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LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II.
LOCAL LIMIT THEOREMS

By Hsien-Kuei Hwang1

Academia Sinica

We derive a general local limit theorem for probabilities of large de-
viations for a sequence of random variables by means of the saddlepoint
method on Laplace-type integrals. This result is applicable to parameters
in a number of combinatorial structures and the distribution of additive
arithmetical functions.

1. Main result. This paper is a sequel to our paper [18] where we derived
a general central limit theorem for probabilities of large deviations applicable
to many classes of combinatorial structures and arithmetic functions. The
ranges of large deviations treated here are usually referred to as “moderate
deviations” in probability literature (cf., e.g., [23]); we follow the same terms as
in Part I [18] to keep consistency. In this paper we consider corresponding local
limit theorems. More precisely, given a sequence of integral random variables
��n�n≥1 each of maximal span 1 (see below for definition), we are interested
in the asymptotic behavior of the probabilities

Pr��n =m�; �m ∈ N; m = µn ± xnσn; µn x= E�n; σ
2
n x= Var�n�;

as n→∞, where xn can tend to∞ with n at a rate that is restricted to O�σn�.
Our interest here is not to derive asymptotic expression for Pr��n =m� valid
for the widest possible range of m, but to show that for m lying in the interval
µn±O�σ2

n�, very precise asymptotic formulas can be obtained. These formulas
are in close connection with our results in [18]. Although local limit theorems
receive a constant research interest [2, 3, 7, 14, 13, 24], our approach and
results, especially Theorem 1, seem rarely discussed in a systematic manner.

Recall that a lattice random variable X is said to be of maximal span h if
X takes only values of the form b+hk, k ∈ Z, for some constants b and h > 0,
and there does not exist b′ and h′ > h such that X takes only values of the
form b′ + h′k.

Let us now state our main result. Let ��n�n≥1 be a sequence of random
variables taking only integral values. Suppose that �n is of maximal span 1
for n ≥ n0 �n0 ≥ 1�. Assume further that the moment generating functions
Mn�s� x= E e�ns =∑m∈Z Pr��n =m�ems satisfy

Mn�s� = eφ�n�u�s�+v�s��1+O�κ−1
n ��; n→∞;(1)
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uniformly for �s� ≤ ρ, s ∈ C, ρ > 0, where the following hold:

1. �φ�n�� is a sequence of n such that φ�n� → ∞ as n→∞;
2. u�s� and v�s� are functions of s independent of n and are analytic for �s� ≤ ρ;

furthermore u′′�0� 6= 0;
3. κn→∞;
4. the moment generating functions Mn�s� satisfy condition (A): there exist

constants 0 < ε ≤ ρ and c = c�ε; r� > 0, where ε > 0 may be taken
arbitrarily small but fixed, such that

�A�
∣∣∣∣
Mn�r+ it�
Mn�r�

∣∣∣∣ = O
(
e−cφ�n�

)
;

uniformly for −ρ ≤ r ≤ ρ and ε ≤ �t� ≤ π, as n→∞.

As in [18], let us introduce the following notation:

um x= u�m��0�; vm x= v�m��0�; m = 1;2;3; : : : ;

µn x= u1φ�n�; σ2
n x= u2φ�n�:

The symbol �zn�f�z� denotes the coefficient of zn in f�z�.

Theorem 1. Ifm = µn+xσn, x = o�
√
φ�n��, then the probabilities Pr��n =

m� satisfy asymptotically

Pr��n =m� =
e−x

2/2+φ�n�Q�ξ�
√

2πu2φ�n�

(
1+

∑
1≤k≤ν

5k�x�
�u2φ�n��k/2

+O
( �x�ν+1 + 1
φ�ν+1�/2�n� +

�x� + 1

κn
√
φ�n�

))
;

(2)

where ξ = x/σn, Q�ξ� = Q�uy ξ� = ∑k≥3 qkξ
k is analytic at 0 with the coeffi-

cients qk defined by

qk =
−1
k
�wk−2�u′′�w�

(
u′�w� − u1

u2w

)−k
; k = 3;4;5; : : : ;(3)

ν is a nonnegative integer (depending upon the error term κ−1
n ) and the 5k�x�

are polynomials of degree k such that 52j�x� has only even powers of x and
52j−1�x� has only odd powers of x, for j = 1;2; : : : :

Note that the Cramér-type power series Q�y� is exactly the same as in
Theorem 1 of [18].

This theorem generalizes a result of Richter [28] on local limit theorem for
large deviations for sums of independent and identically distributed random
variables. Richter’s result has been generalized by many authors; see [4, 21]
and the references therein.

In a combinatorial context, general (multidimensional) local limit theorems
have been derived by Gao and Richmond [13] under different settings. Their
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methods, including the Fourier inversion formula and the technique of “shift-
ing the mean,” although apparently different, have the same analytic charac-
ter. On the other hand, our results are comparatively more precise.

The asymptotic relation (1) is a priori a local one and need not be uniformly
valid throughout the region −ρ ≤ <s ≤ ρ and �=s� ≤ π. In fact, the functions u
and v may present discontinuities there (usually at =s = ±π). When (1) holds
in the above extended rectangle, condition (A) can be replaced by the following
one: there exist constants 0 < ε < π and δ = δ�ε� > 0, such that

<u�r+ it� − u�r� < −δ; −ρ ≤ r ≤ ρ; ε ≤ �t� < π:
Such a condition is used in [13]. Note that the remaining cases t = ±π will
not cause further difficulty due to the uniform continuity of characteristic
functions.

