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Transaction costs preclude the construction of hedging strategies for
general contingent claims. Leland introduced the concept of diffusion
limits of hedging strategies in a small transaction cost limit. This paper
establishes such diffusion limits for very general hedging strategies and
also establishes leading order asymptotic expressions for the replication
error. In addition to subsuming previously considered temporal strategies,
the results in this paper yield new results, namely expressions for replica-
tion errors of stock price strategies and a variety of ‘‘renewal’’ strategies.
Most importantly, this paper provides a unified methodology for calculat-
ing hedging strategies and replication errors in the small transaction cost
limit. This is an essential component of optimization methods, when, for
example one is trying to minimize replication error for a given initial
portfolio value.

1. Introduction. The Black]Scholes framework for option pricing and
replication is predicated on, among other things, the absence of transaction
costs. In the presence of any source of transaction costs, such as those arising
from a bid]ask spread, there no longer exist hedging strategies which achieve
perfect replication for a general payoff. That is to say, the system is intrinsi-
cally incomplete, and arbitrage pricing theory cannot be used to price contin-
gent claims.

The development of a mathematical framework to deal with transaction
costs has proceeded along several different lines. The results in this paper are

Ž .related to the pioneering work of Leland 1985 , in which a replicating
portfolio is rebalanced at equal time intervals. By increasing the frequency of
rebalancings while letting transaction costs vanish at an appropriate rate, a
cost of replication is obtained as a solution to a Black]Scholes partial
differential equation with an enhanced volatility.

Ž .Subsequently, Henrotte 1991 extended this concept of diffusion limits of
replicating portfolios to hedging strategies based on, for example, stock price
changes. Furthermore, Henrotte clearly articulates the need to consider the
asymptotic replication error, since any implementation of a hedging strategy

Žin the presence of transaction costs will necessarily involve discrete as
.opposed to continuous rebalancing. Henrotte then compares the performance
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of the hedging strategy in which rebalancings occur at equally spaced times
and a strategy in which rebalancings occur when the underlying price
changes by prescribed amounts.

Ž .Grannan and Swindle 1994 expanded further upon the use of limiting
hedging strategies by optimizing over classes of strategies. Specifically, they
considered an expanded set of time-interval strategies which allow for vary-
ing time intervals. Exact expression for the limiting hedging strategies and
replication errors were established and then used to construct and solve
various optimization problems. For example, strategies were obtained which
minimize the replication error given an initial portfolio value, or which
minimize a weighted sum of initial portfolio value and replication error. It
was shown that the resulting strategies significantly outperform the standard
constant time-interval strategies.

Ž .Avelleneda and Paras 1994 also utilize diffusion limits, and show that in
Ž .the case where transaction costs are large in a limiting sense and when

payoffs are nonconvex, then, if option replication is replaced with dominance
of the option payoff, the associated hedging strategy is prescribed by a

Ž .solution to a partial differential equation PDE with free boundaries. This
work is essentially a continuous time version of Bensaid, Lesner, Pages and

Ž .Scheinkman 1992 , in which dominating strategies are calculated in the
presence of transaction costs in the setting of Cox, Ross and Rubinstein
Ž .1979 .

Currently, the primary difficulty in considering more general classes of
limiting hedging strategies is that one is confronted with the chore of
establishing the form of the associated ‘‘Black]Scholes’’ PDE, in addition to
the much more daunting task of calculating the replication error to leading
order in the transaction cost parameter. The purpose of this paper is to
dispose of these difficulties once and for all by calculating the PDE and the
associated replication error for limiting hedging strategies in considerable
generality. This will be done for a broad class of diffusions describing the
price of the underlying, and the conditions which are imposed on the hedging
strategies are stated solely in terms of the asymptotics of the moments of
time and price changes between rebalancings and regularity properties of the
resulting PDE. In short, all of the theory will be done here, and further
efforts at optimization over classes of hedging strategies will require only
that the user be able to calculate the required moments and check the
conditions of the theorems.

This paper generalizes the Leland limit to what we believe is a maximal
and nontrivial extension. Not only is the associated PDE identified for very
general hedging strategies, but the replication error is calculated to leading
order. Prior to this paper the only class of strategies for which a replication

werror has been obtained are fixed time interval strategies see Henrotte
Ž . Ž .x1991 and Grannan and Swindle 1994 . These results are also established
for general payoffs, in particular wthout the restrictive assumption of convex-
ity which has pervaded earlier results. The proofs are substantially more
difficult as a consequence. When the payoff is not convex we must also
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assume some regularity of the solution to the resulting nonlinear PDE which
we believe to be generic; however, we do not yet have conditions in terms of
the payoff function and coefficients which guarantee this regularity.

Most natural strategies fall under the umbrella of the results of this paper.
Ž .Examples include 1 time interval strategies which incorporate stock level,

so that the duration to the next portfolio rebalancing depends upon the
Ž .current stock price this subsumes the constant time interval strategies ;

Ž .2 price change strategies, in which rebalancings occur when the stock price
Ž .changes by prescribed amounts; 3 renewal strategies in which price]time

boundaries are set upon each rebalancing with the subsequent rebalancing
woccuring when the price trajectory hits the boundary this is effectively a

Ž . Ž .x Ž .hybrid of classes 1 and 2 ; 4 Delta-strategies based upon deviations of the
Ž .portfolio D, which were also discussed in Henrotte 1991 . To actually opti-

mize within a given class of strategies, one must evaluate the moments
appearing in the results. This task, which can be very difficult, is the limiting
factor in broadening the classes of strategies in the construction of effective
hedging methods.

Before proceeding, we should point out that a variety of other avenues
have been exploited to illuminate the effect of transaction costs in option
pricing and replication. In discrete time settings, numerous authors, in

Ž .addition to Bensaid, Lesne, Pages, and Scheinkman, 1992 have addressed
w Ž .the issue of option replication see, e.g., Boyle and Vorst 1992 , Constan-

Ž . Ž .xtinides and Zariphopoulou 1995 and Edirisighe 1993 . Another approach
Ž .developed in Davis, Panas and Zariphopoulu 1993 adopts a control perspec-

tive and proceeds by assigning an appropriate utility function to the writer of
an option and then obtaining the minimum price at which the writer would
be willing to sell an option via the solution of two optimal control problems.
Further developments along these lines involve bounding option prices over
classes of utility functions as done in Constantinides and Zariphopoulou
Ž .1995 .

This paper is structured as follows. In Section 2 we will discuss the basic
set-up and touch upon the nature of the results to follow. Section 3 contains
the two central theorems of the paper. Theorem 3.1 establishes the PDE
which prescribes the limiting replicating strategy, and Theorem 3.2 provides
the replication error to leading order in the transaction cost parameter. The
third section also contains the proof of Theorem 3.1 as well as an illustrative
example of these results for strategies based on price changes. This example
is particularly useful in showing that the list of conditions required for
Theorem 3.2 are in fact natural, and it also yields results on the price level
strategies which have only been conjectured to date. The rather lengthy proof
of Theorem 3.2 is given in Section 4. In addition, Section 5 contains remarks
about potential applications of these results.

2. Limiting hedging strategies. In this section we will describe the
essential feature of the construction of replicating strategies in the limits of

Ž .small transaction costs as first done in Leland 1985 . However, we will do



HEDGING WITH TRANSACTION COSTS 679

this in the context of very general rebalancing criteria and with the spot price
driven by a general diffusion.

The price of the underlying will be taken to be of the form

1 dX s m t , X dt q s t , X dB ,Ž . Ž . Ž .t t t t

where B denotes a standard Brownian motion and where we assume that m,t
s , s , s and s are continuous and satisfy a polynomial growth condition.t x x x
In addition, we assume that the drift and volatility are such that the hitting
times of zero and infinity are infinite almost surely and that all moments of

ŽX exist. For the case of homogeneous diffusions time-independent coeffi-t
. wcients , the hitting time conditions are well studied see, e.g., Karlin and
Ž .xTaylor 1981 and a linear growth bound on the drift and volatility suffices to

control the moments. Finally, we need a nondegeneracy condition on the
Ž . Ž .diffusion; s t, X uniformly positive on compact subsets of 0, ` is adequate.t

For ease of exposition we will take interest rates to zero. This has the benefit
of reducing the length of the equations considerably and results in no loss of
generality, as this situation can be realized by a change of variables corre-
sponding to measuring currency in risk free bonds. In the remainder of the

w x Žpaper, V denotes the space of continuous functions from 0, T ª R i.e., the
. Ž .path space of X , P ? denotes the associated probability measure on V andt

Ž .E ? denotes expectation with respect to this measure.
The market is not frictionless}each trade incurs transaction costs. In this

paper we will consider proportional transaction costs, where the cost associ-
< <ated with a change in the spot position of value DS is k DS : k is an

exogeneously prescribed constant of proportionality that indicates the level of
transaction costs in the market. Forms of transaction costs other than
proportional could also be considered, although different scaling limits would
result.

Ž .A trader will now enter the market with h 0, X dollars. The goal of the0
trader is to engage in a trading strategy which replicates a contingent claim
Ž .u X as closely as possible in the sense of minimal expected square error.T

Here T is the time of expiry of the claim, and we restrict our attention to
European claims, which can be exercised only at time T. A trading strategy

� 4will consist of both a sequence of stopping times t with i g 1, 2, . . . and ai
prescription of the amount of underlying the trader is to hold at time t . Byi
analogy with the Black]Scholes theory, the number of shares held will be

Ž . Ž . Ž .given by h t , X for some yet to be determined function h t, x .x i t i

The resulting values of such a hedging strategy at expiry T, denoted by
Ž .u X , is given by the following bookkeeping formula:ˆ

u X s h 0, X q h t , X X y XŽ . Ž .ˆ Ž . Ž .Ý0 x i t t ti iq1 i
t -Ti

y k h t , X y h t , X X .Ž . Ž .Ý x iq1 t x i t tiq 1 i iq1
t -Ti

2Ž .

