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We consider a Markov chain X obtained by adding small noise to
a discrete time dynamical system and study the chain’s quasi-stationary
distribution (gsd). The dynamics are given by iterating a function f: I — I
for some interval I when f has finitely many fixed points, some stable and
some unstable. We show that under some conditions the quasi-stationary
distribution of the chain concentrates around the stable fixed points when
& — 0. As a corollary, we obtain the result for the case when f has a single
attracting cycle and perhaps repelling cycles and fixed points. In this case,
the quasi-stationary distribution concentrates on the attracting cycle. The
result applies to the model of population dependent branching processes
with periodic conditional mean function.

1. Introduction. This paper deals with quasi-stationary distributions for
Markov chains X¢,

(1) X5 = (X5 )+ &(X5 ),

obtained by adding small noise £, which is generally state dependent, to a
discrete time dynamical system

(2) X1 = f(x,).

The function f maps some interval I into itself, and we consider the case
when f has finitely many fixed points, some of which are stable and some
unstable. The dynamical system defined by (2) models a particular physical
phenomenon, when the variable of interest is confined to the range with set
I. For example, in population dynamics x, denotes the population density in
the nth generation. The Markov chain defined by (1) models small random
perturbations to that phenomenon. Therefore in applications it is often of
interest to study the long term behavior of the chain (1) as long as it stays
in I. This is done by studying the quasi-stationary distribution (qsd) of the
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chain,
3) p°(A)=lim P(X: € A|X; €I),

defined for any Borel set A C I.

Our goal in this paper is to show that under some conditions the quasi-
stationary distribution of the chain concentrates around the stable fixed points
of f when ¢ — 0.

Our motivation comes from the population density process in density-
dependent branching models. A density-dependent branching process is a
branching model where the law of offspring distribution depends on the pop-
ulation density. These processes are stochastic analogues of the deterministic
models of population dynamics given by (2), and were studied in [6] and [7],
where the law of large numbers, the central limit theorem and convergence to
a Gaussian process were established. The basic feature of the deterministic
models is the decline in the reproduction rate from a constant, when the
population density is small, to zero when the population density increases
to its threshold. This decline is due to competition between individuals. The
logistic model with f(x) = rx(1 — x), one of the more famous models (e.g.
[10]), provides a perfect example of this phenomenon, and we shall use this
model in our representative examples. Density-dependent branching pro-
cesses incorporate the same principle, by making the offspring distribution
decline with an increase in population density. If m(x) denotes the mean of
offspring distribution when the population density is x, then the expected
density of the next generation is given by the conditional mean function
f(x) = xm(x). The precise definition of the density-dependent branching
processes is given in the section on applications; it suffices to say here that
these models can be represented in the form of (1) with the dynamics being
that of the corresponding deterministic population model with f(x) = xm(x).
Under broad assumptions, density-dependent branching processes become
extinct with probability 1. We show that the gsd exists and describes the
long-term behavior of the process prior to extinction.

In [8], the large deviation principle was established for the Markov chain
(1), and this reference is central for this paper. It was shown there that if the
deterministic system has a stable periodic orbit then the perturbed system
will follow approximately a limit cycle for a time exponentially long in the
level of noise before switching to another cycle.

We also consider the model with additive state-independent noise; it may
also have an independent interest in applications. This model is conceptually
the same, but technically it is easier to treat.

It is not hard to establish the existence of qsd under some broad assump-
tions (cf. Theorem 1), the main tool being the Krein—Rutman theory of positive
operators. It is also rather straightforward that any weak limit of the gsd as
the noise converges to zero must be an invariant measure of the deterministic
system, defined by p(A) = p(f~1(A)) (cf. Theorem 2). Therefore, if the deter-
ministic system has a unique invariant measure then the gsd concentrates
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around it. We, however, consider the case when the deterministic model may
have many invariant measures. The main result of this paper, Theorem 3,
is to establish conditions so that the gsd does not put, in the limit of small
noise, mass around the unstable fixed points. The technique of proof relies on
an adaptation of the discrete time Freidlin—Wentzell theory, for example as
developed in [4].

