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LARGE DEVIATION PROPERTIES OF DATA
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Brown University

Using large deviation techniques, we analyze the tail behavior of the
stationary distribution of the buffer content process for a two-station com-
munication network. We also show how the associated rate function can
be expressed as the solution to a finite-dimensional variational problem.
Along the way, we develop a number of results and techniques that are
of independent interest, including continuity results for the input–output
mapping for certain multiclass fluid models and a new technique for ob-
taining large deviation principles for invariant distributions from sample
path large deviation results.

1. Introduction. A problem that has attracted a great deal of interest in
recent years is that of design and admission control for packet switched digital
data networks. In such networks, data streams from different types of sources
share the network’s resources. Buffers are inserted into the network to reduce
data loss due to large fluctuations in the traffic offered to a given switch. This
turns out to complicate the situation from the point of view of analysis, since
this sharing of a buffer couples data streams that may previously have been
statistically independent.

One approach that has been discussed extensively involves the use of what
is known as “effective bandwidth.” The basic motivation for this concept is
an attempt to characterize the properties of the various data sources that
use the network in such a way that an equivalent circuit switched model of
the network can be used for network management. There are many papers
[14, 10, 15, 3] that show how this can be done in the context of a single
switch and for a variety of data stream models. In the single buffer setting, a
function of the form Hi�α�/α is associated with the ith source, where Hi�α�
can be defined as a certain limit of suitably normalized logarithmic moment
generating functions of increments from the ith data stream. Suppose that the
switch processes data at a (deterministic) rate c and that any work conserving
service policy is used. Moreover, assume that the buffer content is an ergodic
process with invariant distribution µ. When the data streams are independent,
the following rough asymptotics can be established:

(1.1)
I∑
i=1

Hi�M�
M

≤ c ⇒ lim
n→∞

1
n

logµ��n;∞�� ≤ −M:
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Such a result is quite appealing, since it implies that a relatively simple test
can be used to determine whether or not (within the accuracy of the large devi-
ations approximation) the stationary probability of exceeding any given buffer
size is less than some specified value. In Section 9.1 we discuss the usefulness
of this concept in the network setting. One can verify that µ��n;∞�� provides
a conservative estimate of the stationary probability that data arriving at a
system with a buffer of size n will find the buffer full and, as we discuss in Sec-
tion 9.2, that the normalized logarithm of this quantity and logµ��n;∞��/n
have the same asymptotic behavior as n→∞.

A considerable amount of work has been done on the single switch problem,
but relatively little has been done to extend these ideas to the setting of a net-
work of switches. A basic question one could ask is the following. Suppose a
source shares a buffer at one switch with several other sources, and then pro-
ceeds downstream to a second switch that is shared with other (independent)
sources. Can one establish some simple criteria which guarantee that the sta-
tionary distribution at each of the buffers satisfies a stipulated constraint? In
particular, can the same bandwidth function be used in the same way for the
estimation of the marginal invariant distribution µ2 of the second switch? In
other words, if I2 represents the set of sources feeding into the second switch,
and c2 the capacity of the second switch, then is it true that (1.1) is satisfied
and also for any M2 <∞,

∑
i∈I2

Hi�M2�
M2

≤ c2 ⇒ lim
n→∞

1
n

logµ2��n;∞�� ≤ −M2?

If such a condition holds, then the streams are said to “decouple” and the
probability constraints throughout the network can be met just by ensuring
that the streams entering the network satisfy simple “effective bandwidth”
constraints. One would therefore like to determine if such a decoupling phe-
nomena is to be typically expected.

In order to address these issues, one has to fully understand the nature
of interactions between the various sources in the first buffer that lead to
overflow of the buffer downstream. Since the important interactions can be
nonstationary and depend on the timing of certain critical events at the dif-
ferent buffers, it becomes necessary to examine the large deviation properties
of the streams at the level of sample paths. Using the same scaling as that in
(1.1), in this paper we carry out a complete analysis of the asymptotic behavior
of the invariant distribution at the two switches. In particular, we characterize
the tails of the joint invariant distribution in terms of three finite-dimensional
variational problems. As discussed in Section 9.1, a simple analysis of these
finite-dimensional problems reveals that in general the decoupling property
does not hold since the distribution of the data stream (and also its band-
width function) is corrupted due to interactions with other sources in the first
buffer. However, the explicit form that we obtain for the rate function should
be useful in testing any other criteria proposed as an alternative to the effec-
tive bandwidth criterion. The constructions we use can be extended to larger
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networks and we elaborate on this point in Section 9.3. However, the reduc-
tion of an infinite-dimensional variational problem to a finite-dimensional one
that is carried out in Section 8 is quite detailed even for the two-switch model.
In addition, the notation rapidly becomes unwieldy as the number of switches
increases. For these reasons we focus our attention on the two-switch case. We
note that the methods we use also allow the study of delays in the network,
although we are not concerned with that here. Another extension that can be
dealt with using the techniques developed here allows the number of users
and the buffer sizes to tend to infinity together. The single switch model is
considered in [24].

In the course of our analysis, we develop a number of results and techniques
that are of independent interest. Chief among these are continuity properties
of a “reflection mapping” for multiclass fluid models (Section 4), a method for
the construction of Lyapunov functions for such models (Appendix A) and a
new technique for connecting sample path large deviation properties to large
deviation properties of associated invariant distributions (Section 6).

While preparing this paper we became aware of the work of O’Connell [19].
This paper uses a construction to prove continuity that is similar to the one
we use in Section 4. Although the continuity result stated in Section 4 is not
explicitly covered by his results, it can easily be obtained using his arguments.
More recent work by Majewski [17] generalizes a construction due to Loynes
[16] to obtain certain large deviation results for general feedforward networks
and stationary sources.

The outline of the paper is as follows. In Section 2 we formulate the net-
work model and define the scaling. We consider only Markov fluid models for
the data streams, but the results may be extended to other types of sources.
Due to the non-Markovian nature of our network model, we append a state
variable to Markovianize the process in Section 3 and discuss the associated
topology. The continuity of the mapping that takes the input processes into
the buffer content processes is stated and proved in Section 4. In Section 5 we
give the large deviation principle at the level of sample paths for the buffer
content processes, and in Section 6 use these results to obtain the large devia-
tion principle for the invariant distribution. This section assumes exponential
tightness and stability results that are stated in Section 7 and proved in Ap-
pendix A. The rate function for the invariant distribution that is obtained in
Section 6 is given in the form of an infinite-dimensional variational problem.
In Section 8 we describe how this can be reduced to the problem of solving
three finite-dimensional variational problems. Each of the simplified varia-
tional problems has an interesting interpretation, which is also discussed in
Section 8. The proof of the reduction is deferred to Appendix B. We close the
paper in Section 9 with remarks on extensions and a discussion of decoupling
bandwidths.

We end this introduction with remarks on terminology and notation. In the
current literature, the term “fluid model” seems to be applied in two quite
different senses. On the one hand it is used to describe a dynamical system
related to a given queueing model or similar process (e.g., a reflecting Brown-
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ian motion). Roughly speaking, the dynamical system is obtained by defining
at each point in the state space of the process a vector field which gives the
“local mean behavior” at that point. However, the term is also employed while
referring to certain data models in communication networks. In this case, a
fluid model is a process with continuous sample paths that is used in lieu
of a (presumably more accurate) discrete valued model. In this paper we use
the term in both senses. We hope that the intended use is clear from the con-
text. Finally, throughout the paper we use capital letters to denote stochastic
processes and use lower case letters for their deterministic analogues.

2. Description of the network. In this section we describe the network
model under consideration. The network is represented in Figure 1. We con-
sider a two-queue, multiple class feedforward network. In particular, we con-
sider a two-switch communication network with I different data sources en-
tering the first buffer, a subset of which follows a predetermined route to the
second buffer while the complement leaves the network. Generalizations are
discussed in Section 9. Data is processed in a FIFO (first in–first out) manner,
and a stochastic process ξi�t� is used to model the data emitted from each
source. We make the following assumption on ξi�t�.

Assumption 2.1. For each i = 1;2; : : : ; I, ξi�t� is an ergodic Markov pro-
cess taking values in a finite state space Fi.

The processes ξi will be right continuous with limits from the left. Let the
invariant distribution of ξi�t� be πi and let ri be a nonnegative function on Fi.
Suppose that Xi�t� denotes the cumulative input to buffer A due to source
i over the time interval �0; t�. We adopt the well-known fluid model [1], by
which we mean that the rate of data output Ẋi�t� is modeled by

Ẋi�t� = ri�ξi�t��:
With the convention Xi�0� = 0, integration of the last equation yields

Xi�t� =
∫ t

0
ri�ξi�s��ds:

Remark. In this paper we will restrict our models for the data sources to
be of this type: fluid models defined in terms of finite state Markov processes.

Fig. 1. Network model.
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The analysis is applicable in far greater generality, and in fact does not require
either the continuous nature of fluid model sample paths or the Markovian
assumption. However, in order to simplify the exposition and keep the length
of the paper within limits, we will restrict our attention to such fluid models. In
particular, if one wishes to deal with sources where ξi is non-Markov or where
the state space is not finite, many annoying additional uniformity conditions
need to be checked for each particular model.

In this section we will describe the network only for the case of zero initial
conditions. The case of arbitrary initial conditions is the subject of the next
section.

Let 8�t� denote the total cumulative input to buffer A over the interval
�0; t�. Then

8�t� =
I∑
i=1

Xi�t�:

In order to describe the buffer content processes, we first introduce the one-
dimensional Skorokhod map (see [7]). Fix T < ∞, and let C �0;T� denote the
set of continuous functions from �0;T� to R. We use the standard sup norm
metric on C �0;T�x d�f;g� = supt∈�0;T� �f�t� − g�t��, and recall that with this
metric C �0;T� is a Polish space.

The Skorokhod map that we consider is a standard tool in one dimensional
queueing and reflecting diffusion models. Although it can be defined in greater
generality, for our purposes we need only consider this mapping on C �0;T�.
In this case 0x ζ ∈ C �0;T� → ψ ∈ C �0;T� is given by

ψ�t� = ζ�t� −
(

inf
s∈�0; t�

ζ�s�
)
∧ 0:(2.1)

The mapping provides the natural “constrained version” of a path that is
consistent with restricting the path to stay in the domain �0;∞� with the
“least effort.” Note that 0 is Lipschitz continuous with constant 2. In fact, our
only interest in exhibiting the general form of the Skorokhod map is because
it is in this form that this continuity is obvious. In the special case where ζ
is absolutely continuous, which is the only case that we will have to consider,
the Skorokhod map takes the form ψ = 0�ζ� if and only if (see [8], Theorem 2)

ψ�0� = ζ�0� ∨ 0;

ψ̇ =
{
ζ̇�t�; if ψ�t� > 0;

ζ̇�t� ∨ 0; if ψ�t� = 0:

(2.2)

We will assume that each buffer processes data continuously and with a
given fixed rate. Let QA�t� denote the content of buffer A at time t and let cA
be its processing rate. The equation for the buffer A content is then given by

Q̇A�t� =
{
8̇�t� − cA; if QA�t� > 0;

�8̇�t� − cA� ∨ 0; if QA�t� = 0:
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With the definition gA�t� = cAt, the buffer content process can be expressed
succinctly in terms of the Skorokhod map as

QA = 0�8− gA�:(2.3)

Suppose we define D�t� to be the delay experienced by the data that exits
buffer A at time t. Since we need to keep track of the mutual dependencies
of the data streams that are induced through the sharing of the buffer, this
quantity plays a key role in the subsequent development. For any t, the total
cumulative input to buffer A at time t must equal the amount of data that
has already been processed plus the amount of data currently in the buffer.
The total amount of data that has exited the buffer at any time is equal to the
amount of data that entered before the data currently leaving. Since this data
had a delayD�t�, the amount of data already processed at time t is 8�t−D�t��.
This implies the equation

8�t� = 8�t−D�t�� +QA�t�:
However, it turns out that this equation does not uniquely characterize D�t�
for certain t, and so we use the following definition:

D�t� = inf�δ ≥ 0x 8�t� = 8�t− δ� +QA�t��:(2.4)

Simple manipulations give the following explicit relation:

D�t� = t−8−1�8�t� −QA�t�� ∧ t;
where for the continuous nondecreasing function φ, φ−1 is defined by

φ−1�s� = sup�tx φ�t� = s�:
Since such a function φ−1 is always right continuous, the continuity of 8 and
QA imply that D is always right continuous as well. Moreover, if QA�t� = 0,
then D�t� = 0, as one would expect. A last fact we will need is the following
implicit relation:

QA�t−D�t�� = cAD�t�:(2.5)

This equation asserts that if D�t� is the delay associated with data that exits
at t, then the buffer size at the time this data entered must be cAD�t�. If
QA�t� = 0, then D�t� = 0 and therefore QA�t −D�t�� = QA�t� = 0. To prove
(2.5) when QA�t� > 0, we use the fact that QA�s� > 0 for all s ∈ �t −D�t�; t�.
Since this implies 8̇�s� − Q̇A�s� = cA for s ∈ �t−D�t�; t�, we obtain

8�t� −8�t−D�t�� − �QA�t� −QA�t−D�t��� = cAD�t�:
If we use the fact that the infimum in (2.4) is achieved at D�t�, we get

8�t� −8�t−D�t�� −QA�t� = 0:

Subtracting the second equation from the first produces (2.5).
Now let Yi�t� be the cumulative output from buffer A at time t that orig-

inated from source i. Note that the bound on the processing rate guarantees
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that Yi�t� is almost surely differentiable in t. One can in fact give an explicit
formula for Ẏi�t�, as shown in (B.2). From the definition of D�t�,

Yi�t� =Xi�t−D�t��:

In the particular feedforward network structure considered here, only some
of the sources that exit buffer A enter buffer B and the remaining sources
leave the network. By grouping the sources in each of these categories, one
may assume without loss of generality that there are only two sources (I = 2),
where source 1 continues on to buffer B and source 2 leaves the network. This
network is shown in Figure 2.

Let QB�t� denote the contents of buffer B at time t. Then QB�t� satisfies

Q̇B�t� =
{
Ẏ1�t� − cB; if QB�t� > 0;

�Ẏ1�t� − cB� ∨ 0; if QB�t� = 0:

If we define gB�t� = cBt, then in terms of the Skorokhod map we can write
this as

QB = 0�Y1 − gB�:

Recall that our goal is to calculate the invariant probability that the buffer
contents exceed certain values. We shall use large deviations techniques to an-
alyze the asymptotic behavior of the invariant distribution of a scaled version
of the process �ξ1; ξ2;QA;QB�. As in the one-dimensional case, the particular
probability we will focus on in Section 8 provides a conservative estimate for
the stationary probability that data in the corresponding finite buffer model is
lost. It is well known in many analogous settings that the asymptotic behav-
iors of these two quantities are the same (in the large deviation sense) as the
buffer sizes tend to infinity. This equivalence continues to hold here as well. If
desired, one could in fact introduce a model with finite buffers, calculate the
large deviation properties for such a model directly, and thereby verify this
fact. The only difference between the finite buffer model and the model used
here is the form of the Skorokhod map used at each switch. For example, if
the buffer size at switch A is scaled as naA, then the Skorokhod map used
at that switch would constrain the buffer content to the domain �0; naA�, and
to �0; aA� after rescaling. Since this Skorokhod map has the same continu-
ity properties as the one we use [7], the analysis can be completed in much
the same way as in the case we consider. Since the notation and arguments

Fig. 2. Simplified network model.
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even without these additional reflection maps are rather complicated, we will
content ourselves with the treatment of the simpler case and provide a few
additional remarks in Section 9.2.

The appropriate large deviation scaling for our problem is given by

ξni �t� = ξi�nt�

Xn
i �t� =

1
n
Xi�nt�; Yn

i �t� =
1
n
Yi�nt�;

Qn
A�t� =

1
n
QA�nt�; Qn

B�t� =
1
n
QB�nt�:

It can easily be seen that the scaled processes also satisfy the system of equa-
tions satisfied by the original processes. We remind the reader that up un-
til now we have considered only the case of zero initial conditions: Xn

1�0� =
Xn

2�0� = Qn
A�0� = Qn

B�0� = Yn
1�0� = Yn

2�0� = 0.

System of equations (A):

Ẋn
i �t� = ri�ξni �t��;(2.6)

8n�t� =Xn
1�t� +Xn

2�t�;

Q̇n
A�t� =

{
8̇n�t� − cA; if Qn

A�t� > 0;

�8̇n�t� − cA� ∨ 0; if Qn
A�t� = 0;

(2.7)

Dn�t� = t− �8n�−1�8n�t� −Qn
A�t�� ∧ t;

Yn
i �t� =Xn

i �t−Dn�t��;

Q̇n
B�t� =

{
Ẏn

1�t� − cB; if Qn
B�t� > 0;

�Ẏn
1�t� − cB� ∨ 0; if Qn

B�t� = 0:

3. Markov model. From the system of equations (A) for the scaled pro-
cess �ξn1 ; ξn2 ;Qn

A;Q
n
B� defined in Section 2 for zero initial conditions, we see that

the evolution of the contents of buffer B at time t depends not only on the val-
ues of the process at time t; but also on the past values of �Ẋn

1 ; Ẋ
n
2�; and there-

fore on �ξn1 ; ξn2 � during the time interval �t −Dn�t�; t�. Thus �ξn1 ; ξn2 ;Qn
A;Q

n
B�

is a non-Markovian process. This is an important feature of the network prob-
lem. In the case of a single queue, from (2.7) the process �ξn1 ; ξn2 ;Qn

A� is seen
to be Markovian since the evolution of the buffer A content depends only on
the current values of �Ẋn

1 ; Ẋ
n
2�, which are in turn determined by the current

values of �ξn1 ; ξn2 �. The behavior of the single queue process is therefore much
easier to analyze. In the two-queue problem the analysis is complicated by
the delay experienced by the input processes �Xn

1 ;X
n
2� while in the buffer
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A. The order in which the input streams enter buffer A becomes important
since the stochastic properties or “burstiness” of an incoming stream may be
significantly altered by interactions with other streams in the buffer.

