take

�2:3� gx D2 ×R→ R2; g�x;y;u� = �u;f2�x;y��; �x;y� ∈ D2; u ∈ R:

If f2 is a continuous functional on D2, then g is the continuous mapping on
D2 ×R. Now (2.2), (2.3) and the continuous mapping theorem give us

g�Xn;Yn;Un� ⇒ g�X0;Y0;U0�

and since g�Xn;Yn;Un� = Zn and g�X0;Y0;U0� = Z0 we have the wanted
relation.

Now we can start with a proof of (2.1).

Proof of Lemma 1. First we consider separately the matrices on the left-
hand side of (2.1). If A = �aij� then �A�ij will stand for aij. We have, for
i = 1; : : : ; p, j = 1; : : : ; q,

�T1U′XT2�ij = n−�1/αi+1/αp+j�
n∑
k=1

ukixkj

= n−�1/αi+1/αp+j�
n∑
k=1

uki

(
x0j +

k∑
m=1

vmj

)

=
(
n−1/αi

n∑
k=1

uki

)(
n−1/αp+j

n∑
k=1

vkj

)

−
n∑
k=1

n−1/αp+jvkj

(
n−1/αi

k−1∑
m=1

umi

)
+ n−1/αp+jx0jn

−1/αi
n∑
k=1

uki;
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where
∑0
i=1 ai = 0. Since

n−1/αi
t∑

k=1

uki = Zni

(
t

n

)
; n−1/αp+j

t∑
k=1

vkj = Zn;p+j

(
t

n

)
;

then we can write

�2:4� �T1U′XT2�ij = Zni�1�Zn;p+j�1� −
∫ 1

0
Zni�t�dZn;p+j�t� + op�1�:

Now, for i; j = 1; : : : ; q,

n−1�T2X′XT2�ij = n−�1+1/αp+i+1/αp+j�
n∑
k=1

xkixkj:

Since xki = x0i +
∑k
j=1 vji, we obtain, after simple calculations,

�2:5� n−1�T2X′XT2�ij =
∫ 1

0
Zn;p+i�s�Zn;p+j�s�ds+ op�1�:

From (2.4) and (2.5) we see that the only terms for which we cannot apply the
continuous mapping theorem are the stochastic integrals

∫ 1

0
Zn; i�s�dZn;p+j�s�; i = 1; : : : ; p; j = 1; : : : ; q:

Therefore, according to our plan [see (2.2)], we need the following result.

Proposition 2. Under Assumption A we have the relation

�2:6�

(
Zn;

∫ t
0
Zni�u�dZn;p+j�u�; i = 1; : : : ; p; j = 1; : : : ; q

)

⇒
(
ξ;
∫ t

0
ξi�u�dξp+j�u�; i = 1; : : : ; p; j = 1; : : : ; q

)
in Ds;

as n→∞, where s = p+ q+ pq.

Proof. There are a large number of papers devoted to convergence of
stochastic integrals, only a small part of which were mentioned above. The
problem can be formulated as follows. We have two sequences of (real or
vector-valued) stochastic processes Xn and Yn and we know that �Xn;Yn� ⇒
�X0;Y0� in an appropriate space. Then we look at what conditions ensure
that

(
Xn;Yn;

∫
Xn dYn

)
⇒
(
X0;Y0;

∫
X0 dY0

)
:

It turns out that in a very general situation, when processes Xn and Yn are
semimartingales, the last relation holds if the so-called UT (uniform tightness)
condition for the sequence Yn is satisfied. This condition was introduced in
Stricker (1985), and a general result was proved in Jakubowski, Memin and
Pages (1989). In Kurtz and Protter (1991a) another condition was given and
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it was proved [see Kurtz and Protter (1991a, b), Memin and Slominski (1991)]
that both conditions are equivalent and, furthermore, they are necessary in
some sense.

We shall formulate the general result from Kurtz and Protter (1991a), which
we shall use in our setting, although we do not define all concepts (such as
adapted processes, local martingales, stopping times) which appear in the for-
mulation. At the final stage of preparation of this paper, J. Memin sent us a
letter with a sketch of the verification of the UT condition in a one-dimensional
case using the form of the condition given in Jakubowski, Memin and Pages
(1989).