We use the main result to treat the case when [ has an attracting stable
cycle (an attracting fixed point is a cycle of period 1) to which all the trajecto-
ries converge (except unstable cycles and their inverse images) and show that
under suitable assumptions the qsd concentrates around the attracting cycle.
Thus the limit of the qsd is uniform on the stable periodic orbits.

To put our results into perspective, we point out a general result of Kifer
[4], which shows, among other things, that for diffeomorphisms under a bit
different conditions of hyperbolic sets and a more special form of random per-
turbations, that is, perturbation by a diffusion, the quasi-invariant measures
concentrate in the limit on the attractors. While our conclusions might pos-
sibly be obtained from general arguments (see [5], Section 5), the case we
consider does require some care, as the example provided after the statement
of the main Theorem 3 demonstrates.

While working on this paper we learned of a recent, independent work of
Hognas [3], where he obtained similar results for the stochastic Ricker model
by techniques not far from ours. The main difference of his work from ours lies
in the greater generality and applicability of our assumptions. On the other
hand, [3] explains how to extend the assumption (A6) below to allow for an
application to the situation of stable periodic orbits of period larger than 2.
This extension caries over to the results in this paper; see the comment at the
end of Section 2.

2. Assumptions and results. Let I = [0, 1], and consider a continuous,
piecewise C? function f: I — I. Here (I, %, f) defines a standard dynamical
system. For any & > 0, let Bs = [§, 1 — §]. Throughout this paper, we make
the following assumptions:

(A1) Let f(0) = f(1) = 0, max,; f(x) < 1, and f possesses a finite number
of unstable fixed points xj = 0, x7, ..., x; where k may equal zero, and a finite
number of stable fixed points sy, ..., s; € (0, 1). Further, for all §, > 0 small
enough, there exist §, > §, > 0 such that f(B;) C Bs,. [By x] unstable, we
mean that |f'(x})| > 1.]

(A2) All trajectories of the dynamical system converge to one of the fixed
points of f.

Consider the following Markov chain, which is a random perturbation of
the dynamical system. Let

X5 = F(X51) +&(X5 )
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Here, £%(x) are random variables, whose law, denoted Qg,x(~), depends on
g, x only. Let A¢(x, A) = log(Ee*¢"(™)) and define the kernel P, on (I, #(I)) by
P.(x,A)= P (X]eA), xel, Aezn().
We make the following assumption on Qﬁ, x(+).
(A3) For all ¢ > 0, and for some nonzero probability measure V, on

(I, #(1)), there exists a nonnegative function m(x, y) on I x I such that for
all x € I and for all A € #(I),

Py(x. A) = [ m(x, »)V.(dy).

Further, there exist integers n,(¢) and real numbers a(e) and b(&) such
that for all x, y € I,
0 < a(s) < m@)(x, y) < b(e) < o0,
where for any n, mgn)(x, y) is the density of P?(x,-) with respect to V. As-

sume further that for all § > 0 small enough, for all £ > 0 small enough,
V.(B;) > 0.

(A4) There exists a Ay > 0 such that, for all |A| < A¢, sup,.;, A*(x, A/&) < c0.

Note that by Chebyshev’s inequality, (A4) implies that £%(x) converge in
probability to zero as ¢ — 0 uniformly in x € I.
Let Us(x) = (x—8,x+8)N[0,1].

(A5) There exists a 8 > 0 independent of & such that for all 6 small enough,
and all & small,

inf Qg’x(s, 00) > f3,

xeUl, Us(x))
inf Qg (=00, —g) > B.
xeUl Us(x)

(A6) For each i =1, ..., k there exists an m; > 2|f’(x})| such that for all
8; > 0 small enough, with A; = U,, 5 (x7)\Ugs, (x7), there exists a j(i) < oo
such that f((A;) c U'_; Us, jo(s;).

