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LARGE DEVIATION PRINCIPLES FOR SOME RANDOM
COMBINATORIAL STRUCTURES IN POPULATION

GENETICS AND BROWNIAN MOTION1

By Shui Feng and Fred M. Hoppe

McMaster University

Large deviation principles are established for some random combina-
torial structures including the Ewens sampling formula and the Pitman
sampling formula. A path-level large deviation principle is established for
the former on the cadlag space D��0;1�;R� equipped with the uniform con-
vergence topology, and the rate function is the same as for a Poisson process
justifying the Poisson process approximation for the Ewens sampling for-
mula at the large deviation level. A large deviation principle for the total
number of parts in a partition is obtained for the Pitman formula; here
the rate function depends only on one of the two parameters which display
the different roles of the two parameters at different scales. In addition to
these large deviation results, we also provide an embedding scheme which
gives the Pitman sampling formula. A product of this embedding is an in-
tuitive alternate proof of a result of Pitman on the limiting total number
of parts.

1. Introduction. The purposes of this paper are to establish large devi-
ation principles for some random combinatorial structures and to provide a
biological context in which they occur.

A partition π of a positive integer n is an unordered representation of n as
a sum of positive integers n = n1 + n2 + · · · + nk: Depending on the context,
there are three common equivalent ways to describe π:

1. as an unordered set of “occupancy numbers” �n1; : : : ; nk�;
2. as a decreasing sequence n�1� ≥ n�2� ≥ · · · ≥ n�k�;
3. as a multiplicity vector or “allelic partition” (cf. [12]) m = �m1; : : : ;mn�,

where mj = mj�π� = ]�ix n�i� = j� is the number of times integer j
appears in �n1; : : : ; nk�. Evidently,

∑n
i=1mi = k and

∑n
i=1 imi = n.

A random partition of n is a random variable 5n with values in the finite
set of all partitions of n. One of the random partitions 5θn considered in this
paper is the Ewens sampling formula introduced in [6]:

Pθn�m1;m2; : : : ;mn� = P
[
5θn = �m1; : : : ;mn�

]
= n!
�θ�n5

n
i=1

θmi

imi�mi!�
;(1.1)

where θ > 0 is a parameter and �θ�n = θ�θ+ 1� · · · �θ+n− 1� is the ascending
factorial. It describes the partition when a sample of size n is taken from a
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selectively neutral haploid population which has evolved toward equilibrium
in a sense made precise by a number of models in which �1:1� emerges. This
remarkable distribution also arises elsewhere, for instance, in the context of
Bayesian statistics [1], random permutations [18] and in a Pólya-like urn
model [10].

The number of parts Kθ
n of 5θn is another random variable. In genetics Kθ

n

is the number of alleles in a sample of size n, while in the context of random
permutations Kθ

n represents the number of cycles in the cycle representation
of a permutation chosen uniformly from all n! permutations (in which case
θ = 1).

There have been many studies on the behavior of Kθ
n as n→∞. Goncharov

[8] obtained the central limit theorem
K1
n − log n√

log n
⇒D N�0;1�:(1.2)

A far-reaching generalization of �1:2� was obtained by Hansen [9]. If we write
Kθ
n�t�=

∑�nt�
i=1mi�t� [so Kθ

n�t� is, say, the number of alleles having less than or
equal to nt copies] and let

Yθ
n�t� =

Kθ
n�t� − θt log n√

θ log n
; 0 ≤ t ≤ 1;

then Hansen proved that Yθ
n�·� converges weakly to Wiener measure on the

Skorohod space D�0;1�, which is a functional central limit theorem for the
process Kθ

n�·�. Previously, DeLaurentis and Pittel [3] obtained this result for
θ = 1 and, subsequently, Donnelly, Kurtz and Tavaré [5] provided a nice al-
ternate proof based on a Poisson embedding using a model of Karlin and
McGregor [11].

With these preliminaries in hand we can state one of the principal results
in this paper, a path-level large deviation principle for the Ewens sampling
formula.

Theorem 1.1. Let D�0;1� be the space D�0;1� equipped with the uniform
convergence topology and let νθn be the law of Kθ

n�t�/ log n under Pθn in �1:1�.
Define

Sθ�f� =
∫ 1

0
I�ḟ�t��dt

=





∫ 1

0
ḟ�t� log

(
ḟ�t�
θ

)
dt+ θ− f�1�; if f�0� = 0 and f is

absolutely continuous;

∞; otherwise.

Then the sequence �νθn�n≥1 satisfies a large deviation principle on space D�0;1�
with rate function Sθ�·� and speed log n; that is, for any Borel set A ⊂ D�0;1�,

− inf
f∈A◦

Sθ�f� ≤ lim inf
n→∞

1
log n

νθn�A� ≤ lim sup
n→∞

1
log n

νθn�A� ≤ − inf
f∈Ā

Sθ�f�;

where Ā is the closure of A, A◦ the interior of A.
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Remark. The nontrivial aspect of this result is to establish the large devi-
ation principle in the uniform convergence topology. Actually our proof shows
that the process Kθ

n�t�/ log n is exponentially equivalent to the Poisson pro-
cess, which justifies the Poisson approximation in [2] at the large deviation
level.