Let Xn be a sequence of random processes with sample paths in D��0;∞�;
Mk;m�, where Mk;m stands for real-valued k × m matrices, and let Yn be
another sequence of random processes from D��0;∞�;Rm�. For a process A�t�
with sample paths of finite variation on bounded time intervals, denote

Vart�A� = sup
∑
i

�A�ti+1� −A�ti��;

where the supremum is taken over finite partitions of �0; t�. Here and in what
follows we use the following notation for the norms in Rmx �x� = �∑n

i=1 x
2
i �1/2,

�x�∞ = max1≤i≤m �xi�. Without explicitly mentioning it, we shall use the fact
that all norms on a finite-dimensional space are equivalent.

Theorem A [Kurtz and Protter (1991a), Theorem 2.7]. For each n; let
�Xn;Yn� be an F n

t -adapted process with sample paths in D��0;∞�;Mk;m ×
Rm� and let Yn be an F n

t -semimartingale. Suppose that Yn =Mn +An + Ỹn

where Mn is a local F n
t -martingale, An is an F n

t -adapted, finite variation
process and Ỹn is constant except for finitely many discontinuities in any fi-
nite time interval. Let Nn�t� denote the number of discontinuities of Ỹn in the
interval �0; t�. Suppose �Nn�t�� is stochastically bounded for each t > 0 and
(UT) for each r > 0; there exist stopping times τrn such that P�τrn ≤ r� ≤ 1/r
and

�2:7� sup
n
E
{
�Mn�t∧τrn + Vart∧τrn�An�

}
<∞:

If �Xn;Yn; Ỹn�⇒�X0;Y0; Ỹ0� in the Skorokhod topology onD��0;∞�;Mk;m×
Rm ×Rm�; then Y0 is a semimartingale with respect to a filtration to which
X0 and Y0 are adapted and

(
Xn;Yn;

∫ t
0
Xn dYn

)
⇒
(
X0;Y0;

∫ t
0
X0 dY0

)

in the Skorokhod topology on D��0;∞�;Mk;m ×Rm ×Rk�. If �Xn;Yn; Ỹn� →
�X0;Y0; Ỹ0� in probability, then the triple converges in probability.

The setting which we are interested in is a little bit different from the result
formulated above; in our case Xn will be not a matrix-valued but rather a
vector-valued random process and we deal with the interval �0;1� instead of
�0;∞�. But it is not difficult to see that minor changes allow us to consider
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our setting and essentially the only thing we need to do is to verify a UT-type
condition for the sequence of processes �Zn;p+j; j = 1; : : : ; q� (�Zn; i; i =
1; : : : ; p� in our case will be as �Xn�). In order not to write p+ j every time,
we “rename” the second part of Sn, Zn and ξ in the following way:

Zn = �Zn1; : : : ;Znq�; Sn = �Sn1; : : : ; Snq�; ξ = �ξ1; : : : ; ξq�;

where Znj = Zn;p+j, Snj = Sn;p+j, ξj = ξp+j. If anj = n1/αp+j , j = 1; : : : ; q,
then

Snj = a−1
nj

n∑
k=1

vkj;

Znj�t� = S�nt�; j; 0 ≤ t ≤ 1;

and, under Assumption A,

Zn ⇒ ξ in Dq:

We recall that we have assumed Ev1j = 0 and that Assumption A implies

3k = sup
t>0

tαp+kP
{
�v1k� > t

}
<∞; k = 1; : : : ; q:

As a first step in proving the UT condition, we separate large jumps of the
process Zn from small ones. Let b > 0 be some fixed number and

v
�n�
i =

(
v
�n�
i;1; : : : ; v

�n�
i; q

)
; v

�n�
i; j = a−1

nj vi; j;

B�b� =
{
x ∈ Rqx �x�∞ ≤ b

}
;

an�b� = Ev
�n�
1 |

{
v
�n�
1 ∈ B�b�

}
;

ṽ
�n�
i �b� = v

�n�
i |

{
v
�n�
i ∈ B�b�

}
− an�b�;

˜̃v�n�i �b� = v
�n�
i |

{
v
�n�
i ∈ �B�b��c

}
:

Now we can write

Zn�t� = Y
�1�
n �t� +An�t� +Y

�2�
n �t�;

where

Y
�1�
n �t� =

�nt�∑
i=1

ṽ
�n�
i �b�; Y

�2�
n �t� =

�nt�∑
i=1

˜̃v�n�i �b�; An�t� = �nt�an�b�:

Proposition 3. For any fixed 0 < b < ∞, the function An�t� is of finite
variation, the process Y

