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THE BIODIVERSITY OF CATALYTIC
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Universität Erlangen-Nürnberg

In this paper we investigate the structure of the equilibrium state of
three-dimensional catalytic super-Brownian motion where the catalyst is
itself a classical super-Brownian motion. We show that the reactant has an
infinite local biodiversity or genetic abundance. This contrasts to the finite
local biodiversity of the equilibrium of classical super-Brownian motion.
Another question we address is that of extinction of the reactant in finite

time or in the long-time limit in dimensions d = 2�3. Here we assume that
the catalyst starts in the Lebesgue measure and the reactant starts in
a finite measure. We show that there is extinction in the long-time limit
if d = 2 or 3. There is, however, no finite time extinction if d = 3 (for
d = 2, this problem is left open). This complements a result of Dawson
and Fleischmann for d = 1 and again contrasts the behaviour of classical
super-Brownian motion.
As a key tool for both problems, we show that in d = 3 the reactant

matter propagates everywhere in space immediately.

1. Introduction and results. Catalytic super-Brownian motion (CSBM)
X� is the measure-valued (finite variance) branching diffusion on �d where
the local branching rate is given by a space–time varying medium �, the
so-called catalyst. For a survey on CSBM and a variety of different spatial
branching models, see Klenke [14]. The case on which we focus here is where
� is a random sample of classical super-Brownian motion (SBM). So that the
reactant is nondegenerate, we have to restrict to d ≤ 3.
This model was constructed in Dawson and Fleischmann [1] and has been

considered under various aspects, for instance, also in [2] and [11]. This paper
is meant to be concise, not self-contained, so we skip the usual heuristics and
repetitive constructions and refer only to the above-mentioned papers.

1.1. Biodiversity. The main subject of this paper is the local biodiversity
or genetic abundance of the equilibrium states in d = 3. The investigation
of biodiversity is a booming field in biology. Roughly speaking, biodiversity
is a measure for the number of species per square meter in an ecosystem.
Our ecosystem is the reactant of three-dimensional catalytic super-Brownian
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motion in a steady state. Before we make mathematical statements about its
biodiversity, we have to fix this notion.
It is well known that (if d ≥ 3) SBM has a unique ergodic equilibrium with

intensity ic (ic > 0). We denote by �−∞� icl
the law of the corresponding equi-

librium process ��t�t∈�. For fixed � considerX� started at time t in irl, ir > 0,
(l is the Lebesgue measure), and denote its law by P�

t� irl
. Letting t → −∞, we

obtain P
�
−∞� irl

and ��t�X
�
t �t∈� is the (bivariate) equilibrium process (see [2])

�−∞� icl

P�

−∞� irl

[(
�T+t�X

�
T+t

)
t∈� ∈ • ∈ •] is independent of T ∈ �(1.1)

Furthermore �−∞� icl
almost surely E�

−∞� irl

X�

0  = irl, and P
�
−∞� irl


X�
0 ∈ • is

infinitely divisible.
Note that the outlined � refers to the medium and the italic P refers to the

reactant. All other quantities’ laws are denoted by a bold P. Expectations are
denoted by the symbol E in respective fonts.
We are interested in the number of families that contribute to X�

0 �B� for,
say, the unit ball B. To make this notion precise, recall that an infinitely divis-
ible random measure Y [with values in � ��d�, the space of Radon measures
on �d] has a cluster representation

Y = α + ∑
i

χi�(1.2)

where α ∈ � ��d� is the deterministic component of Y (or the essential infi-
mum of Y). The χi ∈ � ��d� are the “points” of a Poissonian point process on
� ��d� \ �0� with intensity measure Q, which is called the canonical measure
of Y. We can reformulate (1.2) as the classical Lévy–Hincin formula for the
Laplace transforms

− logE[e−�Y�ϕ�] = �α�ϕ� +
∫
� ��d�

Q�dχ��1− e−�χ�ϕ��(1.3)

Here ϕ ∈ C+
c ��d� (the space of nonnegative continuous functions on �d with

compact support) and �µ�ϕ� denotes the integral ∫ ϕdµ. We also write �µ� =
�µ�1� for the total mass of µ.
If α = 0, then the number of families in B (i.e., #�i� χi�B� > 0�) has a Pois-

son distribution with expectation Q�χ� χ�B� > 0�. If α�B� > 0, then a “contin-
uum of families” contributes to Y�B�. This motivates the following definition.