In general, the availability of condition (A), usually a result of aperiodicity
of coefficients, separates, on the one hand, the central limit theorem from the
local limit theorem for lattice random variables. It also has, on the other hand,
a straightforward effect on estimates of probabilities of large deviations, as
may be simply seen by the following rough arguments which can be justified
using similar (and simpler) proof techniques of Theorem 1. By the integral
formula (5) below, we have the upper bound

Pr��n =m� ≤
e−mr

2π

∫ π
−π
�Mn�r+ it��dt:

If condition (A) is not available, we have

Pr��n =m� ≤ e−mrMn�r� = O
(
e−mr+u�r�φ�n�

)
y

on the other hand, assuming condition (A) [cf. (7) below],

Pr��n =m� = O
(
e−mr+u�r�φ�n�

∫ ε
−ε
eφ�n�<�u�r+it�−u�r�� dt+ e−mr−cφ�n�

)

= O
(
φ�n�−1/2e−mr+u�r�φ�n�

)
;

(4)

for all m and a suitable choice of r > 0 [in a way to minimize the value of
e−mr+u�r�φ�n�]. If m = aφ�n� and the real solution r0 to the equation u′�s� = a
satisfies −ρ ≤ r0 ≤ ρ, then we take r = r0; otherwise, we take r = ρ so that the
right-hand side of (4) is uniformly small. Therefore, the smooth (or regularity)
condition (A), which reflects the concentration of moment generating functions
around real axis, yields the correct order of tail probabilities. Estimates for
Pr��n ≥m� for �m/φ�n�−u1� > ε > 0 are easily derived by summation of the
right-hand side of (4).

We prove Theorem 1 in the next section; the method of proof is based on the
saddlepoint method on Laplace-type integrals. Many immediate consequences
of this result will be given in Section 3. These results will then be applied to the
combinatorial schemes of Flajolet and Soria [11, 12] in Section 4. Finally, we
discuss some examples in Section 5. We conclude this paper with an extension
of our results.
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Throughout this paper, all generating functions (ordinary, exponential, bi-
variate, etc.) denote functions analytic at 0 with nonnegative coefficients. Fol-
lowing a number-theoretic convention, the symbols O and � are equivalent
and will be used interchangeably as is convenient. All limits, (including O,
�, o and ∼), whenever unspecified, will be taken as n → ∞. The symbols
ε; δ always represent sufficiently small (but fixed, namely, independent of the
major asymptotic parameter), positive numbers whose values may differ from
one occurrence to another.

2. Proof of Theorem 1. Write m = µn + xσn, x = O�
√
φ�n��. We start

from the integral formula

Pr��n =m� =
1

2πi

∫ r+iπ
r−iπ

Mn�z�e−mz dz =x In;m; −ρ ≤ r ≤ ρ:(5)

Divide the integral In;m into two parts: In;m = I1 + I2, where

I1 =
1

2π

∫ ε
−ε
Mn�r+ it�e−mr−mit dty I2 =

1
2π

∫
ε<�t�≤π

Mn�r+ it�e−mr−mit dt:

Consider first I2. By condition (A) and (1), we obtain

�I2� �Mn�r�e−mr−cφ�n� � eu�r�φ�n�−mr−cφ�n�:(6)

For I1, we write (1) in the form

Mn�s� = Tn�s��1+Rn�s��;
where Rn�s� satisfies Rn�0� = 0 and Rn�s� � κ−1

n for �s� ≤ ρ. For small ε, we
have, by Cauchy’s integral formula, the better estimate

Rn�s� � R′n�0��s� � κ−1
n �s�;

for �s� ≤ ε. Thus, we can write

I1 =
eu�r�φ�n�+v�r�

2πemr
�I3 + I4�;

where

I3 =
∫ ε
−ε

exp��u�r+ it� − u�r��φ�n� + v�r+ it� − v�r� −mit�dt;

I4 � κ−1
n

∫ ε
−ε
�r+ it� exp�<�u�r+ it� − u�r��φ�n��dt:

For sufficiently small ε, there exists a constant γ > 0 such that <�u�r+ it� −
u�r�� < −γt2, since u′′�r� > 0 (logMn�r� being convex; cf. [18]). Thus

I4 � κ−1
n

∫ ε
−ε
��r� + �t��e−γφ�n�t2 dt� κ−1

n

(
�r�φ�n�−1/2 +φ�n�−1):(7)

We now take, as in [18], r to be the (approximate) saddlepoint of the integrand
of I3; namely, r satisfies the equation

u′�r�φ�n� =m = u1φ�n� + x
√
u2φ�n�:(8)
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The solution always exists (cf. [18]) whenever x = o�
√
φ�n�� and satisfies

r� �x�√
φ�n�

≤ ρ;

for n large enough. This implies that

I4 � κ−1
n

(
�r�φ�n�−1/2 +φ�n�−1)� �x� + 1

κnφ�n�
:(9)

On the other hand, with this r, we have

I3 =
∫ ε
−ε

exp
(
φ�n�

∑
k≥2

u�k��r�
k!