�2�
n is of finite variation a.s. and there exists a constant

C, depending on b and on parameters of distribution of v1 such that

sup
n

Var1�An� ≤ sup
n
EVar1�Y

�2�
n � ≤ C:

If Nn�t� denotes the number of discontinuities of Y
�2�
n in the interval �0; t�, then

�Nn�t�; n ≥ 1� is stochastically bounded for each t.
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Proof. From the definition of variation it is easy to see that, due to the

relation an�b� = −E ˜̃v
�n�
1 �b�, we have to prove that

�2:8� sup
n
nE

∥∥ ˜̃v�n�1 �b�
∥∥ ≤ C:

Let Fn stand for the distribution of �v�n�1 �∞. Then

E
∥∥ ˜̃v�n�1 �b�

∥∥ ≤ CE
∥∥ ˜̃v�n�1 �b�

∥∥
∞ ≤ C

∫ ∞
b
xdFn�x�:

However,

bP
{
�v�n�1 �∞ > b

}
≤

q∑
i=1

bP
{
�v1i� > bani

}
≤ 1
n

q∑
i=1

3i:

In a similar way we can estimate the term

∫ ∞
b
P
{
�v�n�1 �∞ > x

}
dx ≤

q∑
i=1

∫ ∞
b
P
{
�v1i� > xani

}
dx ≤ 1

n

q∑
i=1

Ci3i;

where Ci =
∫∞
b x−αp+i dx. From these estimates (2.8) follows. Now since

Nn�t� =
∑�nt�
i=1 |

{
v
�n�
i ∈ �B�b��c

}
and

P
{
Nn�t� > c

}
≤ c−1ENn�t� = c−1�nt�P

{
v
�n�
1 ∈

(
B�b�

)c}
;

the same inequalities prove the stochastic boundedness of �Nn�t�� for all t
and the proposition is proved.

Since Proposition 3 shows that the part of our process Zn which is of finite
variation can be controlled uniformly with respect to n without using stopping
times, we construct stopping times based on Y�1�n only. Noting that the process
Y
�1�
n is a martingale with respect to the natural filtration,

F n
t = σ

(
v1; : : : ; v�nt�

)
; 0 ≤ t ≤ 1

and that it is a jump process with jumps at the points t = k/n, k = 1; : : : ; n,
we need to consider the triangular array

{
S̃kn =

k∑
i=1

ṽ
�n�
i �b�; k = 0;1; : : : ; n

}
; n ≥ 1;

with its natural filtration F n
k = σ�v1; : : : ; vk�.We also need to construct stop-

ping times τdn such that for each d,

�2:9� sup
n
E
∥∥S̃k∧τ

d
n

n

∥∥2 ≤ C;

and for each k there exists d = d�k� such that

�2:10� P�τdn > k� ≥ 1− 1
k
:
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For any d > 0 let us define

τdn = min
{
kx �Sjn� ≤ d; j = 1; : : : ; k− 1; �S̃kn� > d

}

with the agreement that min�empty set� = +∞. It is a stopping time, since
it is the hitting time of an open set

{
x ∈ Rqx �x� > d

}
for the random process

Y
�1�
n ; see Protter (1990). Now, if τdn > k, then �S̃kn� ≤ d and if τdn ≤ k, then

�S̃τ
d
n
n � = �S̃τ

d
n−1
n + ṽτdn �b�� ≤ d+ �ṽτdn �b�� ≤ d+ c�ṽτdn �b��∞ ≤ d+ c · b:

Therefore

E
∥∥S̃k∧τ

d
n

n

∥∥2 ≤ �d+ cb�2

and we have (2.9). It is interesting to note that if we were able somehow
to control the “size” of the jumps at a time of hitting the set �xx �x� > d�,
there would be no need to separate large jumps. However, if we multiply τ̃dn
(constructed in the same way, only with Sn instead of S̃n) by the indicator
function of the event ��v�n�

τ̃dn
� ≤ b�, the multiplied random variable is no longer

a stopping time. In order to get (2.10) we note that, for 0 < α ≤ 1,

P
{
τdn > nα

}
= P

{
max
j≤nα
�S̃jn� ≤ d

}
:

As n→∞, this probability approaches the probability

P
{

sup
0≤t≤α

�ξ�1��t�� ≤ d
}
;

and this probability can be made arbitrarily close to 1 by taking sufficiently
large d. Here ξ�1� is a stable Lévy process obtained as a limit for the se-
quence Y�1�n . That the latter sequence is convergent, as well as the conver-
gence �Zn;Y

�2�
n � ⇒ �ξ; ξ�2��, which is required in Theorem A (we recall that

here Zn stands for both Xn and Yn, Zn playing the role of Yn), can be proved
in a way similar to Gikhman and Skorokhod (1969), Theorems 9.6.1 and 9.6.2,
where truncation of summands in a triangular array is used, or by the point
processes technique, as in Davis and Resnick (1985). Proposition 2 is proved.