In order to facilitate the analysis of the problem, we Markovianize the pro-
cess �ξn1 ; ξn2 ;Qn

A;Q
n
B�. We carry out the natural Markovianization by adding

another state variable that captures all the past information required to fully
determine the evolution of the distribution of the process. The new state vari-
able will be defined in terms of a Borel measurable function fnx �0;∞� ×
�0;∞� → �0;1�. The first variable of the function fn will coincide with the
time index t of the processes �ξn1 ; ξn2 �. For any given s ∈ �0;Qn

A�t�/cA�, we
define fn�t; s� to be the fraction of the data due to source 1 currently in the
buffer that will exit at the (scaled) time t + s. For s > Qn

A�t�/cA, we define
fn�t; s� = 0.

In Figure 3, fn�t; s� is shown as a function of s for a fixed t. An explicit
representation for fn�t; s� can be given in terms of the restrictions of the
functions ξn1 and ξn2 to �0; t�. However, we do not include the representation
since it is never used. What is important for our purposes is that with the
addition of this variable the state becomes Markovian and also that we can
topologize the state space of this variable in a nice way.

For each t ∈ �0;∞�, we define the functions Un
i; t�s� for i = 1;2 as the

cumulative amount of data due to source i that is in the buffer at time t and
exits the buffer by time t+ s. Thus

Un
1; t�s� = cA

∫ s
0
fn�t; u�du and Un

2; t�s� = cA
∫ s

0
�1− fn�t; u��du

for s≤Qn
A�t�/cA, while Un

1; t�s�=Un
1; t�Qn

A�t�/cA� and Un
2; t�s�=Un

2; t�Qn
A�t�/cA�

for s ≥ Qn
A�t�/cA. Un

i; t�·� represents all of the “history” that is needed to prop-
erly define the evolution of the two queues from time t on. Note that for
i = 1;2, Un

i; t�s� has the explicit form

Un
i; t�s� =

{
Xn
i �t+ s−Dn�t+ s�� −Xn

i �t−Dn�t��; if s ≤ Qn
A�t�/cA;

Un
i; t�Qn

A�t�/cA�; if s ≥ Qn
A�t�/cA:

Fig. 3. The Markovianizing function fn�t; s�.
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We consider each Un
i; t as taking values in the space

U = �u ∈ I �0;∞�x u�0� = 0 and u̇�s� ∈ �0; cA� a.s.�;
where I �0;∞� ⊂ C �0;∞� represents the space of absolutely continuous non-
decreasing functions from �0;∞� to �0;∞�. We use the standard metric

γC�u; v� = C
∞∑
i=1

2−i sup
s∈�0; i�

�u�s� − v�s��(3.1)

on C �0;∞�, where the constant C will be chosen for our convenience in the
next section. Since U is a closed subset of C �0;∞�, it is a Polish space with
the inherited metric.

For M < ∞ we define the set U�M� = �u ∈ Ux u�s� = u�M� for s ≥ M�.
It is easy to check that U�M� is compact for each finite M, since it can be
identified with a closed subset of the Lipschitz continuous functions on �0;M�
that have constant cA. Note that the functions Un

i; t always take values in the
space U�Qn

A�t��. This will prove to be quite convenient, since it implies that
whenever the variables Qn

A�t� take values in a compact set K for some set of
n; t or ω, the corresponding variables Un

i; t also take values in a compact set.
This property will not always be specifically noted when used in the sequel. It
will become evident later on that the variables Un

i; t are simply an unpleasant
nuisance which must be included to Markovianize our process, but which play
no significant role otherwise.

Let S1 = F1×F2, S2 = R×R and S3 = U×U. Then we can define metrics
such that S1, S2, S3 and therefore S1×S2×S3 are complete separable metric
spaces. One can verify that the processes Zn = �ξn1 ; ξn2 ;Qn

A;Q
n
B;U

n
1 ;U

n
2� are

Markovian and take values in the set

S = S1 ×S2;3;

where

S2;3 =
{
�qA; qB; u1; u2� ∈ S2 ×S3x �u1; u2� ∈ U�qA�2

and u1�t� + u2�t� = cAt for t ∈ �0; qA/cA�
}
:

If z = �z1; z2; z3� ∈ S , then z1 represents the state of the modulating processes
that determine the data input rates, z2 gives the current buffer sizes, and z3
represents a history that is compatible with these current buffer levels. The
processes �Zn� are right continuous with limits from the left (in fact, the
last four components are continuous). Since the space S is a closed subset of
S1 ×S2 ×S3, it is obviously a Polish space.

4. Continuity of the mapping. In this section we will prove the continu-
ity of the mapping that takes the scaled input processes and initial values to
the scaled buffer content processes �Qn

A;Q
n
B�. The continuity of the mappings

holds at the level of the sample paths of the processes. Thus, we consider the
following deterministic system of equations (B).
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System of equations (B). Let �qA�0�; qB�0�; u1;0; u2;0� ∈ S2;3 and inputs
xi ∈ I �0;∞� with xi�0� = 0 for i = 1;2 be given. Define

φ�t� = x1�t� + x2�t�;

q̇A�t� =
{
φ̇�t� − cA; if qA�t� > 0;

�φ̇�t� − cA� ∨ 0; if qA�t� = 0;
(4.1)

d�t� = t−φ−1�φ�t� − qA�t�� ∧ t;(4.2)

yi�t� =
{
ui;0�t�; if t ∈ �0; qA�0�/cA�;
xi�t− d�t�� + ui;0�qA�0�/cA�; if t ∈ �qA�0�/cA;∞�;

(4.3)

q̇B�t� =
{
ẏ1�t� − cB; if qB�t� > 0;

�ẏ1�t� − cB� ∨ 0; if qB�t� = 0;
(4.4)

where φ−1�s� = sup�tx φ�t� = s�.
Fix T ∈ �0;∞�, and let I �0;T� denote the set of all absolutely continuous

increasing functions from �0;T� to �0;∞�. We consider both I �0;T� and
C �0;T� with the usual supremum metric: d�f;g� = supt∈�0;T� �f�t� − g�t��.
For the given value of T, we will select the metric on U to be γ = γC,
with γC defined as in (3.1), and with C large enough that γ is bounded
below by d. We consider product spaces with the sup metric, that is,
d��f1; f2�; �f′1; f′2�� = d�f1; f

′
1� ∨ d�f2; f

′
2�, and therefore R2 is equipped

with the metric θ��a1; a2�; �b1; b2�� = �a1 − b1� ∨ �a2 − b2�. Finally, we con-
sider the product space Z = I 2 × S2;3, and let z = �f1; f2;wA;wB; h1; h2�
represent an element of Z. We define the metric on Z by

ρ�z; z̄� = d��f1; f2�; �f̄1; f̄2�� ∨ θ��wA;wB�; �w̄A; w̄B�� ∨ γ��h1; h2�; �h̄1; h̄2��:

We define F̃Tx Z→ C �0;T� × C �0;T� by

F̃T�z� = �qA; qB�;

and FTx Z→ R2 by

FT�z� = �qA�T�; qB�T��:

Remark. A comparison of the system of equations (B) with the network
dynamics described in Sections 2 and 3 shows that for every ω,

F̃T�Xn
1 ;X

n
2 ;Q

n
A�0�;Qn

B�0�;Un
1;0;U

n
2;0��ω� = �Qn

A;Q
n
B��ω�:

Theorem 4.1. For every T < ∞, the mappings F̃T and FT are Lipschitz
continuous.
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Proof. Consider z=�x1; x2; qA�0�; qB�0�; u1;0; u2;0� and z̄=�x̄1; x̄2; q̄A�0�;
q̄B�0�; ū1;0; ū2;0� in Z, and let the related functions φ; φ̄; qA; q̄A and so on be
defined through the system of equations (B). Let gA�t� and gB�t� denote the
functions cAt − qA�0� and cBt − qB�0�, respectively, and let ḡA�t�, ḡB�t� be
the analogous functions associated with z̄. Suppose that ρ�z; z̄� < δ. Without
loss of generality, we assume that q̄A�0� ≥ qA�0� and denote the difference
q̄A�0� − qA�0� by 1qA. We noted after (2.1) that the Skorokhod map 0 is
Lipschitz continuous with constant 2. Since d��x1; x2�; �x̄1; x̄2�� < δ and 1qA <
δ, we have d�φ; φ̄� < 2δ and d�gA; ḡA� < δ, from which it follows that d�φ−
gA; φ̄−ḡA� < 3δ. The relations qA = 0�φ−gA� and q̄A = 0�φ̄−ḡA� introduced
in (2.3) then imply that d�qA; q̄A� < 6δ. If we replace ζ and ψ in (2.1) by φ−gA
and qA, respectively, and rearrange terms, then we also obtain the bound

d�φ− qA; φ̄− q̄A� < 4δ:(4.5)

We now establish the nearness of the output processes y1 and ȳ1. Recall
(4.3), which describes the dynamics of y1:

yi�t� =
{
ui;0�t�; if t ∈ �0; qA�0�/cA�;
xi�t− d�t�� + ui;0�qA�0�/cA�; if t ∈ �qA�0�/cA;∞�:

In order to compare y1 with ȳ1, it is convenient to divide the time domain
�0;T� into three intervals: I1 = �0; qA�0�/cA�, I2 = �qA�0�/cA; q̄A�0�/cA� and
I3 = �q̄A�0�/cA;T�. We can without loss of generality prove the assertion only
for T > q̄A�0�/cA, since the continuity for smaller T follows as a consequence.
The fact that d�u1;0; ū1;0� ≤ γ�u1;0; ū1;0� < δ immediately implies that

sup
t∈I1

�ȳ1�t� − y1�t�� < δ:(4.6)

We recall that u1;0�t� = y1�qA�0�/cA� for t ∈ I2 and that the output rate at
the first buffer is bounded above by cA. These facts imply the second and third
inequalities in

�ȳ1�t� − y1�t�� ≤ �ȳ1�t� − y1�qA�0�/cA�� + �y1�t� − y1�qA�0�/cA��
≤ �ū1;0�t� − u1;0�t�� + �y1�q̄A�0�/cA� − y1�qA�0�/cA��
≤ �ū1;0�t� − u1;0�t�� + �q̄A�0� − qA�0��
< 2δ:

(4.7)

Finally, when t ∈ I3,

�ȳ1�t� − y1�t�� ≤ 2δ+ �x̄1�t− d̄�t�� − x1�t− d�t���:(4.8)

Now since

φ�t− d�t�� = φ�t� − qA�t� and φ̄�t− d̄�t�� = φ̄�t� − q̄A�t�;(4.9)

from (4.5) we deduce that

d�φ�t− d�t��; φ̄�t− d̄�t��� < 4δ:(4.10)
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For any given t ∈ I3, let s∗ = t−d�t� ∈ �0;T�. If φ�s∗� ≥ 6δ, we choose v1 < s
∗

such that φ�v1� = φ�s∗� − 6δ, while if φ�s∗� < 6δ we take v1 = 0. Similarly,
if φ�s∗� ≤ φ�T� − 6δ we choose v2 > s∗ such that φ�v2� = φ�s∗� + 6δ, while
if φ�s∗� > φ�T� − 6δ we choose v2 = T. We claim that the estimate in (4.10)
together with the fact that d�φ; φ̄� < 2δ imply t − d̄�t� ∈ �v1; v2�. We first
establish that t − d̄�t� ≥ v1. Since t − d̄�t� ≥ 0 for t ∈ I3, there is nothing to
show if v1 = 0. If v1 > 0 and t− d̄�t� < v1, then (4.9) and the fact that φ̄�·� is
nondecreasing imply

φ̄�t�− q̄A�t�= φ̄�t− d̄�t�� ≤ φ̄�v1� < φ�v1�+2δ=φ�s∗�−4δ=φ�t�−qA�t�−4δ;

which contradicts (4.10). A similar argument confirms that t− d̄�t� ≤ v2.
We now use the fact that both x1 and x2 are nondecreasing, that they sum

to φ and the definitions of v1 and v2 in terms of s∗ to deduce that

x1�v1� ≥ x1�s∗� − 6δ and x1�v2� ≤ x1�s∗� + 6δ:

Since t− d̄�t� ∈ �v1; v2�,
�x1�t− d̄�t�� − x1�s∗�� ≤ 6δ:

Together with s∗ = t − d�t� and the bound d�x1; x̄1� < δ, this shows that
�x̄1�t− d̄�t�� − x1�t− d�t��� < 7δ, which when substituted into (4.8) yields

sup
t∈I3

�ȳ1�t� − y1�t�� < 9δ:(4.11)

Combining (4.6), (4.7) and (4.11), we obtain d�ȳ1; y1� < 9δ. Lastly, we use
the representations qB = 0�y1 − gB� and q̄B = 0�ȳ1 − ḡB� of the processes
in terms of the Skorokhod map. The Lipschitz property of 0 and the fact that
d�ȳ1 − ḡB; y1 − gB� < 10δ then imply that d�qB; q̄B� < 20δ.

We have shown that ρ�z; z̄� < δ implies d�qA; q̄A� < 6δ and d�qB; q̄B� <
20δ. Sending δ ↓ ρ�z; z̄�, we obtain

d��qA; qB�; �q̄A; q̄B�� ≤ 20ρ�z; z̄�;
and therefore in particular d��qA�T�; qB�T��; �q̄A�T�; q̄B�T��� ≤ 20ρ�z; z̄�,
which proves the theorem. 2

Remark. The proof incidentally establishes the Lipschitz property of the
mapping �x1; x2� → y1, and by symmetry it also shows that �x1; x2� → y2
is Lipschitz continuous. The reader can verify that the assumption of two
sources is unimportant, and in fact the result can be extended to include any
finite number of sources x1; : : : ; xk and resulting outputs y1; : : : ; yk. Thus the
theorem easily extends to much more complicated networks, as long as there
is no “feedback.” For such a network it shows joint continuity for the mapping
from the collection of inputs and initial conditions to the collection of buffer
contents. Further comments along these lines are provided in Section 9.3.
Finally, we note that we have proved more than we actually need, since all
that is used in the sequel is continuity, rather than Lipschitz continuity.
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5. LDP for the buffer content processes. In this section we introduce
a few definitions to characterize the large deviation properties of the input
processes and then prove the large deviation properties of the buffer content
processes that are necessary for the analysis of the model.

Definition 5.1 (Laplace principle). Let a function I from S into �0;∞�
with compact level sets be given. A sequence of measures �µn; n ∈ N� de-
fined on a Polish space S is said to satisfy the Laplace principle with rate
function I if for every bounded continuous function F on S,

lim
n→∞
− 1
n

log
[∫
S
e−nF�x�µn�dx�

]
= inf

x∈S
�F�x� + I�x��:

Definition 5.2 (Large deviation principle). Let a function I from S into
�0;∞� with compact level sets be given. A sequence of measures �µn; n ∈ N�
defined on a Polish space S is said to satisfy the large deviation principle with
rate function I if the following hold:

(i) For each closed set C ⊂ S,

lim sup
n→∞

1
n

logµn�C� ≤ − inf
φ∈C

I�φ�:

(ii) For each open set G ⊂ S,

lim inf
n→∞

1
n

logµn�G� ≥ − inf
φ∈G

I�φ�:

Remark. A sequence of measures satisfies the Laplace principle with some
rate function I if and only if it satisfies the large deviation principle with the
same rate function (see [6], Theorem 1.2.3).

Remark. A sequence of random variables �Zn; n ∈ N� defined on a proba-
bility space ��;F ;P� and taking values in a Polish space is said to satisfy the
large deviation principle or Laplace principle with rate function I if the corre-
sponding sequence of distributions �µn; n ∈ N� defined by µn�dz� = P�Zn ∈
dz� satisfies the large deviation principle or Laplace principle with that rate
function.

Recall πi, the invariant distribution of ξi introduced in Section 2, and the
Polish space S , defined at the end of Section 3. We continue to use the notation
of Section 3, so that an element of S is written in the form �z1; z2; z3� and
we let Pz1

denote probability conditioned on �ξn1 �0�; ξn2 �0�� = z1.

Lemma 5.3. Fix T ∈ �0;∞�. Define the rate function IT on C �0;T�2 by
IT�x1; x2� = I1

T�x1� + I2
T�x2�, where

IiT�φ� =
∫ T

0
Li�φ̇�dt
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if φ is absolutely continuous with φ�0� = 0, and ∞ otherwise. The functions
Li�u� are convex, nonnegative, have compact level sets, and Li�u� = 0 if and
only if u = bi, where

bi =
∑
j∈Fi

ri�j�πi�j�:

The processes ��Xn
1 ;X

n
2�; n ∈ N� satisfy a uniform Laplace principle on

C �0;T�2, in the sense that for any bounded, continuous function H on
C �0;T�2,

− lim
n→∞

1
n

log sup
z1∈S1

Ez1
�exp�−nH�Xn

1 ;X
n
2���

= − lim
n→∞

1
n

log inf
z1∈S1

Ez1
�exp�−nH�Xn

1 ;X
n
2���

= inf
�x1; x2�∈C �0;T�2

�H�x1; x2� + IT�x1; x2��:

This result is quite standard, and can be found in a number of places,
including [12]. It can also be derived easily from the well-known result on the
large deviation principle for the occupation measure of ξi due to Donsker and
Varadhan [4, 6, 23].