�it�k +
∑
k≥1

v�k��r�
k!

�it�k
)
dt:

Since u′′�r� > 0, we can carry out the change of variable y = λnt =√
u′′�r�φ�n� t and obtain

I3 = λ−1
n

∫ ελn
−ελn

e−y
2/2 exp

( ∑
k≥1

1
k!

(
iy

λn

)k(
v�k��r� + u�k+2��r��iy�2

�k+ 1��k+ 2�u′′�r�

))
dy:

Define polynomials Pk�z� by the formal expansion (cf. [22], page 149; [16],
Section 2.4)

exp
( ∑
k≥1

1
k!

(
z

λn

)k(
v�k��r� + u�k+2��r�z2

�k+ 1��k+ 2�u′′�r�

))
=
∑
k≥0

Pk�z�
λkn

;

the degree of Pk�z� being equal to 3k �k ≥ 0�. The same argument as that
used in [16], Lemma 2 (cf. also [6], Lemma 2, Chapter VII; [22], page 151)
leads to

I3 =
∑

0≤k≤ν

1

λk+1
n

∫ ∞
−∞

exp
(
−y

2

2

)
Pk�iy�dy+O

(
1

λν+2
n

)
;

for any nonnegative integer ν. Now from the explicit expression of Pk�z� (cf.
[16], page 67)

Pk�z� = zk
∑

j1+2j2+···+kjk=k
j1;j2;:::;jk≥0

∏
1≤l≤k

1
l!jl!

(
v�l��r� + u�l+2��r�z2

�l+ 1��l+ 2�u′′�r�

)jl
;

k = 1;2;3; : : : ;

we observe that the P2k�z� contain only even powers of z (from z2k; z2k+2; : : : ;
z6k) and that the P2k+1�z� contain only odd powers of z (from z2k+1; z2k+3; : : : ;

z6k+3) for k ≥ 0. It follows that
∫∞
−∞ e

−y2/2P2k+1�iy�dy = 0 for all nonnegative
integer k. Thus we obtain the asymptotic expansion

I3 ∼
√

2π√
u′′�r�φ�n�

(
1+

∑
k≥1

d2k�r�
�u′′�r�φ�n��k

)
;(10)
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where (ckj�r� x= �z2j�P2k�z�),

d2k�r� =
1√
2π

∫ ∞
−∞

e−y
2/2P2k�iy�dy

=
∑

k≤j≤3k

�−1�j �2j�!
2jj!

ckj�r�; k = 1;2;3; : : : :

Returning to Pr��n =m�, we have, by (5)–(10),

Pr��n =m� =
eu�r�φ�n�+v�r�−mr√

2πu′′�r�φ�n�

(
1+

∑
1≤k≤ν

d2k�r�
�u′′�r�φ�n��k

+O
(

1
φν+1�n� +

�r�
κn
√
φ�n�

+ 1
κnφ�n�

))
;

(11)

for some nonnegative integer ν. In particular,

d2�r� =
1
8
− v

′′�r�
2
− v

′�r�2
2
+ v

′�r�u′′′�r�
2u�4��r� −

5u′′′�r�2
24u�4��r�2 :

Note that when x = 0 (this implies that the µn are integers), we obtain (r = 0)

Pr��n=µn�=
1√

2πu2φ�n�

(
1+

∑
1≤k≤ν

d2k�0�
�u2φ�n��k

+O
(

1
φν+1�n� +

1
κnφ�n�

))
;

(probability of the mode). Let us now prove (2). Set ξ = x/σn. In [18], we
showed that

φ�n��u�r� − ru′�r�� = −x
2

2
+φ�n�Q�ξ�;

and similarly, we can write

ev�r�d2k�r�
u′′�r�k+1/2

= 1

u
k+1/2
2

( ∑
j≥0

bkj ξ
j

)
; k = 0;1;2; : : : ;

for some coefficients bkj. Theorem 1 follows from collecting terms according to
the powers of ξ (or x):

52k�x� =
∑

0≤j≤k
bk−j;2jx

2j; and 52k+1�x� =
∑

0≤j≤k
bk−j;2j+1x

2j+1;

for k = 0;1;2; : : : : In particular,

50�x� = 1; 51�x� =
(
v1 −

u3

2u2

)
x;

52�x� =
(
v2

2
+ v

2
1

2
− v1u3

u2
+ 5u2

3

8u2
2

− u4

4u2

)
x2 + 1

8
− v2

2
− v

2
1

2
+ v1u3

2u4
− 5u2

3

24u2
4

:

This completes the proof. 2
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3. Some corollaries of Theorem 1. The following two corollaries are
immediate consequences of Theorem 1.

Corollary 1. If m = µn + xσn, x = o�φ�n�1/2�, then

Pr��n =m� =
e−x

2/2+φ�n�Q�ξ�
√

2πu2φ�n�

(
1+O

( �x� + 1√
φ�n�

))
:

Corollary 2. If m = µn + xσn, x = o�φ�n�1/6�, then

Pr��n =m� =
e−x

2/2

√
2πu2φ�n�

(
1+O

( �x�3 + 1√
φ�n�

))
:

Other corollaries like those in Section 3 of [18] can be derived.
As in [18], define the real function 3 of y, y > −1, by

3�y� x= �1+ y� log�1+ y� − y− y
2

2
=
∑
k≥3

�−1�k
k�k− 1� y

k;

the series being convergent for �y� ≤ 1.