Having (2.6) and taking the appropriate mapping hxDs→ Rqr, we get (2.1).
Therefore, Lemma 1, as well as the theorem is proved.

APPENDIX

We collect here some (known) facts about relations (1.3) and (1.4), Lévy
processes and Skorokhod spaces.

Although we shall deal with relations (1.3) and (1.4), we introduce new
notation, independent of the notations of the previous section. Thus let Xi =
�Xi1; : : : ;Xid�, i ≥ 1 be i.i.d. random vectors in Rd. In order not to deal with
centering, we assume that EX1j = 0 for those j for which the expectations
exist.
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Denote

�A:1�
Sn = �Sn1; : : : ; Snd�; Snj = a−1

nj

n∑
i=1

Xij;

Zn�t� =
(
Zn1�t�; : : : ;Znd�t�

)
; Znj = S�nt�; j; 0 ≤ t ≤ 1:

Although it is possible to state results with general norming vectors an =
�an1; : : : ; and�, for simplicity of writing and clarity of understanding we take
the special case where

�A:2� anj = n1/αj; 1 ≤ j ≤ d;
and α = �α1; α2; : : : ; αd� is a multiindex with 0 < αi ≤ 2, i = 1;2; : : : ; d. This
setting can be reformulated as follows: we consider sums of i.i.d. d-dimensional
vectors in the DNA of operator-stable random vectors, restricting normaliza-
tion only to diagonal matrices and thus we assume that marginal distributions
of summands belong to the DNA of some stable univariate law, including the
Gaussian one.

When dealing with stochastic processZn, two spaces are appropriate. One is
D��0;1�;Rd�, which has already been introduced. Another one is �D�0;1��d =
D�0;1� × · · · × D�0;1�—the usual product of Skorokhod spaces D�0;1� with
product topology. For the first one we shall use the introduced notation Dd and
for the second one we use the notation Dd. The relations between these spaces
are as follows [see, e.g., Jacod and Shiryaev (1987)]. As “abstract” sets, they
coincide; σ-fields of Borel sets on both spaces coincide, too, but as topological
spaces they are different—the topology of Dd is strictly finer than product
topology on Dd. Therefore, from the weak convergence of measures in space
Dd there follows the weak convergence of these measures in Dd, but it is
possible to give examples, showing that the converse statement is not true.

Let �Y�t�; t ≥ 0� be the Lévy process with values inRd, that is, a stochasti-
cally continuous process with independent and strictly stationary increments.
Then it is well known [see, e.g., Protter (1990) or Gikhman and Skorokhod
(1969)] that there exist a vector a ∈ Rd, a symmetric nonnegative defined
matrix 0 and a measure ν on Rd satisfying

ν�0� = 0;
∫
Rd
�x�2

(
1+ �x�2

)−1
ν�dx� <∞;

such that for any z ∈ Rd,

E exp
{
i�z;Y�t��

}
= exp

{
t

[
i�z; a� − 1

2�0z; z�

+
∫
�x�≤1

(
exp�i�x; z�� − 1− �z; x�

)
ν�dx�

+
∫
�x�>1

(
exp�i�x; z�� − 1

)
ν�dx�

]}
:

(A.3)

The measure ν is called the Lévy measure for the process Y. Matrix 0 corre-
sponds to the Gaussian part of the Lévy process Y.
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Lévy processes have cadlag sample paths, all are semimartingales, and they
have good integrability properties. For example, we use in the main text the
fact that one-dimensional α-stable Lévy processes on a finite interval are in
Lp for any p > 0 [see Samorodnitsky and Taqqu (1993), page 510, for this
fact].