The first term on the right-hand side is the initial value of the replicating
portfolio, the second term corresponds to gains and losses sustained in the
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Žunderlying position there is no comparable term for the risk free asset as
.interest rates are zero and the third term describes transaction cost losses.

While perfectly general, this equation as it stands is rather useless. The
question of a selection of a ‘‘good’’ hedging strategy has yet to be addressed,

Ž .and a direct assault on 2 for a given sequence of stopping times is compli-
Ž .cated significantly by the transaction cost term. Leland 1985 introduced an

ingenious way to circumvent this difficulty by taking a limit in which times
between rebalancings vanish. This essentially involves considering a se-
quence of stopping times t d in which loosely speaking t d y t d ; d . Takingi iq1 i
the limit of continuous rebalancing, d ª 0, the scaling properties of the

Ž .Brownian motion suggest that the transaction cost term in 2 should scale in
this way: kdy1d 1r2 s kdy1r2. Therefore, to keep the transaction cost term
nondegenerate, one must take k ; d 1r2. Leland carried out this program for
the case of uniform time intervals t d s id .i

REMARK 2.1. Taking the limit k ; d 1r2 yields a nondegenerate limit from
which one can extract useful information about replicating strategies for
small but positive values of d . In other words, if the exogeneously prescribed
k is small, then d s k 2 is small, and one expects any results obtained from
the limit to be approximately correct. Of course, one of the tasks of this paper
is to calculate the errors of this approximation.

The results in this paper, which will be stated precisely and proved in the
remaining sections, are twofold. First, aside from technical conditions, for a
sequence of rebalancing times t d ifi

d d < d 3r2
d d3 E t y t FF s u t , X d q o d ,Ž . Ž .Ž . Ž .iq1 i t i ti i

d 1r2< <d d d d4 E X y X FF s l t , X d q o dŽ . Ž .Ž .ž /t t t i tiq 1 i i i

w Ž . xsee Definition 3.1 and the conditions T in Section 3 for details , then
Ž . Ž .hedging according to 2 with h t, x given by the solution to

1 l
2 < <5 h t , x q s t , x h t , x q x t , x h t , x s 0Ž . Ž . Ž . Ž . Ž . Ž .t x x x x2 u

with

6 h T , x s u xŽ . Ž . Ž .
Ž wŽ Ž . Ž ..2 x .results in perfect replication in the limit d ª 0 i.e., E u X y u X ª 0 .ˆ T

In addition, expressions for the expected square replication error are calcu-
lated to leading order in d . In tandem, these two results are essential to
carrying out optimization along the lines of that done in Grannan and

Ž .Swindle 1994 for broader classes of strategies.

3. The main results. The first task is to specify the hedging strategies
to be considered in this paper. These strategies are indexed by d , which will
later be taken to zero with k s d 1r2. The assumptions below are stated in
terms of moments of the relevant stopping times and stopped underlying
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process. While there are a rather overwhelming number of conditions on the
asymptotic behavior of various moments, they are natural in that they are
easily shown to be satisfied by the strategies discussed previously, such as for
time interval and stock price level strategies. In addition, required smooth-
ness properties of the associated Black]Scholes PDE will be stated.

A few remarks about notation are in order. We will write t for thei
stopping times t d, leaving the d dependence implicit. The underlying filtra-i

Ž .tion FF is right continuous and contains all the null sets. The expres-t 0 F t F T
Ž . Ž .sions O d and o d have their usual meanings}the former is bounded by

Cd for some constant C, and the latter converges to zero when divided by d
as d ª 0. We will also need the following extension of this notation.

Ž .DEFINITION 3.1. The symbol O d denotes a sequence of expressionsi
Ž . � Ž .4bounded in magnitude by dZ d where Z d is a sequence of positivei i

Ž . 8Ž . ŽFF -measurable random variables such that sup Z d g L V uniformly int i ii

. w < Ž . < 4 xd . If, in addition to the above conditions, sup E Z d ª 0 as d ª 0 theni i
Ž .the expression is considered to be o d .i

With this notation at our disposal, we are now in a position to define the
class of hedging strategies that we consider.

Stopping time assumptions. Rebalancing times 0 s t - t - ??? are typi-0 1
cally articulated without reference to the time of expiration T. In order to

� 4avoid ambiguities, we define N s min i G 1: t G T , the number of t ’s up toi i
T, and we will always take t to be t n T. As a result, t s T. The sequencei i N

� d 4of rebalancing times t must have the following asymptotic properties asi
d ª 0:

3r2<T1 E t y t FF s u t , X d q o d G u d ) 0,Ž . Ž .Ž .iq1 i t i t i 0i i

2 2 2< <T2 E t y t FF s h t , X d q o d ,Ž . Ž .Ž .iq1 i t i t ii i

1r2< <T3 E X y X FF s l t , X d q o d ,Ž . Ž .Ž .t t t i t iiq 1 i i i

4 3< <T4 E t y t FF s O d ,Ž . Ž .iq1 i t ii

<T5 E sign X y X t y t FF s o d ,Ž . Ž . Ž .Ž .t t iq1 i t iiq 1 i i

3r2<T6 E X y X t y t FF s o d ,Ž . Ž . Ž .Ž .t t iq1 i t iiq 1 i i

< <T7 E X y X X y X FF s o d ,Ž . Ž .Ž .t t t t t iiq 1 i iq1 i i

where u , h and l are continuous and have a polynomial growth order in x.

Ž . Ž . Ž .REMARK 3.1. Conditions T1 , T2 and T3 yield coefficients which appear
Ž .in both PDE 5 and the expression for the replication error which will be

Ž .discussed later. Condition T4 will be used for controlling the replication
Žerror uniformly over the rebalancing intervals. Correlations of sign X yt iq 1

. < <Ž . ŽX and positive quantities t y t , X y X t y t , and X yt iq1 i t t iq1 i ti iq1 i iq1
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.2 Ž . Ž . Ž .X are controlled by conditions T5 , T6 and T7 . These conditions reducet i

the bias of the price change over the rebalancing time interval, which could
have contributed the replication error.

Ž . Ž . Ž .REMARK 3.2. The conditions above are in fact natural. T1 , T2 , T3 and
Ž .T4 essentially exclude small probabilities of large gaps between rebalanc-
ings. Furthermore, if the quantity X y X is replaced by its absolutet tiq 1 i

Ž . Ž . Ž .value in T5 , T6 and T7 , then one would expect terms that are O ratheri
than o . These conditions are, therefore, nothing more than constraints on thei
symmetry of the rebalancing condition in the price variable.

Partial differential equation assumptions. It will be shown in Theorem 3.1
Ž . Ž . Ž .that the solution to PDE 5 with initial condition 6 together with 2

Ž .prescribes a replicating strategy for the contingent claim u X in the limitT
Ž .d ª 0. The required regularity properties to the solution h t, x are the

following:

Ž .P1 Here h , h and h are Lipschitz continuous in both spatial andt x x x
temporal arguments.

Ž . ŽP2 The singularities i.e., nondifferentiability with respect to spatial argu-
. Ž Ž ..ment of h , h and h are described by the graph t, F t where F:t x x x

w x m0,T ª R is a Lipschitz continuous function. The coordinates of F
� Ž . 4will be denoted by F , i s 1, . . . , m. Thus, F t , 1 F i F m is the set ofi i

singularities at time t.
Ž . Ž .P3 For each t, h t, ? is a difference between two convex functions. Inx x

Ž .other words, the second derivative of h t, ? exists in the distribu-x x
tional sense and is a signed Borel measure.

Ž . Ž . Ž .P4 The left derivative of h t, ? , denoted by h t, ? , has a polynomialx x x x x
growth order.

Ž . Ž .A few remarks about the regularity assumptions P1 through P4 are in
Ž .order. PDE 5 can be written parsimoniously as:

h q F t , x , h s 0,Ž .t x x

where F is convex and piecewise linear in its third argument. Were F in fact
twice continuously differentiable in its third argument, then existence,
uniqueness and regularity results are available. For example, Theorem 23 in

Ž . Ž . 4Chapter IX of Dong 1991 implies existence of a solution to 5 which is C in
x and C 2 in t. This would be adequate for the results in this section to hold.
This regularity result, however, does not apply in our situation due to the

Ž .lack of smoothness of F. When the payoff u x is strictly convex and when
2Ž . w 2Ž . 2qas t, x satisfies appropriate conditions e.g., if s t, x is C for some

a ) 0 and is such that there exist positive constants a and A such that
2 2Ž . 2 x Ž .ax F s t, x F Ax , then, since h remains convex for all t, 5 has the

regularity above. In this case there are no point of inflection to cause
difficulties. When the payoff is strictly concave, regularity of the solution of
Ž . 2Ž . Ž . Ž . 2qa5 is also immediate, provided that s t, x , l t, x and u t, x are all C

1 2Ž . Ž .and that s t, x q x lru is uniformly bounded above and below by multi-2
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ples of x 2. The results that we present in the following theorems are new
Ž .even in these cases of restricted convexity. When the payoff function u x is

Ž . Ž .of mixed convexity, assumptions P1 through P4 are required for our
results to hold and we are unaware of existing regularity results from which
these conditions would immediately follow. Theorem 3.1 below shows that

Ž .selecting PDE 5 in conjunction with the stopping times above was the right
thing to do. Before proceeding to this result we must establish a few basic
consequences of the stopping time assumptions, which will be used through-
out the remainder of the paper. The first lemma controls the number of
rebalancing times that occur before time T.