Definition 1.1. We say that the local biodiversity of the infinitely divisible
random measure Y is:

• finite if α = 0 and Q�χ� χ�B� > 0� < ∞ for every compact set B,

• countably infinite if α = 0 and Q�χ� χ�B� > 0� = ∞ for every open set
B �= �,

• uncountably infinite if α�B� > 0 for every open set B �= �.
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Note that this distinction is exhaustive if the distribution of Y is translation
invariant.

As a trivial example, we mentionY = �tµ, where�t is the heat flow at time
t > 0 and µ �= 0 is a finite measure. In this case, obviously Y has uncountably
infinite local biodiversity.
As a second example, we consider in d ≥ 3 the equilibrium super-Brownian

motion ��t�t∈�. It is easily verified that �0 has finite local biodiversity. In fact,
for generalY to have finite local biodiversity it is sufficient and necessary that

P
Y�B� = 0 > 0 for any compact set B(1.4)

This follows from the simple observation that if α = 0,

Q�χ� χ�B� > 0� = − logP
Y�B� = 0(1.5)

Coming back to the equilibrium of super-Brownian motion, it is easily verified
that for every compact set B, �−∞� icl


�0�B� = 0 > 0.
The situation is quite different for CSBM and this is the content of our

main result.

Theorem 1 (Biodiversity). Let d = 3. For �−∞� icl
almost all � the ran-

dom measure X�
0 (under the distribution P

�
−∞� irl

) has countably infinite local
biodiversity.

The intuitive reasons for this behavior are as follows:

(i) In three dimensions the catalyst � lives on such a thin time–space
set that small amounts of reactant mass can percolate to B along catalyst-
free regions. In contrast, this is not possible for classical SBM: Here too small
portions of mass (immigrating from outer space) get killed before they reachB.
(ii) The catalyst is not so thin that the reactant can sustain a deterministic

component. Thus its genetic abundance is not as “rich” as that of the heat
flow.

1.2. Instantaneous propagation of matter. The key ingredient for the proof
of Theorem 1 is an instantaneous propagation of the reactant matter. Like
the heat flow, the three-dimensional reactant spills out mass everywhere in
space immediately. This property contrasts to the compact support property
of classical SBM (see [13]) and, for example, one-dimensional CSBM where
the (time-homogeneous) catalyst is a certain stable random measure (see [5]).
An instantaneous propagation of matter for a super-Lévy process was first
established by Perkins [15]; see also [9] for a generalization and a slimmer
proof.
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Before we formulate our proposition, we introduce some notation that helps
to define CSBM in a somewhat more general setup. Let �f��d� = �µ ∈
� ��d�� �µ� < ∞� and define the space of tempered measures � ′��d� =⋃

p>d�p��d�, where
�p��d� = �µ ∈ � ��d�� �µ� �1+ � • �2�−p/2� < ∞�

� ′��d� is the state space for both � and X�. Denote by �t� µ the law of �
started at time t in the state µ ∈ � ′��d� and, for given �, denote by P�

t�m the
law of X� started at time t in the state m ∈ � ′��d�. Let � denote absolute
continuity and ≈ denote equivalence of measures.
So that X� can be defined properly, an additional restriction applies to µ.

The crucial property is that we can define the collision local time (see [10],
Theorem 4.1) of a Brownian particle with � started in µ as a so-called nice
branching functional. We call such a measure µ admissible. The class of admis-
sible µ has not been characterized yet. However, µ is known to be admissible if,
for example, it is “η-diffusive” in the sense of [11]. Here we mention only that
the Lebesgue measure l, any µ � l with bounded density and �t� icl

-almost all
�0 are admissible, where t ∈ 
−∞� 0� if d = 3 and t ∈ �−∞�0� if d = 2. (This
has been shown for in [11] only for t ∈ �−∞�0�, but follows easily for d = 3
and t = −∞. In fact, η-diffusivity is essentially a local property. However, for
any compact B ⊂ �3, the total variation ��t� icl


�
0
∣∣B ∈ •−�−∞� icl


�
0
∣∣B ∈ •�TV

tends to 0 as t → −∞, as can be seen, for example, by a simple cluster decom-
position.)
Now we can formulate our proposition on the instantaneous propagation of

the reactant matter.

Proposition 1.2 (Instantaneous propagation of matter). Assume d = 3,
that µ ∈ � ′��d� is admissible and thatm ∈ � ′��d�,m �= 0. Then for all t > 0,

Ɛ0� µ
P�
0�m
l � X

�
t �X�

t �= 0 = 1(1.6)

Together with the result of [11] that says that �0� µ a.s. the reactant’s states
X

�
t are absolutely continuous w.r.t. l, we get the following corollary.