We are interested in the following statements

�A:4� Sn ⇒ Y�1� in Rd;

�A:5� Zn�·� ⇒ Y�·� in Dd;

�A:6� Zn�·� ⇒ Y�·� in Dd:

Here for the multiindex α we shall assume that 0 < αi ≤ αi+1 ≤ 2 for all i
(although in the main text such an assumption generally is not acceptable,
since we cannot rearrange the coordinates of innovation vectors).

Let us consider two cases. First:

�a� 0 < α1 ≤ α2 ≤ · · · ≤ αd < 2:

Proposition 4. Let Sn, Zn be defined by (A.1) and (A.2) and let Y be a
Lévy process with Lévy spectral measure ν and 0 ≡ 0 in (A.3). Then all state-
ments (A.4)–(A.6) are equivalent and each of them is equivalent to the following
statement:

�A:7� limnP�X�n�1 ∈ A� = ν�A�
for all A ∈ B�Rd \ �0�� such that ν�∂A� = 0, ν�A� < ∞, here ∂A denotes the
boundary of a set A and

�A:8� X
�n�
1 =

(
n−1/α1X11; : : : ; n

−1/αdX1d
)
:

Remark 1. The Lévy measure ν of the process Y can be described as fol-
lows. Let τ: Rd → Rd, τ�x� = �sgnx1�x1�1/α1; : : : ; sgnxd�x�1/αd� and ν̃ = ν ◦ τ.
Then

�A:9� ν̃

{
xx �x� ≥ r; x

�x� ∈ B
}
= r−1H�B�;

where H is some finite measure on the unit sphere of Rd, Sd = �xx �x� = 1�
and B ∈ B�Sd�. It is easy to see that in the case α1 = α2 = · · · = αd = α we
get the usual result about the DNA and in this case

ν

{
xx �x� > r; x

�x� ∈ B
}
= r−αH�B�:

Remark 2. Components of the limiting process Y [and of Y�1�, in particu-
lar] will be independent if the measure H in (A.9) is discrete and concentrated
at points ±ek, k = 1;2; : : : ; d, where ek is the kth element of the standard or-
thonormal basis in Rd. This happens if the coordinates of X1 are independent,
but this is not a necessary condition for independence of the coordinates of Y.
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Now let us consider the second case:

�b� 0 < α1 ≤ · · · ≤ αk < αk+1 = · · · = αd = 2; 1 ≤ k < d:

In this case it is convienent to divide all vectors under consideration into two
parts; therefore we shall write

Sn = �S
�1�
n ; S

�2�
n �; Zn = �Z

�1�
n ;Z

�2�
n �;

Yn = �Y�1�;Y�2��; Y�1� =
(
Y�1��1�;Y�2��1�

)
;

X
�n�
1 =

(
X
�n;1�
1 ;X

�n;2�
1

)
;

where, for example,

Y�1��t� =
(
Y1�t�; : : : ;Yk�t�

)
;

Y�2��t� =
(
Yk+1�t�; : : : ;Yd�t�

)
;

X
�n;1�
1 =

(
n−1/α1X11; : : : ; n

−1/αkX1k
)
:

HereY�1� is a Lévy process inRk andY�2� is Brownian motion inRd−k; namely,
for z ∈ Rd−k,

E exp�i�z;Y�2��t��� = exp
{
− 1

2t�0z; z�
}
;

where 0 is a symmetric nonnegative definite �d − k� × �d − k� matrix. The
processes Y�1� and Y�2� are independent; see Sharpe (1969). Let us consider
one more relation:

�A:10� S
�1�
n ⇒ Y�1��1� in Rk; S

�2�
n ⇒N�0; 0� in Rd−k;

where as usual N�0; 0� stands for normal distribution with mean zero and
covariance matrix 0.

Proposition 5. Let 0 be some symmetric nonnegative definite �d − k� ×
�d − k� matrix and let ν be a Lévy measure on Rk, defined in the same way
as in Proposition 1 �ν ◦ τ = ν̃; ν̃�x ∈ Rkx �x� > r; x/�x� ∈ B� = r−1H�B�,
B ∈ B�Sk��. Then the statements (A.4)–(A.6) and (A.10) are equivalent and
each of them is equivalent to the following condition: for every A ∈ B�Rk \�0��
such that ν�∂A� = 0, ν�A� <∞, we have