We can now derive a type of uniform Laplace principle for the buffer content
processes �qA�T�; qB�T��. We recall the continuous map Ft defined at the
beginning of Section 4. (Recall that θ is the metric on S2 = R2, and that
z2 ∈ R2 gives the initial level of the two buffers. If �z2; z3� ∈ S2;3, then z3
represents a “history” that is consistent with these buffer levels.) For ε > 0,
let N̄ε = �z2 ∈ S2x θ�z2;0� ≤ ε� and let the compact set K′ε = S1 × ��z2; z3� ∈
S2;3x z2 ∈ N̄ε�. Furthermore, for any t ∈ �0;∞�, we define Gt by

Gt�η� = inf
�x1; x2�xFt�x1;x2;0;0;0;0�=η

∫ t
0
�L1�ẋ1� +L2�ẋ2��ds(5.1)

if the set over which the infimum is taken is nonempty and Gt�η� = ∞ other-
wise. (Thus Gt is defined only for the case of zero initial conditions in the z2
and z3 components.)

Theorem 5.4. Given any 0 < T1 ≤ T2 <∞, the sequence ��Qn
A�t�;Qn

B�t��;
n ∈ N� satisfies a uniform Laplace principle in the sense that given any
bounded continuous function g on S2,

− lim
ε↓0

lim sup
n→∞

1
n

log sup
z∈K′ε

Ez�exp�−ng�Qn
A�t�;Qn

B�t����

= − lim
ε↓0

lim inf
n→∞

1
n

log inf
z∈K′ε

Ez�exp�−ng�Qn
A�t�;Qn

B�t����

= inf
η∈S2

�g�η� +Gt�η��

(5.2)

uniformly in t ∈ �T1;T2�, where Gt�η� is defined as in (5.1).
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Proof. This result is an immediate consequence of Lemma 5.3. From the
definition ofGt and the fact that It is a rate function, it follows directly that for
each t ∈ �0;∞�, Gt possesses compact level sets and is nonnegative. To prove
the uniform limit asserted in the theorem, we let g be a bounded continuous
function on S2, and note that g ◦Ft defines a bounded continuous function on
C�0; t�2×S2;3. Owing to the continuity of Ft proved in Theorem 4.1, Theorem
5.4 holds if and only if (5.2) is satisfied when K′ε is replaced by �z1;0;0� (i.e.,
zero initial conditions for the two buffers). However, by Lemma 5.3, for each
t ∈ �T1;T2� we have the following limit:

− lim
n→∞

1
n

log sup
z1∈S1

E�z1;0;0��exp�−ng�Qn
A�t�;Qn

B�t����

= − lim
n→∞

1
n

log inf
z1∈S1

E�z1;0;0��exp�−ng�Qn
A�t�;Qn

B�t����

= inf
�x1; x2�∈C�0; t�2

�g�Ft�x1; x2;0;0;0;0�� + It�x1; x2��:

The Lipschitz continuity of the sample paths of �QA�t�;QB�t�� and the con-
tinuity of g establish that the families of functions in the first two terms
above are equicontinuous in t. As a consequence, the third term is seen to be
continuous in t and the convergence holds uniformly in t ∈ �T1;T2�. Since

inf
�x1; x2�∈C�0; t�2

�g�Ft�x1; x2;0;0;0;0�� + It�x1; x2��

= inf
η∈S2

[
g�η� + inf

�x1; x2�xFt�x1; x2;0;0;0;0�=η
It�x1; x2�

]
;

the theorem is proved. 2

6. LDP for the invariant distribution. In this section the �Qn
A;Q

n
B�-

marginal of the invariant distribution of the Markov processZn = �ξn1 ; ξn2 ;Qn
A;

Qn
B;U

n
1 ;U

n
2� is shown to satisfy a large deviation principle. For notational

convenience, let Zn
1 = �ξn1 ; ξn2 �, Zn

2 = �Qn
A;Q

n
B�, Zn

3 = �Un
1 ;U

n
2�. The three-

component Markov process Zn = �Zn
1 ;Z

n
2 ;Z

n
3� takes values in S , where the

description of the Polish space S was given at the end of Section 3. We will
show in Section 7 that under stability conditions this process possesses an in-
variant distribution which we denote by µn. The Zn

2 -marginal of µn is denoted
by µn2 . In this section we will formulate conditions under which �µn2� satisfies
a large deviation principle. Since only a certain marginal of the invariant dis-
tribution is shown to satisfy the large deviation principle, we need a number
of definitions that explicitly identify the uniformity of various estimates with
respect to variations in the other components.

Definition 6.1 (Exponential tightness). A sequence of measures �µn; n ∈
N� on a Polish space S is said to be exponentially tight if, given any M <∞,
there exists a compact set K ⊂ S such that

lim sup
n→∞

1
n

logµn�Kc� ≤ −M:
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A useful tool in deriving the Laplace principle (and hence the large de-
viation principle) for the invariant distributions is the following analogue of
Prohorov’s theorem. The theorem appears to be independently due to Puhal-
skii [20] and O’Brien and Vervaat [18]. For a proof, see [6], Theorem 1.3.7.

Theorem 6.2. If a sequence of measures �µn; n ∈ N� on a Polish space S is
exponentially tight, then there exists a subsequence which satisfies the Laplace
principle with some rate function.

We next define a type of stability that will be needed. As in the last section,
N̄ε denotes the closed neighborhood of radius ε about the origin: N̄ε = �z2 ∈
S2x θ�z2;0� ≤ ε�. Let τnε = inf�t ≥ 0xZn

2�t� ∈ N̄ε� and letPz denote probability
conditioned on Zn�0� = z.

Definition 6.3 (Uniform exponential attraction in probability). Consider
the sequence of Markov processes �Zn; n ∈ N�x �Zn

2 ; n ∈ N� is said to be
uniformly exponentially attracted in probability to the origin if, given any
M<∞ and compact set K ⊂ S , there exists T <∞ such that for any ε > 0,

lim sup
n→∞

1
n

log sup
z∈K

Pz�τnε > T� ≤ −M:

We now describe the conditions that the sequence of Markov processes
�Zn; n ∈ N� must satisfy in order for the main theorem of this section to
hold. In Section 5, part (c) of this condition was shown to hold for our process.
Parts (a) and (b) of the condition will be verified in Section 7, with details of
the proof provided in Appendix A.

Condition 6.1. (a) �Zn�t�; n ∈ N� is exponentially tight uniformly with
respect to initial conditions in compact sets and t ∈ �0;∞�. In other words,
given any M <∞ and any compact set C ⊂ S , there exists a compact set K
such that

lim sup
n→∞

1
n

sup
t∈�0;∞�; z∈C

Pz�Zn�t� ∈Kc� ≤ −M:

(b) �Zn
2 ; n ∈ N� is uniformly exponentially attracted in probability to the

origin.
(c) �Zn

2�T�; n ∈ N� satisfies a uniform Laplace principle in the sense of
Theorem 5.4 with rate function GT�η�.

We now state the main result of this section. The theorem allows us to
directly relate the rate functions for the sequence of random variables �Zn

2�T��
for T <∞ to the rate function for the sequence of measures �µn2�. It requires
existence and uniqueness of �µn� and exponential tightness of �µn2�, all of
which will be proved in the next section.
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Theorem 6.4. Assume that �Zn� satisfies Condition 6.1. Moreover, suppose
that for all sufficiently large n, Zn possesses a unique invariant distribution
µn, and that the set of second marginals �µn2� is exponentially tight. Then �µn2�
satisfies the large deviation principle with rate function J�η�, where

J�η� = inf
T>0

GT�η�:(6.1)

Proof. Since the sequence �µn2� is assumed to be exponentially tight, by
Theorem 6.2 there exists a subsequence that satisfies the Laplace principle.
We denote this subsequence also by �µn2� and let J�η� be its rate function.
Thus for any bounded, continuous function g and any T > 0,

lim
n→∞
− 1
n

logEµn�exp�−ng�Zn
2�T���� = inf

η∈S2

�J�η� + g�η��;(6.2)

where Eµn denotes expectation conditioned on starting from the invariant
distribution.

A rough outline of the intuition behind the proof is as follows. Suppose we
start the process off at time 0 with initial distribution µn. Using the exponen-
tial tightness, we can effectively assume that µn is supported on some compact
set. The uniform exponential attraction to the origin then implies that there
exists T̂ < ∞ such that, save on a set of negligible probability, the process
enters any arbitrarily small neighborhood of the origin by time T̂. Using the
strong Markov property and the fact that these neighborhoods can be made
arbitrarily small permits a representation of the distribution at time T, where
T is large compared to T̂, in terms of the rate functions Gt for t ∈ �T− T̂;T�.
Using the fact that Gt is monotonically nonincreasing and that the distribu-
tion at T is also the stationary distribution, one can bound the tail behavior
and hence the rate function for the stationary distribution in terms of GT−T̂
and GT. It turns out that, for any given η, Gt�η� is constant for all sufficiently
large t, and thus we obtain (6.1).

Before proceeding with the proof, we select a number of parameters. To
facilitate the discussion later on, we carefully note the dependencies of each
parameter. Let δ > 0, the function g and M ∈ ��g�∞;∞� be fixed. We recall
the set K′ε = S1 × ��z2; z3� ∈ S2;3x z2 ∈ N̄ε�, corresponding to small buffers
at time zero.

1. According to part (c) of Condition 6.1, we can choose ε ∈ �0;1� such that if
0 < T1 ≤ T2 <∞, then uniformly for t ∈ �T1;T2� and z ∈K′ε,

inf
η∈S2

�Gt�η� + g�η�� − δ ≤ lim inf
n→∞

− 1
n

logEz�exp�−ng�Zn
2�t����

≤ lim sup
n→∞

− 1
n

logEz�exp�−ng�Zn
2�t����

≤ inf
η∈S2

�Gt�η� + g�η�� + δ:

(6.3)

The number ε depends on δ and g.
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2. Consider the compact set K′1, which is obtained from the definition above
for K′ε by setting ε = 1. Then part (a) of Condition 6.1 implies that there
exist a compact set K2 ⊂ S2 and N <∞ such that for n ≥N and for every
s ∈ �0;∞�,

sup
z∈K′1

Pz�Zn
2�s� ∈Kc

2� ≤ e−3Mn:(6.4)

Since �µn2� is exponentially tight, by enlarging K2 and taking N larger if
necessary, we can also assume that for all n ≥N,

µn2�Kc
2� ≤ e−3Mn:(6.5)

The set K2 depends only on M. We define the compact set K = S1 ×
��z2; z3� ∈ S2;3x z2 ∈K2�, so that K2 is the projection of K onto S2.

3. Last, we use part (b) of Condition 6.1. According to this condition, for M<
∞ and compact K as given above, there exists T0 < ∞ such that, given
ε > 0,

lim sup
n→∞

1
n

log sup
z∈K

Pz�τnε ≥ T0� ≤ −2M:(6.6)

The number T0 depends on K and M.

For sufficiently large n, (6.5) implies that for any T > 0,

Eµn�1�Zn
2 �T�∈Kc

2� exp�−ng�Zn
2�T���� ≤ exp�−3Mn� exp�Mn� = exp�−2Mn�:

The last inequality, and the fact that �g�∞ ≤M, implies

lim
n→∞
− 1
n

logEµn�exp�−ng�Zn
2�T����

= lim
n→∞
− 1
n

logEµn
[
1�Zn

2 �T�∈K2� exp�−ng�Zn
2�T���

]
:

(6.7)

For ε > 0, we recall the random time

τnε = inf�t > 0x Zn
2�t� ∈ N̄ε�(6.8)

and the closed neighborhood N̄ε = �z2 ∈ S2x θ�z2;0� ≤ ε�. Let �F n
t � be the

filtration generated by the process Zn and let F n
t ⊂ F n for every t ≥ 0.

According to Proposition 2.1.5 of [11], for every n ∈ N and ε > 0, τnε is a
stopping time. Recall the standard definition of F n

τnε
as the σ-algebra that

contains all the information that an observer of the process Zn knows at
time τnε :

F n
τnε
= �A ∈ F nx A ∩ �τnε ≤ t� ∈ F n

t for all t ≥ 0�:
It follows from the definition of the compact set K given below (6.5) that
wheneverZn

2 is in the setK2,Zn must lie in the setK. Thus for all sufficiently
large n,

µn�Kc� ≤ e−3Mn:(6.9)
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Together, (6.9) and (6.6) imply that for any T̂ ≥ T0,

lim
n→∞
− 1
n

logEµn
[
1�Zn

2 �T�∈K2� exp�−ng�Zn
2�T���

]

= lim
n→∞
− 1
n

logEµn
[
1�τnε≤T̂�1�Zn

2 �T�∈K2� exp�−ng�Zn
2�T���

]
:

(6.10)

Suppose T > T̂ ≥ T0. From the properties of conditional expectation and
the strong Markov property for Zn,

Eµn
[
1�τnε≤T̂�1�Zn

2 �T�∈K2� exp�−ng�Zn
2�T���

]

= Eµn
[
1�τnε≤T̂�Eµn

[
1�Zn

2 �T�∈K2� exp�−ng�Zn
2�T����F n

τnε

]]

= Eµn
[
1�τnε≤T̂�EZn�τnε �

[
1�Zn

2 �T−τnε �∈K2� exp�−ng�Zn
2�T− τnε ���

]]
:

(6.11)

Recall the compact set K′ε = S1 × ��z2; z3� ∈ S2;3x z2 ∈ N̄ε�. We define a
measure on �0;∞�×K′ε by

νnε �ds× dz� = Pµn�τnε ∈ ds and Zn�τnε � ∈ dz�:
With this definition (6.11) can be rewritten as

Eµn

∫ T̂
0

∫
K′ε
Ez�1�Zn

2 �T−s�∈K2� exp�−ng�Zn
2�T− s����νnε �ds× dz�:(6.12)

Following the chain of equalities in (6.7), (6.10), (6.11) and (6.12) yields

lim
n→∞
− 1
n

logEµn�exp�−ng�Zn
2�T����

= lim
n→∞
− 1
n

× logEµn

∫ T̂
0

∫
K′ε
Ez

[
1�Zn

2 �T−s�∈K2� exp�−ng�Zn
2�T− s���

]
νnε �ds×dz�:

(6.13)

We next use the fact that (6.4), K′ε ⊂K′1 and �g�∞ ≤M imply that for all
z ∈K′ε and s ∈ �0; T̂�,

Ez

[
1�Zn

2 �T−s�∈Kc
2� exp�−ng�Zn

2�T− s���
]
≤ exp�−2Mn�:

This leads to the equality

lim
n→∞
− 1
n

logEµn

∫ T̂
0

∫
K′ε
Ez

[
1�Zn

2 �T−s�∈K2� exp�−ng�Zn
2�T− s���

]
νnε �ds× dz�

= lim
n→∞
− 1
n

logEµn

∫ T̂
0

∫
K′ε
Ez

[
exp�−ng�Zn

2�T− s���
]
νnε �ds× dz�:

Combining the last display with (6.13) we find that, for T > T̂,

lim
n→∞
− 1
n

logEµn�exp�−ng�Zn
2�T����

= lim
n→∞
− 1
n

logEµn

∫ T̂
0

∫
K′ε
Ez�exp�−ng�Zn

2�T− s����νnε �ds× dz�:
(6.14)
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The fact that Gt�η� is monotonically nonincreasing in t implies that for
T > T̂, η ∈ S2, and any s ∈ �0; T̂�,

GT�η� ≤ GT−s�η� ≤ GT−T̂�η�:

Now fix T1 > 0 and T ≥ T̂ + T1. It follows from the last display and (6.3)
that, given γ > 0, there exists N <∞ such that for all n ≥N, s ∈ �0; T̂� and
z ∈K′ε,

inf
η∈S2

�GT�η� + g�η�� − δ− γ ≤ −
1
n

logEz�exp�−ng�Zn
2�T− s����

≤ inf
η∈S2

�GT−T̂�η� + g�η�� + δ+ γ:
(6.15)

Then (6.15) and the fact that

1− e−nM ≤ νnε ��0; T̂� ×K′ε� ≤ 1

imply

inf
η∈S2

�GT�η� + g�η�� − δ− γ

≤ lim
n→∞
− 1
n

logEµn

∫ T̂
0

∫
K′ε
Ez�exp�−ng�Zn

2�T− s����νnε �ds× dz�

≤ inf
η∈S2

�GT−T̂�η� + g�η�� + δ+ γ:

Since γ > 0 is arbitrary, we may let γ ↓ 0 and use (6.14) to obtain

inf
η∈S2

�GT�η� + g�η�� − δ ≤ lim
n→∞
− 1
n

logEµn
�exp�−ng�Zn

2�T����

≤ inf
η∈S2

�GT−T̂�η� + g�η�� + δ:

This inequality can be rewritten using the fact that �µn; n ∈ N� satisfies the
Laplace principle with rate function J�η�, as in (6.2), thereby obtaining

inf
η∈S2

�GT�η� + g�η�� − δ ≤ inf
η∈S2

�J�η� + g�η��

≤ inf
η∈S2

�GT−T̂�η� + g�η�� + δ:
(6.16)

Thus, given any δ > 0, we have shown that there exists T0 <∞ such that the
inequality above is satisfied for all bounded continuous functions g and for
T > T̂ ≥ T0. Note that T̂ depends on g through (6.6) only in the sense that
we require �g�∞ ≤ M. Fix η̄ ∈ S2, and consider a sequence �gk; k ∈ N� of
bounded, nonnegative, continuous functions with �gk�∞ ≤ M and gk�η̄� = 0
that converge uniformly on each closed subset of S2\�η̄� to the function

g�η� =
{

0; if η = η̄;
M; otherwise:
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Since each of the functions GT−T̂;J; and GT is a rate function, each of them
has compact level sets. As a consequence, upon taking limits in (6.16) with g
replaced by gk we obtain

�GT�η̄� ∧M� − δ ≤ J�η̄� ∧M ≤ �GT−T̂�η̄� ∧M� + δ:(6.17)

Since η̄ is arbitrary, we can assume that (6.17) holds for all η ∈ S2 and
T > T̂ ≥ T0. Because T0 depends on M but not on δ, we can let δ→ 0 in the
last display. Let i ∈ �2;3; : : :�. Choosing T = iT̂ then shows that

GiT̂�η� ∧M ≤ J�η� ∧M ≤ G�i−1�T̂�η� ∧M:(6.18)

Since Gt�η� is nonincreasing in t, letting i→∞ in (6.18) gives

inf
T>0

GT�η� ∧M ≤ J�η� ∧M ≤ inf
T>0

GT�η� ∧M:

Observing that the inequalities above are independent ofT0, we can letM ↑ ∞
to obtain

J�η� = inf
T>0

GT�η�:

Thus we have proved the desired result (6.1) for the rate function of the
subsequence �µn; n ∈ N�. In order to show that the result holds for the original
sequence, one can use the usual argument by contradiction. 2

7. Stability properties. In this section we verify parts (a) and (b) of
Condition 6.1 for the sequence of Markov processes �Zn = �ξn1 ; ξn2 ;Qn

A;Q
n
B;

Un
1 ;U

n
2��. Under natural assumptions, in Theorem 7.1 we first establish the

stability of the associated “fluid model” by constructing an appropriate Lya-
punov function. This Lyapunov function is then used in Theorem 7.2 and
Corollary 7.4 to establish the required stability properties and exponential
tightness of the processes. A number of proofs are deferred to Appendix A. In
Lemma 7.5 we verify the other assumptions that are needed for Theorem 6.4,
namely, the existence and uniqueness of the invariant distribution µn (for all
large n) and the exponential tightness of the �Qn

A;Q
n
B�-marginals �µn2�. The

result one thereby obtains is summarized in Theorem 7.6.