Theorem 2. Let u�s� = es − 1 in Theorem 1 and assume that κ−1
n =

o�φ�n�−M� for any M > 0. Then, for m = φ�n� + x
√
φ�n�, x = o�

√
φ�n��, we

have

Pr��n =m� =
exp�−x2/2−φ�n�3�x/

√
φ�n���√

2πφ�n�

×
(

1+
∑

1≤k≤ν

5k�x�
φ�n�k/2 +O

( �x�ν+1 + 1
φ�n��ν+1�/2

))
;

(12)

or, equivalently, the Poisson approximation formula

Pr��n =m� =
φ�n�m
m!

e−φ�n�
(

1+
∑

1≤k≤ν

$k�x�
φ�n�k/2 +O

( �x�ν+1 + 1
φ�n��ν+1�/2

))
;(13)

for some polynomials $k�x� and some nonnegative integer ν.

Proof. For (12), the saddle point r in (8) satisfies er = 1+ξ =m�φ�n��−1.
For (13), we have, by (11),

Pr��n =m� =
e−φ�n�+m+v�r�φ�n�m√

2πmmm

(
1+

∑
1≤k≤ν

d2k�r�
mk

+O
(

1
mν+1

))

= e
−φ�n�φ�n�m

m!
ev�r�

(
1+

∑
1≤k≤ν

d̃2k�r�
mk

+O
(

1
mν+1

))
;

by applying Stirling’s formula backwards. The required result follows from
expanding each factor ev�r�d̃2k�r�/mk in powers of ξ. 2
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In particular,

$1�x� = v1x; $2�x� = 1
2�v2

1 + v2 − v1��x2 − 1�
and in general the $k�x� have the same degree property as 5k�x�.

From the Poisson approximation formula (13), we can easily derive precise
asymptotics for, say, the total variation distance of �n and a Poisson distri-
bution with mean φ�n�. Also our Theorem 1 is useful for further asymptotics
of different probability metrics; compare, for example, [1] and the references
cited there.

4. Combinatorial schemes of Flajolet and Soria. In this section, we
apply the theorems derived in previous sections to the combinatorial distribu-
tions studied by Flajolet and Soria [11, 12]. These distributions are classified
according to the type of singularity of their bivariate generating functions.

4.1. The exp–log class. We state a definition for logarithmic function
slightly stronger than that in [12] and [18].

A generating function C�z� is called logarithmic (cf. [11]) if (i) C�z� is ana-
lytic for z ∈ 1:

1 x= �zx �z� ≤ ζ + ε and �arg�z− ζ�� ≥ δ�\�ζ�; ε > 0; 0 < δ < π/2;

ζ > 0 being the radius of convergence and the sole singularity of C for z ∈ 1,
and (ii) there exists a constant a > 0, such that for z ∼ ζ, z ∈ 1,

C�z� = a log
1

1− z/ζ +H��1− z/ζ�
1/b�;

where b = 1;2;3; : : :, H�u� is analytic at 0 and satisfies the expansion

H�u� =K+
∑
k≥1

hku
k;

convergent for �u� ≤ ε, K being some constant.
For brevity, we say that C is logarithmic with parameters �ζ; a;K; b�.
Now consider generating functions of the form

P�w;z� =
∑

n;m≥0

Pn�w�zn = ewC�z�Q�w;z�;

where C�z� is logarithmic with parameters �ζ; a;K; b� and Q�w;z� satisfies
the following two conditions:

1. As a function of z, Q�w;z� is analytic for �z� ≤ ζ, namely, it has a larger
radius of convergence than C.

2. As a function of w, Q�w; ζ� is analytic for �w� ≤ η, where η > 1.

Roughly, these assumptions imply that for any fixed w, �w� ≤ η, P�w;z�
satisfies

P�w;z� = eKwQ�w; ζ�
(

1− z
ζ

)−aw(
1+O

(
�1− z/ζ�1/b

))
; z ∼ ζ; z 6∈ �ζ;∞�;
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and P�w;z� is analytically continuable to a 1-region. We can then apply the
singularity analysis of Flajolet and Odlyzko [10] to deduce the asymptotic
formula

Pn�w� x= �zn�P�w;z� =
ζ−nnaw−1

0�aw� eKwQ�w; ζ�
(
1+O

(
n−1/b));(14)

the O-term being uniform with respect to w, �w� ≤ η. We note that although
an asymptotic expansion in terms of the ascending powers of n−1/b can be
derived under our assumptions, the expression (14) suffices for our purposes.

Since η > 1, Pn�1� is well defined. Thus for the moment generating
functions Mn�s� of the random variables �n defined by Mn�s� x= E e�ns =
Pn�es�/Pn�1�, we have

Mn�s� = e�e
s−1�a log n e

K�es−1�0�a�Q�es; ζ�
0�aes�Q�1; ζ�

(
1+O

(
n−1/b));

uniformly for − logη ≤ <s ≤ logη and �=s� ≤ π. Note that logη > 0. The
application of Theorem 2 is straightforward since from (14) the Pn�w� are
aperiodic for sufficiently large n and condition (A) is easily checked.