limnP
{
X
n;1
1 ∈ A

}
= ν�A�

and for ∀ z ∈ Rd−k and for ∀ ε > 0,

limn
{
E
∣∣(z;X�n;2�1

)∣∣2|
{∥∥X�n;2�1

∥∥ ≤ ε
}

−
(
E
(
z;X

�n;2�
1

)
|
{∥∥X�n;2�1

∥∥ ≤ ε
})2} = �0z; z�:
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Proof of Propositions 4 and 5. The case d = 2 [but without the state-
ment (A.6)] was considered in Resnick and Greenwood (1979). [Here it is nec-
essary to mention that in order to apply the UT condition (see Theorem A in
Section 2) (A.5) is not sufficient and we need (A.6).] Certainly, Propositions 4
and 5 should be credited to Skorokhod (1957); in fact, in Skorokhod (1957),
where an essentially one-dimensional case was considered, it is written: “: : :we
wish to point out that all results of Sections 1–3 can be carried over to the
case of a finite-dimensional Banach space.” Thus the following several lines
can be considered as the explanation of how this can be done.

Since the proof of equivalency of all statements except (A.6) in the general
case d > 2 causes only notational difficulties, we need only to show that one of
the statements, say (A.4), implies (A.6). Convergence of finite-dimensional dis-
tributions of Zn to the corresponding finite-dimensional distributions of Y fol-
lows in a standard way; thus it remains to prove the tightness of the sequence
of distributions of Zn. In contrast to the proof of implication (A.4)→(A.5),
when tightness of �Zn; n ≥ 1� in Dd is simply implied by the tightness of
coordinates �Zni; n ≥ 1� i = 1; : : : ; d, generally the tightness of coordinates
does not imply the tightness in Dd. The straightforward approach in proving
the tightness of Zn in Dd would be as follows. Since the modulus of continuity
in the space Dd is defined in the same way as in D except that the absolute
value sign is changed by the norm, one can repeat all steps (with necessary
changes) in obtaining the bound for this modulus of continuity for Zn. We can
propose the following approach, which seems to be a little bit simpler (at least,
notationally). We can use the following fact [see Problem 22 on page 153 of
Ethier and Kurtz (1986)]: ��X1

n;X
2
n; : : : ;X

d
n�; n ≥ 1� is relatively compact in

D��0;∞�;Rd� if and only if �Xk
n; n ≥ 1� and �Xk

n+Xl
n; n ≥ 1� are relatively

compact in D�0;∞� for all k; l = 1; : : : ; d. Since we have the tightness of co-
ordinates of the process Zn, we need to establish the tightness of processes
�Znk +Znl; n ≥ 1� for all possible combinations of k; l = 1; : : : ; d. (Here it is
appropriate to note that addition is not a continuous operation in D spaces;
therefore we cannot apply the continuous mapping theorem.) Let us fix k and
l, 1 ≤ k 6= l ≤ d, and let us denote

ζni = a−1
nkXik + a−1

nlXil; Vn =
n∑
i=1

ζni;

Un�t� = V�nt�; 0 ≤ t ≤ 1:

Thus we have a triangular array �ζni; i = 1; : : : ; n�, n ≥ 1, and for each n,
random variables ζni, i = 1; : : : ; n are independent and identically distributed.
From (A.7), taking a special set Ax = �z ∈ Rdx �zk+zl� > x� we get a measure
νkl on line, defined by the relation

νkl�yx �y� > x� =
∫
Ax

ν�dz�:

For this measure we have

�A:11� limnP
{
�ζn1� > x

}
= νkl

{
y: �y� > x

}
:
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Having (A.11), we can easily check that the conditions of Theorem 9.6.1 from
Gikhman and Skorokhod (1969) are satisfied; thus we get the tightness of
the sequence �Un; n ≥ 1�, which is exactly the sequence �Znk + Znl; n ≥
1�. Applying the above-mentioned fact, we get the tightness of Zn, n ≥ 1 in
D��0;1�;Rd�. Then the relation (A.6) follows and we have completed the proof
of Propositions 4 and 5. 2
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XIX. Lecture Notes in Math. 1123 209–217. Springer, Berlin.

Department of Mathematics
Vilnius University
Naugarduko 24
Vilnius 2006
Lithuania
and
Department of Statistics

and Applied Probability
University of California
Santa Barbara, California 93106-3110
E-mail: vpaul@ieva.maf.vu.lt

vpaul@pstat.ucsb.edu

Department of Statistics
and Applied Probability

University of California
Santa Barbara, California 93106-3110
E-mail: rachev@pstat.ucsb.edu