Ž . Ž . Ž . Ž y1 .LEMMA 3.1. Under assumptions T1 and T2 , E N s O d and
Ž 2 . Ž y2 .E N s O d .

Ž .PROOF. For any positive integer n, assumption T1 implies that
2 2n n

2 2 <7 u d E | N ) i F E E t y t FF | N ) i .Ž . Ž . Ž . Ž .Ý Ý0 iq1 i t iž / ž /
is1 is1

Ž .We will bound 7 with two terms, the first of which is
2n

2E t y t | N ) i F T .Ž . Ž .Ý iq1 iž /
is1

The second term is
2n

<E t y t y E t y t FF | N ) iŽ . Ž . Ž .� 4Ý iq1 i iq1 i t iž /
is1

n

<s E Var t y t FF | N ) iŽ .Ý iq1 i t i
is1

1r22n
1r22 2w xF d E Z E | N ) iŽ .Ýž /

is1

Ž . 8Ž . w < Ž . < 2 xfor some Z s Z d g L V with sup E Z d - `. This follows from thed

w < x Ž 2 . Ž .fact that Var t y t FF s O d and Holder’s inequality. Then 7 implies¨iq1 i t ii

1r22 2n n
1r22 2 2 2 2w xu d E | N ) 1 F 2T q 2d E Z E | N ) iŽ . Ž .Ý Ý0 ž / ž /

is1 is1

for all n, and consequently,
2 2 2n E Z TŽ .

E | N ) i F 4 q 8 .Ž .Ý 4 2 2ž / u u d0 0is1

Ž n Ž ..2 ` Ž .2 Ž .Since Ý | N ) i s Ý n n i | N s i q 1 , the result follows fromis1 is1
Fatou’s lemma. I
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The next lemma utilizes this control of N to bound terms in the form of a
martingale difference array.

LEMMA 3.2. Let M be a martingale difference array with respect to FFi t i

such that

2 a<E M FF F d X ,i t i

2Ž .where X g L V . Then

2N
ay1 2'8 E M F Cd E X .Ž . Ž .Ý iž /

is1

PROOF. For each positive integer n, we have

2n n
2 <E M | N ) i s E | N ) i E M FFŽ . Ž .Ý Ýi i t iž /

is1 is1

a 2 2' 'F d E X E N ,Ž . Ž .

where the last equality follows from Holder’s inequality. The result now¨
follows from Lemma 3.1 and by noting that an L2 bounded martingale
converges in L2. I

We now proceed to the first theorem, which establishes the modified
‘‘Black]Scholes’’ PDE.

Ž .THEOREM 3.1. Suppose that portfolio rebalancing is given by 2 with
Ž . Ž . Ž .stopping times which satisfy T1 through T3 and with h t, x the solution

Ž . Ž . Ž . 1r2to 5 with initial condition 6 satisfying P1 . Then with k s d the pay-
off of the replicating strategy converges to the desired payoff in probability:
Ž . Ž .u X ª u X .ˆ P T

Ž . Ž .PROOF. Using Lemma 3.1, T1 and T2 , one can easily check that
N Ž .2 1 ŽÝ t y t converges to 0 in L as d ª 0. As a result, sup t yis1 i iy1 1F iF N i

.t ª 0. Since h is continuous, we haveiy1 P x

T
h t , X X y X ª h t , X dX .Ž .Ž . Ž .Ý Hx i t t t P x t ti iq1 i

0t -Ti

We will show that

lT1r2 <d h t , X y h t , X X ª h t , X X t , X dt .Ž . Ž .Ž . Ž .Ý Hx iq1 t x i t t P x x t t tiq 1 i iq1 u0t -Ti
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Ž .The result then follows from Ito’s formula using PDE 5 . The first step is toˆ
replace X in the summand above with X by noting thatt tiq 1 i

1r2d h t , X y h t , X X y X ª 0,Ž . Ž . Ž .Ý x iq1 t x i t t t Piq 1 i iq1 i
t -Ti

< Ž . Ž . <Ž .which follows from the fact that Ý h t , X y h t , X X y X isx iq1 t x i t t tiq 1 i iq1 i

stochastically bounded. Second,

1r2d h t , X y h t , XŽ . Ž .Ý x iq1 t x i tiq 1 i
t -Ti

yh t , X X y X X ª 0.Ž . Ž .x i t t t t Pi iq1 i i

9Ž .

This follows from the fact that

h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

F h t , X y h t , XŽ . Ž .x iq1 t x i tiq 1 iq1

q h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž .x i t x i t x x i t t tiq 1 i i iq1 i

s h t , X y h t , XŽ . Ž .x iq1 t x i tiq 1 iq1

1
q h t , X q r X y X y h t , X dr X y XŽ . Ž . Ž .Ž .H x x i t t t x x i t t t½ 5i iq1 i i iq1 i

0

< < < < 2s O t y t q X y X ,ž /iq1 i t tiq 1 i

Ž . < Ž . Ž . Ž .Žby P1 . Consequently, Ý h t , X y h t , X y h t , X X yx iq1 t x i t x x i t tiq 1 i i iq1

. < Ž .X X is stochastically bounded yielding 9 . It remains to verify thatt ti i

1r2d h t , X X y X XŽ . Ž .Ý x x i t t t ti iq1 i i
t -Ti

lTª h t , X X t , X dt .Ž . Ž .HP x x t t tu0

10Ž .

1r2 < Ž .Ž . <We rewrite d h t , X X y X X as follows:x x i t t t ti iq1 i i

1r2 < < < <d X h t , X X y X E X y X FFŽ . ½ 5t x x i t t t t t ti i iq1 i iq1 i i

l
<y h t , X X t , X t y t y E t y t FFŽ .Ž . Ž . � 4x x i t t i t iq1 i iq1 i ti i i iu

l
q h t , X X t , X t y tŽ .Ž . Ž .x x i t t i t iq1 ii i iu

l
3r2q h t , X X 1 y t , X o d .Ž .Ž . Ž .x x i t t i t i½ 5i i iu

Each of the first two terms constitute a martingale difference array and
satisfies the condition of Lemma 3.2 with a s 2. Thus the sum of these two
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terms over the partition converges to 0 in probability. It can be checked that
the sum of the last term over the partition converges to 0 in probability as

Ž .well. Therefore, we have 10 . I

Next we compute the replication error in the L2 sense. We define the
leading order conditional variance matrix V as

2 2 2<Var X y X FF s V t , X d q o d ,Ž .Ž . Ž .t t t 1 i t iiq 1 i i i

2 2<Var t y t FF s V t , X d q o d ,Ž .Ž .iq1 i t 2 i t ii i

1r2 2 2< <Var d X y X FF s V t , X d q o d ,Ž .Ž .t t t 3 i t iiq 1 i i i

2 2 2<Cov X y X , t y t FF s V t , X d q o d ,Ž . Ž .Ž . Ž .t t iq1 i t 12 i t iiq 1 i i i

11Ž .

1r2 2 2< <Cov t y t , d X y X FF s V t , X d q o d ,Ž . Ž .Ž .iq1 i t t t 23 i t iiq 1 i i i

2 1r2 2 2< <Cov X y X , d X y X FF s V t , X d q o d .Ž .Ž . Ž .t t t t t 13 i t iiq 1 i iq1 i i i

Ž .Again, we assume the functions on the right-hand side of 11 are continuous
and have polynomial growth.

Ž .THEOREM 3.2. Suppose that the rebalancing times satisfy T1 through
Ž . Ž . Ž . Ž . Ž . 1r2T7 , and the solution to 5 h t, x satisfies P1 through P4 . With k s d
the replication error is given by

T2 y112 E u X y u X s dE K t , X u t , X dt q o d ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆ HT t t
0

where

1 2 2 2 2K s h V q h V q x h V q h h Vx x 1 t 2 x x 3 x x t 12413Ž .
< < < <q xh h V q 2 xh h V .x x x x 13 t x x 23

The proof of Theorem 3.2 is extremely lengthy and is quarantined in the
Ž .next section. The set of conditions T which yield the asymptotics for the

replication error, while numerous, are in fact relatively easy to check in many
natural situations. To illustrate this point, we conclude this section by using
Theorems 3.1 and 3.2 in the context of the stock level strategies considered in

Ž .Henrotte 1992 where the analog of Theorem 3.1 was established and a form
for the replication error for a specific configuration of price levels was
conjectured. We will also present a similar treatment to the class of continu-
ous stochastic time change strategies, which includes the deterministic time

Ž .change strategies considered in Grannan and Swindle 1994 . Therefore, not
only will the following enterprise clarify the use of the results in this paper,
but it will establish heretofore unknown expressions for the replication error

Ž .for this class of strategies presented in Henrotte 1992 .
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EXAMPLE 3.1. We begin by defining exactly what is meant by stock level
Ž .strategies. Consider a function f x which is smooth, positive and strictly

1r2 Žincreasing. Let a s 1 q d and define a sequence of stock levels a partition
w ..of 0, ` via

y1 n14 x s f a f X , n s 0, " 1, " 2, . . . ,Ž . Ž .� 4n 0

Ž . Ž .where X is the initial stock price. We will take m t, x s m x and s t, x s0
s x, where m and s are constant, so that X is a geometric Brownian motion.t
These stock levels are the levels at which portfolio rebalancings will occur. If
Ž . nf x s x, then the levels are set as a X . Such exponentially growing gaps0

are consistent with the scaling properties of the geometric Brownian motion.
We define the rebalancing times via

<15 t s inf t ) t : X s x or X s x X s xŽ . � 4iq1 i t nq1 t ny1 t ni

so that a rebalancing occurs when the price traverses one of the gaps between
levels.