Theorem 7.1. Consider the system of equations (B) in the special case when
ẋ1 = b1 and ẋ2 = b2. Then �0;0� is a stable point for �qA; qB� if b1+b2 < cA and
b1 < cB. In other words, given any initial condition �qA�0�; qB�0�� = �za; zb�,
there exists T <∞ such that �qA�t�; qB�t�� = �0;0� for every t ≥ T.

The proof is given in Appendix A.
The next theorem states that the stochastic processes �Qn

A;Q
n
B� are uni-

formly exponentially attracted to the origin (τnε , N̄ε and Pz are all defined as
in Section 6).
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Theorem 7.2. If b1 + b2 < cA and b1 < cB, then the sequence ��Qn
A;Q

n
B��

defined by the system of equations (A) is uniformly exponentially attracted to
the origin. In other words, given any M < ∞ and compact set K ⊂ S , there
exists T <∞ such that, for all ε > 0,

lim sup
n→∞

1
n

log sup
z∈K

Pz�τnε > T� ≤ −M:

The proof is given in Appendix A.
The following theorem establishes the uniform exponential tightness of the

family of random variables Zn�t�. The exponential tightness of the measures
then follows from the uniform exponential tightness of these random variables.

Theorem 7.3. The family of random variables ��Qn
A�t�;Qn

B�t��; n ∈ N� is
exponentially tight uniformly with respect to t ∈ �0;∞� and initial conditions
in compact sets. In other words, given any compact set D ⊂ S and M < ∞,
there exists a compact set C ⊂ S2 and N <∞ such that for every n ≥N,

sup
z∈D; t∈�0;∞�

Pz��Qn
A�t�;Qn

B�t�� 6∈ C� ≤ e−nM:

The proof is given in Appendix A.

Corollary 7.4. The family of random variables

��ξn1 �t�; ξn2 �t�;Qn
A�t�;Qn

B�t�;Un
1; t;U

n
2;t�; n ∈ N�

is exponentially tight uniformly for t ∈ �0;∞� and initial conditions in compact
sets.

Proof. By Assumption 2.1, ��ξn1 �t�; ξn2 �t��; t ∈ �0;∞�; n ∈ N� live on a
finite state space F1 × F2 and are thus trivially exponentially tight. The set
��Qn

A�t�;Qn
B�t��; n ∈ N� for t ∈ �0;∞� was shown to be exponentially tight uni-

formly with respect to initial conditions in Theorem 7.3. Recall that if Qn
A�t�

takes values in a compact set for some collection of n, ω and t, then �Un
1; t;U

n
2; t�

also takes values in a compact set for the same collection. Thus the uniform
exponential tightness of ��Qn

A�t�;Qn
B�t��; n ∈ N� automatically implies the

uniform exponential tightness of �Un
1; t;U

n
2; t; n ∈ N� and the corollary is es-

tablished. 2

We now prove the remaining assumptions of Theorem 6.4 for the process
�Zn�.

Lemma 7.5. For all sufficiently large n, the process �ξn1 ; ξn2 ;Qn
A;Q

n
B;U

n
1 ;U

n
2�

possesses a unique invariant measure. In addition, the sequence of �Qn
A;Q

n
B�-

marginals �µn2� is exponentially tight.
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Proof. A (much simpler) version of Theorem 7.3 which proves the uniform
exponential tightness of the processes can be used to show that for all large
n and any given initial condition the random variables ��ξn1 �t�; ξn2 �t�;Qn

A�t�;
Qn
B�t�;Un

1; t;U
n
2; t�; t ∈ �0;∞�� are tight. Following a standard argument (e.g.,

[11], page 247), this implies the existence of an invariant distribution. For
each fixed n, it is easy to show that given any compact set of initial condi-
tions, one can find T <∞ such that the probability of hitting the origin [i.e.,
�Qn

A�t�;Qn
B�t�;Un

1; t;U
n
2; t� = �0;0;0;0�] before time T is greater than zero uni-

formly in the initial condition. Since the sets F1 and F2 are finite, this shows
that given any compact set of initial conditions there is a point z and T <∞
such that the probability that �ξn1 �t�; ξn2 �t�;Qn

A�t�;Qn
B�t�;Un

1; t;U
n
2; t� = z for

some t ≤ T is strictly positive, uniformly for initial conditions in the com-
pact set. Thus one can use the standard argument (e.g., [2]) to establish the
uniqueness of the invariant distribution.

Finally we consider the exponential tightness of the marginals �µn2�. How-
ever, this follows directly from the exponential tightness of the random vari-
ables proved in Theorem 7.3 and the fact that the invariant distribution is
equal to the a.s. limit of the normalized occupation measures of the process. 2

We can now state the main result of the section.

Theorem 7.6. Consider the model defined in Sections 2 and 3. The se-
quence �µn2� of �Qn

A;Q
n
B�-marginals of the invariant distribution �µn� satisfies

the large deviation principle with rate function

J�η� = inf�T > 0x GT�η��:

Proof. The process �Zn; n ∈ N� was shown to satisfy parts (a), (b) and (c)
of Condition 6.1 in Corollary 7.4, Theorem 7.2 and Theorem 5.4, respectively.
Lemma 7.5 establishes existence and uniqueness of the measures �µn� and
also the exponential tightness of �µn2�. Thus the process �Zn; n ∈ N� satisfies
all the assumptions of Theorem 6.4 and Theorem 7.6 follows. 2

8. Simplification of the rate function for the invariant distribution.
In Theorem 7.6, it was shown that the rate function J for �µn2�, the sequence
of �Qn

A;Q
n
B�-marginals of the invariant distributions µn, can be expressed

in terms of the rate functions GT�η� for the sequence of random variables
��Qn

A�T�;Qn
B�T���:

J�η� = inf
T>0

GT�η�;

where

GT�η� = inf
�x1; x2�xFT�x1; x2�=η

∫ T
0
�L1�ẋ1� +L2�ẋ2��dt:

Since we need only consider the system of equations (B) for the special case
of zero initial conditions, throughout this section we write FT�x1; x2� in place
of FT�x1; x2;0;0;0;0�.
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In typical applications, one wants to estimate the stationary probability of
data loss at either buffer. As discussed in Sections 2 and 9.2, an estimate is
provided by

µn2���0; aA� × �0; aB��c�;
where aA and aB are (scaled) buffer sizes. A useful property of the rate function
J is that it is affine in radial directions. That is, for any η ∈ R2 and α ∈ �0;∞�,
J�αη� = αJ�η�. To see this, let T ∈ �0;∞� and let x1 and x2 be any pair of
inputs in the definition of GT�η� with finite cost. For α ∈ �0;∞�, we define
inputs x̄1 and x̄2 for GαT�αη� by

˙̄x1�t� = ẋ1�t/α�; ˙̄x2�t� = ẋ2�t/α�:
With such a definition, the system of equations (B) implies FαT�x̄1; x̄2� = αη.
Since the cost of x̄1 and x̄2 over the interval αT is precisely α times the cost
of x1 and x2 over the interval T, this shows that GαT�αη� = αGT�η�. The
definition of J then immediately gives the scaling property J�αη� = αJ�η�.

This facilitates the problem of estimating µn2���0; aA� × �0; aB��c�, since it
implies that the infimum in the corresponding variational problem

inf
η6∈�0; aA�×�0; aB�

J�η�

is achieved on the boundary:

inf
η6∈�0; aA�×�0; aB�

J�η� =
(

inf
η2∈�0; aB�

J��aA; η2��
)
∧
(

inf
η1∈�0; aA�

J��η1; aB��
)
:

For our purposes it will be easier to compute this quantity using the repre-
sentation

(
inf

η2∈�0;∞�
J��aA; η2��

)
∧
(

inf
η1∈�0;∞�

J��η1; aB��
)
;(8.1)

the equivalence between the two being another consequence of the scaling
property J�αη� = αJ�η�. The two variational problems in the last display are
simpler in that the constraints take a nicer form, for example, η2 ∈ �0;∞�
rather than η2 ∈ �0; aB�.

In this section, we will describe how one can simplify the infinite-
dimensional variational problem

K�θ� = inf
η1∈�0;∞�

J��η1; θ��(8.2)

by using the convexity of the rate functions L1 and L2 and the nature of the
mapping FT. In Theorem 8.1, K�θ� is shown to be linear in θ and K�1� is ex-
pressed as the smallest of the solutions to three finite-dimensional variational
problems. Recall from the system of equations (B) that the second coordinate
�FT�x1; x2��2 is equal to qB�T�, the buffer B content at time T. It is then
convenient to think of K�1� as the least cost that must be incurred by the de-
terministic inputs �x1; x2� to raise the buffer B content to the value 1, where
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∫ T
0 �L1�ẋ1�+L2�ẋ2��dt is the cost function. Each of the finite-dimensional vari-

ational problems forK�1� then corresponds to a particular interaction between
the inputs within the buffers that raises the contents of buffer B to the value
1. The original variational problem reduces to the finite-dimensional prob-
lems when �x1; x2� are restricted to certain sets of piecewise linear functions.
In the proof of Theorem 8.1, it is shown that without loss of generality, solu-
tions to the original variational problem can be assumed to lie in these sets.
The minimum of the solutions to the three finite-dimensional problems is thus
shown to solve the original problem. The restrictions imposed on the functions
�x1; x2� in each case, the resulting properties of the cost functions, and the as-
sociated finite-dimensional variational problems are first stated without proof
in Section 8.1. The rigorous derivation of the simplification of the variational
problem is then presented in Appendix B.

The other variational problem, namely infη2∈�0;∞�J��aA; η2��, that appears
in (8.1) is quite easily put into finite-dimensional form, and in fact equals

inf
β1; β2

�L1�β1� +L2�β2��
β1 + β2 − cA

subject to β1 + β2 ≥ cA.
As is well known, the location of the minimizer in infη2∈�0; aB�J��aA; η2�� ∧

infη1∈�0; aA�J��η1; aB�� indicates which of the buffers is more likely to be ex-
ceeded, and the corresponding trajectory indicates the most likely way in
which the overflow occurs [12, 22].

8.1. The finite dimensional variational problems.

Problem 1. Buffer B ignores buffer A. We impose the following restrictions
on the functions �x1; x2�.

Assumption 8.1. The input functions �x1; x2� are linear throughout the
time interval on which they are defined and their constant velocities are de-
noted by �ẋ1; ẋ2� = �β1; β2�.

Assumption 8.2. The input velocities satisfy β1 + β2 ≤ cA.

From (4.1) it can be seen that for constant velocity inputs, Assumption 8.2 is
equivalent to the constraint that buffer A remain empty throughout the time
interval �0;T�. The situation is illustrated in Figure 4. In this case, x1 and x2
do not interact with each other in buffer A and the exit velocity of each input
equals its entrance velocity. Thus buffer B behaves as though buffer A were
not present. Let K1�θ� be the infimum of the cost over the restricted set of
functions �x1; x2� that satisfy Assumptions 8.1 and 8.2 and have a final buffer
B content of θ. For functions in this set, the minimum cost incurred by the
inputs to raise the buffer B to a level θ is linear in θ. Thus K1�θ� = θK1�1�
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Fig. 4. Buffer B ignores buffer A.

and K1�1� solves the following variational problem:

K1�1� = inf
β1; β2

�L1�β1� +L2�β2��
β1 − cB

;(8.3)

subject to

β1 + β2 ≤ cA; β1 ≥ cB:

Problem 2. Buffer A builds up with buffer B. We now state the set of prop-
erties that must be satisfied by functions that lead to the second variational
problem.

Assumption 8.3. The input functions �x1; x2� are piecewise linear. The
time domain on which these functions are defined is divided into two nonempty
intervals, on each of which the functions are linear. Thus �ẋ1; ẋ2� = �δ1; δ2� in
the first interval and �ẋ1; ẋ2� = �b1; b2� in the second interval.

Assumption 8.4. The input velocities satisfy the constraints

δ1 + δ2 > cA;
δ1

δ1 + δ2
cA > cB:

Note that the inputs �b1; b2� referred to in Assumption 8.3 represent the
mean flows which have zero cost because L1�b1� = L2�b2� = 0. Since the
velocities are piecewise constant, (4.1), (4.3) and (4.4) show that trajectories
satisfying Assumption 8.4 are such that buffer A and buffer B fill up simul-
taneously. The situation is illustrated in Figure 5. Let K2�θ� be the infimum
of the cost functional over those trajectories in this set for which the final
buffer B content is equal to θ. For functions in this set, the minimum total
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Fig. 5. Buffer A builds up with buffer B.

cost is found to be linear in θ and thus K2�θ� = θK2�1�, where K2�1� solves
the variational problem given by

K2�1� = inf
δ1; δ2

�L1�δ1� +L2�δ2��
�δ1/�δ1 + δ2��cA − cB

;(8.4)

subject to

δ1 + δ2 > cA;
δ1

δ1 + δ2
cA ≥ cB:

Problem 3. Buffer B exploits buffer A. Finally, we describe another set of
restrictions on �x1; x2� which leads to the last finite-dimensional variational
problem.

Assumption 8.5. The input functions �x1; x2� are piecewise linear. The
time domain on which the functions are defined is divided into two nonempty
intervals, on each of which the functions are linear. Thus �ẋ1; ẋ2� = �β1; β2�
in the first interval and �ẋ1; ẋ2� = �δ1; δ2� in the second interval.

Assumption 8.6. The input velocities satisfy the constraints

β1 + β2 > cA;
β1

β1 + β2
cA ≤ cB;

δ1

δ1 + δ2
cA > cB; δ1 + δ2 < cA:

Since the velocities are piecewise constant, (4.1) and (4.4) show that trajec-
tories satisfying Assumption 8.6 are such that buffer A is nonempty and fills
up to a positive height at the end of the first interval, during which buffer B
remains empty. In the second interval, the contents of buffer A decrease while
buffer B fills up as long as buffer A remains nonempty. It will be seen that
for the infimizer, buffer A empties precisely at the terminal time T. Now, let
K3�θ� be the infimum of the cost functional over the restricted set of functions
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that satisfy Assumptions 8.5 and 8.6 and have a final buffer B content θ. The
total cost incurred by these trajectories clearly depends on the values of the
inputs in each subinterval and the relative lengths of the two subintervals.
For certain inputs, it will turn out that buffer B can be built up at a faster
rate and hence lower cost by exploiting the existing nonempty buffer content
at A. Thus among the potential minimizing trajectories that one must con-
sider when the system starts empty, are those which raise buffer A during an
initial period and then exploit this situation to raise the content of buffer B.
The height to which buffer A is raised dictates the amount of time that buffer
A remains nonempty and consequently the duration for which buffer B can
fill up at a faster rate. Thus we define K4�χ� to be the minimum cost that
must be incurred to raise the buffer A content to a level χ, when the input
functions �x1; x2� satisfy the relevant parts of Assumptions 8.5 and 8.6:

K4�χ� = inf
T>0

inf
�x1;x2�xqA�T�=χ

∫ T
0
�L1�ẋ1� +L2�ẋ2��dt:

The form of the dynamics implies that K4�χ� = χK4�1� and K4�1� solves

K4�1� = inf
β1; β2

�L1�β1� +L2�β2��
β1 + β2 − cA

;(8.5)

subject to

β1 + β2 ≥ cA;
β1

β1 + β2
cA ≤ cB:

Figure 6 illustrates the behavior of the system after this initial buildup of
buffer A. In the figure, inputs β1 and β2 are used to raise buffer A to the
level χ at a time s1 −d�s1�. At this time, new inputs δ1 and δ2 are applied. If
the condition δ1 + δ2 ≥ cA holds, then buffer A will not drain after time s1 −
d�s1�. However, in this case one can bound the cost in terms of the solution to
Problem 2, and in fact show that the behavior over �0; s1−d�s1�� is suboptimal.