Pitman [15, 17] described a two-parameter version of �1:1� with parameters
0 ≤ α < 1, θ > −α, defined by

Pα; θn �m1;m2; : : : ;mn� = P
[
5α; θn = �m1;m2; : : : ;mn�

]

= n!
�θ�n5

k−1
l=0 �θ+ lα�5ni=1

��1− α�i−1�mi

�i!�mi�mi!�
;

(1.3)

where k =∑n
i=1mi.

The random partition 5α; θn arose in the study of stable processes with index
α, and, in particular, the case α = 1

2 is related to the zeros of Brownian motion
and Brownian bridge. When α = 0, 50; θ

n = 5θn.
Let Kα; θ

n denote the number of parts of 5α; θn . In the Ewens case �α = 0,
θ > 0�,

lim
n→∞

Kθ
n

log n
= θ a.s.,

but, in contrast, for α > 0 and general θ (see [16]),

lim
n→∞

Kα; θ
n

nα
= Sα; θ a.s.;(1.4)

where Sα; θ is related to the Mittag–Leffler distribution.
We can now state the second principal result in this paper, the following

marginal large deviation principle for Pitman’s sampling formula.

Theorem 1.2. For α ∈ �0;1�; θ + α > 0, the sequence �να; θn �n≥1 satisfies a
large deviation principle with rate function Iα�·� and speed n, where να; θn is the
law of Kα; θ

n /n under Pα; θn :

Iα�x� = sup
λ
�λx− 3α�λ��(1.5)

and

3α�λ� =
{
− log�1− �1− e−λ�1/α�; if λ > 0;

0; otherwise.
(1.6)

Remarks. Since 3α is increasing in α for fixed λ, we get 3α�λ� ≤ λ which
implies that Iα�x� ≥ supλ>0�λ�x−1��. Hence, for x > 1, Iα�x� = ∞: By letting
λ → −∞, we can also get that Iα�x� = ∞ for x < 0. Note that, for α > 0,
Iα does not depend on θ. An intuitive explanation for this will follow from
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the embedding scheme in Section 2. When α = 1
2 , the rate function has the

following explicit expression:

I1/2�x� =




�2− x� log

2
2− x + �1− x� log�1− x�; if x ∈ �0;1�;

∞; otherwise.

The case α = 0 needs separate handling and is given in the remark at the end
of Section 3.

In addition to the preceding two large deviation results, we provide a biolog-
ical basis for Pitman’s sampling formula as a particular example of a general
class of models introduced in [11], in the same fashion as [19] provides an em-
bedding interpretation of the urn model [10] leading to the Ewens sampling
formula. We have obtained other results in this direction, building on our
model, which will appear elsewhere [7]. This embedding is described in Sec-
tion 2. It leads to a simple intuitive proof of the existence of limn→∞K

α; θ
n /nα.

Theorem 1.2, the large deviation principle for Kα; θ
n /nα, is proved in Section 3.

Finally, in Section 4, we prove Theorem 1.1, the path-level large deviation
principle for the Ewens sampling formula. It is not entirely clear to us what
is the correct formulation of the path-level large deviation principle for the
Pitman case and this requires additional research.

2. An embedding scheme for the two-parameter formula. We con-
sider a population comprising a of various number of different types (mutants,
alleles, in a biological context, say) which is evolving continuously in time.
Following [11], there is an input process I�t� describing how new mutants
enter the population and a stochastic structure x�t� with x�0� = 1 and the
convention x�t� = 0 if t < 0 prescribing the growth pattern of each mutant
population.

Mutants arrive at the times 0 ≤ T1 < T2 < · · · and initiate lines according
to independent versions of x�t�. Thus let �xi�t�� be independent copies of x�t�
with xi�t� being initiated by the ith mutant. Then xi�t−Ti� will be the size at
time t of the ith mutant line. The process N�t� represents the total population
size at time t:

N�t� =
I�t�∑
i=1

xi�t−Ti�:

For N�t� ≥ 1 the mutant lines induce a random partition 5�t� of the integer
N�t�. Let

mi�t� = ]
{
jx Tj ≤ t and xj�t−Tj� = i

}

so that

5�t� = �m1�t�; : : : ;mN�t��t��

is the corresponding random allelic partition.
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For the purposes of the present paper, the following specific model suffices
but we have more extensive results for the general formulation which will be
described elsewhere [7]:

1. I�t� is a pure birth process with I�0� = 0 and infinitesimal birth rate

rk = lim
h→0

1
h
P�I�t+ h� − I�t� = 1�I�t� = k�;

where

r0 = β0; rk = α�k− 1� + β for k ≥ 1;

with β0 > 0, β > 0 and α ≥ 0 arbitrary parameters. (Only β;α are relevant
in the sequel, β0 being merely a delay parameter until the population size
reaches 1.)