For i = 0 we set my = 3|f'(0)|.

For each i =0, ..., k, define

= min{n: X’ ¢ Uzai(xf)}
and
¥, =min{n: X; € U; (x})}.

In what follows, = denotes the weak convergence.
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THEOREM 1. Assume (A1)—(A4).
(i) The gsd p'® [cf. (3)] exists; it is a probability measure on (I, #(I)) and
there exists a number R®) > 1 such that for all A € %(I),
p®)(A) = R® /I P,(x, A)p®(dx).
(i) lim, o R® = 1.

Let m(sl)(x, y) = m(x,y) and mgn)(x, y) be the density of P? for n > 2,
that is, P"(x, dy) = m\"(x, y) dy.

Proor. (i) By (A3) and Theorem 10.1 of [2], P, has a positive eigenvalue
1/R®), larger in magnitude than any other eigenvalue, and a corresponding
uniquely defined left eigenfunction p(®) satisfying I; p¥(y)dy = 1. Moreover,
still by [2], Theorem 10.1, with u(¥)(-) denoting the (uniquely defined) corre-
sponding right eigenfunction,

1

4) m{(x, y) = ( R(s)) pO (@) (ML + o(D)],

where the convergence of the error term in (4) is uniform in x, y. Then for
A € #(I), define p®(A) = [, p(y)dy, so that it follows directly that p®) is
a gsd by using (4) in

P(X: e A)
P(Xcel)’
(i1) With 8, 8, as in (Al), it holds that for any x € Bs,,
P.(X{ € Bj) = Qf .(—00, 8 — ) + Q% (8 — 8o, o0)
< exp(—A¢|8o — 8y|/&)(exp(Af(x, Ao/)) + exp(A*(x, —Ag/#))).
Hence, by using (A4), for some constant ¢ > 0,
(5) sup P (X7 € Bj) < e “/e.

x6350

P(X:eAlX:el)=

Hence,
a, = sup(1— P, (X]€B;)) —0, g — 0.

&
x€B;,

Then since p*)(B;,) > 0 for all &,
p(By) = R [ P(X] e By)p(dx) 2 RO [ (1-a,)p"(dx)
30
implies

(6) R® <

-1, g— 0,

Qe

and since R > 1, (ii) follows. O
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Since I is bounded, p(®) is tight. The following identifies the limit points of
subsequences of p(®).

THEOREM 2. Assume (A1)—(A4). Then, any weak limit p of p(‘g) is an invari-
ant measure for f, that is, for any A € %(I),

p(A) = p(f1(A)).

REMARK 1. Kifer ([4], page 8) proves this result in the case of stationary
distributions of Markov chains under somewhat different assumptions that
are not satisfied here.

PrOOF OF THEOREM 2. Let Y, and Y be random variables with distribu-
tions p(®) and p, respectively, with Y, =, ., Y. For any A € %4(I),

(D P(Y, € A)=R(8)/1Px(Xi’ € A)p(dx)=ROP(f(Y,)+£(Y,)) € A).

By continuity of f and (A4) [see the comment on (A4)], f(Y,) + &(Y,) =
f(Y) along the subsequence. Hence for all A € #(I) such that P(Y € 9A) =
P(f(Y) € dA) = 0, taking ¢ to zero along the subsequence in (7) along with
part (ii) of Theorem 1, gives

(8) p(A) = p(f1(A)).

Hence we can now show that (8) is true for any interval in I° by approx-
imating the interval where necessary by sets that do satisfy it. Hence, by
Caratheodory’s extension theorem, it extends to all A € #(I°). Now, with
0 <6 <1—max,f(x) fixed,

pO((1=5.1]) = R [ P(X{ e (1-8,1])p")(dx)
< R(s)malxp(gg(x)> 1—5—male(x))—> 0 ase— 0
xe xe

and so p({1}) = 0. Hence (8) is true for A = {0} and A = {1}, and so it is true
for all A e 4(I). O

It is rather straightforward to check that any weak limit of p(*) then satisfies
Zf:o p(x7) + Zle p(s;) = 1. The following is our main result.