Corollary 1.3. Assume d = 3, that µ ∈ � ′��d� is admissible and that
m ∈ � ′��d�, m �= 0. Then for all t > 0,

Ɛ0� µ
P�
0�m
l ≈ X

�
t �X�

t �= 0 = 1(1.7)

The reason Proposition 1.2 is true is that the catalyst is so thin in d = 3 that
it will not hit thin (time–space) cylinders connecting two points. Through those
tubes, reactant mass propagates from one point to all other points in space
immediately. It might seem reasonable to expect such a behaviour also for
d = 2. However, here the catalyst does hit the tubes (more formally, in d = 2,
lines are not polar for super-Brownian motion). To mimic an argument as for
d = 3, we would have to establish a percolation argument for the complement
of the time–space support of two-dimensional super-Brownian motion.
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It would be nice to know whether �supp��t��c (the complement of the support
of �t) is connected in two dimensions. If it is connected, then we can essentially
use the previously outlined argument to show an instantaneous propagation
of reactant matter also in this case. One idea to show connectedness is to
use an argument of dependent percolation for a discretization of the space.
However, so far, efforts in this direction have failed.
On the other hand, if �supp��t��c is not connected, then it might still be

the case that the catalyst is so thin that the reactant can go through it with-
out getting killed. In fact, the case studied in [5] is of this nature. There a
situation is considered where in dimension 1 the time-homogeneous catalyst
is supported by such a thin (though dense) set that the reactant propagates
everywhere immediately.

1.3. Finite mass extinction. Another question we address in this paper is
that of long-term extinction or finite time extinction of finite reactant masses
in a catalyst started in Lebesgue measure. More precisely, assume that �0 =
icl, ic > 0, and X0 = m ∈ �f��d�. Is it true that X�

t → 0, Ɛ0� icl
P
�
0�m-almost

surely or even Ɛ0� icl
P
�
0�m
X�

t = 0 → 1 as t → ∞?
The corresponding question for classical SBM is very simple to answer.

Assume for the moment that the SBM � is started with a finite initial mea-
sure µ ∈ �f��d�. Then the total mass process ���t��t≥0 is simply Feller’s
branching diffusion with initial mass �µ� [this is the diffusion on 
0�∞� with
infinitesimal generator

√
2x�∂2/∂x2�]. Hence �0� µ
�t = 0 = exp�−�µ�/t� and

we have extinction in finite time:

lim
t→∞

�0� µ
�t = 0 = 1� µ ∈ �f��d�

This is in contrast to the behavior of the reactantX�. In [1], Theorem 5, it was
shown that if d = 1, then for �0� icl a.a. � under P

�
0�m the total mass process

��X�
t ��t≥0 is an L2-bounded martingale and hence converges almost surely to

a random variable with full expectation �m� (persistence) and finite variance.
However, for d = 2�3 the reactant’s behaviour is quite different. In the long

run, the catalyst is not as scarce as in d = 1 and so we do not have persistence
of finite reactant mass, not even long-term survival. However, we do not have
extinction in finite time (at least for d = 3) either. Here is our result.

Theorem 2 (Finite mass extinction). Let d = 3 and m ∈ �f��d�, m �= 0.
Then there is no finite time extinction for the reactant

Ɛ0� icl
[
P

�
0�m

[
X

�
t �= 0]] = 1� t ≥ 0(1.8)

However, for d = 2 or d = 3 there is extinction in the long-term limit:

Ɛ0� icl

[
P

�
0�m

[
lim
t→∞

�X�
t � = 0

]]
= 1(1.9)



1126 K. FLEISCHMANN AND A. KLENKE

The reason we do not have finite time extinction is simple to explain. The
key is the instantaneous propagation of matter (Proposition 1.2). At time t = 0,
reactant mass is instantaneously spilled everywhere in space. For every t > 0
and ε ∈ �0� t� there are tubes �x + B� × 
ε� t in the complement of the time–
space support of �. In these tubes, the reactant can survive until time t because
it dominates heat flow with absorption at the boundary of x + B. We convert
this idea into a rigorous proof in Section 4.1.
The die-out in (1.9) holds because the collision local time of a typical

Brownian particle of the reactant moving in the translation invariant cat-
alyst goes to ∞ as t → ∞. Hence the typical particle undergoes branching for
a total infinite amount of time, which leads to extinction (see Section 4.2). The
situation is different in dimension d = 1: Here the collision local time remains
bounded because the catalyst is very scarce (clusters are of order t apart and
have extensions of order t1/2 only).