2. The process x�t� is also a pure birth process but starting at x�0� = 1 and
with infinitesimal birth rate `n = n− α for n ≥ 1.

3. The cumulative process N�t� is then again a pure birth starting at
N�0� = 0 with infinitesimal rates determined by the “competing Poissons”
�I�t�; x1�t−T1�; : : : ; xI�t��t−TI�t���. Let

ρn = lim
h→0

1
h
P�N�t+ h� −N�t� = 1�N�t� = n�:

Obviously, ρ0 = β0 and, for small h > 0,

P�N�t+ h� −N�t� = 1�N�t� = n�

= E
[(
α�I�t� − 1� + β+

I�t�∑
i=1

�xi�t−Ti� − α�
)
h+ o�h�

∣∣∣N�t� = n
]

= �n+ β− α�h+ o�h�:

Thus, for n ≥ 1, ρn = n+ β− α.

Define

τn = inf�t ≥ 0x N�t� = n� for n ≥ 1:

Then the random partition

5n = 5�τn� = �m1�τn�; : : : ;mn�τn��

will be a random partition of n. Based on our construction, we have

P
{
5n+1 = �m1 + 1; : : : ;mn;0�

∣∣5n = �m1; : : : ;mn�
}

= α�
∑n
i=1mi� + β− α
n+ β− α

(2.1)
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if mi ≥ 1, 1 ≤ i < n,

P
{
5n+1 = �m1; : : : ;mi − 1;mi+1 + 1; : : : ;mn;0�

∣∣5n = �m1; : : : ;mn�
}

= mi�i− α�
n+ β− α;

(2.2)

P
{
5n+1 = �m1; : : : ;mn−1;0;1�

∣∣5n = �m1; : : : ;mn�
}
= n− α
n+ β− α(2.3)

if mn = 1, where the change of state in �2:1� corresponds to the introduction of
a new mutant, while in �2:2� and �2:3� one of the existing mutant populations
is augmented by 1.

If we reparametrize by introducing θ = β− α, then these conditional prob-
abilities become (15) in [15]. So we have established the following theorem.

Theorem 2.1. The distribution of the random partition 5n�τn� is given by
the Pitman formula

P
[
5�τn� = �m1; : : : ;mn�

]
= n!
�θ�n5

k−1
l=0 �θ+ lα�5nj=1

��1− α�j−1�mj

�j!�mj�mj!�
;

where k =∑n
i=1mi.

Each of the processes I�t�, x�t� and N�t� has structure analogous to a
linear birth process with immigration, generically denoted by Y�t�. This is a
time-homogeneous Markov chain with infinitesimal parameter

λn = lim
h→0

1
h
P�Y�t+ h� −Y�t� = 1�Y�t� = n� = λn+ c;(2.4)

where λ > 0, c > 0: Typically, Y�0� = 0. We record the known result

P�Y�t�=n�Y�0�=0�=



c

λ
+ n− 1

n


e−ct�1− e−λt�n; n=0;1; : : : :(2.5)

By applying a change of scale in Theorem 5 of [19], we deduce that if
Y�0�=0, then

lim
t→∞

e−λtY�t� =Wc/λ a.s.,(2.6)

where Wd has the gamma density

f�x� = e
−xxd−1

0�d� ; x > 0:
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Sometimes it is convenient to start with Y�0� = 1. With the same infinites-
imal parameters λn, we now have in place of �2:5� the marginal distribution

P�Y�t� = n�Y�0� = 1�

=



c

λ
+ n− 1

n− 1


e−�λ+c�t�1− e−λt�n−1; n=1;2; : : : ;

(2.7)

and in place of �2:6�
lim
t→∞

e−λtY�t� =W1+c/λ a.s.(2.8)

We make explicit here the following interesting observation that the pa-
rameter range now allows negative values for c, namely, c > −λ; and we can
no longer have the nice interpretation of Y�t� as representing binary splitting
at rate λ with immigration at rate c. Instead it is Y�t� − 1 which undergoes
binary splitting with rate λ and immigration with rate λ+ c.

Applying �2:5�–�2:8� to I�t�, x�t� and N�t�, we get that:

(a) For I�t�, one has

I�0� = 0; λ0 = β0; λn = αn+ β− α; n ≥ 1:

In view of the delay, let I∗�t� =D I�t+T1�. Then I∗�t� is a linear birth process
with immigration starting with I∗�0� = 1 and with infinitesimal rates λ∗n =
αn+ β− α. Thus

lim
t→∞

e−αtI�t� = lim
t→∞

e−αT1e−α�t−T1�I∗�t−T1� = e−αT1Wβ a.s.;(2.9)

where T1 and Wβ are independent and T1 has an exponential distribution
with mean β−1

0 .
(b) For x�t�, one has

x�0� = 1; λn = n− α; n ≥ 1;

lim
t→∞

e−tx�t� =W1−α a.s.
(2.10)

(c) For N�t�, one has

N�0� = 0; λ0 = β0; λn = n+ β− α; n ≥ 1;

lim
t→∞

e−tN�t� = e−T1W1+β−α a.s.
(2.11)

With these results in hand we are ready to prove the following theorem.