THEOREM 3. Assume (A1)—(A6). Then, any weak limit p of p'® satisfies
p({x%}) =0 for each j=0,..., k.

REMARK 2. To see that one needs some structural assumptions on £4(-),
consider the case of f(x) = ra(1 —x), 1 < r < 3. For x € [¢,1] let £&%(x) be
a uniform random variable on (—¢/2, £/2), while for x € [0, £) let the law of
&(x) be c,U(—rx, —(r — 1)x) + (1 — ¢, )U(1 — ¢/2r, 1], where U(A) denotes
the uniform law on A and ¢, —,_,( 1 is chosen such that E£¢(x) = 0. It is not
hard to check that in this case, the qsd concentrates on the (unstable) point 0.
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To prove Theorem 3 we need the following preliminaries. Throughout,
we use the notations introduced in (A1)-(A6). In addition, N := N(e&) =
K(log1/&)X for some K large enough (and independent of &).

LEMMA 1. Foreachi=1,...,k,
9 sup P, < (1)6<UU6(3 >>—>H00-
x€A;

ProOF. By (A4), sup,.; P(|€°(x)| > ¢) — 0. This implies that for all 6 > 0,
sup,.; P.(|X1—f(x)| > 8) —,_¢ 0. Iterating this and using the fact that j(i)
is independent of ¢, the lemma follows. O

LEMMA 2 ([8], Lemma 2.1). Foreachi=1,...,1,foreach j=1,...,1, for
all k>0,

sup P,(7%, < k/e) >, 0.
x€U5 (s;)

LEMMA 3. Foreachi=1,...,k, forall K >0,

k
sup sup P, (Xf e U Usm(x’fn)> —.500.
xed; j(i)<t=K(log(1/£)¥ m=0

PROOF. Omit the i subscript for convenience. Take j as in (A6). Then for
all x € A, using the Markov property,
sup P (X7 e Us(x"))

J<t<N

< su}\? P (X5, € Us(x"))
t<

(10) k
< sup sup Py(Xf Ny Ugm(x;)>
yeUho1 Us(sm) =N m=0

o xye (G o))

< max sup P,(r5 <N)
L=m=l xeUs(s,)

b +P ( ( U Ué(sm)> > as e — 0,

where the last limit is due to Lemma 2 and Lemma 1. O

LEMMA 4. Foreach i =0,...,k, we have the following:

(1) SuperS (x}) P (Xi 1 ¢ Um d; (.’XI*)) &0 O
(ii) for all K large enough, sup,.y. (x*)P (i1 > K(log(1/¢))X) — 0 as

e — 0.
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PROOF. Omit the i subscript for convenience.

(i) By the choice of m in (A6) [m, is defined immediately after (A6)], we
have that for all § small enough,

(12) sup |f(x)—x*| < mé

xeUgs(x*)

and so there exists a constant A > 0 such that

sup P, (X7 ¢U,s(x")) = sup P (f(X7 1)+ E(XZ 1) & Ups(x7))

xeUs(x*) xeUg(x*)
(13) < sup P (|&(X% 1) =4)
xeUs(x*)

<sup P(|£°(x)|=A)— 0 as ¢ — 0.
xel

(i) Let b, = e(log €)?. Define 7 = inf{t: |X? — x*| > b,}. Without loss of
generality, we assume that inf, () f'(x) > ¢ > 1. Then, with ¢; = 4/logc,

inf P,.(7 <cloglogl/e)

x*<x<b,+x*

> inf P(£°(x) > &) inf P.(7 <c,loglogl/e — 1).