We will now use Theorems 3.1 and 3.2 to identify a limiting hedging
strategy and its associated replication error for a layout of intervals pre-

Ž . Ž .scribed by the function f x . It will be useful at times to work with y s log x ,
ˆ Ž .and we will let D s x y x and D s y y y . From 14 , we ob-n nq1 ny1 n nq1 ny1

serve

16 f x y f x s a y ay1 f x s 2d 1r2 f x q O d ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .nq1 ny1 n n

Ž . Ž . XŽ .Ž .while Taylor expansion yields f x y f x s f x x y x qnq1 ny1 n nq1 ny1
Ž . Ž . Ž .O d . Therefore 16 and the Taylor expansion of log x result in

f x f x 1Ž . Ž .n n1r2 1r2ˆ17 D s 2d q O d and D s 2d q O d .Ž . Ž . Ž .X Xn nf x f x xŽ . Ž .n n n

We will begin by dealing with conditions on the moments of t y t , namelyiq1 i
Ž . Ž . Ž .conditions T1 , T2 and T4 . We claim that

ˆ2Dn 3r2<E t y t X s x s q o dŽ . Ž .iq1 i t n i2i 4s
18Ž . 2f xŽ .n 3r2s d q o d ,Ž .X is x f xŽ .n n

52 4 2ˆ<E t y t X s x s D q o dŽ . Ž .iq1 i t n n i4i 48s
45 f xŽ .n2 2s d q o d ,Ž .X i3 s x f xŽ .n n

19Ž .

Ž . Ž . Ž .where the second equalities are an application of 17 . To verify 18 and 19 ,
Girsanov’s theorem and expressions for hitting times of the standard Brown-



AHN, DAYAL, GRANNAN AND SWINDLE688

ian motion yield

<E exp yn t y t | X s x X s x� 4Ž . Ž .iq1 i t ny1 t niq 1 i

1 2m
s exp 1 y y y yŽ .n ny12ž /2 s

20Ž .
21 2'sinh y y y rs 2n q m y s rsŽ . Ž .nq1 n 2

=
21 2'sinh y y y rs 2n q m y s rsŽ . Ž .nq1 ny1 2

w Ž .xsee Karatzas and Shreve 1991 . Differentiating with respect to n and
expanding yields

ˆ2Dn
<21 E t q t | X s x X s x ; .Ž . Ž . Ž .iq1 i t ny1 t n 2iq 1 i 8s

Ž . Ž .An identical calculation for | X s x combines to yield 18 and,t nq1iq 1

Ž . Ž . Ž .therefore, T1 . This also shows that T5 and T6 hold. Second derivatives of
Ž . Ž . Ž . Ž .20 with respect to n yield 19 and T2 . A fourth derivative results in T4 .

Next we proceed to the moments of X y X . Note thatt tiq 1 i

f x y f xŽ . Ž .n ny1
<22 P X s x X s x s ,Ž . Ž .t nq1 t niq 1 i f x y f xŽ . Ž .nq1 ny1

Ž . 1y Ž2 m rs 2 .where f x s x is a scale function for X . Also note that x yt nq1
Ž . Ž . Ž .x s D r2 q O d , as well as x y x s D r2 q O d . Then 17 and Tay-n n n ny1 n
Ž . Ž . Ž . XŽ . Ž . Ž .lor expansion of 22 yield l t, x s f x rf x in T3 . Verification of T7 is

wstraightforward. We have now verified the conditions for Theorem 3.1 aside
Ž .from the conditions on the PDE P which we do not address, and take as

Ž .xconditions on the payoff u x . So, the limiting replication hedging strategy
for these stopping times is given by the solution to

X1 xf
2 223 h q s x 1 q x sign h h s 0.Ž . Ž . Ž .t x x x x2 f

Ž . Ž .This result was obtained by Henrotte 1991 for the case where u x is
Ž .convex, in which case sign h s 1.x x

Next we will extract the leading order behavior of the replication error for
the stock level strategies, which constitutes a previously unknown result. The
only additional ingredient which is required is a calculation of the covariance

Ž .matrix given in 11 . In the case of these stock level strategies, this is
Ž .particularly straightforward. Using 22 and expanding in d yields that

V , V , V , V , V are zero. The only term that contributes to the replication1 3 12 13 23
error in the leading order term is

42 f
2V s h y u s .X2 3 s xf
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Therefore, the replication error is
22 fT2 2E u X y u X s d E h dt q o d .Ž . Ž . Ž .Ž .ˆ H XT t3 s xf0

EXAMPLE 3.2. Consider a continuous time change Y s X wheret A t

r
y124 A s inf r ) 0: u s, X ds ) t .Ž . Ž .Ht s

0

Ž . Ž .As in T1 , u t, x is continuous and bounded below by u ) 0. Furthermore,0
wit has a polynomial growth order in x. It can be shown see, e.g., Ethier and

Ž .x Ž . 2Kurtz 1985 that Y, A is an R diffusion

dY s s ? u 1r2 A , Y dB q m ? u A , Y dt ,Ž . Ž .t t t t t t

dA s u A , Y dt ,Ž .t t t

where B is a standard Brownian motion defined by

t y1B s u A , Y dW .Ž .Ht s s A s
0

Rebalancing times are uniformly spaced in the changed time domain, that
is, the ith rebalancing time will be A . Thenid

2
1r2l t , s s ? u t , x ,Ž . Ž .(

p

Ž .and by Theorem 3.1 PDE 5 becomes

1 2
2 y1r2 < <h t , x q s t , x h t , x q xs ? u t , x h t , x s 0.Ž . Ž . Ž . Ž . Ž .(t x x x x2 p

Next, to obtain the expression for the leading order replication error, we
find

V t , x s 2s 4u 2 t , x ,Ž . Ž .1

2
2V t , x s 1 y s u t , x ,Ž . Ž .3 ž /p

2
3 3r2V t , x s s u t , x ,Ž . Ž .(13 p

while the other components of V vanish. Therefore, by Theorem 3.2 we have

T2 y1E u X y u X s dE K t , X u t , X dt q o d ,Ž . Ž . Ž . Ž . Ž .Ž .ˆ HT t t
0

where
2s u 2 2

y1 2 2 2 3 1r2 < <Ku s s q 1 y x h q s u xh h .(x x x x x xž /ž /2 p p
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For other situations, for example, a hybrid of the temporal strategies and
the stock level strategies where rebalancing occurs upon hitting a rectangle
consisting of two stock levels of order d 1r2 apart, and a time boundary of
order d ahead, all the terms of the covariance matrix are nontrivial. More
complex strategies involve more work in evaluating moments. This is the only
significant limitation in applications of Theorems 3.1 and 3.2.

4. Proof of Theorem 3.2. We prove Theorem 3.2 in several steps. Using
Ž . Ž .the telescoping sum, we rewrite u X y u X asˆT T

h t , X y h t , X y h t , X X y X� 4Ž . Ž . Ž . Ž .Ý iq1 t i t x i t t tiq 1 i i iq1 i
t -Ti

1r2q d h t , X y h t , X X .Ž . Ž .Ý x iq1 t x i t tiq 1 i iq1
t -Ti

Our goal is to rearrange this into

2 21 <h t , X X y X y E X y X FFŽ . Ž . Ž .Ý ½ 5x x i t t t t t t2 i iq1 i iq1 i i
t -Ti

<q h t , X t y t y E t y t FFŽ . � 4Ý t i t iq1 i iq1 i ti i
t -Ti

1r2 1r2< < < <q X h t , X d X y X y E d X y X FFŽ .Ý ½ 5t x x i t t t t t ti i iq1 i iq1 i i
t -Ti

by eliminating negligible terms. This is a sum of martingale difference
Ž .arrays, and hence 12 will follow from continuity of the conditional variance

Ž .matrix 11 .

� 4DEFINITION 4.1. We will say that J , 0 F i - N is d-negligible, or simplyi
J is d-negligible, ifi

2Ny1

E J s o d .Ž .Ý i
is0

Terms that are d-negligible do not contribute to the leading order of the
replication error. The following four results will be useful in establishing
when terms are in fact d-negligible.