Theorem 2.2. For 0 < α < 1, θ > −α,

lim
n→∞

Kα; θ
n

nα
= Sα; θ a.s.;(2.12)

where P�0 < Sα; θ <∞� = 1.
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Remarks. This theorem is due to Pitman [16] who obtained his results by
moment calculations and martingale convergence. The following simple proof
helps explain the factor nα.

Proof. By applying �2:9� and �2:11� we have

lim
t→∞

I�t�
�N�t��α = lim

t→∞
e−αtI�t�
�e−tN�t��α =

Wθ+α
�W1+θ�α

a.s.;(2.13)

which gives �2:12�. 2

3. Large deviation principle for the total number of parts.

Proof of Theorem 1.2. The main part in the proof of Theorem 1.2 is the
following lemma. Let 3α�λ� be defined as in �1:6�. Then Theorem 1.2 follows
from Lemma 3.1, the facts that �λy 3α�λ� <∞� = R and 3α�λ� is differentiable
and Theorem 2.3.6 (Gärtner–Ellis theorem) in [4]. 2

Next we will prove Lemma 3.1.

Lemma 3.1.

lim
n→∞

1
n

logE
[
exp�λKα; θ

n �
]
= 3α�λ�:(3.1)

Before proving the lemma we first state some facts used in the proof:
(
a+ i
i

)
<

(
b+ i
i

)
for 0 < a < b;(3.2)

(
1

1− x

)n
=
∞∑
i=0

xi
(
i+ n− 1

n− 1

)
;(3.3)

(
i+ n
n− 1

)
< n

(
i+ n
n

)
;(3.4)

for x ∈ �0;1� and θ = 0, we have

E

[(
1

1− x

)Kα;0
n
]
=
∞∑
i=0

xi
(
αi+ n− 1

n− 1

)
:(3.5)

In the proof of �3:5� we make use of �3:3� and the following equality obtained
in [17]:

E
[
�Kα;0

n �i
]
= 0�i��αi�

n

α0�n� :(3.6)
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Proof of Lemma 3.1. First assume θ = 0. Then, for λ ≤ 0, we have by
Jensen’s inequality

logE
[
exp�λKα;0

n �
]
≥ λE�Kα;0

n �:

By �3:6�, E�Kα;0
n � grows like nα and therefore

lim
n→∞

1
n

logE
[
exp�λKα;0

n �
]
= 0 = 3α�λ�:

Next, when λ > 0, let x = 1−e−λ < 1: We first consider the case of 0 < α < 1
with α rational. We will show that

E

[(
1

1− x

)Kα;0
n
]
= Cα; x;n

(
1

1− x1/α

)n
(3.7)

for some constant Cα; x;n which grows, for fixed α; x; algebraically, at most, in
n. Thus

1
n

logE
[(

1
1− x

)Kα;0
n
]
= 1
n

logCα; x;n + log
(

1
1− x1/α

)
;

and �3:1�, for rational α, follows in the limit as n→∞.
Once we have established �3:7� for rational α, then for irrational α we

can approximate by rationals above and below, say r/m < α < s/l. By the
monotonicity of E��1/�1− x��Kα;0

n �, by �3:2� and �3:5�,

1
n

logE
[(

1
1− x

)Kr/m;0
n

]
<

1
n

logE
[(

1
1− x

)Kα;0
n
]

<
1
n

logE
[(

1
1− x

)Ks/l;0
n
](3.8)

and letting n→∞,

log
(

1
1− xm/r

)
≤ lim inf

n→∞
1
n

logE
[(

1
1− x

)Kα;0
n
]

≤ lim sup
n→∞

1
n

logE
[(

1
1− x

)Kα;0
n
]

≤ log
(

1
1− xl/s

)
:

(3.9)

We now invoke the continuity of the function log�1/�1− x1/t�� in t, thereby
deducing �3:1� for all α ∈ �0;1� from its validity for rational α.