Theorem 3. Let �n be defined as above. If m = a log n + x
√
a log n, x =

o�
√

log n�, then we have

Pr��n =m� =
exp�−x2/2− a log n · 3�x/

√
a log n��√

2πa log n

×
(

1+
∑

1≤k≤ν

5k�x�
�a log n�k/2 +O

( �x�ν+1 + 1
�log n��ν+1�/2

))
:

In other words, �n obeys asymptotically a Poisson distribution of parameter
a log n:

Pr��n =m� =
�a log n�m

m!
e−a log n

(
1+

∑
1≤k≤ν

$k�x�
�a log n�k/2 +O

( �x�ν+1 + 1
�log n��ν+1�/2

))
:

Proof. Take φ�n� = a log n in Theorem 2. 2

4.2. The algebraic–logarithmic class. Next, let us consider generating
functions of the form

P�w;z� =
∑

n;m≥0

Pn�w�zn

= 1
�1−wC�z��α

(
log

1
1−wC�z�

)β
; C�0� = 0;

(15)
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where β ∈ N, α ≥ 0, and α + β > 0. Define the moment generating functions
Mn�s� of the random variables �n by the coefficients of Pn�w�:

Mn�s� =
∑
m≥0

Pr��n =m� ems =
�zn�P�es; z�
�zn�P�1; z� :(16)

Definition (1-regular function [12]). A generating function C�z� 6≡ zq

(q = 0;1;2; : : :) analytic at z = 0 is called 1-regular if there exists a pos-
itive number ρ < ζ, ζ being the radius of convergence of C�z�, such that
C�ρ� = 1. Assume, without loss of generality, that C�z� is aperiodic, namely,
C�z� 6≡ ze

∑
n≥0 cnz

nd for some integers e ≥ 0 and d ≥ 2. (This aperiodic
condition is slightly stronger than the one in [12], page 166.)

We need the following simple lemma.

Lemma 1. Let Pn�w� = �zn�P�w;z�, where P�w;z� has the form (15). C�z�
is aperiodic iff Pn�w� is aperiodic for n ≥ n0, n0 depending only upon β and
the period of C.

Proof. If C�z� = zqD�zp�, where q ≥ 0, p ≥ 1 are integers and D is a
power series, then

Pn�w� =
∑

qk+pj=n
k; j≥0

AkBkjw
k; n ≥ 1;

where

Ak = �zk�
(

1
1− z

)α(
log

1
1− z

)β
and Bkj = �zpj�D�zp�k:

Since Ak > 0 for k ≥ β, the result follows from considering the cases p = 1
(C being aperiodic) and p ≥ 2 (C being periodic). 2

Assume that C�z� is 1-regular and ρ�w� satisfies ρ�1� = ρ and C�ρ�w�� =
w−1 for �w − 1� ≤ ε. By our periodicity condition, implicit function theorem
and singularity analysis, we obtain (cf. [10, 12, 19]),

Pn�w� =
ρ�w�−nnα−1�log n�β
�wρ�w�C′�ρ�w���α

(
1+ εα;β�n�

)
;(17)

uniformly for �w− 1� ≤ ε, where

εα;β�n� �
{
n−1; if �α > 0 and β = 0� or �α = 0 and β = 1�;
�log n�−1; if �α = 0 and β ≥ 2� or �α > 0 and β > 0�:

This result gives the local behavior of Pn�w� for w ∼ 1. To apply Theorem 1,
we need an estimate for �Pn�reit�� for r near 1 and ε ≤ �t� ≤ π.
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A uniform estimate for Pn�w�. Observe first that ρ�w� satisfies �ρ�reit�� ≥
ρ�r� for r and t in the region of validity of (17), in particular, for �reit−1� ≤ ε.
For, otherwise, using the fact that the coefficients of C�z� are nonnegative,

r−1 = �C�ρ�reit��� ≤ C��ρ�reit��� < C�ρ�r�� = r−1;

a contradiction. We deduce, by 1-regularity of C�z�, that
∣∣∣∣
Pn�reit�
Pn�r�

∣∣∣∣� exp�−q�r�nt2�;(18)

holds uniformly for �r−1� ≤ δ and �t� ≤ ε, where q�r� > 0 is sufficiently small.
We now show that such an estimate subsists for ε ≤ �t� ≤ π, namely, Mn�s�

satisfies condition (A).

Lemma 2. If C�z� is 1-regular and α ≥ 0, β ∈ N satisfies α + β > 0, then
there exists an absolute constant q = q�r� > 0, independent of n; t; α;β, such
that, for n sufficiently large,

Pn�r exp�it�� � Pn�r� exp�−q�r�nt2�;(19)

holds uniformly for 1− δ ≤ r ≤ 1+ δ and −π ≤ t ≤ π.

Proof. The case �t� ≤ ε having been proved in (18), we consider the re-
maining range ε ≤ �t� ≤ π.

Consider first the case α > 0 and β = 0. We use induction on n. By Lemma 1,
there exists a constant n0 > 1 independent of α such that Pn�w� is aperiodic
for n ≥ n0. It is easily seen, by distinguishing two cases: �t� ≤ ε and ε ≤ �t� ≤ π,
that (19) is satisfied [q�r� can be chosen small enough so that it depends only
upon C but not upon α].