e<x<b,+x*

Note that as long as x; € Us(x*), on the event {£°(x;) > 0}, f(x;)+&°(x;) > cx;.
Hence, since

ectiloglogl/e e(log 8)4 >b,,
one gets, using (A5),

—cqlogloge
inf P.(7<c;loglogl/e) > ( %Jnf )Px(§8(x) > s))
xelUgs(x*

x*<x<b,+ux*

> B—cl log log &

Arguing similarly, the case x < x* is handled (for i # 0). Hence,

inf P,(7 <c;loglogl/e) > B*Cllﬂglogg‘

| —x|<b,
It follows that, with ¢y = 2¢4,

| inlf , P (7> ¢ 2818 ¢ Joglog 1/¢)
x*—x|<b,

(14)
<(1- B—cllogloga)ﬁczlogloge -0 as ¢ — 0.
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In what follows, we use c3, ¢4, ¢5 to denote some constants which are indepen-
dent of e. Then, with ¢; = £°(X?), arguing as above,

inf P, (T*? < e/ be))

x>b,+x*,xeUs(x*) L= log \/E

2P<I§f| b e i=1l....

—logb,/log \/c
> (1— EC3
- b

log(1/ ba))

1
(15) °gVe

&

> exp(cgg log bs) > exp(é) -1 as ¢ —> 0.
£

&

Combining (14) and (15), we conclude that for some c; independent of ¢,

iUnf )Px(Tf 1> (log1/e)™%18F)y 50  ase— 0.
xeUg(x* ’

This concludes the proof of the lemma. O

LEMMA 5. Foranyi=1,...,k,

k
sup Px< v U U3_(x’;»)) -0 ase— 0.
el (x7) =0

PROOF. For x € U; (x7), using the Markov property,

k
Po(X € UU () = Pulrty = N+ PulXS,, # U (57)
J=0

(16)

k
+sup sup Px<Xf el Ua_(x*})>.
x€A; 1<t<N j=0 !

Taking supremum on both sides over x € U; (x}), the first two terms on
the right converge to zero as e converges to zero by Lemma 4, while the
convergence of the third is a consequence of Lemma 3. O

LEMMA 6. For any 6, small enough,

sup P, (X% €[0,85)) >0 ase— 0.
x€[0, 8]
PrROOF. Note that
sup P.(X% €[0,8¢)) = sup P.(75; > N)

x€[0, 8] x€[0, 8]

a7 + sup P.(X. ¢[28,3]f(0)[5])
x€[0, 8¢] ’

+N sup P.(X5€]0,8,)]).
xe[8g, 1-8]
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The first two terms in (17) converge to 0 with & due to Lemma 4, while the
third one is bounded [due to (5)] by Ne */* - 0 as ¢ — 0. O

PROOF OF THEOREM 3. Fix any j =0,..., %, and pick §; small enough so
that

pO(Us (x5) - p({x3})  ase—0.
First observe that R(®) < 1+ e~“/*, giving
(RN 1 as ¢ — 0,
for K large enough. Now,
1
pOUs, (x5) = (RN [ P (X5 € Us (x5)p(dx)

k

— (RN Z/U o Pr(Xiv € Us,(x%5))p'“)(dx)
i=1"Y5 (%
l
(18) +(ROHN Y / P (X% € Us (x%))p*)(dx)

i=17Us;(si

+ RO [ PUXS €Uy (65)p(d)

+ (RN P (X% € Us (x9))p(dx),
Us, (x5) !

where B = [0, 1\{UX, Us,(x7) UL, Us,(s;)}, so that the third term converges

to zero as e converges to zero, the first term converges to zero as & converges to

zero using Lemma 5, and for the second term, for each i =1, ...,1[,

[ PuXy € Us (x)p(dx)
Uéi(si)

(19) < sup P (X% €Us (x}))
XEUai(Si)

< sup P, (15, <N)—>0 as ¢ — 0,
xeUs, (s;) ’

by Lemma 2. For j = 0, the last term converges to 0 with ¢ as a consequence
of Lemma 6, implying that p(®)(U 5,(x0)) = 0 as & — 0. Substituting again in
(18) for any j # 0, this is enough to imply that p(g)(Ugj(xj-)) —0ase— 0. O