It remains to prove �3:7� for rational α. Let α = r/m. We break the se-
ries in �3:5� into rm components, each of which has the same growth rate.
These components are chosen so that the combinatorial factor

(
αi+n−1
n−1

)
may
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be replaced with
(
i+n−1
n−1

)
and the resulting series is summable in closed form

by �3:3�.
Introduce the notation

Hn

(
xy r
m

)
=
∞∑
k=0

xk

(
kr/m+ n− 1

n− 1

)

=
m−1∑
j=0

∞∑
i=0

xmi+j
(
��mi+ j�/m�r+ n− 1

n− 1

)

=
m−1∑
j=0

xj
∞∑
i=0

xmi

(
�j/m�r+ ri+ n− 1

n− 1

)
:

(3.10)

We first evaluate the j = 0 term in �3:10�, denoting it by

An�xy r;m� =
∞∑
i=0

xmi
(
ri+ n− 1

n− 1

)
:(3.11)

The right-hand side of �3:11� comprises every rth term in the larger series

(
1

1− xm/r
)n
=
∞∑
k=0

�xm/r�k
(
k+ n− 1

n− 1

)
(3.12)

and we will argue that �3:11� and �3:12� are of the same order in n.
Write

(
1

1− xm/r
)n
=

r−1∑
l=0

∞∑
i=0

�xm/r�ri+l
(
ri+ l+ n− 1

n− 1

)

=
r−1∑
l=0

xml/r
∞∑
i=0

�xm/r�ri
(
ri+ l+ n− 1

n− 1

)
:

(3.13)

From �3:2�, for 0 ≤ l ≤ r− 1,

(
ri+ n− 1

n− 1

)
<

(
ri+ l+ n− 1

n− 1

)
<

(
ri+ r+ n− 1

n− 1

)
:

We substitute these inequalities into �3:13�, obtaining

r−1∑
l=0

xml/r
∞∑
i=0

xmi
(
ri+ n− 1

n− 1

)
<

r−1∑
l=0

xml/r
∞∑
i=0

�xm/r�ri
(
ri+ l+ n− 1

n− 1

)

<
r−1∑
l=0

xml/r
∞∑
i=0

�xm/r�ri
(
ri+ r+ n− 1

n− 1

)
:
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Hence

An�xy r;m�
r−1∑
l=0

xml/r <

(
1

1− xm/r
)n

<
r−1∑
l=0

xml/r
∞∑
i=0

�xm/r�ri
(
r�i+ 1� + n− 1

n− 1

)

=
r−1∑
l=0

xml/rx−m
∞∑
i=0

�xm/r�r�i+1�
(
r�i+ 1� + n− 1

n− 1

)

=
r−1∑
l=0

�xm/r�l−r
∞∑
j=1

�xm/r�rj
(
rj+ n− 1

n− 1

)

≤
r−1∑
l=0

�xm/r�l−r
∞∑
j=0

�xm/r�rj
(
rj+ n− 1

n− 1

)

= An�xy r;m�
r−1∑
l=0

�xm/r�l−r:

(3.14)

This takes care of the j = 0 term in �3:10�. For 1 ≤ j < m − 1; we begin
with

(
ri+ n− 1

n− 1

)
<


 ri+

rj

m
+ n− 1

n− 1


 <

(
ri+ r+ n− 1

n− 1

)
;

and repeatedly apply �3:4� to deduce
(
ri+ r+ n− 1

n− 1

)
< �n�r

(
ri+ r+ n− 1

n+ r− 1

)
;

where �n�r = n�n− 1� · · · �n− r+ 1� is the descending factorial. Thus

∞∑
i=0

xmi
(
ri+ n− 1

n− 1

)
<
∞∑
i=0

xmi

(
ri+ rj/m+ n− 1

n− 1

)

< �n�r
∞∑
i=0

xmi
(
ri+ r+ n− 1

n+ r− 1

)
;

which can be expressed, using our notation, as

An�xy r;m� <
∞∑
i=0

xmi

(
ri+ rj/m+ n− 1

n− 1

)
< �n�rAn+r−1�xy r;m�:

Taking the sum on j, we have

An�xy r;m�
m−1∑
j=0

xj < Hn

(
xy r
m

)
< An+r−1�xy r;m��n�r

m−1∑
j=0

xj:(3.15)
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Combining �3:14� and �3:15�, we arrive at the bounds
∑m−1
j=0 x

j

∑r−1
l=0 �xm/r�l−r

(
1

1− xm/r
)n
< Hn

(
xy r
m

)

<
�n�r

∑m−1
j=0 x

j

∑r−1
l=0 �xm/r�l

(
1

1− xm/r
)n
:

(3.16)

This proves our assertion for α rational, stated at the outset of the proof,
that

E

[(
1

1− x

)Kr/m;0
n

]
≡Hn

(
xy r
m

)
= Cr/m;x;n

(
1

1− xm/r
)n
:

Obviously,

1
n

log
[
E

(
1

1− x

)Kr/m;0
n

]
→− log�1− xm/r�

as n→∞ and our previous continuity argument establishes �3:1�.
Finally, we consider the case of θ 6= 0. Let

m = inf�n ≥ 1x θ ≤ nα�:
Then by direct calculation we have

c1�α; θ�
1

k− 1
5k−1
l=1 lα

�n− 1�! ≤
5k−1
l=1 lα

�θ�n
≤ c2�α; θ�5k+m−1

l=k �l� 5
k−1
l=1 lα

�n− 1�! ;(3.17)

where

c1�α; θ� =
�θ+ α��n− 1�!