Fig. 6. Buffer B exploits buffer A.
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Thus we can assume that the condition δ1 + δ2 < cA holds and that buffer A
drains at some finite time T.

The effect of the change in input rates will not be seen at buffer B until
all the input to buffer A due to β1 and β2 has been processed. This will take
precisely d�s1� = χ/cA units of time. Thus buffer B begins to rise only at time
s1, which is the first time that the new input rates δ1 and δ2 affect buffer B.
The new inputs will be able to exploit the positive buffer content of A only for
the time it takes A to drain under the new rates: χ/�cA − δ1 − δ2�. Since the
rate of increase of buffer B after time s1 is �δ1cA − �δ1 + δ2�cB�/�δ1 + δ2�, the
inputs δ1 and δ2 must be applied for

χ

cA
+ θ δ1 + δ2

δ1cA − �δ1 + δ2�cB
units of time to raise buffer B to level θ. However, all of this must be accom-
plished before buffer A drains, which imposes the constraint

χ

cA
+ θ δ1 + δ2

δ1cA − �δ1 + δ2�cB
≤ χ

�cA − δ1 − δ2�
:

We can now define the minimum cost that must be incurred to raise the
contents of buffer B to a level θ given that the buffer A content is initially at
the value χ. This cost is seen to depend on χ only through the ratio χ/θ = χ′
and can thus be expressed as K5�χ′; θ�, a function of χ′ and θ. Then K5�χ′; θ�
is linear in θ and K5�χ′;1� satisfies

K5�χ′;1� = inf
δ1; δ2

(
χ′

cA
+ δ1 + δ2

δ1cA − �δ1 + δ2�cB

)
�L1�δ1� +L2�δ2��;

subject to

δ1

δ1 + δ2
cA ≥ cB;

cA�cA − δ1 − δ2�
δ1cA − �δ1 + δ2�cB

≤ χ′; δ1 + δ2 < cA:

Proceeding, we note that the total cost is equal to the sum of the costs
incurred during the first two time intervals and is a function of the height
χ = θχ′ to which buffer A is raised during the first interval. Thus the total
cost, as a function of χ′ and θ, is linear in θ and is given by

K4�χ� +K5�χ′; θ� = χK4�1� + θK5�χ′;1� = θ�χ′K4�1� +K5�χ′;1��:
The minimum total cost, K3�θ�, is clearly achieved only by inputs that opti-
mally balance the tradeoff in the cost incurred to raise buffer A to a certain
height and the corresponding decrease in the cost of filling buffer B. Thus,
minimizing the total cost over all possible positive values of χ′, the scaled
buffer A content at the end of the first interval yields K3�θ�. The total cost
is affine in χ′ with a positive coefficient and also depends on this quantity
through the constraint cA�cA − δ1 − δ2�/�δ1cA − �δ1 + δ2�cB� ≤ χ′. Thus for
any value of χ′ that minimizes the total cost, the equality must hold in the
constraint. This translates in physical terms to the fact that for a minimizing
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trajectory, buffer A empties precisely at the terminal time, and is not raised
to a greater height than is necessary.

Thus we obtain

K3�θ� = θK3�1�;
where

K3�1� = inf
δ1; δ2

cA

[
cA − δ1 − δ2

δ1cA − �δ1 + δ2�cB
K4�1� +

�L1�δ1� +L2�δ2��
δ1cA − �δ1 + δ2�cB

]
;(8.6)

subject to

δ1

δ1 + δ2
cA ≥ cB; δ1 + δ2 < cA:

Thus the three finite-dimensional variational problems (8.3), (8.4) and (8.6)
have been described and the corresponding minimizing trajectories have been
illustrated in Figures 4, 5 and 6, respectively. We now state the simplification
of the rate function in Theorem 8.1, the proof of which is given in Appendix B.

Theorem 8.1. Assume b1 + b2 < cA and b1 < cB. Let K�θ� be the rate
function for �νn�, the sequence of Qn

B-marginals of the invariant distributions
µn. Then K�θ� has the following finite-dimensional variational representation:

K�θ� = θK�1�
and

K�1� = min�K1�1�;K2�1�;K3�1��;
where K1�1�, K2�1� and K3�1� are as defined in (8.3), (8.4) and (8.6), respec-
tively.

We close this section with several remarks. In a number of large deviation
problems for one-dimensional queueing models, one can easily simplify the
rate function through the use of Jensen’s inequality. The goal of this section
was clearly to describe the corresponding simplification for our model. How-
ever, it turns out that while the description of the simplified form just given
is reasonably intuitive, the proof is remarkably detailed. In the typical one-
dimensional problem, the simplification is completely straightforward. One
first shows that the minimization in the definition of the rate function can be
restricted to inputs for which the corresponding output never touches the ori-
gin after time 0. From the form of the Skorokhod map (2.2), this implies that
the output at time t minus the output at time 0 depends only on the input
at time t minus the input at time 0. A consequence of the convexity of the
integrand in the sample path rate function and Jensen’s inequality is that the
infimization can be taken over linear inputs, thus leading to the corresponding
simplification of the rate function.

The situation here is not so simple. We have two switches to consider, and it
is in general simply not true that the minimizer is linear. In fact, it takes one
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of three possible forms, involving up to two intervals on which the inputs can
be assumed to have constant derivatives. This complexity is obviously due to
the fact that there are interesting interactions taking place. An unfortunate
consequence is the level of detail required in the proof. The main difficulty is
that, when replacing an input on a given interval by its average value over
that interval, the highly nonlinear nature of the input–output map does not
allow one to assume the remaining portion of the output is not perturbed in a
significant way. For example, if we start with an input which has the property
that qB�T� = θ, then in general it is not true that this condition will still be
satisfied after replacement. Thus at each stage, it is necessary to understand
the effect of the modification on the remaining portion of the output.

The reader will note that in a number of places in the statements of the
finite-dimensional problems just given, the minimization involves one or more
strict inequalities. It is natural to ask whether these can be relaxed, so that the
minimization takes place over a closed set. It turns out that this can be done,
and in fact the relaxation for any given case corresponds to a cost and a set of
variables already included in one of the other cases. For example, if we include
δ1 and δ2 in Problem 2 that satisfy δ1 + δ2 = cA and �δ1/�δ1 + δ2��cA ≥ cB,
we obtain potential values for the infimum that were already considered in
Problem 1.

9. Decoupling bandwidths and network extensions.

9.1. Effective bandwidth revisited. As part of the motivation for the topic
studied in this paper, in the introduction we described the use of the “effective
bandwidth” concept as a means of satisfying constraints on the tail of the
invariant distribution in the one buffer setting. Associated to each source i
is a function Hi and, for a collection of models that include the Markov fluid
models we use, one can show that

I∑
i=1

Hi�δ�
δ
≤ c ⇒ lim

n→∞
1
n

logµ��n;∞�� ≤ −δ;(9.1)

where c is the processing rate at the buffer and µ is the Q-marginal of the
associated invariant distribution. Using the characterization of Hi as a limit
of normalized logarithmic moment generating functions, it is easy to show that
for all δ, Hi�δ� = supβ�δβ−Li�β��, where the functions Li were introduced in
Section 5. In other words,Hi is the Legendre transform of Li (and conversely).
The effective bandwidth function is defined to be Hi�δ�/δ for δ > 0; and to be
the mean flow rate bi for δ = 0.

It is natural to examine the degree to which this concept can be extended
to the network setting. As the analysis in this paper reveals, a complete study
of the effects due to the interactions of streams within each buffer in a net-
work is a nontrivial task. One might therefore first attempt the seemingly less
ambitious task of establishing conditions under which streams “decouple” so
that they no longer significantly alter each other’s stochastic properties. Con-
sider a specific network for which a large deviation analysis along the lines
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of that given in Sections 2–8 can be carried out. Suppose that the buffers are
indexed by the parameter θ. For a collection of constraints defined in terms
of the parameters δθ, we will say that the input streams decouple throughout
the network (or simply that they decouple) if a condition analogous to (9.1)
applies at each buffer in the network. That is, we require for all buffers θ in
the network that

∑
i∈Iθ

Hi�δθ�
δθ

≤ cθ
aθ
⇒ lim sup

n→∞

1
n

logµθ��naθ;∞�� ≤ −δθ:(9.2)

Here Iθ is the subset of sources that share buffer θ, cθ is the processing rate of
buffer θ, naθ is the size of buffer θ and µθ is the Qθ-marginal of the invariant
distribution for the Markov process that models the entire network.

For example, a simple but not very useful constraint which guarantees that
the inputs decouple is that the sum of the peak rates of all sources entering a
buffer is less than the processing rate of the buffer. For simplicity, we consider
the network in Figure 2 and let aA = aB = 1. Recall that the peak rate of a
source is denoted by Ri. If R1 +R2 < cA, then the effective bandwidth of the
exiting stream Y1 is clearly equal to that of the entering stream X1, in the
sense that

H1�δB�
δB

≤ cB ⇒ lim
n→∞

1
n

logµn2��0;∞�× �1;∞�� ≤ −δB:

The idea of streams “decoupling” was introduced and a sufficient condition
under which decoupling would occur was proposed in [5] and [13]. The notion of
what it means to decouple used in these papers is stated in a form that differs
from the definition given above, although the intended result is the same.
Unfortunately, Theorem 8.1 implies that the condition given in [5] and [13] is
not always sufficient. Consider the model of Sections 2–8. For the remainder of
this section, all references will be to [5]. In that paper, the effective bandwidth
Hi�δ�/δ is denoted in Corollary 2.1 by αi�δ� and the definition of a decoupling
bandwidth α∗i�δ� is introduced in Corollary 3.1. In our notation, the decoupling
bandwidth is given by

α∗i�δ� = arg max
α
�αδ−Li�α��:

In other words,

Hi�δ� = α∗i�δ�δ−Li�α∗i�δ��:
An obvious consequence of the fact that Ẋi never exceeds Ri, where Ri is the
peak rate of source i, is that Li�β� = +∞ if β > Ri. It follows directly from the
definitions that both αi�δ� and α∗i�δ� are bounded by Ri. In Corollary 3.2, it
is asserted that a sufficient condition for the input stream X1 and the output
stream Y1 to have the same effective bandwidth is that

α∗1�δA� + α2�0� = α∗1�δA� + b2 < cA:(9.3)

By this assertion, what is meant is that the bandwidth function H1�δ�/δ can
be used at the next buffer in the same way it was used at the first; that is,
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(9.2) should hold for the first two buffers. In particular, if true, the assertion
would imply that if (9.3) holds and if the effective bandwidth constraint,

α1�δB� < cB;(9.4)

is satisfied at buffer B, then

lim
n→∞

1
n

logµn2
(
�0;∞�× �1;∞�

)
≤ −δB:(9.5)

We now show that this is not necessarily true. Assume that for the network
in Figure 2,

R1 + b2 < cA; R1 < cB:(9.6)

Then (9.3) and (9.4) are satisfied for all values of δA and δB. Taking the limit
δB→∞ in (9.5) leads to the conclusion that

lim
n→∞

1
n

logµn2
(
�0;∞�× �1;∞�

)
= −∞:

In our notation, this corresponds to the assertion thatK�1� = ∞. However, the
analysis of Section 8 shows that under certain conditions (described in Case
3), the first source can exploit the second source to increase its exit velocity
above its peak rate R1 and thus fill buffer B to a level greater than 1 with
positive probability. In particular, suppose that in addition to the constraints
(9.6), we also have

b1 +R2 > cA;
R1

R1 + b2
cA > cB:(9.7)

Then one can check that K1�1� = K2�1� = ∞ since R1 < cB. Since under
the invariant distribution for ξi, ri�ξi� = Ri with positive probability, we
know that Li�Ri� <∞. It follows from the first constraint in (9.7), that R1 +
R2 > cA, and, from this inequality and the second inequality of (9.6) that
R1cA/�R1 +R2� ≤ cB. Then K4�1� is clearly finite since the inputs �R1;R2�
satisfy the constraints below (8.5) and yield a finite value for the functional
that is being infimized. Similarly, K3�1� is also finite since K4�1� is finite, the
inputs �R1; b2� satisfy the constraints below (8.6) and the functional evaluated
at �R1; b2� is finite. Thus we have

lim
n→∞

1
n

logµn2
(
�0;∞�× �1;∞�

)
≥ −K3�1� > −∞:

This implies that there exist δA; δB ∈ �0;∞� for which the proposed decoupling
condition (9.3) and the effective bandwidth condition at the second buffer (9.4)
holds, but the probability constraint for the second buffer in (9.2) is violated.

Thus the description of useful conditions under which decoupling occurs
remains an open problem.
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9.2. Finite buffer models. In this subsection we elaborate on a remark
made in Section 2. Suppose that in place of the model used in Sections 2–8
we use the finite buffer analogue with (scaled) buffer sizes aA and aB. This
can be constructed by replacing the Skorokhod map 0 by the analogous map
that constrains Qn

A at both the endpoints 0 and aA and Qn
B at the endpoints 0

and aB. To simplify the discussion, let us consider just the one buffer problem
and use the analogous notation c; a; ξn;Xn;Qn. We model Xn just as Xn

1 and
Xn

2 were modeled in Section 2. For this set-up, the Skorokhod map relating
the input Xn to the buffer content Qn can be formulated as follows [7]. Let
Qn�0� ≥ 0 be given. For every ω in the underlying probability space, there
exist a unique pair of continuous, nondecreasing and real-valued processes
�Ln1 ;Ln2� and a continuous �0; a�−valued process Qn such that the following
properties hold:

1. Qn�t� = Qn�0� +Xn�t� − ct+Ln1�t� −Ln2�t�;
2. Ln1 increases only when Qn = 0 and Ln2 increases only when Qn = a;
3. Ln1 and Ln2 are of bounded variation on every finite time interval.

The process Qn is the desired model for the buffer content. We can write
Qn = 0̃�Xn − g�, where g�t� = ct −Qn�0�. It follows from [7] that 0̃ can be
defined as a Lipschitz continuous map on C �0;∞� with constant 2 with respect
to the supremum norm. The “local time” Ln1 provides the proper constraining
action at the origin, while Ln2 realizes the constraint at a. Moreover, it is easily
seen that Ln2�t� is precisely the total data lost due to overflow in the interval
�0; t�. We are interested in the asymptotic behavior of

E lim
T→∞

Ln2�T�
T

which gives the expected amount of data lost per unit time.
Let µ̃n denote the invariant distribution of �ξn;Qn�. For any T ∈ �0;∞�,

we can represent the average amount of data lost per unit time as

Eµ̃n
Ln2�T�
T

:

Using the techniques of Section 6 to relate the asymptotics of this quantity to
the rate function for the buffer process, one can readily establish the following
formula:

− lim
n→∞

1
n

logEµ̃n
Ln2�T�
T

= J̃�a�;

where, for g�t� = ct; and with I �0;∞� defined as in Section 4,

J̃�a� = inf
{∫ T

0
L�φ̇�dtx T ∈ �0;∞�; q = 0̃�φ− g�; φ ∈ I �0;∞�;

with φ�0� = 0 and q�T� = a
}
:

At this point one can easily see why the large deviation asymptotics
for �Eµ̃n�Ln2�T�/T�� in the finite buffer case are the same as those for
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�µn2��a;∞���, where µn2 is the second marginal of the joint invariant distribu-
tion of the Markovianized process in the infinite buffer case. The rate function
in the infinite buffer case takes the form

J�a� = inf
{∫ T

0
L�φ̇�dtx T ∈ �0;∞�; q = 0�φ− g�; φ ∈ I �0;∞�;

with φ�0� = 0 and q�T� = a
}
:

In other words, the only difference between the two is in the form of the
mapping that takes the input φ − g to the output q. We note that for any
given input, the outputs of the two mappings coincide on an interval �0;T� if
the outputs satisfy q�t� < a, t < T. This is because the constraint at a is never
activated in the mapping for the finite buffer model until possibly t = T. Since
the nonnegativity of L implies that the infimization can be restricted to such
paths, we obtain J̃�a� = J�a�.

This situation is preserved in the multidimensional case, although the no-
tation is more involved.

9.3. Other network models. The techniques developed in this paper can
be extended to treat a number of more complicated and higher dimensional
models. One can consider generalizations in a number of different directions.
One type of extension that is easily accommodated allows more general data
source models. More interesting generalizations involve modifying the net-
work structure and increasing the number of buffers.