Now suppose that (19) holds for n0 ≤ n ≤N−1. Differentiating the defining
equation (15) of Pn�w� and multiplying both sides by the factor z�1−wC�z��
yields the recurrence relation

NPN�w� = w
∑

1≤k≤N
ckPN−k�w��αk+N− k�; N ≥ 1;(20)

with P0�w� = 1, where ck x= �zk�C�z�. Set w = reit, where 1 − δ ≤ r ≤ 1 + δ
and ε ≤ �t� ≤ π. We divide the estimate of the sum in (20) into two parts
separated at k = �N/2�. For �N/2� < k ≤N, we use (17) in the form

PN�r� � ρ�r�−NNα−1; N ≥ 1;(21)

and obtain

reit
∑

�N/2�<k≤N
ckPN−k�reit��αk+N− k� � �α+ 1�ρ�r�−NNα

∑

�N/2�<k≤N
ckρ�r�k:

When δ is chosen sufficiently small, say, ρ�1 + δ� < ζ, the series C�z� =∑
n≥1 cnz

n is convergent for �z� ≤ ρ�r�+η, 0 < η < ζ−ρ�r�. Thus, by Cauchy’s
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inequality, ck � �ρ�r� + η�−k, as k→∞. We obtain

�α+ 1�ρ�r�−NNα
∑

�N/2�<k≤N
ckρ�r�k � �α+ 1�Nαρ�r�−N

(
1+ η

ρ�r�

)−N/2

� �α+ 1�NPN�r�
(

1+ η

ρ�r�

)−N/2
:

Returning to the recurrence (20), we obtain

NPN�reit� = reit
∑

1≤k≤N/2
ckPN−k�reit��αk+N− k�

+O
(
�α+ 1�NPN�r�

(
1+ η

ρ�r�

)−N/2)
:

Now we apply the induction hypothesis and the estimate (21) to the right-hand
side:

PN�reit� � �α+ 1�
∑

1≤k≤N/2
ckPN−k�r� exp�−q�r��N− k�t2�

+ �α+ 1�PN�r�
(

1+ η

ρ�r�

)−N/2

� �α+ 1�ρ�r�−NNα−1 exp�−q�r�Nt2�
∑

1≤k≤N/2
ck
(
ρ�r� exp�q�r�t2�

)k

+ �α+ 1�PN�r�
(

1+ η

ρ�r�

)−N/2

� �α+ 1�PN�r�
(

exp�−q�r�Nt2� +
(

1+ η

ρ�r�

)−N/2)
:

Once η (depending only upon C) is fixed, q�r� can be chosen in a way that it
is consistent throughout the analyses and that

(
1+ η

ρ�r�

)−N/2
≤ exp�−q�r�Nt2�; ε ≤ �t� ≤ π:

Thus the estimate (19) is established in the case α > 0.
For the general case when β > 0, since β is a positive integer, we can

differentiate the recurrence (20) β-times with respect to α (writing P�α;β�n �w�
in this case):

NP
�α;β�
N �w� = w

∑
1≤k≤N

ck
(
�αk+N− k�P�α;β�N−k �w� + kβP

�α;β−1�
N−k �w�

)
; N ≥ β;

and the estimate (19) follows the same line of argument and an induction
on β. 2
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Returning to Mn�s�, from (17), we obtain

Mn�s� =
(
esρ�es�C′�ρ�es��
ρ�1�C′�ρ�1��

)−αρ�es�−n
ρ�1�−n

(
1+ εα;β�n�

)
;(22)

uniformly for s in the disk �s� ≤ ε. The mean and the variance of �n satisfy
(cf. [12, 19])

E�n = α1n+O�1� and Var�n = α2n+O�1�;
where the two constants α1 and α2 are defined by (ρ x= ρ�1�):

α1 =
1

ρC′�ρ� and α2 =
1

ρ2C′�ρ�2 +
C′′�ρ�
ρC′�ρ�3 −

1
ρC′�ρ� :

Theorem 4. Let the random variables �n be defined by (16), where C is
1-regular. Then for m = α1n+ x

√
α2n, x = o�√n�, we have

Pr��n =m� =
exp�−x2/2+ nQ�ξ��√

2πα2n

×
(

1+ Bx√
α2n
+O

(
x2 + 1
n
+ ��x� + 1�εα;β�n�√

n

))
;

where ξ = x/
√
α2n, Q�ξ� = Q�uy ξ� with u�s� = − log�ρ�es�/ρ�1��, and the

coefficient B is given by �Cj x= C�j��ρ��:

B = α

ρC1
+αC2

C2
1

−ρ
2C4

1 − ρ2C3C1 − 3ρ2C2C
2
1 + 3ρ2C2

2 − 3ρC3
1 + 3ρC1C2 + 2C2

1

2ρC2
1�C1 − ρC2

1 + ρC2�
:

Proof. By Theorem 1, (22) and Lemma 2. 2

An alternative approach to obtaining the above local limit theorem is as
follows. By the defining equation (15) of Pn�w�, we have the relation

�wmzn�P�w;z� = Am �zn�Cm�z� where Ak x= �zk�
(

1
1− z

)α(
log

1
1− z

)β
:

When m � n, namely, there exist two constants 0 < ν1 < ν2 < 1 such that
ν1n ≤ m ≤ ν2n, the first term Ak is easily treated by singularity analysis (cf.
[10]) and the second term by the saddlepoint method (cf. [7, 14, 20, 21]). From
there a local limit theorem as above can be obtained.