Ž .LEMMA 4.1. Consider a sequence of FF -measurable random variables X d ,t ii

w < Ž . < 4 x < Ž . < 8Ž .such that sup E X d ª 0 and satisfy sup X d g L V uniformlyi i i- N i
3r2 Ž . Ž 3r2 .in d . Then d X d is d-negligible. So terms that are o d are in facti i

d-negligible.
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PROOF. The martingale difference array

d 3r2

<M s X d t y t y E t y t FFŽ . � 4i i iq1 i iq1 i t i<E t y t FFiq1 i t i

satisfies
Z22 3< < <E M FF F d sup X d ,Ž .i t i 2i ui 0

6 w < x Ž 2 .where Z g L . This follows from Var t y t FF s O d . Then Lemma 3.2iq1 i t ii

implies that M is d-negligible. It remains to controli

Ny1 3r2d
25 X d t y t .Ž . Ž . Ž .Ý i iq1 i<E t y t FFiq1 i tis0 i

w x Ž .Since t ’s consist of a partition of 0, T and u G u ) 0, the square of 25i 0
Ny 1 < Ž . < 2Ž .is bounded by dÝ X d t y t . Then it suffices to show thatis0 i iq1 i

Ny1 < Ž . < 2 w < x 1 Ž . wÝ X d E t y t FF converges to 0 in L . Put Y d s E t yis0 i iq1 i t i iq1i
< x Ž . Ž .t FF rd and pick a nonnegative function q d such that q d ª ` as d ª 0i t i

Ž . w < Ž . < 4 x1r2and q d sup E X d ª 0. Theni i
Ny1

2 <X d E t y t FFŽ .Ý i iq1 i t i
is0

Ž .n d
2 2F Nd sup X d Y d | N ) n d q d X d Y d ,Ž . Ž . Ž . Ž . Ž .Ž . Ýi i i i

i-N is0

Ž . Ž . Ž .'where n d is the smallest integer greater than E N q q d Var N d .Ž .Ž .
The expectation of the first term is bounded by

1r4 1r8
1r2 8 8 1r82w xdE N E sup X d E sup Y d P N ) n d ,Ž . Ž . Ž .Ž .i i

i-N i-N

which tends to 0 as d ª 0. Next, we observe that
Ž .n d 1r2 1r22 4 2

dE X d Y d F d n d sup E X d sup E Y dŽ . Ž . Ž . Ž . Ž .Ý i i i i
i iis0

tends to 0 as well. I

The next lemma combines the results of the previous lemma and Lemma
3.2.

LEMMA 4.2. Consider a sequence of FF -measurable random variablest iq 1

Ž . w Ž . < x Ž 3r2 . w 2Ž . < x Ž 2q« .X d such that E X d FF s o d and E X d FF s O d for somei i t i i t ii i

Ž .« ) 0. Then X d is d-negligible.i

w Ž . < xPROOF. Here E X d FF being d-negligible follows from the previousi t i

lemma. The martingale difference array
<X d y E X d FFŽ . Ž .i i t i

is also d-negligible due to Lemma 3.2. I
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By virtue of Lemma 4.2, we will check conditional moments to identify
d-negligible terms. The next lemma facilitates estimating conditional mo-
ments.

Ž < < p.LEMMA 4.3. Let j be an FF -measurable process dominated by C 1 q Xt t t
w xfor some p ) 0 and all t g 0, T almost surely. Then

2
tiq1 226 E j ds FF s O d .Ž . Ž .H s t iiž /ti

PROOF. First, note that

4
t4< < <P sup X y X ) 1 FF F 2 E sup s s, X dW FFŽ .Ht t t s s tž /i i i

tt FtFt t FtFt ii iq1 i iq1

4
t4q 2 E sup m s, X ds FFŽ .H s t i

tt FtFt ii iq1

F O d 3r2 .Ž .i

The first inequality follows from Chebyshev’s inequality, and the last line
Ž .follows from T4 , the Burkholder]Davis]Gundy inequality and Holder’s¨

inequality. Then

< < < 3r227 P sup j y j ) C FF F O d ,Ž . Ž .t t t t iž /i i i
t FtFti iq1

Ž Ž < <. p < < Ž < < p. Žwhere C s 2C 1 q 1 q X , since j y j F C 1 q X q C 1 qt t t t ti i i
< < p. � < < 4 < <X . On the event sup j y j F C , we have sup j Ft t F t Ft t t t t F t Ft ti i iq1 i i i iq1

< < Ž .j q C , and the result follows by T2 . On the complementary event,t ti i

Ž .Holder’s inequality shows that 26 is dominated by¨
1r6 1r31r24 6< < < < < <E t y t FF E sup j FF P sup j y j ) C FFŽ .iq1 i t t t t t t ti i i i i

t FtFt t FtFti iq1 i iq1

s O d 2Ž .i

Ž . Ž . Ž .by T4 and 27 . Therefore we have 26 . I

w < < 4 < x Ž 2 .As an application of Lemma 4.3, E sup X y X FF is of O d ,t F t Ft t t t ii iq1 i i

since it is bounded by

2 2
t tiq1 iq14 2 2 4 2c ? 2 E s t , X dt FF q T 2 E m t , X dt FF ,Ž . Ž .H Ht t t ti iž / ž /t ti i

where c is the constant in the Burkholder]Davis]Gundy inequality.



HEDGING WITH TRANSACTION COSTS 693

Ž < < p.LEMMA 4.4. Let H be an FF -measurable process bounded by C 1 q Xt t t
w xfor some p ) 0 and all t g 0, T almost surely. In addition, assume that

4< < <28 E sup H y H FF s o 1 .Ž . Ž .t t t ii i
t FtFti iq1

t iq 1Ž .Then H X y X H dt is d-negligible.t t t ti i

PROOF. First, we replace H by H by showing that the following ist t i

d-negligible:

tiq1
29 X y X H q H dt .Ž . Ž . Ž .H t t t ti i

ti

Both

4 4
tt iq1

E sup s s, X dW FF and E m t , X dt FFŽ . Ž .H Hs s t t ti i
t tt FtFt i ii iq1

Ž 2 .are at most O d . The estimate of the first term follows from thei
Burkholder]Davis]Gundy inequality and Lemma 4.3. Thus

4 2< < <30 E sup X y X FF s O d .Ž . Ž .t t t ii i
t FtFti iq1

Ž .Using Holder’s inequality, the conditional expectation of 29 with respect to¨
FF is seen to be bounded above byt i

1r4 1r4
4 4< < < < < <E sup H y H FF E sup X y X FFt t t t t ti i i i

t FtFt t FtFti iq1 i iq1

1r22 <= E t y t FF ,Ž .iq1 i t i

Ž 3r2 . Ž . Ž . Ž .which is of o d by T4 , 30 and 28 . Similarly, we find that the secondi
Ž 9r4. Ž .conditional moment is O d . Then by Lemma 4.2, 29 is d-negligible. Thei

remaining task is to control

tiq1
H X y X dt s H X y X t y tŽ .Ž . Ž .Ht t t t t t iq1 ii i i iq1 i

ti

tiq1
y t y t H dX .Ž .H i t ti

ti

31Ž .

Ž . Ž .The first term of 31 is d-negligible due to T6 and Lemma 4.2. The mean of
Ž 3r2 .the second term is of o d since the martingale part vanishes. The secondi

Ž 2q« . Ž .moment being O d for some « ) 0 can be easily checked. Therefore 31i
is d-negligible. I

Now we start eliminating d-negligible terms from the replication error.
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PROPOSITION 4.1. Under the hypotheses of Theorem 3.2,
2 2E X y X y s t , X t y t FFŽ .Ž . Ž .t t i t iq1 i tiq 1 i i i

and
tiq1

h t , X y h t , X dXŽ . Ž .H x t x i t ti
ti32Ž .

21 2y h t , X = X y X y s t , X t y tŽ .Ž . Ž . Ž .x x i t t t i t iq1 i2 i iq1 i i

are d-negligible.

t iq 1 2Ž . 2Ž .PROOF. By Ito’s formula, we may decompose H s t, X y s t , X dtˆ t t i ti i

into
t tiq1 2 2s x s, X y s t , X dX dtŽ . Ž . Ž . Ž .H H xs i t si

t ti i

tiq1 2q s t , X X y X dtŽ . Ž . Ž .H x i t t ti i
ti

t tiq1 1 2 2 2q s s s, X q s s, X ds dt .Ž . Ž . Ž . Ž .H H x x ts s2
t ti i

The second term is d-negligible due to Lemma 4.4, and the others being
wŽ .2d-negligible follows from Lemma 4.3. Therefore, to show that E X y Xt tiq 1 i

2Ž .Ž . < xys t , X t y t FF is d-negligible, it suffices to show the same fori t iq1 i ti i

tiq121 2 <E X y X y s t , X dt FFŽ .Ž . Ht t t t2 iq 1 i i
ti

tiq1
<s E X y X m t , X dt FF .Ž .Ž .H t t t ti i

ti

t iq 1Ž . Ž .First note that H X y X m t, X dt is d-negligible as can be seen byt t t ti i

Ž .setting H s m t, X and applying Lemma 4.4. In addition,t t

t tiq1 iq1
<33 E X y X m t , X dt FF y X y X m t , X dtŽ . Ž . Ž .Ž . Ž .H Ht t t t t t ti i i

t ti i

Ž .is a martingale difference array. To apply Lemma 3.2 with M being 33 , wei
w 2 < x 2q«must verify that E M FF is bounded above by d X for some « ) 0, whichi t i

follows from Holder’s inequality and the polynomial growth condition on¨
Ž .m t, x .

Ž .Next we show that 32 is d-negligible. By Ito’s formula and Lemma 4.4, itˆ
can be shown that

tiq1 2 2h t , X s t , X dt y h t , X s t , X t y tŽ . Ž .Ž . Ž . Ž .Hx x i t t x x i t i t iq1 ii i i
ti

is also d-negligible. Then we only need to control
t tiq1 iq1

34 h t , X y h t , X dX y h t , X X y X dX .Ž . Ž . Ž . Ž . Ž .H Hx t x i t t x x i t t t ti i i
t ti i
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Ž . Ž .Rewrite h t, X y h t , X as follows:x t x i t i

h t , X y h t , X q h t , X y h t , XŽ . Ž . Ž . Ž .x t x i t x i t x i t i

1
s h t , X y h t , X q h t , X q r X y X dr X y X .Ž . Ž . Ž . Ž .Ž .Hx t x i t x x i t t t t ti i i

0

< Ž . Ž . < Ž < <.Noting that h t, X y h t , X is of O t y t , we are left withx t x i t i

t 1iq1
h t , X q r X y X y h t , X dr X y X dX .Ž . Ž . Ž .Ž .H H x x i t t t x x i t t t ti i i i

t 0i

< < 2By the Lipschitz continuity of h , the integrand is bounded by K X y X ,x x t t i
Ž .for some constant K ) 0, and therefore 34 is d-negligible. I

The next difficulty to be surmounted is to deal with the region where h isx x
Ž Ž .. wsmall. It is at the points of inflection, identified by the graphs t, F t recall

Ž . Ž .xcondition P2 on the solution of the PDE for h t, x , where higher order
derivatives may not exist and more work is required. The procedure will be to
isolate the regions in the space]time plane near the points of inflection where
the nondifferentiability issue arises and to control the replication error
separately in a different fashion than in the rest of the plane where the
solution is smooth. The following technical lemma will be essential in this
endeavor.