A simple and natural extension of the two buffer network we have con-
sidered so far allows a third independent source with scaled cumulative data
process Xn

3 to share the second buffer with source 1. We will suppose that this
source is modeled via a finite state Markov chain as in Section 2. Let b3 denote
the mean output rate for this source. Then the stability conditions obviously
become

b1 + b2 < cA; b1 + b3 < cB;

and the Lyapunov function can be constructed just as in Appendix A. The
continuity of the mapping that takes the inputs and initial conditions into the
buffer content processes follows from Theorem 4.1, and the obvious analogue
of Theorem 5.4 gives the rate function for the buffer content at time t ∈ �0;∞�.
Theorem 6.4, which connects this rate function to that of the (scaled) invariant
distribution, goes through without change. The only significant difference is
in the form the finite-dimensional simplification takes in Section 8. The form
must now reflect the fact that there is a third independent source that can
be used to help raise the level of the second buffer. In particular, if L3 is the
integrand for the rate function for �Xn

3�, then we obtain the following replace-
ments for K1�1�, K2�1� and K3�1� (the interpretations of these problems are
analogous to those given in Section 8):

K1�1� = inf
β1; β2; β3

�L1�β1� +L2�β2� +L3�β3��
β1 + β3 − cB

;
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subject to

β1 + β2 ≤ cA; β1 + β3 ≥ cBy

K2�1� = inf
δ1; δ2; δ3

�L1�δ1� +L2�δ2� +L3�δ3��
�δ1/�δ1 + δ2��cA + δ3 − cB

;

subject to

δ1

δ1 + δ2
cA + δ3 ≥ cB; δ1 + δ2 > cAy

K3�1� = inf
δ1; δ2; δ3

[
cA − δ1 − δ2

δ1cA − �δ1 + δ2��δ3 − cB�
K4�1�

+ �L1�δ1� +L2�δ2� +L3�δ3��
δ1cA − �δ1 + δ2��δ3 − cB�

]
;

subject to

δ1

δ1 + δ2
cA + δ3 ≥ cB; δ1 + δ2 < cA;

where

K4�1� = inf
β1; β2

�L1�β1� +L2�β2��
β1 + β2 − cA

;

subject to

β1 + β2 ≥ cA;
β1

β1 + β2
cA ≤ cB:

One can also consider networks with more than two buffers. We will not
provide a detailed discussion on this topic, but will simply describe the net-
works to which the methods of this paper can be applied in a more or less
straightforward manner. The first restriction occurs if we want to apply the
continuity result in Theorem 4.1 for the two-buffer model to obtain continu-
ity for a more general network. The restriction is that we must consider only
networks for which there is an ordering of the buffers, with the property that
the output from a higher order buffer is never fed back as the input to a lower
order buffer. For such a network, Theorem 4.1 (or more precisely, the elemen-
tary generalization of Theorem 4.1 that allows an arbitrary but finite number
of input streams) can be applied sequentially. One starts with the lowest num-
bered buffer and proceeds up to the highest in order to prove the continuity
of the map that takes initial conditions and all the inputs to the joint buffer
content process for the network.

An example of a network that does not possess such an ordering property is
given in Figure 7. Even if a continuity result were available for such a network
and all the other results could be adapted to prove a large deviation principle
for the invariant distribution, it would probably be significantly more difficult
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Fig. 7. Three buffer cyclic network.

to prove an analogue of Theorem 8.1. The problem is related to the difficulty in
proving the continuity result: one cannot automatically rule out the possibility
that the “most likely” way for large queue sizes to occur involves some type of
cycling behavior, wherein a sequence of well-timed but relatively small inputs
exploits a kind of system resonance to build a large queue size.

Thus we restrict the rest of our discussion to networks that satisfy the
ordering property described above. It is useful to review the results (besides
Theorem 4.1) proved earlier in the paper. The techniques used in two of the
other main results are broadly applicable. These results are the theorem that
produces a large deviation principle for the buffer contents at a given time
from the sample path result for the inputs (Theorem 5.4) and the theorem that
connects the rate function of the process to that of the associated invariant
distribution (Theorem 6.4). The latter result uses in an essential way certain
stability properties, all of which require the construction of a Lyapunov func-
tion as in Appendix A. The method used in Appendix A to construct Lyapunov
functions can also be generalized to larger networks. For example, consider
the networks shown in Figures 8 and 9. The dynamics are described by the
obvious extension of the dynamics for the two-station network. A detailed
calculation of the Lyapunov functions associated with these networks can be
found in [21], Section 9.1.

Finally, we note that more elaborate scalings can also be dealt with using
much the same techniques. For example, one could simultaneously scale the
buffer size and the number of users as in [22].

Fig. 8. Series network.
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Fig. 9. Three buffer network.

APPENDIX A

Construction of Lyapunov functions to establish stability. In this
Appendix, we prove the first three results stated in Section 7. We first prove
the stability of the associated “fluid model,” which is another way of saying
the stability of the system under the mean flow. In the course of the proof we
will construct a Lyapunov function that will also be used to establish stability
properties of the process itself.

Proof of Theorem 7.1. It has been assumed that ẋ1 = b1, ẋ2 = b2, b1 +
b2 < cA and b1 < cB. In this case �0;0� is a critical point for �qA; qB� described
by the system of equations (B). This follows because if �qA�t�; qB�t�� = �0;0�,
then q̇A�t� = �b1 + b2 − cA� ∨ 0 = 0 from (4.1). This implies d�t� is identically
equal to zero, and thus q̇B�t� = �b1 − cB� ∨ 0 = 0 from (4.4).

Let ta be the time taken for buffer A to drain out under the mean flow:
ta = inf�t ≥ 0x qA�t� = 0�. If qA�0� = za = 0, then ta = 0. If qA�0� = za > 0,
then qA�t� > 0 for all t ∈ �0; ta� and from (4.1),

q̇A�t� = b1 + b2 − cA for all t ∈ �0; ta�;
q̇A�t� = 0 for all t ≥ ta:

Integrating q̇A�t� over the interval �0; ta� gives

qA�ta� = za + �b1 + b2 − cA�ta:

From the definition of ta, qA�ta� = 0, and thus

ta = −
za

b1 + b2 − cA
:(A.1)

Moreover, qA�t� = 0 for all t ≥ ta. During �0; ta�, the maximum rate of increase
(or least rate of decrease) possible in the contents of bufferB is �cA−cB�. Hence
the maximum possible buffer B content at ta is

qB�ta� = �zb + �cA − cB�ta� ∨ 0:(A.2)
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Let tb = inf�t ≥ tax qB�t� = 0�: Since qA�t� = 0 for t ≥ ta, d�t� = 0 for t ≥ ta,
and it follows that

q̇B�t� =
{
b1 − cB for all t ∈ �ta; tb�;
0 for all t ≥ tb:

Thus from the dynamics, �qA�t�; qB�t�� = �0;0� for all t ≥ tb. 2

We now explicitly identify tb, which will be used below as a Lyapunov func-
tion. Integrating q̇B�t� over the interval �ta; tb� yields

0 = qB�ta� + �b1 − cB��tb − ta�:
Substituting for ta from (A.1) and qB�ta� from (A.2) in the last equation, we
obtain

[
zb −

�cA − cB�za
b1 + b2 − cA

]
∨ 0+ �b1 − cB�

(
tb +

za
b1 + b2 − cA

)
= 0;

which when rearranged gives

tb =
1

cB − b1

([
zb +

�cA − cB�za
cA − b1 − b2

]
∨ 0

)
+ za
cA − b1 − b2

=
[

za�cA − b1�
�cA − b1 − b2��cB − b1�

+ zb
cB − b1

]
∨ za
cA − b1 − b2

:

It is clear that tb depends on the initial condition �za; zb�. If we define
V�za; zb� = tb, then

V�za; zb� = �α1; �za; zb�� ∨ �α2; �za; zb��;(A.3)

where

α1 =
( �cA − b1�
�cA − b1 − b2��cB − b1�

;
1

cB − b1

)
and α2 =

(
1

cA − b1 − b2
;0
)
:

Then V�za; zb� is obviously linear on each of the sets D1 and D2 defined by

D1 =
{
z ∈ R2x �α1; z� > �α2; z�� and D2 = �z ∈ R2x �α2; z� > �α1; z�

}
:

Let D1;2 denote the common boundary of D1 and D2; so that

D1;2 = �z ∈ R2x �α1; z� = �α2; z��:
We have constructed a function which provides an upper bound on the

time for the fluid model to reach the origin, given initial buffer contents za
and zb. Although it is not in precise analogy with the method used in [9],
it is nevertheless plausible that the function V could serve as a Lyapunov
function for the associated stochastic model. As we will see, this is indeed
the case. Generalizations of the method used here and a second construction
that is closer in spirit to the method used in [9] are outlined in [21]. We now
establish that the function V defined in (A.3) is indeed a Lyapunov function.
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Theorem A.1. Consider deterministic functions x1, x2, qA and qB as de-
scribed by the system of equations (B). Assume that b1 + b2 < cA and b1 < cB.
The function V defined in (A.3) has the following properties:

(a) V�za; zb� is piecewise linear;
(b) V�za; zb� ≥ 0;
(c) V�za; zb� = 0 iff �za; zb� = �0;0�;
(d) define LtV�qA�t�; qB�t�� to be the orbital derivative of V, that is, the

derivative in t of the composed function. Then a.s. for t such that qA�t�∨qB�t� >
0, LtV is given by

LtV�qA�t�; qB�t�� = �∇V�qA�t�; qB�t��; �q̇A�t�; q̇B�t���;(A.4)

where ∇V�za; zb� can be defined as either α1 or α2 for �za; zb� ∈ D1;2.

Proof. The first three properties follow immediately from the form of V
defined in (A.3). Thus we only have to show property (d). Since V is Lip-
schitz continuous and qA and qB are absolutely continuous, V�qA�t�; qB�t��
is absolutely continuous. However, the fact that V is not differentiable every-
where means that a little care must be taken when identifying the derivative
of V�qA�t�; qB�t��. Clearly, the only complication arises when calculating the
derivative for t such that �qA�t�; qB�t�� ∈ D1;2. We will use the fact that the
set

{
tx �qA�t�; qB�t�� ∈ D1;2; �q̇A�t�; q̇B�t�� 6∈ D1;2

}

has Lebesgue measure zero [6], Theorem A.6.3. It is easy to check that the
projection of α1 onto D1;2 equals the projection of α2 onto D1;2. We denote the
common projection by α1;2. Then the definition of the derivative and the last
three sentences imply

d

dt
V�qA�t�; qB�t�� = �α1;2; �q̇A�t�; q̇B�t���

= �α1; �q̇A�t�; q̇B�t��� = �α2; �q̇A�t�; q̇B�t���
a.s. for t ∈ �tx �qA�t�; qB�t�� ∈ D1;2 and qA�t� ∨ qB�t� > 0�. Hence without
ambiguity, we can set ∇V�x� equal to either α1 or α2 when x ∈ D1;2, and have
(A.4) true a.s. in t. 2

We now use the Lyapunov function V to establish Theorem 7.2.

Proof of Theorem 7.2. Consider the Lyapunov function defined in (A.3).
We also consider the deterministic functions x1, x2, qA and qB described in
the system of equations (B), and divide R2\��0;0�� into two regions.

Region 1 �qA�t�; qB�t��x qA�t� > 0 and qB�t� ≥ 0. Here qA�t� and qB�t�
satisfy

q̇A�t� = ẋ1�t� + ẋ2�t� − cA;
q̇B�t� = α�t�cA − cB
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a.s. in t, where α�t� is a measurable function that takes values in �0;1� when
qB�t� > 0 and almost surely takes the value cB/cA when qB�t� = 0. [Here we
have again used the fact that for an absolutely continuous function fx �0;T� →
R, the set of t such that f�t� = 0 and ḟ�t� 6= 0 is a set of Lebesque measure
zero.] Recall that LtV, the orbital derivative of V, was shown in Theorem A.1
to equal

LtV�qA�t�; qB�t�� = �∇V�qA�t�; qB�t��; �q̇A�t�; q̇B�t���
a.s. for t such that qA�t� ∨ qB�t� > 0, where ∇V�za; zb� can be defined as
either α1 or α2 for �za; zb� ∈ D1;2. If �qA�t�; qB�t�� ∈ D̄1, then either qB�t� > 0,
in which case α�t� ∈ �0;1�, or else qB�t� = 0 and qA�t� > 0, in which case
α�t� = cB/cA a.s. Now in the latter case there exists a vector �vA;0� ∈ D1 with
vA > 0, which implies �cA − b1�/�cB − b1� ≥ 1, or cA ≥ cB. Thus α�t� ∈ �0;1�
a.s. for all t such that �qA�t�; qB�t�� ∈ D̄1. For such t, we have

LtV =
�cA − b1��ẋ1�t� + ẋ2�t� − cA�
�cA − b1 − b2��cB − b1�

+ α�t�cA − cB
cB − b1

= �cA − b1��ẋ1�t� + ẋ2�t� − b1 − b2�
�cA − b1 − b2��cB − b1�

− �cA − b1��cA − b1 − b2�
�cA − b1 − b2��cB − b1�

+ α�t�cA − cB
cB − b1

= �cA − b1��ẋ1�t� + ẋ2�t� − b1 − b2�
�cA − b1 − b2��cB − b1�

+ �α�t� − 1�cA
cB − b1

− 1

≤ �cA − b1��ẋ1�t� + ẋ2�t� − b1 − b2�
�cA − b1 − b2��cB − b1�

− 1:

On the other hand, if �qA�t�; qB�t�� ∈ D̄2, LtV = �α2; �q̇A�t�; q̇B�t���, which
gives

LtV =
ẋ1�t� + ẋ2�t� − cA
cA − b1 − b2

= ẋ1�t� + ẋ2�t� − b1 − b2

cA − b1 − b2
− 1

Region 2 �qA�t�; qB�t��x qA�t� = 0 and qB�t� > 0. It can be easily seen
that Region 2 is contained in D1 and therefore ∇V�qA�t�; qB�t�� = α1. The
dynamics in this region are given by

q̇A�t� = 0;

q̇B�t� = ẋ1�t� − cB
a.s. in t, once again using the property of absolutely continuous functions that
was stated above. Therefore

LtV =
ẋ1�t� − cB
cB − b1

= ẋ1�t� − b1

cB − b1
− 1:

For notational convenience we define

k1 =
�cA − b1�

�cA − b1 − b2��cB − b1�
∨ 1
cA − b1 − b2

and k2 =
1

cB − b1
;
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and note that k1 ≥ k2. From the stability conditions, k1 ∧ k2 > 0. Integrating
and using the definitions of k1 and k2, we obtain

V�qA�t�; qB�t�� −V�qA�0�; qB�0�� + t

≤
∫ t

0

[
k11�qA�s�>0��ẋ1�s� + ẋ2�s� − b1 − b2�

+ k21�qA�s�=0��ẋ1�s� − b1�
]
ds

(A.5)

for all t such that �qA�s�; qB�s�� 6= �0;0� for s ∈ �0; t�. This inequality pro-
vides the intuition behind the theorem. If �Qn

A�t�;Qn
B�t�� remains nonzero,

then V�Qn
A�t�;Qn

B�t�� − V�Qn
A�0�;Qn

B�0�� remains bounded from below since
V�za; zb� is a Lyapunov function for the dynamical system. This implies that
the integral on the right must increase approximately linearly with t. How-
ever, the large deviation property of the inputs �Xn

1 ;X
n
2� suggests that this

event happens with exponentially small probability. In order to make this
argument rigorous, we first define the set

Qλ = ��za; zb�x V�za; zb� ≤ λ�:

We show that if the process starts in a region of the form Qλ, then with
probability exponentially close to 1 it must enter the region N̄ε within some
finite time that is independent of ε.

Given that the initial conditions lie in the compact set K, let K2 be the
projection of K onto S2. Then let λ = sup�za; zb�∈K2

V�za; zb�, so that K2 ⊂ Qλ.
LetNε = �x ∈ S2x θ�x;0� < ε�. We define the closed set A ⊂ C �0;T�2×S2;3 by

A =
{
�x1; x2; qA�0�; qB�0�; u1;0; u2;0�x �qA�0�; qB�0�� ∈ Qλ;

�qA�t�; qB�t�� 6∈Nε for all t ∈ �0;T�
}
:

In the last display �qA; qB� are the trajectories associated to �x1; x2; qA�0�;
qB�0�; u1;0; u2;0� through the system of equations (B). We will show that the
probability of this event is exponentially small for large enough T. In order
to do so, we first bound the event in terms of an event that involves only the
input processes �Xn

1 ;X
n
2� so that we can then use large deviation estimates

to estimate its probability.
If �x1; x2; qA�0�; qB�0�; u1;0; u2;0� ∈ A , then V�qA�0�; qB�0�� ≤ λ and for

all t ∈ �0;T�, V�qA�t�; qB�t�� > 0 [since �qA�t�; qB�t�� 6∈ Nε]. By (A.5), for
such �x1; x2; qA�0�; qB�0�; u1;0; u2;0� and t ∈ �0;T�,

∫ t
0
k11�qA�s�>0��ẋ1�s� − b1�ds+

∫ t
0
k11�qA�s�>0��ẋ2�s� − b2�ds

+
∫ t

0
k21�qA�s�=0��ẋ1�t� − b1�ds ≥ t− λ:
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Henceforth, let T ≥ 3λ. Then since k1 ≥ k2, the last display implies
(∫ T

0
1�qA�s�>0��ẋ1�s� − b1�ds

)
∨
(∫ T

0
1�qA�s�>0��ẋ2�s� − b2�ds

)

∨
(∫ T

0
1�qA�s�=0��ẋ1�t� − b1�ds

)
≥ 2T

9k1
:

(A.6)

Recall that it was established in Lemma 5.3 that for each i = 1;2 the
sequence Xn

i satisfies the large deviation principle uniformly in the initial
condition ξni �0� with rate function IiT�φ� =

∫ T
0 Li�φ̇�s��ds, and that each Li

is nonnegative, convex, has compact level sets, with Li�u� = 0 iff u = bi. Let
us consider the first term in the last display, and suppose that this term is
bounded below by 2T/9k1. Let m denote the Lebesgue measure of the Borel
set �s ∈ �0;T�x qA�s� > 0�. Using the convexity of L1, Jensen’s inequality and
the fact that L1�b1� = 0,

∫ T
0

1�qA�s�>0�L1�ẋ1�s��ds ≥mL1

(∫ T
0

1�qA�s�>0�ẋ1�s�ds/m
)

≥mL1

(
2T

9k1m
+ b1

)

≥ TL1

(
2

9k1
+ b1

)
:

By estimating the second and third terms in (A.6) in a similar fashion, we
obtain the bound

(∫ T
0

1�qA�s�>0�L1�ẋ1�s��ds
)
∨
(∫ T

0
1�qA�s�>0�L2�ẋ2�s��ds

)

∨
(∫ T

0
1�qA�s�=0�L1�ẋ1�s��ds

)
≥ Tα;

where α = L1��2/9k1� + b1� ∧L2��2/9k1� + b2� > 0. Thus

I1
T�x1� ∨ I2

T�x2� ≥ Tα:(A.7)

For the remainder of the proof, we set T = 3λ∨M/α. Note that this definition
is independent of ε > 0. Now define the set

B =
{
�x1; x2�x �x1; x2; qA�0�; qB�0�; u1;0; u2;0� ∈ A

}
:

Then B is closed because A is closed, ��qA�0�; qB�0�; u1;0; u2;0� ∈S2;3x �qA�0�;
qB�0�� ∈ Qλ� is compact and the map FTx �x1; x2; qA�0�; qB�0�; u1;0; u2;0� →
�qA; qB� is continuous (cf. Theorem 4.1). In addition, (A.7) implies that for all
�x1; x2� ∈ B,

I1
T�x1� ∨ I2

T�x2� ≥M:(A.8)
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If z is any initial condition such that z2 ∈ Qλ, then the definitions of A and
B imply

Pz�τnε > T� ≤ Pz��Xn
1 ;X

n
2 ;Q

n
A�0�;Qn

B�0�;Un
1;0;U

n
2;0� ∈ A �

≤ Pz1
��Xn

1 ;X
n
2� ∈ B�:

The lower bound (A.8) and the uniform large deviation principles for �Xn
1�

and �Xn
2� stated in Lemma 5.3 then imply

lim sup
n→∞

1
n

log sup
z∈K

Pz�τnε > T� ≤ −M;

which establishes the theorem. 2

We now prove the exponential tightness of the family of random variable
Zn�t�. As before, we use the notation Zn

1 = �ξn1 ; ξn2 �, Zn
2 = �QA;QB� and

Zn
3 = �Un

1 ;U
n
2�.