REMARK 3. We comment here on extensions of Theorem 3 which follow
from [3]. As pointed out in Section 3, assumption (A6) is hard to check in
general. It is used in the proof, however, only to show that points in the neigh-
borhood of unstable fixed points converge in finite time (under the determin-
istic action) to neighborhoods of stable fixed points. This assumption can be
replaced by the assumption of nonexistence of heteroclinic orbits, which in-
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clude the unstable fixed point. This assumption creates an ordering of the
unstable fixed points in such a way that neighborhoods of higher order unsta-
ble points are mapped to either stable points or neighborhoods of lower order
fixed points, and the lowest order unstable fixed points do satisfy (A6). See [3]
for a development of this approach in a particular case.

3. Applications and examples.

The logistic map with normal noise. Consider the case when f is the lo-
gistic map, f(x) =rx(1—x), 1 <r <1+ 6:

(20) X5, = F(X5-1) + emy,

where f as above and 7,, are iid standard Normal rv’s.

(A). Consider first the case when 1 < r < 3. In this case xj = 0 is the
only unstable fixed point, s; =1 — 1/r is the only stable fixed point and there
are no other cycles. Assumptions (Al) and (A2) are satisfied for this case; see
[11] and, as £ = 0, (A6) is not required for this case. If £°(x) = en, where
71 is the standard Normal variable, then the assumptions (A3), (A4) and (A5)
are clearly fulfilled, and the result holds, that is, the qsd of X’ concentrates
around the attracting fixed point s;.

REMARK 4. In this case it is possible to show that p(0) = 0 by using a
Lyapunov function approach; see [9].

(B). Consider the case 3 <r < 1+ /6.

In this case f has two unstable fixed points at zero and 1 — 1/r, one stable
attracting cycle of period two, and no other cycles. We next show that Theorem
3 applies in this set-up, implying that the gsd of the X? in (20) concentrates
on the stable attracting cycle.

Define the function f*(x) = f2(x), x € I. We shall apply the above results
by replacing f with f*. It is easy to see that f* has two unstable fixed points
at x; = 0 and x] = 1 — 1/r, two stable fixed points s; and sy, and no other
cycles.

First we verify assumption (A6) for f*. We start with a lemma.

LEMMA 7. Let [ be the logistic map with 3 < r < 1+ /6. Then the accu-
mulation points of f"(x}) are zero and one.

Proor. Here f maps [0, 1] onto [0, 7/4], and r/4 < 1! f from [0, 1/2] —
[0, r/4] is one-to-one. Put g(x) to be the inverse map from [0, /4] onto [0, 1/2],
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and note that it is monotone increasing. Then, f~1(x%) = {x%, g(x})} = {x}, 1—-
x7}. We prove that

(21) 1- gP(xt) > r/4,

hence the “other inverse branch” of f does not contribute, and all further
inverse images of x] come from g. Inequality (21) follows from

(22) g(x1) < f(r/4).

The monotonicity of x(1 — x) implies that g(xj(r)) is monotone decreasing
in r for any r > 2. Therefore max3_,_;, 5 8(x7(r)) = 1/3 is achieved at
r = 3; f(r/4) is monotone decreasing in r on (3/4, (1 + +/6)/4). Therefore
ming_,_q, /g f(7/4) is achieved at (14++/6)/4) and is f((14++/6)/4) = 0.409 - - >
0.4. The inequality (22) now follows, hence (21) is established. It follows by
symmetry of f that the accumulation points of f~"(x}) are the accumula-
tion points of {g"(x})} and of {1 — g"(x})}. Since g is monotone increasing,
{g"(x7)} form a decreasing sequence. The limit y must satisfy y = g(y), which
implies that y = 0, and the lemma is proved. O

It is known that the iterates of all the points in I except the unstable fixed
points and their inverse images for all n = 0,1, 2, ..., converge to the stable
cycle; see [11], page 73.