Remark. Statement (1.8) depends on the assumption d = 3 only by the
instantaneous propagation of matter property (1.6). It would be true also for
d = 2 if we could show (1.6) also for d = 2, which seems to be a reasonable
statement.

1.4. Outline. The rest of the paper is organized as follows. In Section 2
we give the short proof of Proposition 1.2. In Section 3 we prove Theorem 1.
It takes some technical effort involving exit measures to turn the reasoning
following Theorem 2 into a rigorous proof. This is the content of Section 4.

2. Instantaneouspropagationofmatter. HereweproveProposition1.2.
The rough idea is that any two time–space points �t� x� and �t� y� can be con-
nected by a straight line that is not hit by supp���. [We denote by supp��� ⊂

0�∞� × �d the closed support of the measure dt�t�dx�.] Hence also a
time–space neighbourhood of this line is catalyst-free. If there is reactant
matter around y at time t, then a small amount has percolated according to
the heat flow through the “tube” to x. If we condition onX

�
t �= 0, then there is

some y such that there is reactant matter around �t� y�. Thus there is some
matter around �t� x� also and we are done. The following lines make this idea
rigorous.
For x�y ∈ �d define xy = �αx + �1 − α�y� α ∈ 
0�1�. It is well known

that lines are polar for three-dimensional super-Brownian motion (see [8],
Theorem 3.5(ii)). More precisely, if we denote by supp��� the time–space sup-
port of �, then for t > 0,

�0� icl
[
supp��� ∩ ��t� × xy� = �] = 1(2.1)

For t > 0 fixed, x�y ∈ �d and ε ∈ �0� t� define the tube
T�t� x� y� ε� = �t − ε� t + ε� × ⋃

z∈xy
B�z� ε��(2.2)
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where B�x�R� is the open ball with radius R centered at x. From (2.1) we get

lim
ε→0

�0� icl

[∫
T�t� x� y� ε�

ds�s�dz� = 0
]

= 1(2.3)

[Note that both (2.1) and (2.3) fail if d ≤ 2; see, again, [8], Theorem 3.5(ii).]
Thus with probability 1, for any x�y ∈ Q3 (the three-dimensional rational
numbers) there exists a random number ε�x�y� > 0 such that∫
T�t� x� y� ε�x�y�� ds�s�dz� = 0.
We know that X�

t is absolutely continuous with respect to Lebesgue meas-
ure and that its density function ξ

�
t is continuous off supp(�) and solves the

heat equation (see [11]). Let St = �z ∈ �3� �t� z� ∈ supp����. Assume now that
X

�
t �= 0. Whereas l�St� = 0 a.s., it suffices to show for x ∈ Sct �= �3\St that

ξ
�
t �x� > 0. By the continuity of the density we need to show this only for all

x ∈ Q3 ∩Sct. Note that X�
t �= 0 implies that there exists some y ∈ Q3 ∩Sct with

ξ
�
t �y� > 0. Because T�t� x� y� ε�x�y�� → 
0�∞�, �s� z� �→ ξ

�
s �z� solves the heat

equation, we have in fact ξ�s �z� > 0 for all �s� z� ∈ T�t� x� y� ε�x�y��. ✷

3. Infinite biodiversity. In this section we prove Theorem 1. The state-
ment we have to show consists of two parts: (i) the deterministic component
of X�

0 vanishes and (ii) the canonical measure of �χ� χ�B� > 0� is infinite for
every open set B �= �.

3.1. Vanishing deterministic component. We start with the proof of the
first statement. Recall that we consider the bivariate process ��t�X

�
t �t∈� in

the equilibrium. That is, � is sampled according to �−∞� icl
and for given �

the law of X� is P�
−∞� irl

. For convenience we agree that for fixed �, we define
all random variables related to superprocesses in the catalytic medium � on
the same sufficiently large underlying probability space whose law we denote
by P� For the deterministic and random component of a random measure Y
over this probability space we simply write det�Y �= ess inf Y and ran�Y �=
Y − det�Y. Note that for any measurable set B ⊂ �d,(

det�Y
)�B� ≤ det��Y�B�� = − lim

λ→∞
λ−1 logE�

[
e−λY�B�]�(3.1)

where both sides may equal ∞. Strict inequality holds, for example, if V is
a nontrivial random variable in �d, Y = δV and B = �d. However, there is
equality if Y is infinitely divisible. In fact, if we denote by Q the canonical
measure of Y and let α be as in (1.3), then α = det�Y and the right-hand side
of (3.1) equals

det��Y�B�� = α�B� + lim
λ→∞

∫
� ��d�

Q�dχ�λ−1(1− e−λχ�B�) = α�B��(3.2)

where the second equality comes from the fact that the integral is finite for
every λ and the integrand decreases to 0 as λ approaches ∞.
Now we can state that the deterministic component of X�

0 vanishes.
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Lemma 3.1. Let d = 3. For �−∞� icl
almost all �,

det�X�
0 = 0

Proof. It suffices to show that the expected deterministic component
Ɛ−∞� icl


det�X�
0  disappears. Assume the contrary. Then, by the spatial shift-

invariance of �−∞� icl
, we have

Ɛ−∞� icl

det�X�

0  = bl for some b ∈ �0� ir(3.3)

Fix a sample � such that det�X�
0 �= 0GivenX�

0 , introduce independent CSBM
X��d = �X��d

t �t≥0 and X��r = �X��r
t �t≥0 (in the medium �) with initial states

X
��d
0 = det�X�

0 and X
��r
0 = ran�X�

0 . By the branching property we may
assume that

X
�
1 = X

��d
1 + X

��r
1 (3.4)

We claim that

det�X��r
1 = 0(3.5)

In fact, fix a compact A ⊂ �3 and an ε > 0 For R > 0� the fixed � and given
X

��r
0 , as before we decomposeX��r into independent catalytic super-Brownian

motions X��r� i, i = 1�2, with catalyst � and initial states
X

��r�1
0 = X

��r
0 1B�0�R�� X

��r�2
0 = X

��r
0 1B�0�R�c 

[Recall thatB�x�R� is the open ball with radiusR centered at x ∈ �d.] Assume
that

X
��r
1 = X

��r�1
1 + X

��r�2
1 (3.6)

Note that also det�X��r
1 = det�X��r�1

1 + det�X��r�2
1 . By the Markov property

and the expectation formula (recall that �t is the heat flow),

E�
X��r�2
1 �A� = E�
��1�X��r

0 1B�0�R�c��1A� = E�
�X��r
0 1B�0�R�c ��11A�

Hence we can choose R large enough such that

E�
X��r�2
1 �A� ≤ ε(3.7)

(recall that X��r�2
1 ≤ X

��r
1 ≤ X

�
1 , where the latter term has P� expecta-

tion irl).
Whereas X��r

0 has a vanishing deterministic component, its infinite divisi-
bility implies that also �X��r�1

0 � = X
��r
0 �B�0� R�� does not have a deterministic

component [recall (3.2)]. Thus for all δ > 0 we have P�
�X��r�1
0 � < δ/2 > 0.

Noting that ��X��r�1
t ��t≥0 is a martingale, we get

P�
[�X��r�1

1 � ≤ 2�X��r�1
0 � ∣∣ �X��r�1

0 �] ≥ 1
2 almost surely,
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and thus

P�
�X��r�1
1 � < δ ≥ 1

2P
�
�X��r�1

0 � < δ/2 > 0

Hence det�X��r�1
1 = 0. Combining this with (3.7), the claim (3.5) follows.

Recall that we fixed � such that X��d
0 = det�X�

0 �= 0. This implies ran� ×
X

��d
1 �= 0 with positive P� probability; thus,E�
ran�X��d

1  �= 0 By translation
invariance of �−∞� icl

there exists an a > 0 such that

Ɛ−∞� icl

E�
ran�X��d

1  = al(3.8)

Finally, by the decomposition (3.4) and by (3.5), det�X�
1 = det�X��d

1 =
X

��d
1 − ran�X��d

1 and, therefore, we can build the annealed expectation to
obtain

bl=Ɛ−∞� icl

E�
det�X�

1 
=Ɛ−∞� icl


E�
X��d
1  − Ɛ−∞� icl


E�
ran�X��d
1  = �b − a�l

(3.9)

This is clearly a contradiction and completes the proof. ✷

3.2. The equilibrium reactant charges every set. We complete the proof of
Theorem 1 by showing that the reactant’s canonical measure is infinite on
�χ� χ�B� > 0� for any open set B �= �. Recall from (1.5) that it is enough to
show that the reactant charges any open set:

Ɛ−∞� icl

P�

−∞� irl

X�

0 �B� = 0 = 0 for any open B �= �(3.10)

However, this follows from the instantaneous propagation of matter
(Proposition 1.2), and Theorem 1 is now completely proved. ✷

4. Finite mass extinction. In this section we prove Theorem 2. The
proofs of the two statements (no finite time extinction, but long-term extinc-
tion) are methodologically different and we present them in separate
subsections.