Proof of Theorem 7.3. Given a compact set D, consider the compact set
D2 obtained from the projection of D onto S2. Recall the definition of the
compact set Qλ ⊂ S2 = R2 in terms of the Lyapunov function defined in (A.3):

Qλ = ��za; zb�x V�za; zb� ≤ λ�:

Let λ = sup�za; zb�∈D2
V�za; zb�. We define the compact set K by K = S1 ×

��z2; z3� ∈ S2;3x z2 ∈ Qλ�. Observe that D ⊂ K. Choose ε > 0 such that
sup�za; zb�∈N̄ε

V�za; zb� < λ and define the following series of random times:

τn0 = 0;

σnk = inf�t > τnk−1x �Qn
A�t�;Qn

B�t�� ∈ N̄ε�;
τnk = inf�t > σnk x �Qn

A�t�;Qn
B�t�� 6∈ Q0

λ�;

where Q0
λ denotes the interior of the set Qλ. By Proposition 2.1.5 of [11],

σnk and τnk are stopping times for every n;k ∈ N. Using the strong Markov
property of the process Zn, for k ∈ N,

Pz�σnk+1 − τnk > T� = PZn�τnk ��σ
n
1 > T� ≤ sup

z∈K
Pz�σn1 > T�:

Given any M < ∞, Theorem 7.2 implies the existence of T < ∞ and N < ∞
such that for n ≥N,

sup
z∈K

Pz�σn1 > T� ≤ e−nM:(A.9)

Combining the last two inequalities shows that for every k ∈ N and n ≥N,

Pz�σnk+1 − τnk > T� ≤ e−nM:
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We now characterize the probability that the buffer content processes leave
some compact set C, where Qλ ⊂ C. The indicator function 1��Qn

A�t�;Qn
B�t��6∈C� of

the event of interest can be expressed as

1��Qn
A�t�;Qn

B�t��6∈C� =
∞∑
k=0

1��Qn
A�t�;Qn

B�t��6∈C�1�τnk ; σnk+1��t�;

since �Qn
A�t�;Qn

B�t�� ∈ Qλ ⊂ C for t ∈ �σnk ; τnk�. If we let �a; b� = \ whenever
b ≤ a, then for any T ∈ R, we can also write

1��Qn
A�t�;Qn

B�t��6∈C� =
∞∑
k=0

[
1��Qn

A�t�;Qn
B�t��6∈C�1�τnk ; τnk+T��t�

+ 1��Qn
A�t�;Qn

B�t��6∈C�1�τnk+T;σnk+1��t�
]
:

(A.10)

Then Pz�t ∈ �τnk +T;σnk+1�� can be rewritten as

Pz�t ∈ �τnk +T;σnk+1��t ∈ �τnk; σnk+1��Pz�t ∈ �τnk; σnk+1��;
which, by the strong Markov property, equals

PZn�τnk ��t ∈ �T;σ
n
1 ��t ∈ �0; σn1 ��Pz�t ∈ �τnk; σnk+1��:

By (A.9), for any M<∞ one can choose T;N <∞ such that for n ≥N,

PZn�τnk ��t ∈ �T;σ
n
1 ��t ∈ �0; σn1 �� ≤ sup

z∈k
Pz�σn1 > T� ≤ e−nM:

Therefore, by the last three statements,

Pz�t ∈ �τnk +T;σnk+1�� ≤ e−nMPz�t ∈ �τnk; σnk+1��:
Since

∑∞
k=0Pz�t ∈ �τnk; σnk+1�� ≤ 1,

∞∑
k=0

Pz�t ∈ �τnk +T;σnk+1�� ≤ e−nM
∞∑
k=0

Pz�t ∈ �τnk; σnk+1�� ≤ e−nM:(A.11)

Now by the defining equation (2.6) for Xn
i and Assumption 2.1, the cumu-

lative input velocities 8n = Xn
1 +Xn

2 are bounded above by R = R1 + R2,
where

Ri = max
ξi∈Fi

ri�ξi�:

Then R clearly also serves as a bound for the rate of increase of the contents
of buffer A. We note that cA provides the corresponding bound for buffer B;
and define

C = Qλ ∪ ��a+ 2Rt; b+ 2cAt�x �a; b� ∈ Qλ; t ∈ �0;T��:
If we start with �Qn

A�0�;Qn
B�0�� ∈ Qλ, then for t ∈ �0;T� the buffer processes

cannot leave the set C. Thus for t ∈ �0;T�,
sup
z∈K

Pz��Qn
A�t�;Qn

B�t�� 6∈ C� = 0:
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By the strong Markov property and the fact that Zn
2�τnk� ∈ Qλ, for every k,

n ∈ N, we obtain for t ∈ �τnk; τnk +T�,
�Qn

A�t�;Qn
B�t�� ∈ C(A.12)

w.p.1. Thus taking expectations of all the terms in (A.10), and using (A.11)
and (A.12) gives

sup
z∈K

Pz��Qn
A�t�;Qn

B�t�� 6∈ C� ≤ e−nM:

Since D ⊂K,

sup
z∈D

Pz��Qn
A�t�;Qn

B�t�� 6∈ C� ≤ e−nM;

and the theorem is proved. 2

APPENDIX B

Proof of Theorem 8.1. Here we provide a rigorous proof of the simplifi-
cation of the variational problem for the rate function K�θ� given in (8.2). A
physical interpretation of each of the finite-dimensional variational problems
obtained here was provided in Section 8.

Proof of Theorem 8.1. We recall that the rate function K�θ� can be ex-
pressed in terms of the rate function GT�η� as

K�θ� = inf
T>0; η1∈�0;∞�

GT��η1; θ��;(B.1)

where

GT�η� =
[

inf
�x1; x2�xFT�x1; x2�=η

∫ T
0
�L1�ẋ1� +L2�ẋ2��dt

]
:

Recall also that FT�x1; x2� = �qA�T�; qB�T��, and that K�θ� can be inter-
preted as the minimum cost that must be incurred by the input trajectories
�x1; x2� in order to raise the contents of buffer B to θ, where the cost function
takes the form

∫ T
0 �L1�ẋ1� +L2�ẋ2��dt with T being the time at which buffer

B reaches the height θ. We now show that the solution K�θ� to the infinite-
dimensional variational problem in (B.1) is linear in θ and can be represented
as the minimum of the solutions to the three finite-dimensional variational
problems described in (8.3), (8.4) and (8.6). The case θ = 0 follows trivially,
and so for the remainder of the proof we assume θ > 0.

From the system of equations (B) in Section 4, one can derive the following
explicit expression for ẏi�t� for the case of qA�0� = qB�0� = 0. For i = 1;2,

ẏi�t� =





ẋi�t− d�t��
ẋ1�t− d�t�� + ẋ2�t− d�t��

cA; if qA�t� > 0;

ẋi�t�; if qA�t� = 0:

(B.2)
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The statement for qA�t� = 0 is obvious. By differentiating (4.3) and using the
definition of d�t� given in (4.2) for qA�t� > 0, one obtains

ẏi�t� = ẋi�t− d�t���1− ḋ�t��

= ẋi�t− d�t��
[
1−

(
1− φ̇�t� − q̇A�t�

φ̇�s��s=φ−1�φ�t�−qA�t��

)]

= ẋi�t− d�t��
cA

φ̇�t− d�t��
;

where the last equality follows by using the fact that q̇A�t� = φ̇�t� − cA when
qA�t� > 0 as given in (4.1).

We next define some important parameters of the system which help effect
the simplification. Throughout this proof, x1 and x2 will be used to denote
nondecreasing, absolutely continuous functions that start at 0 at time 0. For
any pair �x1; x2�, the corresponding trajectory �qA; d; y1; qB� is obtained from
the system of equations (B). For any pair of inputs �x1; x2�, define

s1 = sup�t ∈ �0;T�x qB�t� = 0�;
s2 = sup�t ∈ �0; s1�x qA�t� = 0�:

Figure 10 shows s1 and s2 for a trajectory �qA�t�; qB�t�� with �qA�0�;
qB�0�� = �0;0�. We claim that without loss of generality one can assume that
the inputs are such that buffer A is empty for t ∈ �0; s2� and buffer B is empty
for t ∈ �0; s1�. To verify this, we first note that the definitions of s1 and s2 and

Fig. 10. Characterization of s1 and s2.
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the continuity of qA and qB imply that qA�s2� = qB�s1� = 0. Since qB�s� > 0
for s ∈ �s1;T�, from (4.4) and (B.2), we see that

qB�T�−qB�s1� =
∫ T
s1

�ẋ1�t�− cB�1�qA�t�=0� dt

+
∫ T
s1

(
ẋ1�t− d�t��

ẋ1�t− d�t�� + ẋ2�t− d�t��
cA− cB

)
1�qA�t�>0� dt:

(B.3)

This equation shows that qB�T� is fully determined by the values of the inputs
�x1; x2� and the set of times when qA is zero during the interval �s1−d�s1�;T�.
However, as can be seen from (4.1), the set of times in �s1 − d�s1�;T� when
qA is zero, in turn, depends only on qA�s1−d�s1�� and the value of the inputs
�x1; x2� during the interval �s1 − d�s1�;T�. For any s ∈ �s1 − d�s1�;T�,

qA�s� = qA�s1 − d�s1�� +
∫ s
s1−d�s1�

�ẋ1 + ẋ2 − cA�1�qA�t�>0� dt

+
∫ s
s1−d�s1�

��ẋ1 + ẋ2 − cA� ∨ 0�1�qA�t�=0� dt:

Hence the value of qB�T� depends only on qA�s1 − d�s1�� and the values of
the functions �x1; x2� on the interval �s1 − d�s1�;T�. Consider the trajectory
�qA; d; y1; qB� corresponding to the inputs �x1; x2� during �0;T� and s1, s2
as defined above. For this trajectory, let qA�s1 − d�s1�� = χ and qB�T� = θ.
Then from (2.5), d�s1� = χ/cA, while the cost incurred by this trajectory is by
definition

∫ T
0
�L1�ẋ1� +L2�ẋ2��dt:

Now consider the trajectory �q′A; d′; y′1; q′B� of another set of inputs �x′1; x′2�
on �0;T� defined by

�ẋ′1; ẋ′2� = �b1; b2� for all t ∈ �0; s2�;
�ẋ′1; ẋ′2� = �β1; β2� for all t ∈ �s2; s1 − d�s1��;
�ẋ′1; ẋ′2� = �ẋ1; ẋ2� for all t ∈ �s1 − d�s1�;T�;

(B.4)

where β1 = ¯̇x1 and β2 = ¯̇x2 equal the average input velocities over the interval
�s2; s1 − d�s1��,

¯̇xi =
1

s1 − d�s1� − s2

∫ s1−d�s1�

s2

ẋi�t�dt:

We have assumed the stability conditions b1 + b2 < cA and b1 < cB. So from
(4.1) and (4.4), q′A�s2� = q′B�s2� = 0: By the definitions of s1 and s2, qA�t� > 0
for t ∈ �s2; s1� which implies that ¯̇x1 + ¯̇x2 > cA. Then from (4.1),

q′A�s1 − d�s1�� =
∫ s1−d�s1�

s2

� ¯̇x1 + ¯̇x2 − cA�dt

=
∫ s1−d�s1�

s2

�ẋ1 + ẋ2 − cA�dt = qA�s1 − d�s1��:
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Equation (2.5) then implies that d′�s1� = d�s1�. Since �x′1; x′2� agrees with
�x1; x2� on �s1 − d�s1�;T�, qA�s1 − d�s1�� = q′A�s1 − d′�s1��, qB�s1� = 0 and
q′B�s1� ≥ 0, it follows from (B.3) that q′B�T′� = qB�T� = θ for some T′ ≤ T.
Now the convexity of L1 and L2 implies that for any interval �t1; t2�,

∫ t2
t1

�L1�ẋ1� +L2�ẋ2��dt ≥ �t2 − t1��L1� ¯̇x1� +L2� ¯̇x2��;(B.5)

where ¯̇x1 and ¯̇x2 are the averages of the functions ẋ1 and ẋ2 respectively over
the interval �t1; t2�. Consider the cost of the new trajectory �x′1; x′2� on �0;T′�.
Using (B.5) and the fact that L1�b1� = L2�b2� = 0,

∫ T′

0
�L1�ẋ′1� +L2�ẋ′2��dt ≤

∫ T
0
�L1�ẋ′1� +L2�ẋ′2��dt

=
∫ s1−d�s1�

s2

�L1� ¯̇x1� +L2� ¯̇x2��dt

+
∫ T
s1−d�s1�

�L1�ẋ1� +L2�ẋ2��dt

≤
∫ T
s2

�L1�ẋ1� +L2�ẋ2��dt

≤
∫ T

0
�L1�ẋ1� +L2�ẋ2��dt:

Thus given any input �x1; x2� with �FT�x1; x2��2 = θ, there exists another
input �x′1; x′2� with no greater cost, satisfying �FT′�x′1; x′2��2 = θ for T′ ≤ T
such that its trajectory �q′A; d′; y′1; q′B� satisfies

q′A�s2� = q′B�s2� = 0; q′A�t� > 0 for all t ∈ �s2; s1�;
q′B�T′� = θ; q′B�t� = 0 for all t ∈ �s2; s1�

(B.6)

and

�ẋ′1; ẋ′2� = �β1; β2� for all t ∈ �s2; s1 − d�s1��:

This verifies the claim and shows that K�θ� is achieved on the set of functions
that have the form described in (B.4). Now K�θ� involves an infimization over
T ∈ �0;∞�; where �0;T� is the domain on which the functions are defined.
Recall that L1�b1� = L2�b2� = 0, where b1 and b2 are the mean input rates of
sources 1 and 2, respectively. This implies that the domain of the input func-
tions can be augmented by appending the mean flow at the beginning of the
interval without any change in the total cost. Thus minimizing trajectories are
not unique. Since �x′1�t�; x′2�t�� = �b1t; b2t� during �0; s2�, one can equivalently
consider the functions �x′1; x′2� restricted to �s2;T

′�. Since q′A�s2� = q′B�s2� = 0,
the initial conditions are then satisfied at s2. Thus one can without loss of gen-
erality set s2 = 0 in (B.6) and only consider inputs �x1; x2� on �0;T� for some
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T <∞ that satisfy

qA�t� > 0 and qB�t� = 0 for all t ∈ �0; s1�;
�ẋ1; ẋ2� = �β1; β2� for all t ∈ �0; s1 − d�s1��;
qB�t� > 0 for t ∈ �s1;T� and qB�T� = θ:

(B.7)

We shall now further characterize the set on which the infimum K�θ� is
achieved. We note that the conditions (B.7) satisfied by the input functions
impose no restrictions on the values of qA on the interval �s1;T�. Thus we
consider four cases corresponding to the different possible values that qA can
assume on the interval �s1;T� and ascertain the variational problems that the
minimizing functions in each of those cases satisfy. We first consider the case
when buffer A is empty throughout �s1;T�.