Since f"(x§) = {0, 1} for all n, it now follows from Lemma 7 that for all
6 > 0 small enough, for all x € Us(x])\{«x3},

(x) = {sy, sq}, n — oo.
With A; as in the statement of assumption (A6), we have that for each

x € A, there exists an n(x) such that (f*)/(x) € U%_, Usa(s;) for all j > n(x).
Using the continuity of f, there exists thus a r(x) > 0 such that

2
Yy € B,y(x), VJj>n(x)+1, () (9) € U Uspa(sy).
i=1

Covering A, by the balls B, ()(x) and taking a finite subset by compactness,
(A6) follows for f*.

Consider Y = X5 . It is easily verified that assumption (A3) holds for (20),
and that by Theorem 1, the gsd of X, exists. It is clear that X5, and X¢ have
the same gsd. Let

&(x) = f(f(x) +emy) + emy — ().
With this choice of £%(x) we can write that

;(nJrl) = fz(Xgn) + fs(Xgn)
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To verify assumptions (A4) and (A5), notice that the iterated noise satisfies,
by the mean value theorem,

&(x) = f(f(x) +emy) + emy — [P(x)
= eny + f'(0)emy
= e(ny + £/ (0)m),
where 6 € (f(x), f(x)+¢&n,) can be random. Since the derivative f’ is bounded
onl, —r < f'(x) <r,|f'(0)] <r.Using this, (A4) is straightforward. To verify
(A5), write with B = P(ny > 1+ r|ny]),

Jnf P(§(x) > #) = inf P(ny+ f(8)n, > 1)

>U11(1f P(my >1+r|m[)=B>0.
The other side of (A5) is similar. This completes checking (A1)—(A6).
Theorem 3 implies than the limit of the qsd is of the form a8, +(1—a)d;,,
where 0 < @ < 1 and 6, denotes the point mass at s;, i = 1, 2 Since s;, sy
are points of the cycle for f, it follows that « = 1/2, that is, the limit is the
uniform distribution on the stable cycle. O

REMARK 5. The following is useful for checking assumptions (A1) and (A2).
The dynamical system defined by iterations of f € C° is called simple if for
any starting point the trajectory converges to one of the cycles of f. Then f is
said to belong to class G, if it has a cycle of period 2™ and no cycles of period
greater than 2™. The result [11], page 73, states that if f € Gg» for some m,
then the dynamical system defined by iterations of f starting from any point
in I is a simple dynamical system. On the other hand if f is C! and if the
dynamical system defined by iterations of f starting from any point in [ is a
simple dynamical system, then f € Gy», Theorem 3.3 in [11].

4. Density-dependent branching processes. In this section we apply
the main result to the model of density-dependent branching processes. Let
{X?2} be the population density in a density-dependent branching process, de-
fined as follows. For any fixed x > 0,let Y ; ,(x) be independent and identically
distributed random variables for all j, n with distribution Y'(x), where for all
x > 0, Y(x) is nonnegative and integer valued, and for all x > 1, Y(x) = 0.
Here Y (x) represents the law of offspring distribution when the population
density is x. Then for fixed K € [2, c0) define a population density-dependent
branching process {ZX}, n =0, 1,2, ... with threshold K inductively by tak-
ing Zé{ to be a positive integer less than K and

zx ZK
ZKl Z:le}n+1<él>, Z,Il<>0,
n+l 7 ) J=

0, ZK =0,
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where we assume that for any fixed x, K and n+1, that the Y ; ,,.;(x), j =
1,2,..., are independent of ZX ZX .. ZK Let XK = ZK/K denote the
population density.

For this application it is suitable to take I = (0, 1) to be the open interval.
Then if XX ¢ I, with f(x) = xEY (x) = xm(x),

1 KX,
Xfﬂ = (X5 + X (Y (X)) - m(XKy)
j=1

(23)
1 KX,
j=1

where Y’'(x) = Y(x) — m(x) denotes the centered offspring distribution, and
XK, =0if XK¢1I

To apply the main result to the chain {XX}, set e =1/ VK, and put

x/&?