LEMMA 4.5. Let Y be a continuous semimartingale such that we have the
following:

Ž . Ž < < < . Ž 1r2 .i E sup Y y Y FF s O d ;t F t Ft t t t ii iq1 i i
Ž . w x t Ž < < p.ii Y, Y s H j ds where j is dominated by C 1 q X for somet 0 s t t

w xp ) 0 and all t g 0, T almost surely;
Ž . < y Ž . < 2 y Ž .iii y ª E L Y is bounded in a compact interval, where L Y is theT T

local time of Y up to time T at level y.
2r5 Ž < < c. t iq 1 w xThen d | Y F d H d Y, Y is d-negligible for each c ) 1r4.t t ti i

PROOF. Note that

t tiq1 iq1c c 1r4< < < < < <w x w x| Y F d d Y , Y s | Y F d , Y F d d Y , YŽ .H H Ž .t tt t ti i
t ti i

tiq1 c 1r4< < < < w xq | Y F d , Y ) d d Y , YH Ž . tt ti
ti

tiq1 1r4< < w xF | Y F d d Y , YŽ .H tt
ti

tiq1 1r4 c< < w xq | Y y Y G d y d d Y , Y .H Ž . tt t i
ti
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wUsing the space]time change formula see Corollary 1 on page 168 of Protter
Ž .x1990 , we have

tiq1 1r4 1r4 y< < < <w x| Y F d d Y , Y s | y F d L Y dyŽ .Ž .Ž .Ý H Htt T
t Rit -Ti

and therefore
2

tiq12r5 1r4< < w xE d | Y F d d Y , YŽ .Ý H ttž /tit -Ti

21r20 < < 1r4 < y < 2F 2d H| y F d E L Y dy,Ž .Ž . T

Ž .which is of o d by the assumptions above. It remains to show the following is
d-negligible:

tiq12r5 1r4 c< < w xd | Y y Y G d y d d Y , YH Ž . tt t i
ti

2r5 < < 1r4 cF d t y t | sup Y y Y G d y d sup j .Ž .iq1 i t t tž /i
t FtFt t FtFti iq1 i iq1

35Ž .

Markov’s inequality with the assumptions above implies

< < 1r4 c < 1r4P sup Y y Y G d y d FF s O d ,Ž .t t t iž /i i
t FtFti iq1

and Holder’s inequality yields¨

1r4 c< < <E t y t | sup Y y Y G d y d sup j FFŽ .iq1 i t t t tž /i i
t FtFt t FtFti iq1 i iq1

4r91r22 1r4 c< < < <F E t y t FF P sup Y y Y G d y d FFŽ .iq1 i t t t tž /i i i
t FtFti iq1

1r18
18 <= E sup j FFt t i

t FtFti iq1

s o d 11r10 .Ž .i

Ž . Ž 23r20.The second moment of 35 can be shown to be O d in a similar fashion.i
I

We now proceed to isolate regions around the points of inflection. Let
j Ž . jY s X y F t , j s 1, . . . , m. Then each Y satisfies the conditions of Lemmat t j

4.5, and hence
tiq18r20 j 7r20 2< <d | Y F d s t , X dtŽ .HŽ .t ti

ti

is d-negligible. Define
m

7r20 7r2036 D t , d s F t y d , F t q d .Ž . Ž . Ž . Ž .D j j
js1
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Then we have
tiq18r20 2d | X g D t , d s t , X dtŽ . Ž .Ž .Ht i ti

ti

m t iq18r20 j 7r20 2< <F d | Y F d s t , X dt ,Ž .Ý HŽ .t ti
tijs1

which is d-negligible.

PROPOSITION 4.2. Under the hypothesis of Theorem 3.2,
t l liq1

X t , X h t , X dt y X t , X h t , X t y tŽ . Ž . Ž .Ž . Ž .H t t x x t t i t x x i t iq1 ii i iu uti

is d-negligible.

Ž . Ž .Ž . < Ž . <PROOF. The function g t, x s x lru t, x h t, x is Lipschitz continu-x x
ous, so that we can remove the t dependence by noting that

tiq1
g t , X y g t , X dtŽ . Ž .H t i t

ti

is d-negligible. We next claim that
tiq1

37 g t , X dt y g t , X t y t | X g D t , dŽ . Ž . Ž . Ž .Ž . Ž .H i t i t iq1 i t ii i
ti

is d-negligible. Due to Lipschitz continuity of g, this is dominated by

< <K sup X y X t y t | X g D t , dŽ . Ž .Ž .t t iq1 i t ii i
t FtFti iq1

for some positive constant K. Note that

2 1r20 < < 9r20 <P s t , X F d q P sup X y X ) d FF s o 1 .Ž .Ž .Ž .i t t t t iž /i i i
t FtFti iq1

Then,

< < 2 1r20sup X y X t y t | s t , X F d orŽ . Ž .t t iq1 i i tži i
t FtFti iq1

< < 9r20sup X y X ) dt t /i
t FtFti iq1

is d-negligible. Since

y2 < < 2 1r20s t , X sup X y X | s t , X ) d ,Ž . Ž .i t t t i tži i i
t FtFti iq1

< < 9r20 8r20sup X y X F d F d ,t t /i
t FtFti iq1

it is enough to show that

d 8r20I X g D t , d s 2 t , X t y tŽ . Ž .Ž .Ž .t i i t iq1 ii i



AHN, DAYAL, GRANNAN AND SWINDLE698

2Ž .Ž .is d-negligible. As in the proof of Proposition 4.1, s t , X t y t can bei t iq1 ii
t iq 1 2Ž .replaced by H s t, X dt. Lemma 4.5 implies thatt ti

tiq18r20 2d | X g D t , d s t , X dtŽ . Ž .Ž .Ht i ti
ti

Ž .is d-negligible. Therefore 37 is d-negligible.
We now move to the space]time region away from the points of inflection

where we must control

tiq1 Cg t , X dt y g t , X t y t | X g D t , d ,Ž . Ž . Ž .Ž .H ž /i t i t iq1 i t ii i
ti

Ž .C Ž .where D t , d is the complement of D t , d . Note thati i

tiq1 9r20< <g t , X y g t , X dt| sup X y X ) dŽ . Ž .H i t i t t tž /i i
t t FtFti i iq1

is d-negligible since

< < 9r20 <P sup X y X ) d FF s o 1 .Ž .t t t iž /i i
t FtFti iq1

Then it suffices to show that

tiq1 C9r20< <g t , X y g t , X | X y X F d , X g D t , d dtŽ . Ž .Ž .Ž .H ž /i t i t t t t ii i i
ti

Ž .C Ž .is d-negligible. If X g D t , d , g t , ? is continuously differentiable in thet i ii

neighborhood of X with radius d 7r20. Thus we havet i

tiq1 C9r20< <g t , X y g t , X | X y X F d , X g D t , d dtŽ . Ž .Ž .Ž .H ž /i t i t t t t ii i i
ti

t 1iq1
s g t , X q r X y X dr X y XŽ . Ž .Ž .H H x i t t t t ti i i

t 0i

C9r20< <=| X y X F d , X g D t , d dt .Ž .ž /t t t ii i

We decompose X into a martingale and a finite variation process. Applying
Lemma 3.5 with

1 C9r20< <H s g t , X q r X y X dr| X y X F d , X g D t , dŽ .Ž .Ž .H ž /t x i t t t t t t ii i i i
0

w .for t g t , t yields that the term with the martingale is d-negligible. Thei iq1
remaining term is clearly d-negligible. I
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Before proceeding, we will summarize the consequences of Proposition 4.1
Ž .and Proposition 4.2. Applying Ito’s formula with PDE 5 , we haveˆ

tiq1
h t , X y h t , X s h t , X dXŽ .Ž . Ž . Hiq1 t i t x t tiq 1 i

ti

t liq1
y X t , X h t , X dt .Ž . Ž .H t t x x tuti

Ž . Ž . ŽNow, Propositions 4.1 and 4.2 imply that h t , X y h t , X y h t ,iq1 t i t x iiq 1 i
.Ž .X X y X is equivalent tot t ti iq1 i

21 238 h t , X X y X y s t , X t y tŽ . Ž .Ž . Ž . Ž .x x i t t t i t iq1 i2 i iq1 i i

l
39 yX t , X h t , X t y tŽ . Ž .Ž . Ž .t i t x x i t iq1 ii i iu

Ž .up to d-negligible terms. Then 38 is equivalent to
2 21 <h t , X X y X y E X y X FFŽ . Ž . Ž .½ 5x x i t t t t t t2 i iq1 i iq1 i i

1 2 <y h t , X s t , X t y t y E t y t FF ,Ž . Ž . � 4x x i t i t iq1 i iq1 i t2 i i i

wŽ . 2Ž .Ž . < xsince E X y X y s t , X t y t FF is d-negligible by Propositiont t i t iq1 i tiq 1 i i i
Ž . Ž . Ž .4.1. An application of assumptions T1 and T3 yields that 39 is equivalent

to
l

<yX t , X h t , X t y t y E t y t FFŽ . Ž . � 4t i t x x i t iq1 i iq1 i ti i i iu