5. Examples. Let us consider some typical examples. More examples can
be found in [16, 18] and the references cited there.

Example 1 (Connected components in random mappings). By random map-
ping (cf. [21]), we mean a random single-valued mapping of the set �1;2; : : : ; n�
into itself. Structurally, any such mapping can be viewed as a set (partitional
complex) of connected components each of which is a cycle of rooted labeled
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(or Cayley) trees. The bivariate generating function for random mappings is
given by

exp
(
w log

1
1−C�z�

)
; �z� < e−1;

where C�z� = z eC�z� enumerates Cayley trees. From the singular expansion
(cf. [9]),

C�z� = 1−
√

2 �1− ez� − 1
3�1− ez�

+
∑
k≥3

ck�1− ez�k/2; z ∼ e−1; z 6∈ �e−1;∞�;(23)

we get

log
1

1−C�z� =
1
2

log
1

1− ez +H�
√

1− ez�; z ∼ e−1; z 6∈ �e−1;∞�;

where the logarithm takes its principal value and H�t� is analytic at t = 0
with H�0� = 0. Theorem 3 applies to ξn, the number of connected components
in a random mapping of size n, and we obtain, for example,

Pr�ξn =m� =
exp�−x2/2− 1

2 log n · 3�x/
√

1
2 log n��

√
π log n

×
(

1+
∑

1≤k≤ν

5k�x�
� 1

2 log n�k/2
+O

( �x�ν+1 + 1
�log n��ν+1�/2

))
;

uniformly for m = 1
2 log n + x

√
1
2 log n, x = o�

√
log n�. In particular, 51�x� =

1
2�log 2+ γ�x, γ being Euler’s constant. This improves a result of Pavlov [27].

Example 2 (Components in ordered random mappings). In a random map-
ping, the order of its components is not taken into account. We can consider
its ordered counterpart with generating function

1
1−w log�1/�1−C�z��� ;(24)

where as above C�z� is the generating function for Cayley trees. For ε ≤
<w ≤ ε−1, the solution of the denominator (in z) of (24) is seen to be ρ�w� =
�1 − e−1/w�e−�1−e−1/w�. Let 4n denote the number of connected components in
an ordered random mapping. Applying Theorem 4 yields

Pr�4n =m� =
exp�−x2/2+ nQ�y��√

2πα2n

(
1− α3x√

α2n
+O

(
x2 + 1
n

))
; y x= x√

α2n
;
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where

α1 = e−1�e− 1�−1; α2 = �2e4 − 5e3 + 2e2 + 3e− 1�e−3�e− 1�−2;

α3 = �e3 − 3e2 + 1+ e2+e−1 − e1+e−1�e−1�e− 1�−1

and Q�y� can be calculated by using formula (3) with

u�s� = − log
exp�1− e−e−s��1− exp�−e−s��

exp�1− e−1��1− e−1� :

Example 3 (Very large deviations). The interest of considering ordered
random mappings in the last example is to derive the following formula for
ξn (using the same notation as in Examples 1 and 2):

Pr�ξn =m� =
exp�−2− e−1n− x2/2+ nQ�y��
√
α2m! �1− exp�−1��n+1

×
(

1− α3x√
α2n
+O

(
x2 + 1
n

))
;

(25)

for m = α1n+ x
√
α2n, x = o�√n�, Q�y� being as in Example 2. To prove (25),

we start from the observation

�wmzn� exp�wL�z�� = 1
m!
�wmzn� 1

1−wL�z� ;

where L�z� = − log�1−C�z��. By the definitions of ξn and 4n,

Pr�ξn =m� =
�wmzn� exp�wL�z��

�zn�eL�z� ; Pr�4n =m� =
�wmzn� �1−wL�z��−1

�zn��1−L�z��−1
;

for n;m = 0;1;2; : : :, we have

Pr�ξn =m� =
�zn��1−L�z��−1

m! �zn�eL�z� Pr�4n =m�:(26)

The result (25) follows from this relation and the asymptotics of �zn�eL�z� and
�zn��1 − L�z��−1 which are easily obtained by singularity analysis (cf. [10])
using (23).

Similarly, let ξn denote the number of cycles in a random permutation of
size n. We obtain

Pr�ξn =m� =
exp�−x2/2+ nQ�y��
m!
√

2πn �1− e−1�n
(

1+ e
2 − e− 1√

n
x+O

(
x2 + 1
n

))
;

for m = n/�e− 1� + x√n/�e− 1�, x = o�√n�, where y = �e− 1�x/√n, Q�y� =
Q�uyy� with u�s� = − log��1− e−e−s�/�1− e−1��.