Case 1: qA�t� = 0 for all t ∈ �s1;T�. From the definition of s2, s2 = s1.
Moreover, since it has been shown that without loss of generality s2 can be
taken to be zero, it follows that s1 = 0. So in this case, buffer A is empty
throughout the interval �0;T�. From (4.1), this happens if and only if for all
t ∈ �0;T�,

ẋ1�t� + ẋ2�t� ≤ cA:(B.8)

Moreover, from (2.5) and (4.3), for all t ∈ �0;T�,
d�t� = 0 and y1�t� = x1�t�:

We also note that the definition of s1 and the conditions (B.7) imply that

qB�t� > 0 for t ∈ �0;T� and qB�T� = θ:
We now show that without loss of generality, the velocities of the inputs

can be assumed to be constant throughout �0;T�. This follows from the fact
that given any input velocities �x1; x2� during �0;T�, they can be replaced
by the average velocities over the same interval and the resulting trajectory
still achieves qB�T� = θ at no greater cost. We define the new trajectory
�ẋ′1�t�; ẋ′2�t�� = �β1; β2� for t ∈ �0;T�, where

β1 =
1
T

∫ T
0
ẋ1�t�dt; β2 =

1
T

∫ T
0
ẋ2�t�dt:

From (4.4) and (B.2),

q̇′B�t� = ẏ′1�t� − cB = ẋ′1�t� − cB:
Integrating both sides,

q′B�T� =
∫ T

0
�β1 − cB�dt = �β1 − cB�T

=
(

1
T

∫ T
0
ẋ1�t�dt− cB

)
T = qB�T�

= θ:

(B.9)
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The new trajectory incurs no greater cost since by the convexity of the L-
functions and Jensen’s inequality, as in (B.5),

∫ T
0
�L1�ẋ′1� +L2�ẋ′2��dt ≤

∫ T
0
�L1�ẋ1� +L2�ẋ2��dt:

Thus the input velocities may be assumed to be constant and the constraint
(B.8) that ensures that qA�t� = 0 for t ∈ �0;T� becomes

β1 + β2 ≤ cA:
Moreover, from equation (B.9),

q′B�T� = θ = �β1 − cB�T ⇒ T = θ

β1 − cB
;

where θ > 0. Note that here θ could as well represent the difference in the
buffer B content at time T from its initial value and does not require that
buffer B be initially empty. This property will be used in the simplification
of Case 4. From the equation above, the fact that T ∈ �0;∞� leads to the
constraint β1 > cB. The total cost incurred is

T�L1�β1� +L2�β2�� =
θ

β1 − cB
�L1�β1� +L2�β2��:

Clearly the constraint β1 > cB can be relaxed to β1 ≥ cB. Thus in this case,
K1�θ�, the minimum cost to raise buffer B to the value θ is given by the
variational problem described in (8.3):

K1�θ� = θK1�1�;
where

K1�1� = inf
β1; β2

�L1�β1� +L2�β2��
β1 − cB

;

subject to

β1 + β2 ≤ cA; β1 ≥ cB:
Case 2: qA�t� > 0 for all t ∈ �0;T� and s1 = 0. In this case buffer A

and buffer B are nonempty on �0;T�. From the system of equations (B), all
functions in this case can be characterized as satisfying the conditions

∫ t
0
�ẋ1�s� + ẋ2�s� − cA�ds > 0 for all t ∈ �0;T�;

∫ t
0

(
ẋ1�s− d�s��

ẋ1�s− d�s�� + ẋ2�s− d�s��
cA − cB

)
ds > 0 for all t ∈ �0;T�:

(B.10)

Using convexity arguments, we establish that the minimizing inputs can be
assumed to have piecewise constant velocities. As in the previous case, this is
a consequence of the fact that trajectories can be replaced by their averages
on certain intervals with no change in the final buffer B content and at no
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greater cost. Since we have zero initial conditions and qB�s� > 0 for s ∈ �0;T�,
from the system of equations (B) we obtain

qB�T� = y1�T� − cBT
= x1�T− d�T�� − cBT:

We replace the trajectories �x1; x2� by new trajectories �x′1; x′2� such that
�ẋ′1; ẋ′2� = �δ1; δ2� on �0;T − d�T�� and �ẋ′1; ẋ′2� = �b1; b2� on �T − d�T�;T�,
where �δ1; δ2� are average velocities given by

δ1 =
1

T− d�T�
∫ T−d�T�

0
ẋ1�s�ds; δ2 =

1
T− d�T�

∫ T−d�T�
0

ẋ2�s�ds:

Let (q′A,d′,y′1, q′B) be the trajectories of the inputs �x′1; x′2� as defined through
the system of equations (B). Since qA�s� > 0 on s ∈ �0;T�, we infer from (4.1)
that

q′A�T− d�T�� = �δ1 + δ2 − cA��T− d�T��

=
∫ T−d�T�

0
�ẋ1�s� + ẋ2�s��ds

= qA�T− d�T��:
Thus by (2.5), d�T� = d′�T�. If qB�T� = θ, then

q′B�T� = y′1�T� − cBT
= x′1�T− d′�T�� − cBT
= x1�T− d�T�� − cBT
= y1�T� − cBT
= θ:

Thus the new trajectories raise the contents of buffer B to the same value θ.
Note that the proof does not require qB�0� = 0 and hence θ can be regarded
as the difference qB�T� − qB�0�. From the dynamics we have

q′B�T� = θ = �T− d�T��
(

δ1

δ1 + δ2
cA − cB

)
:(B.11)

Using the convexity of the L-functions as expressed in (B.5), we show that the
new trajectory incurs lower cost since

∫ T
0
�L1�ẋ1�s�� +L2�ẋ2�s���ds ≥

∫ T−d�T�
0

�L1�ẋ1�s�� +L2�ẋ2�s���ds

= �T− d�T���L1�δ1� +L2�δ2��:
The last expression represents the cost for the new trajectories since L1�b1� =
L2�b2� = 0 and hence no cost is incurred during the interval �T − d�T�;T�.
Thus we can assume without loss of generality that all trajectories have the
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same form as �x′1; x′2�. We note that the conditions specified in (B.10) are
satisfied if and only if �δ1; δ2� satisfy

δ1 + δ2 > cA;
δ1

δ1 + δ2
cA > cB:

In order to determine the minimizing trajectories, it only remains to find the
values of �δ1; δ2� that yield the lowest cost. Using (B.11), we see that the cost
is linear in θ and can be expressed as

�L1�δ1� +L2�δ2��
�δ1/�δ1 + δ2��cA − cB

θ:

If we define K2�θ� to be the infimum of the cost over all functions satisfying
conditions (B.10) and having a final buffer B content of θ, we obtain

K2�θ� = θK2�1�;
where

K2�1� = inf
δ1; δ2

�L1�δ1� +L2�δ2��
�δ1/�δ1 + δ2��cA − cB

;

subject to

δ1 + δ2 > cA;
δ1

δ1 + δ2
cA ≥ cB:

Note that the strict equality can be relaxed in the second constraint because
the infimum is clearly not achieved when the equality holds. Thus we have
derived the variational problem described in (8.4).

Case 3: qA�t� > 0 for all t ∈ �s1;T� and s1 > 0. In this case, the definition
of s1 and the conditions (B.7) imply that qA�t� > 0 for all t ∈ �0;T�, qB�t� = 0
for all t ∈ �0; s1�, qB�t� > 0 for all t ∈ �s1;T� and qB�T� = θ. From the system
of equations (B), it can be seen that this is satisfied if and only if

∫ t
0
�ẋ1�s� + ẋ2�s� − cA�ds > 0 for all t ∈ �0;T�;

ẋ1�t− d�t��
ẋ1�t− d�t�� + ẋ2�t− d�t��

cA − cB ≤ 0 for a.e. t ∈ �0; s1�;
∫ t
s1

(
ẋ1�s− d�s��

ẋ1�s− d�s�� + ẋ2�s− d�s��
cA − cB

)
ds > 0 for all t ∈ �s1;T�:

(B.12)

We assume for the rest of the discussion of this case that input functions
satisfy these conditions. We will prove that minimizing input functions can be
assumed to have piecewise constant velocities, using the fact that any function
can be replaced by one with piecewise constant derivatives that incurs no
greater cost to raise the level of buffer B to θ. Note from (B.3) that the value of
qB�T� only depends on qA�s1−d�s1�� and the input �x1; x2� during the interval
�s1 − d�s1�;T − d�T��. Let qA�s1 − d�s1�� = χ. Then it can be assumed that
the velocities are constant in the interval �0; s1−d�s1��, since inputs with the
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average rate during that time interval yield the same value for qA�s1−d�s1��
with no greater cost. This is similar to the argument made in Case 1. We define
the new trajectories �x′1; x′2� with �ẋ′1�t�; ẋ′2�t�� = �β1; β2� for t ∈ �0; s1−d�s1��,
where

β1 =
1

s1 − d�s1�
∫ s1−d�s1�

0
ẋ1�t�dt; β2 =

1
s1 − d�s1�

∫ s1−d�s1�

0
ẋ2�t�dt:

The constraints (B.12) for the interval �0; s1 − d�s1�� then become

β1 + β2 > cA;
β1

β1 + β2
cA ≤ cB:(B.13)

In the interval �0; s1 − d�s1��, since qA�t� > 0, from (4.1),

q′A�s1 − d�s1�� = �β1 + β2 − cA��s1 − d�s1��

=
∫ s1−d�s1�

0
�ẋ1�t� + ẋ2�t� − cA�dt

= qA�s1 − d�s1��:
Thus from (2.5), d�s1� = d′�s1� and the new trajectory incurs no greater cost
during that interval because by convexity, as in (B.5), the new cost is less than
or equal to the old cost.

Thus we have shown that the inputs on �0; s1 − d�s1�� can be assumed to
have constant velocity �β1; β2�. We now try to determine the values of �β1; β2�
that minimize the contribution to the cost in that interval, which is given by

�s1 − d�s1���L1�β1� +L2�β2��:
Since from (4.1), �s1 − d�s1�� = χ/�β1 + β2 − cA�, where χ = qA�s1 − d�s1��,
it follows that the cost to raise buffer A to a height χ is linear in χ. Thus
K4�χ� = χK4�1�, where K4�1� is the minimum cost that must be incurred to
raise buffer A to a height 1. K4�1� is easily seen to be given by the variational
problem stated in (8.5),

K4�1� = inf
β1; β2

�L1�β1� +L2�β2��
β1 + β2 − cA

;

subject to

β1 + β2 ≥ cA;
β1

β1 + β2
cA ≤ cB:

Note that the infimum above is certainly not achieved when β1+β2 = cA since
for those inputs, K4�χ� is infinite. This justifies relaxing the strict inequality
in (B.13) to obtain the constraint β1 + β2 ≥ cA.

We now consider the second interval. Since qA�t� > 0 in the interval �s1 −
d�s1�;T� and qB�t� > 0 for t ∈ �s1;T�, from (4.1) it follows that

qA�T− d�T�� − χ =
∫ T−d�T�
s1−d�s1�

�ẋ1�t� + ẋ2�t� − cA�dt;
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and from (4.4) and (4.3) we conclude that

θ = qB�T� = y1�T� − y1�s1� − cB�T− s1�
= x1�T− d�T�� − x1�s1 − d�s1�� − cB�T− s1�:

This last equation shows that replacing the input velocities by their respec-
tive averages in the interval �s1−d�s1�;T−d�T�� leaves qA�T−d�T��, d�T�,
x1�T− d�T�� and therefore qB�T� unaltered without any increase in the cost
incurred during the interval. Thus without loss of generality, one can assume
that the input velocities of the new trajectories �ẋ′1; ẋ′2� = �δ1; δ2� are constant
on �s1 − d�s1�;T− d�T��. Then the third condition in (B.12) takes the form

δ1

δ1 + δ2
cA > cB:

At this point we must consider the two cases δ1+δ2 ≥ cA and δ1+δ2 < cA.
However, the first case makes no use of the nonzero level of buffer A at time
s1−d�s1�. It is easy to check that if δ1+δ2 ≥ cA, then the associated trajectory
and cost are suboptimal when compared with the trajectory which uses these
inputs during the first interval in Case 2. Thus we can assume δ1 + δ2 < cA
for the remainder of this case.

As noted in Section 8, the new inputs δ1 and δ2 do not affect the output
of buffer A until d�s1� = χ/cA units of time have passed. It will take an
additional

χ

cA
+ θ δ1 + δ2

δ1cA − �δ1 + δ2�cB
units of time to raise buffer B to level θ. The constraint qA�t� > 0 for t ∈ �0;T�
implies

χ

cA
+ θ δ1 + δ2

δ1cA − �δ1 + δ2�cB
≤ χ

�cA − δ1 − δ2�
:(B.14)

However, since the combined cost over the two intervals,

χK4�1� +
(
χ

cA
+ θ�δ1 + δ2�
δ1cA − �δ1 + δ2�cB

)
�L1�δ1� +L2�δ2��;

is increasing in χ, for any given pair δ1; δ2 the constraint (B.14) must be tight
if the trajectory is to be optimal. This implies

χ

θ
= cA�cA − δ1 − δ2�
δ1cA − �δ1 + δ2�cB

:

In particular, the inputs δ1 and δ2 must be applied for θcA/�δ1cA−�δ1+δ2�cB�
units of time for the trajectory to be optimal. This implies qA�T� = 0, and
therefore d�T� = 0. Since it is evident that the total cost is linear in θ, we
obtain the variational problem for K3�θ� stated in (8.6):

K3�θ� = θK3�1�;
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where

K3�1� = inf
δ1; δ2

cA

[
cA − δ1 − δ2

δ1cA − �δ1 + δ2�cB
K4�1� +

�L1�δ1� +L2�δ2��
δ1cA − �δ1 + δ2�cB

]
;

subject to

δ1

δ1 + δ2
cA ≥ cB; δ1 + δ2 < cA:

Case 4: qA�t� = 0 for K ⊂ �s1;T�, K 6= \; �s1;T�. We finally consider
the case when buffer A is not uniformly empty or nonempty on the interval
�s1;T�. We define a bump of f ∈ C �0;T� to be a nonempty closed interval
�t1; t2� ∈ �0;T� such that f�t1� = f�t2� = 0, and f�t� > 0 for all t ∈ �t1; t2�.
Since qA�t� is continuous, it can have only a countable number of bumps on
�0;T�. From the definition of s1, qA�t� > 0 for all t ∈ �0; s1�, and thus qA
cannot have bumps that are contained in �0; s1�. Moreover, any bump �t1; t2�
with t1 < s1 satisfies t1 = 0 and t2 > s1. Now consider an input function
�x1; x2� for which qA�t� has a bump �t1; t2� for some t1 ∈ �s1;T�. This implies
that for all t ∈ �t1; t2�, qA�t� > 0 and by the definition of s1, qB�t� > 0. So we
define new trajectories �x′1; x′2� as follows:

�ẋ′1; ẋ′2� = � ¯̇x1; ¯̇x2� for all t ∈ �t1; t2�;
�ẋ′1; ẋ′2� = �ẋ1; ẋ2� otherwise;

where ¯̇x1 and ¯̇x2 are the usual averages of �ẋ1 and ẋ2, respectively, over the
interval �t1; t2�,

¯̇x1 =
1

t2 − t1

∫ t2
t1

ẋ1�t�dt;

¯̇x2 =
1

t2 − t1

∫ t2
t1

ẋ2�t�dt:

Then from (4.4) and the fact that d�t1� = d�t2� = 0, it is clear that q′B�T� =
qB�T� and by (B.5), the cost of the new trajectory is less than or equal to the
cost of the original one. Since qA�t2� = 0, (4.1) implies that ¯̇x1 + ¯̇x2 ≤ cA and
q′A�t� = 0 for all t ∈ �t1; t2�: Thus the new trajectory has no bump contained
in �s1;T�. The argument generalizes in the obvious manner to input functions
�x1; x2� with countably many bumps. Therefore, without loss of generalization,
one can assume that the minimizing trajectory has at most one bump �0; t2�
that satisfies t2 > s1. Then all possible configurations for the minimizing tra-
jectories in this case are shown in Figure 11. The piecewise linear nature of
the trajectories and the strictly monotonically increasing nature of qB can be
deduced from the dynamics using the same convexity arguments that were
used in the previous cases. For all three configurations, the domain of the
qA trajectory can be broken up into a finite number of intervals, in each of
which the assumptions of Case 1, Case 2 or Case 3 are satisfied. Thus one
would expect the trajectories in each of those intervals to have the same ve-
locities as the minimizing trajectory of the corresponding case. This argument
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Fig. 11. Possible configurations for Case 4.

can be made rigorous by extending the techniques employed previously in a
straightforward manner.

We have noted that the minimizing trajectories of Case 4 are concatenations
of the minimizing trajectories of Cases 1, 2 and 3. It remains to show that any
such concatenation incurs a cost no less than that incurred by the minimizing
trajectory of the variational problem (B.1). We shall outline the argument only
for the configuration Case 4b in Figure 11 since the arguments for the other
two figures follow in the same manner. Let θ′ = qB�t2� and let C1 and C2
be the costs incurred by the trajectory during �0; t2� and �t2;T� respectively.
Then since qA�t� > 0 for every t ∈ �0; t2� and qA�t2� = 0, the assumptions
leading to the variational problem K3�1� in Case 3 are satisfied during that
interval and so

C1 ≥K3�θ′� = θ′K3�1�:
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Similarly, since qA�t� = 0 for every t ∈ �t2;T�, the assumptions of Case 1 are
satisfied during that interval and hence

C2 ≥K1�θ− θ′� = �θ− θ′�K1�1�:
Note that this holds even though qB�t2� > 0, since in the proofs of the earlier
cases, K1 and K2 were established to be independent of the initial value of the
buffer B and only a function of θ, the net change in the buffer B content. This
does not hold for K3. However, since in all the possible concatenations, the
minimizing trajectories of the variational problem in K3�1� arise only during
the first interval when the buffer B is initially empty, the same argument
works for the other configurations as well.

Therefore the total cost of the trajectory in this case is

C1 +C2 ≥K3�θ′� +K1�θ− θ′�
= θ′K3�1� + �θ− θ′�K1�1�
≥ θ�K3�1� ∧K1�1��:

Thus since the cost for functions considered in Case 4 is always higher than
the minimum of the costs in Cases 1, 2 and 3, the theorem is proved. 2

Acknowledgments. We thank Kurt Majewski for pointing out that the
quantity K3�1� defined in Section 8 was off by a multiplicative constant in the
original version of this paper.
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