α�θ�n
;

c2�α; θ� =
�n− 1�!
�θ�n

1
5ml=1l

:

For any ε > 0 there exists a k0 > 0 such that for all k > k0 we have

�k− 1�−1 ≥ e−εk; 5k+m−1
l=k �l� ≤ eεk:

This, combined with the special form of c1�α; θ� and c2�α; θ�, implies that the
case of θ 6= 0 is the same as the case of θ = 0. Thus the lemma follows. 2

Remark 1. Here are simple alternate proofs for the cases of θ = 0, α = 1
2

and θ = α = 1
2 . Pitman [16] shows that K1/2;0

n can also be derived from the
zeros of Brownian motion in the case of θ = 0, α = 1

2 , and from the zeros of
Brownian bridge in the case of θ = α = 1

2 . For Brownian motion

P�K1/2;0
n = k� =

(
2n− k− 1

n− 1

)
2k+1−2n;(3.18)
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and for Brownian bridge

P�K1/2;1/2
n = k� = k�n− 1�!

�3/2�n−1

(
2n− k− 1

n− 1

)
2k+1−2n:(3.19)

Thus, for λ > 0, we have

E
[
exp�λK1/2;0

n �
]

=
n∑
k=1

eλk
(

2n− k− 1

n− 1

)
2k+1−2n

=
n∑
k=1

eλn
(

2n− k− 1

n− 1

)(
1

2eλ

)n−k(1
2

)n−1

= eλn

�1− 1/2eλ�n−1
2−�n−1�

n∑
k=1

(
2n− k− 1

n− 1

)(
1

2eλ

)n−k(
1− 1

2eλ

)n−1

= eλn

�1− 1/2eλ�n−1
2−�n−1�

n∑
k=1

(
2n− k− 1

n− 1

)(
1

2eλ

)n−k(
1− 1

2eλ

)n−1

= eλn

�1− 1/2eλ�n−1
2−�n−1�

n−1∑
j=0

(
j+ n− 1

n− 1

)(
1

2eλ

)j(
1− 1

2eλ

)n−1

;

(3.20)

where in the last equality we made the substitution of j = n− k.
Consider a sequence of independent trials, each of which results in a success

with probability p = 1−1/�2eλ�, or a failure with probability q = 1/�2eλ�: The
fact that λ > 0 implies that p > 1

2 . Let A be the event that the nth success
occurs before the 2nth trial; B be the event that a failure follows the nth
success. Then we have limn→∞P�A� = 1, P�B�A� = q and

P�A ∩B� =
n−1∑
j=0

(
j+ n− 1

n− 1

)
qjpn−1pq→ q as n→∞:(3.21)

This combined with �3:20� implies that

1
n

logE
[
exp�λK1/2;0

n �
]
→ log

1/2eλ

1− 1/2eλ
= 3α�λ�;

which is exactly �3:1� and the case of Brownian bridge follows because of the
same α.

Remark 2. For the Ewens sampling formula �α = 0, θ > 0�, the sequence
�µθn�n≥1 satisfies a large deviation principle with speed log n and rate function

Iθ�x� =





x log
x

θ
− x+ θ; for x > 0;

θ; for x = 0;

+∞; for x < 0;
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where µθn is the law ofKθ
n/ log n underPθn in �1:1�. The proof is straightforward

by using the representation of Kθ
n as a sum of independent components (see

[18] and [16]) and the generating function formula for the Stirling numbers
of the first kind.

4. Path-level large deviation principle.

4.1. Poisson embedding. The Poisson embedding used in [5] is a special
case of the embedding scheme developed in Section 2 with I�t� being a ho-
mogeneous Poisson process (corresponding to α = 0) on R+ with parameter θ
and x�t� being a pure birth process with rate 1. In this particular case, one
has the following:

Theorem 4.1 ([5]). Let

K̄n�t� =
I�τn�∑
k=1

I�xk�τn−Tk�≤nt�:

Then, for any 0 < δ < 1
2 and c > 1,

K̄n�t� ≤ I�τn� − I�τn − t log n− �log n�δ� +R1�n�;

K̄n�t� ≥ I�τn� − I�τn − t log n+ �log n�δ� −R2�n�;

R1�n� ≤ Rc
1�n�; R2�n� ≤ Rc

2�n�;
where

R1�n� =
I�τn�∑
k=1

I�xk�τn−Tk�<exp�τn−Tk−�log n�δ��;(4.1)

R2�n� =
I�τn�∑
k=1

I�xk�τn−Tk�>exp�τn−Tk+�log n�δ��;(4.2)

Rc
1�n� =

I�c log n�∑
k=1

I�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ�� +Rc
3�n�;(4.3)

Rc
2�n� =

I�c log n�∑
k=1

I�supt∈�0;1� exp�−t�xk�t�>exp��log n�δ�� +Rc
3�n�;(4.4)

Rc
3�n� = I�τn�I�τn>c log n�:(4.5)