1r2 1r2< < < <q X h t , X d X y X y E d X y X FFŽ . ½ 5t x x i t t t t t ti i iq1 i iq1 i i

1r2y d h t , X X y X X .Ž . Ž .x x i t t t ti iq1 i i

Ž . Ž .up to d-negligible terms. The fact that h t, x satisfies PDE 5 yields

1 l
2h t , X s y s t , X h t , X y X t , X h t , X ,Ž . Ž . Ž . Ž . Ž .t i t i t x x i t t i t x x i ti i i i i i2 u

Ž . Ž .which allows us to combine 38 and 39 as
2 21 <h t , X X y X y E X y X FFŽ . Ž . Ž .½ 5x x i t t t t t t2 i iq1 i iq1 i i

<q h t , X t y t y E t y t FFŽ . � 4t i t iq1 i iq1 i ti i

1r2 1r2< < < <q X h t , X d X y X y E d X y X FFŽ . ½ 5t x x i t t t t t ti i iq1 i iq1 i i

1r2y d h t , X X y X X .Ž . Ž .x x i t t t ti iq1 i i

Ž .Recalling the bookkeeping formula 2 , once we show that
1r2d h t , X y h t , X XŽ . Ž .x iq1 t x i t tiq 1 i iq1

1r2y d h t , X X y X XŽ . Ž .x x i t t t ti iq1 i i

40Ž .
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is d-negligible, the replication error is to leading order in d given by

2 21 <E h t , X X y X y E X y X FFŽ . Ž . Ž .Ý ½ 5x x i t t t t t t2 i iq1 i iq1 i i½
t -Ti

<qh t , X t y t y E t y t FFŽ . � 4t i t iq1 i iq1 i ti i

2
1r2 1r2< < < <qX Vh t , X d X y X y E d X y X FF .Ž . ½ 5t x x i t t t t t ti i iq1 i iq1 i i 5

Ž . Ž .The cross terms in i above vanish, and 11 implies that the diagonal terms
Ž . Ž .converge to 12 . Therefore, the last remaining task is to very that 40 is

d-negligible. The next proposition shows that X attached at the end of thet iq 1
Ž .first term of 40 can be replaced by X .t i

PROPOSITION 4.3. Under the hypotheses of Theorem 3.2,

1r2d h t , X y h t , X X y XŽ . Ž . Ž .x iq1 t x i t t tiq 1 i iq1 i

is d-negligible.

Ž . Ž . Ž < <.PROOF. Since h t , X y h t , X s O t y t , it suffices tox iq1 t x i t iq1 iiq 1 iq1

show that

1r2d h t , X y h t , X X y XŽ . Ž . Ž .x i t x i t t tiq 1 i iq1 i

Ž .is d-negligible. By virtue of T7 , the following is d-negligible:

1r2d h t , X X y X X y X .Ž . Ž . Ž .x x i t t t t ti iq1 i iq1 i

The proof will be complete if we show that

1r2d h t , X y h t , X y h t , X X y X X y XŽ . Ž . Ž . Ž . Ž .x i t x i t x x i t t t t tiq 1 i i iq1 i iq1 i

is also d-negligible. This follows from

h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž .x i t x i t x x i t t tiq 1 i i iq1 i

1
s h t , X q r X y X y h t , X dr X y XŽ . Ž . Ž .Ž .H x x i t t t x x i t t ti iq1 i i iq1 i

0

< < 2s O X y X .ž /t tiq 1 i

We must now show that

1r241 d X h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž . Ž .½ 5t x iq1 t x i t x x i t t ti iq1 i i iq1 i

Ž . Ž 1r2 .Ž < < <is d-negligible. When h t , X is 0, this is of O d t y t q X yx x i t i iq1 i ti iq1
. < 2 . Ž .X , and hence 40 is still too big. This is a problem only near the points oft i

inflection, and the next proposition says this does not happen very often.
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PROPOSITION 4.4. Under the hypotheses of Theorem 3.2,

1r2d X h t , X y h t , XŽ . Ž .½t x iq1 t x i ti iq1 i

y h t , X X y X | X g D t , dŽ .Ž . Ž . Ž .5x x i t t t t ii iq1 i i

is d-negligible.

Ž . Ž .PROOF. The expressions h t , X y h t , X can be rewritten asx iq1 t x i tiq 1 i

h t , X X y X q X y XŽ . Ž . Ž .x x i t t t t ti iq1 i iq1 i

1
= h t , X q r X y X y h t , X drŽ . Ž .Ž .H x x i t t t x x i ti iq1 i i

0

42Ž .

43 qh t , X y h t , X .Ž . Ž . Ž .x iq1 t x i tiq 1 iq1

Ž . Ž .Since h is Lipschitz, 43 is bounded by K t y t where K is a positivex iq1 i
constant. Thus

1r2 1r244 d X h t , X y h t , X F d X K t y t .Ž . Ž .Ž . Ž .t x iq1 t x i t t iq1 ii iq1 iq1 i

Ž Ž ..Note that X | X g D t , d is bounded by a constant due to the compact-t t ii i

Ž . Ž .ness of D D t, d . Then, as in the proof of Proposition 4.2, 44 is0 F t F T
d-negligible. Thus

1r2d X h t , X y h t , X | X g D t , dŽ .Ž . Ž . Ž .t x iq1 t x i t t ii iq1 iq1 i

Ž .is also d-negligible. Then 42 is bounded above by

1
< <h t , X q r X y X y h t , X dr X y XŽ . Ž .Ž .H x x i t t t x x i t t ti iq1 i i iq1 i

0

< < 2F K X y Xt tiq 1 i

by Lipschitz continuity. Observing that

t tiq1 iq12 2< <X y X s 2 X y X dX q s t , X dtŽ .Ž .H Ht t t t t tiq 1 i i
t ti i

and that both

t tiq1 iq11r2 1r2 2d X y X dX and d s t , X dt| X g D t , dŽ . Ž .Ž . Ž .H Ht t t t t ii i
t ti i

are d-negligible results in the fact that

11r2d h t , X q r X y XŽ .Ž .H x x i t t ti iq1 i
0

yh t , X dr X y X | X g D t , dŽ .Ž . Ž . Ž .x x i t t t t ii iq1 i i

is also d-negligible. I
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At this point the main concern is to control

h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

Ž .Caway from the inflection points; that is, for X g D t , d .t ii

LEMMA 4.6. Suppose that A / 0. Then
< < < < < <A q B y A s sign A B q 2 A q B | yB n 0 - A - yB k 0 .Ž . Ž .

PROOF. It is true for A q B s 0, and hence suppose not. Then
< <A q B s A q B | A ) 0, A q B ) 0 y A q B | A ) 0, A q B - 0Ž . Ž . Ž . Ž .

y AqB | A - 0, A q B - 0 q A q B | A - 0, A q B ) 0Ž . Ž . Ž . Ž .
s A q B | A ) 0 y 2 A q B | A ) 0, A q B - 0Ž . Ž . Ž . Ž .

y A q B | A - 0 q 2 A q B | A - 0, A q B ) 0Ž . Ž . Ž . Ž .
< <s sign A A q B q 2 A q B | 0 - A - yB or yB - A - 0Ž . Ž . Ž .

and the result follows. I

Ž .C Ž .Thus if X g D t , d , then 41 can be rewritten ast ii

1r245 2d X h t , X y h t , X I tŽ . Ž .Ž . Ž .t x iq1 t x i t ii iq1 i

1r2qd X sign h t , X X y XŽ . Ž .t x x i t t ti i iq1 i

= h t , X y h t , X y h t , X X y X ,� 4Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

46Ž .

Ž . < Ž .Ž . <where I t is an indicator of the event that h t , X X y X fallsi x x i t t ti iq1 i

between

y h t , X y h t , X y h t , X X y X n 0Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

and

y h t , X y h t , X y h t , X X y X k 0.Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

Ž .We begin by controlling 46 .

PROPOSITION 4.5. Under the hypothesis of Theorem 3.2,
1r2d X sign h t , X X y XŽ . Ž .t x x i t t ti i iq1 i

= h t , X y h t , X y h t , X X y X� 4Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

C
= | X g D t , dŽ .ž /t ii

is d-negligible.

PROOF. First we show that the above is equivalent to
1r2d X sign h t , X X y XŽ . Ž .t x x i t t ti i iq1 i

2
= h t , X t y t q h t , X X y XŽ .Ž . Ž . Ž .½ 5t x i t iq1 i x x x i t t ti i iq1 i

47Ž .
C

= | X g D t , d .Ž .ž /t ii
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That is, we must show that the following is d-negligible:

1r2d X h t , X y h t , X y h t , X X y XŽ . Ž . Ž . Ž .t x iq1 t x i t x x i t t ti iq1 i i iq1 i

2yh t , X t y t y h t , X X y XŽ .Ž . Ž . Ž .t x i t iq1 i x x x i t t ti i iq1 i
48Ž .