In general, since the mean and the variance of 4n and ξn [defined by (26)]
are different (due to the large factor m!), an asymptotic formula for one pro-
vides large deviations (from the mean) for the other. This observation has
formerly been applied in [3] for polynomials of binomial type.
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Example 4 (Random mapping patterns). Random mapping patterns are
equivalence classes of random mappings and, structurally, they are multisets
of cycles of rooted unlabeled trees. Namely,

P�w;z� = exp
( ∑
k≥1

wk

k
S�zk�

)
;

where S�z� is the generating function for cycles of unlabeled Cayley trees:

S�z� =
∑
k≥1

ϕ�k�
k

log
1

1−T�zk� ; T�z� = z exp
( ∑
k≥1

T�zk�
k

)
:

By the implicit function theorem, Otter [26] proved that T�z� has the singular
expansion

T�z� = 1− τ1

√
1− z/ρ+ τ2�1− z/ρ� + · · · ; 0 < ρ < 1; τ1 > 0;

for z ∼ ρ and z 6∈ �ρ;∞�. This yields

S�z� = log
1

1−T�z� +R�z�;

where R�z� is analytic for �z� ≤ ρ. It follows that

P�w;z� = exp
(
w

2
log

1
1− z/ρ +wH

(
�1− z/ρ�1/2

)
+wR�z� +U�w;z�

)
;

where U�w;z� is analytic for �w� < ρ−1 and �z� ≤ ρ,

H�u� = − log c1 +
∑
k≥1

hku
k:

Thus Theorem 3 applies with a = 1
2 .

Similarly, our results apply to the cases where we count the number of
distinct components and the number of components in square-free random
mapping patterns, namely, random mapping patterns in which no two compo-
nents are of the same size. We can also consider the ordered random mapping
patterns in Examples 2 and 3.

Example 5 (Prime factors of integers). Let ω�k� denote the number of dis-
tinct prime factors of k. We can then consider the sequence of random variables
ξn, which takes the values ω�k�, 1 ≤ k ≤ n, with probability n−1. Then the
probability generating function Pn�z� = E zξn = n−1∑

1≤k≤n z
ω�k� satisfies the

asymptotic expression due to Selberg [29] (cf. also [22], Lemma 9.2 and [30],
Chapter II.6):

Pn�z� = V�z��log n�z−1
(

1+O
(

1
log n

))
; n→∞;



LOCAL LIMIT THEOREMS 179

uniformly for �z� ≤M, for any M> 1, where

V�z� = 1
0�z�

∏
p xprime

(
1− 1

p

)z(
1+ z

p− 1

)
;

the product being extended over all prime numbers p. Applying Theorem 2,
we obtain, for m = log log n+ x

√
log log n, x = o�

√
log log n�,

Pr�ξn =m� =
exp�−x2/2− log log n · 3�x/

√
log log n��√

2π log log n

×
(

1+
∑

1≤k≤ν

5k�x�
�log log n�k/2 +O

( �x�ν+1 + 1
�log log n��ν+1�/2

))
;

a formula that can be deduced by a result of Selberg [29] (cf. also [8], [25]
and [30], Theorem II.6.4) but does not seem to have been stated in this form.
The same results hold for ��n�, the total number of prime divisors of n (with
multiplicities), and for many other arithmetic functions; see [18].

6. Extension. From the proof of Theorem 1 [see formula (11)], it is obvi-
ous that we have in fact proved more, namely, the proof of Theorem 1 extends
to the case x = O�σn�. In such a large deviation range, it is more convenient
to consider Pr��n = aφ�n�� with a > 0 (cf. [20]). The saddlepoint equation (8)
u′�r�φ�n� =m then simplifies to u′�r� = a.

Theorem 5. Letm = aφ�n� > 0. Suppose that the solution r of the equation
u′�s� = a exists and satisfies −ρ ≤ r ≤ ρ. Then Pr��n = m� satisfies (11)
uniformly in m.

In particular, if u�s� = es− 1, then the result (11) can be stated differently:

Pr��n =m� =
φm�n�
m!

e−φ�n�+v�r�
(

1+
∑

1≤k≤ν

e2k�r�
mk

+O
(

1
mν+1

+ �r�
κn
√
φ�n�

+ 1
κnφ�n�

))
;

for some polynomials e2k�r� of r = log a. In this case, it is more convenient
to work with the probability generating function of �n and apply Selberg’s
method (cf. [29], [30], Chapter II.6), which is a variant of the usual saddle-
point method; see also [16, 17] for details.

7. Conclusion. The model that we developed in [16, 18, 19] and in this
paper may be termed an “analytic scheme for moment generating functions”
by which the similarity of the statistical properties of many apparently dif-
ferent structures (like the number of cycles in permutations and the number
of prime factors in integers) is well explained by the analytic properties of
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their moment generating functions. At first glance, these properties seem dif-
ficult to establish. But for concrete combinatorial and arithmetic problems,
we have demonstrated, by using analytic methods, that analytic properties
of moment generating functions are well reflected by the singularity type of
the associated bivariate generating functions. Thus a classification according
to the latter and then the use of suitable analytic methods, such as singular-
ity analysis (cf. [10]), allow us to derive the required properties for moment
generating functions in a rather systematic and general way. This explains
roughly why there are so many similarities between the number of cycles in
permutations and the number of connected components in 2-regular graphs
[5], because the dominant singularity of the corresponding bivariate generat-
ing functions are both of type exp–log. Such an approach is also rather robust
under structural perturbations when one considers, for example, structures
without components of prescribed sizes or with some components appearing
at most a specified number of times, and so on. A detailed study in this direc-
tion can be found in [16]. The uniformity afforded by the singularity analysis
is also useful for other probabilistic properties of combinatorial parameters;
see, for example, [1] and [15].
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rielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28 267–280.
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