Here I�t� = 0 for t < 0.
From the construction in Section 2, we see that Kn�t� introduced in Sec-

tion 1 equals K̄n�t� in law.
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4.2. Large deviation for the Poisson process. Let D�0;1� be the space of all
real-valued functions on �0;1� that are right continuous and have left limit on
�0;1� and are left continuous at t = 1, equipped with the uniform convergence
topology and metric

��f− g�� = sup
t∈�0;1�

��f�t� − g�t��� for any f;g ∈ D�0;1�:

Let I�t� be a Poisson process with parameter θ and let �an�n≥1 be a sequence
of positive numbers that goes to ∞ as n→∞. Let Zn�t� = I�ant�/an and let
Qn be the law of Zn�t� on space D�0;1�: Then one has the following:

Theorem 4.2 ([14]). The sequence �Qn�n≥1 satisfies a large deviation prin-
ciple on space D�0;1� with rate function S�·� and speed an.

Remark. This theorem in its present form is proved in [14]. A weaker
version when D�0;1� is equipped with the weak topology is obtained in [13].

Next we will prove a generalized version of this theorem. Let �bn�n≥1 be
a sequence of positive numbers such that limn→∞ bn/an = 0: Let Z̄n�t� =
I�ant+ bn�/an and Q̄n be the law of Z̄n�t� on space D�0;1�: We have the
following:

Theorem 4.3. The sequence �Q̄n�n≥1 satisfies a large deviation principle
on space D�0;1� with rate function S�·� and speed an.

Proof. Without loss of generality, we may assume that infn≥1 bn > 0. In
general, we may add 1 to the sequence and use the same argument as below.
The main idea of the proof is to show that Qn and Q̄n are exponentially equiv-
alent and then to apply Theorem 4.2.13 in [4]. Let Pn be the joint distribution
of Zn�t� and Z̄n�t�. Then for any δ > 0 we have by using the Markov property
and Doob’s inequality

Pn

{
��Z̄n�·� −Zn�·��� > δ

}

= P
{

sup
t∈�0;1�

�I�ant+ bn� − I�ant�� > anδ
}

≤ P
{

sup
s; t∈�0; an+bn�; t−s∈�0; bn�

�I�t� − I�s�� > anδ
}

≤
�an/bn�∑
l=0

P
{

sup
t∈�lbn; �l+2�bn∧�an+bn��

�I�t� − I�lbn�� > anδ
}

≤
(

1+
[
an
bn

])
sup
k≥0

Pk
{

sup
t∈�0;2bn�

�I�t� − I�0�� > anδ
}

=
(

1+
[
an
bn

])
P
{

sup
t∈�0;2bn�

I�t� > anδ
}
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=
(

1+
[
an
bn

])
P
{

sup
t∈�0;2bn�

exp�λ�I�t� − θt�� > exp�λ�anδ− 2θbn��
}

≤
(

1+
[
an
bn

])
exp�λ�−anδ+ 2θbn��E�exp�λ�I�2bn� − 2θbn���

=
(

1+
[
an
bn

])
exp�−λanδ� exp�2θbn�eλ − 1��;

where �an/bn� is the integer part of an/bn and Pk represents the law of the
Poisson process that starts at k. This implies that

lim sup
n→∞

a−1
n log Pn���Z̄n�·� −Zn�·��� > δ� ≤ −λδ:(4.6)

Letting λ→∞, we get the exponential equivalence of Qn and Q̄n. By applying
Theorem 4.2.13 in [4], we get the result. 2

4.3. The main result. In this section we will prove Theorem 1.1. To prove
this theorem, we need the following two lemmas.

Lemma 4.4. For any fixed ρ > 0 we have

lim
c→∞

lim sup
n→∞

1
log n

logP�Rc
1�n� > ρ log n� = −∞;(4.7)

lim
c→∞

lim sup
n→∞

1
log n

logP�Rc
2�n� > ρ log n� = −∞;(4.8)

lim
c→∞

lim sup
n→∞

1
log n

logP�Rc
3�n� > ρ log n� = −∞:(4.9)

Proof. First let us assume that �4:9� is true. By direct calculation we
have, for any c > 1,

P

{I�c log n�∑
k=1

I�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ�� > ρ log n
}

≤ exp�−λρ log n�E
{

exp
[
λ
I�c log n�∑
k=1

I�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ��

]}

= exp�−λρ log n�
∞∑
i=1

�θc log n�i
i!

exp�−θc log n�

×
i∏

k=1

exp �λI�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ���
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≤ exp�−λρ log n�
∞∑
i=1

�θc log n�i
i!

exp�−θc log n�

×
i∏

k=1

[
1+ exp�λ�P

{
I�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ��

}]

≤ exp�−λρ log n�
∞∑
i=1

�θc log n�i
i!

exp�−θc log n�

×
[
1+ 2 exp�λ� exp

[
−�log n�δ

2

]]i

= exp�−λρ log n� exp
[
2θc log n exp�λ� exp

[
−�log n�δ

2

]]
:

In the last inequality we used the martingale inequality (3.9) in [5]. Letting
n→∞, and then λ→∞, we get

lim sup
n→∞

1
log n

logP
{I�c log n�∑

k=1

I�inf t∈�0;1� exp�−t�xk�t�<exp�−�log n�δ�� > ρ log n
}

= −∞:
(4.10)

This, combined with �4:3� and �4:9�, implies �4:7�.
Next we prove �4:8�. By Doob’s inequality,

P

{I�c log n�∑
k=1

I�supt∈�0;1� exp�−t�xk�t�>exp��log n�δ�� > ρ log n
}

≤ exp�−λρ log n�
∞∑
i=1

�θc log n�i
i!

exp�−θc log n�

×
i∏

k=1

exp
[
λI�supt∈�0;1� exp�−t�xk�t�>exp��log n�δ��

]

≤ exp�−λρ log n�
∞∑
i=1

�θc log n�i
i!

exp�−θc log n�

×
i∏

k=1

[
1+ exp�λ�P

{
I�supt∈�0;1� exp�−t�xk�t�>exp��log n�δ��

}]

≤ exp�−λρ log n�

×
∞∑
i=1

�θc log n�i
i!

exp�−θc log n��1+ exp�λ� exp�−�log n�δ��i

= exp�−λρ log n� exp�θc log n exp�λ� exp�−�log n�δ��:
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Letting n→∞, and then λ→∞, we get

lim sup
n→∞

1
log n

logP
{I�c log n�∑

k=1

I�supt∈�0;1� exp�−t�xk�t�>exp��log n�δ�� > ρ log n
}

= −∞:
(4.11)

This, combined with �4:4� and �4:9�, implies �4:8�.
Finally, we turn to the proof of �4:9�. Noting that τn can be represented

as the sum of n independent exponential random variables with parameters
θ; θ + 1; : : : ; θ + n − 1, one has limn→∞ τn/ log n = 1 almost surely as n→∞
and, for λ < θ,

lim
n→∞

1
log n

logE
[
eλτn

]
= lim

n→∞
1

log n
log

0�θ+ n�
0�θ− λ+ n�

= λ:
(4.12)

By using Theorem 2.3.6 (Gärtner–Ellis theorem) in [4], we find that τn/ log n
satisfies a large deviation upper bound with rate function

Ī�x� =
{
θ�x− 1�; if x ≥ 1;

∞; otherwise.

Thus we get

lim sup
n→∞

1
log n

logP�Rc
3�n� > ρ log n� ≤ lim sup

n→∞

1
log n

logP�τn ≥ c log n�

≤ − inf
x≥c

Ī�x� = −θ�c− 1�;

which implies �4:9�. 2

Lemma 4.5. Let

f1
n�t� =

1
log n

�I�τn� − I�τn − t log n− �log n�δ��

and

f2
n�t� =

1
log n

�I�τn� − I�τn − t log n+ �log n�δ��:

Then f1
n and f2

n are exponentially equivalent.

Proof. By using an argument similar to that used in the proof of �4:6�,
we have, for any ρ > 0,

P���f1
n − f2

n�� ≥ ρ� = P
{

sup
t∈�0;1�

[
I�τn − t log n+ �log n�δ�

− I�τn − t log n− �log n�δ�
]
≥ ρ log n

}
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≤ P
{

sup
s; t∈�0; c log n+�log n�δ�; t−s∈�0;2�log n�δ�

�I�t� − I�s�� ≥ ρ log n
}

+P�τn > c log n�
≤ 1

2�1+ c�log n�1−δ� exp�−λρ log n� exp�4θ�log n�δ�eλ − 1��
+P�τn > c log n�:

Since 0 < δ < 1
2 and c > 1 and λ are arbitrary, by letting n → ∞, and then

λ→∞, finally c→∞, we get

lim sup
n→∞

1
log n

P���f1
n − f2

n�� ≥ ρ� = −∞:

Thus we proved that f1
n and f2

n are exponentially equivalent. 2

Proof of Theorem 1.1. Since Kθ
n�t� and K̄n�t� have the same law, it

suffices to verify the result for the sequence �K̄n�t�/ log n�n≥1. Lemma 4.4
implies that R1�n�/ log n and R2�n�/ log n are superexponentially small.
This combined with Theorem 4.1 and Lemma 4.5 implies that f1

n�t�
K̄n�t�/ log n and f2

n�t� are exponentially equivalent. Note that f1
n�t� and

I��log n�t+ �log n�δ�/ log n have the same law. An application of Theorem 4.3
gives the result. 2

Remark. A reader of this paper has suggested an alternate approach to
prove Theorem 1.1 by adapting the projective limit technique and an induc-
tion based on the approximate independence of Kθ

n�s� and Kθ
n�t� −Kθ

n�s� for
s; t ∈ �0;1�. This would lead to a large deviation principle in the pointwise con-
vergence topology. To strengthen the result to the uniform convergence topol-
ogy, one would then need to check the exponential tightness in this stronger
topology. Our approach is more direct.
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