Kx
(24) £ (x) = J} > Y(x) = Y V().
j=1 j=1

Taking f(x) to be the logistic map rx(1—x) with 1 < » < 14 +/6, the assump-
tions (Al), (A2) and (A6) on f(x) were verified in the previous section on the
logistic map with additive noise.

To verify the rest of the main assumptions, we make the following assump-
tions on the offspring distribution Y (x).

Assume (A3) with V, being a discrete measure on i/K,i =1,..., K — 1.
Further, let AY'(x, \) =log E exp(AY’(x)), and assume that

(B1) sup(x/?)AY (x, Ae) < 0.

xel, e

To show (A4), write, by using independence,

x/&? x/?
Aé(x, A/g) = log Eexp()\s > Y/J(x)) = log E( I1 exp(AeY}(x)))

j=1 j=1
x/?
=log [] E exp(AeY'j(x)) = x/&”log E exp(AeY’(x))
j=1

= x/2AY (x, Ae).

Thus (B1) implies (A4).

To give a specific example, take Y (x) to be a Poisson(m(x)) random variable
where f(x) = xm(x). For the logistic dynamics, m(x) = r(1—x) for x € I and
zero for x ¢ I. Then AY' (x, A) = m(x)(e* — 1) — Am(x). So that

x/e2AY (Ae) = f(x)(e!® — 1 — re)/ &2

Using expansion for the exponential, (B1) clearly holds. (A3) also holds.
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Before we verify (A5) we prove a result on sums of iid rv’s:

1 &y, W BRI ()
\/—X;Yj(x)_sjzzl(Yj(x) m(x)) = R

Let v(x) = E(|Y'(x)?) and o(x) = Var(Y (x)) = E(Y"%(x)).

LEMMA 8. Let A C I be such that

v(x)
= R

Then sums (1/vVK) Zfle Y'i(x) converge in distribution as K — oo to the
N(0, xo?(x)) distribution uniformly in x € A.

PROOF. Indeed, fix x, and using the Berry—Esseen inequality ([1], page
542), we have for any real a, with ® being the standard Normal cdf,

3v(x)
o3(x)VKx

Replacing a by a/(o(x)./x), we obtain convergence to the N(0, xo?(x)) dis-
tribution; moreover, the convergence is uniform in x if condition (25) holds. O

=

(26) IP(\/% %iy;(x) < aa(x)ﬁ> — d(a)

An easily checked sufficient condition for (25) is (B2).

(B2). Assume that there is a small y > 0, such that with A = (y,1 - v),
sup,. 4 ¥(x) < oo and inf,_4 0%(x) > 0.

It is clear that (B2) implies (25). Now the uniform convergence of the sums to
the normal distribution implies (A5). Indeed, as it was assumed that unstable
fixed points x}, i = 1,2, ..., k are in the interior of I, there is y > 0 so that A
includes all of these points. Now,

inf Q¢ (&, 00) > inf P(¢°(x) > &)
xelUf  Usa)) xcA

= ilg{f; P(\/? JX:Zl(YJ(x) —m(x)) > 1) =B>0.

(B2) is clearly satisfied for the specific example when Y (x) is a Poisson(m(x))
rv.

This completes the check of the basic assumptions for branching processes
when f(x) = xm(x) has a single attracting fixed point, for example, when f
is a logistic map and 1 < r < 3. In this case the main result implies that the
gsd concentrates around this point. We formulate this as Theorem 4.

THEOREM 4. Suppose the offspring distributions satisfy (B1) and (B2). Then
p(x5) = 0.
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When 3 < r < 1+ /6, such an attracting fixed point does not exist, but
there is an attracting two cycle. The analysis via f®, similar to that carried
out in the additive case and details of which are omitted, shows that the qsd
concentrates on the attracting cycle. These results for the stochastic Ricker
model were obtained independently by Hognéas [3].
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