C
=| X g D t , d .Ž .ž /t ii

Since

< < 9r20 <P sup X y X ) d FF s o 1 ,Ž .t t t iž /i i
t FtFti iq1

Ž Ž .C . Ž < < 9r20| X g D t , d can be replaced by | sup X y X F d , X gt i t F t Ft t t ti i iq1 i i

Ž .C .D t , d . When this indicator turns on, h is smooth in the neighborhood ofi x
< <X with radius X y X , and hence the terms inside absolute value can bet t ti iq1 i

1
h t q r t y t , X q r X y X y h t , X dr t y tŽ . Ž .Ž . Ž .Ž .H t x i iq1 i t t t t x i t iq1 ii iq1 i i

0

1
q h t q r t y t , X q r X y XŽ . Ž .Ž .H x x i iq1 i t t ti iq1 i

0

y h t , X q r X y X dr X y XŽ . Ž .Ž .x x i t t t t ti iq1 i iq1 i

r1 2q h t , X q q X y X y h t , X dq dr X y X .Ž . Ž . Ž .Ž .H H x x x i t t t x x x i t t ti iq1 i i iq1 i
0 0

Ž < < 9r20. Ž .Ž < <Together with | sup X y X ) d , this is of o 1 t y t qt F t Ft t t i iq1 ii iq1 i

< < 2 . Ž .X y X , and therefore 48 is d-negligible.t tiq 1 i

Ž .It remains to show that 47 is also d-negligible:

1r2d X sign h t , X X y XŽ . Ž .t x x i t t ti i iq1 i

=
Ch t , X t y t | X g D t , dŽ . Ž .Ž . ž /t x i t iq1 i t ii i

Ž .is d-negligible due to T5 and Lemma 4.2. Similarly,

1r2d X sign h t , X X y XŽ . Ž .t x x i t t ti i iq1 i

2 C
= h t , X X y X | X g D t , dŽ .Ž . Ž .½ 5 ž /x x x i t t t t ii iq1 i i

Ž .is d-negligible due to T7 and Lemma 4.2. I

Now we complete the proof of Theorem 3.2 with the following result, which
Ž .dispenses of 45 .

PROPOSITION 4.6. Under the hypotheses of Theorem 3.2, the following is
d-negligible:

C1r2d X h t , X y h t , X I t | X g D t , d .Ž . Ž .Ž . Ž . ž /t x iq1 t x i t i t ii iq1 i i
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Ž . < Ž .Ž . <Recall that I t indicates the event that h t , X X y X falls be-i x x i t t ti iq1 i

tween

y h t , X y h t , X y h t , X X y X n 0Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

and

y h t , X y h t , X y h t , X X y X k 0.Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t tiq 1 i i iq1 i

Ž .PROOF. By the definition of I t ,i

h t , X y h t , X I tŽ .Ž . Ž .x iq1 t x i t iiq 1 i

F 2 h t , X y h t , X y h t , X X y X t .Ž .Ž . Ž . Ž . Ž .x iq1 t x i t x x i t t t iiq 1 i i iq1 i

Thus, as in the proof of Proposition 3.5, we will show that

211r2d X h t , X t y t q h t , X X y XŽ .Ž . Ž . Ž .t t x i t iq1 i x x x i t t t2i i i iq1 i

C9r20< <= I t | sup X y X F d , X g D t , dŽ . Ž .i t t t ii iž /
t FtFti iq1

Ž .is d-negligible. We break I t into three pieces:i

9r20I t s I t | h t , X ) d ,Ž . Ž . Ž .ž /1 i i x x i t i

9r20 1r20I t s I t | h t , X F d , h t , X F d ,Ž . Ž . Ž . Ž .ž /2 i i x x i t x x x i ti i

9r20 1r20I t s I t | h t , X F d , h t , X ) d .Ž . Ž . Ž . Ž .ž /3 i i x x i t x x x i ti i

w Ž . < xFirst, note that E I t FF is dominated by1 i t i

9r20 < <P d X y X - h t , X y h t , XŽ . Ž .ž t t x iq1 t x i tiq 1 i iq1 i

yh t , X X y X FF .Ž . Ž . /x x i t t t ti iq1 i i

Ž . y1 < Ž . Ž . Ž .Ž . <This is of o 1 since d h t , X y h t , X y h t , X X y Xx iq1 t x i t x x i t t tiq 1 i i iq1 i
1r2 < Ž . Ž . Ž .Ž . <is tight. Thus, d X h t , X y h t , X y h t , X X y Xt x iq1 t x i t x x i t t ti iq1 i i iq1 i

Ž .I t is d-negligible. Next, we consider the second term. By the definition1 i
of I ,2

21r2d X h t , X X y X I tŽ .Ž . Ž .t x x x i t t t 2 ii i iq1 i

C9r20< <= | sup X y X F d , X g D t , dŽ .t t t ii iž /
t FtFti iq1

11r20 Ž .2is dominated by d X X y X , and hence it is d-negligible. Differen-t t ti iq1 i
Ž .tiating PDE 5 with respect to x, we have

h t , x s a t , x h t , x q b t , x h t , x ,Ž . Ž . Ž . Ž . Ž .t x x x x x x
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where
1 l

2a t , x s s t , x q x t , x sign h t , x ,Ž . Ž . Ž . Ž .x x2 u

1 s 2  l
b t , x s t , x q x t , x sign h t , x .Ž . Ž . Ž . Ž .x x½ 52  x  x u

Therefore, by definition of I ,2

1r2d X h t , X t y t I tŽ . Ž .Ž .t t x i t iq1 i 2 ii i

C9r20< <= | sup X y X F d , X g D t , dŽ .t t t ii iž /
t FtFti iq1

is also dominated by
11r20 8r20d a t , X t y t q d b t , X X t y t ,Ž . Ž .Ž . Ž .i t iq1 i i t t iq1 ii i i

and hence d-negligible. Finally, we show that the third term is d-negligible:
21r2d X h t , X t y t q h t , X X y XŽ .Ž . Ž . Ž .t t x i t iq1 i x x x i t t ti i i iq1 i

C9r20< <= I t | sup X y X F d , X g D t , d .Ž . Ž .3 i t t t ii iž /
t FtFti iq1

This is dominated by
19r2049 d b t , X X t y tŽ . Ž .Ž .i t t iq1 ii i

21r2qd X h t , X X y X q a t , X t y tŽ .Ž . Ž . Ž .t x x x i t t t i t iy1 ii i iq1 i i

50Ž . C9r20< <=I t | sup X y X F d , X g D t , d .Ž . Ž .3 i t t t ii iž /
t FtFti iq1

Ž . Ž . Ž .The fact that 49 is d-negligible is straightforward. Under P3 , h ?, X is ax x
continuous semimartingale with a quadratic variation

?
2 2h t , X s t , X dt ,Ž . Ž .H x x x t t

0

Ž .where h is a left derivative of h . By virtue of the set of conditions P ,x x x x x
Ž .h ?, X satisfies the conditions of Lemma 4.5, and hencex x

tiq12r5 9r20 2 251 d | h t , X F d h t , X s t , X dtŽ . Ž . Ž .Ž . Hž /x x i t x x x t ti
ti

Ž .2 t iq 1 2Ž .is d-negligible. We may replace X y X by H s t, X dt. Also notet t t tiq 1 i i

that
9r20 w xt , x : h t , x F d , t g 0, TŽ . Ž .� 4x x

is compact. This and the definition of I imply3
21r2d X h t , X X y X I tŽ .Ž . Ž .t x x x i t t t 3 ii i iq1 i

C9r20< <= | sup X y X F d , X g D t , dŽ .t t t ii iž /
t FtFti iq1
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is d-negligible. To complete the proof, it remains to show that

2r5 9r20 2 2d | h t , X F d h t , X s t , X t y t I tŽ . Ž .Ž . Ž . Ž .ž /x x i t x x x i t i t iq1 i 3 ii i i

C9r20< <= | sup X y X F d , X g D t , dŽ .t t t ii iž /
t FtFti iq1

is also d-negligible. This follows from the fact that

tiq1 2 2 2 2h t , X s t , X y h t , X s t , X dtŽ . Ž . Ž . Ž .H x x x t t x x x i t i ti i
ti

C9r20< <= | sup X y X F d , X g D t , dŽ .t t t ii iž /
t FtFti iq1

Ž .Ž .is of o 1 t y t . Ii iq1 i

5. Conclusion. The practical applications of the results of this paper are
derived largely from the possibility of optimizing hedging methods over much
larger classes of strategies than those previously considered. In the small
transaction cost limit, many optimization questions revolve around the trade-
off between initial portfolio value and replication error, and the primary
limitation in optimization has to date been the lack of a unified treatment of
the replication error. Here we have reduced this problem to the calculation of
a few moments.

Consequently, for any class of strategies for which these moments can be
calculated, one can in theory obtain the strategy, which, for example, mini-
mizes replication error given an initial portfolio value. The only limitations
are the numerical tasks involved.

A class of strategies which we are currently considering consists of time
interval strategies with a weak stock price dependence. Specifically, these are

Ž .strategies in which t s t q du t , X , so that the next rebalancing timeiq1 i i t i

is fixed given the previous rebalancing time and price. These strategies fall
under the umbrella of the results in this paper, and in fact are rather
straightforward extensions of the fixed time interval strategies. Nevertheless,
although the replication error is immediately obtainable from Theorem 3.2,
the numerical tasks associated with minimizing, for example, a weighted sum
of initial portfolio value and replication error are nontrivial.

We expect that the additional work associated with optimization over this
class of temporal strategies with weak price dependence will be worth the
effort. The major limitation of strategies with fixed time intervals between

Ž .rebalancing is that no consideration is made regarding the local G curvature
of the payoff. These weakly price dependent strategies are perhaps the
simplest class which allows for rapid rebalancing in regions of high G and
infrequent rebalancing when G is small. It is the possibility of distinguishing
between regions where hedging is important and where it is not that suggest
that significant improvements over fixed time interval strategies are possible,
even within the context of these simple strategies.
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