4.1. No finite time extinction. Recall that here � is distributed according
to �0� icl and X� is distributed according to P�

0�m for some nonvanishing m ∈
�f��d�. To show that there is no finite time extinction, we rely again on the
instantaneous propagation of reactant matter (Proposition 1.2). Additionally,
we need the following property of the support supp��� ⊂ 
0�∞� × �d of the
the measure dt�t�dx�. Recall that B�x� r� ⊂ �d is the open ball of radius r
centered at x.

Lemma 4.1 (Empty tubes in the catalyst). Assume d ≥ 2. For every t > 0,
ε ∈ �0� t� and �0� icl a.a. � there exists a z ∈ �d such that supp��� ∩ �
ε� t ×
B�z�1�� = �.



1130 K. FLEISCHMANN AND A. KLENKE

Proof. Fix t > ε > 0. For z ∈ �d define the event

A�z� = {
supp��� ∩ �
ε� t × B�z�1�� = �}



Fix R > 0 and note that by the branching property of SBM we have

�0� icl
A�z� = �0� icl1B�z�R� 
A�z� · �0� icl1B�z�R�c 
A�z�(4.1)

Obviously,

�0� icl1B�z�R� 
A�z� ≥ �0� icl1B�z�R� 
�ε = 0 > 0� R > 0(4.2)

For the other factor in (4.1) we need an estimate on the range of SBM (see [4],
Theorem 3.3a): Fix R > 2t1/2. Then there exists a c > 0 such that for x ∈ �d,

fz�x� �= �0� δx
A�z�c ≤ c exp�−�x − z�2/2t�(4.3)

Noting that log�1− s� > −2s for s ∈ 
0� 12  we see that for R sufficiently large,

�0� icl1B�z�R�c 
A�z� = exp
(
ic

∫
B�z�R�c

log�1− fz�x��dx
)

≥ exp
(

−2cic
∫
B�z�R�c

exp�−�x − z�2/2t�dx
)
> 0

(4.4)

Thus �0� icl
A�z� > 0 and we can infer from the ergodic theorem (note that
�0� icl is spatially ergodic) �0� icl
∪z∈�dA�z� = 1. ✷

With this lemma we are almost done. Recall that we specify on d = 3. Fix
δ ∈ �0�1� and ε ∈ �0� t� such that �0� icl
P

�
0�m
X�

ε �= 0 > 1 − δ > 1 − δ Now
choose such a � and an X

�
ε that are in the described event. We may assume

that � ∈ ⋃
z∈�3 A�z�. Let z ∈ �3 such that � ∈ A�z�. By Proposition 1.2 we

have X
�
ε �B�z� 12�� > 0. Denote by �� z

s �s≥0 the semigroup of heat flow with
absorption at �3\B�z�1�. Then we can estimate

X
�
t �B�z� 1�� ≥ �� z

t−εX
�
ε� ≥ �� z

t−ε�1B�z�1/2�X
�
ε �� > 0(4.5)

Hence

�0� icl
P
�
0�m
X�

t �= 0 > 1− δ > 1− δ

Now let δ → 0. This shows the first assertion of Theorem 2.

4.2. Long-term extinction. In this subsection we show the second state-
ment of Theorem 2. We first outline the idea of the proof. An “infinitesimal
particle” ofX� performs (independently of �) Brownian motionW on �d whose
law and expectation are denoted by Px and Ex, respectively, x ∈ �d. The
branching along such a reactant’s path W is governed by the collision local
time L
W�� of W with the catalyst �. This can be defined for d ≤ 3 as the L2
limit (see [1] and [10])

L
W���0� t� = lim
ε→0

∫ t

0
ds

∫
�d

�s�dz�pε�z�Ws�� t ≥ 0�(4.6)



THE BIODIVERSITY OF CATALYTIC SBM 1131

where �pt�t>0 is the family of standard Brownian transition densities. [For
d ≥ 4, supp��� is polar for W; that is, W does not collide with �, and X�

degenerates to the heat flow.]
Loosely speaking, the idea is that by a fixed large time T, most infinites-

imal reactant particles have collected a large amount of collision local time,
say at least K. With a high probability (namely the extinction probability
of Feller’s branching diffusion at time K), all these particles have died. The
expected number of particles that have collected less collision local time is
E0
�0� icl
L
W���0�T� < K which tends to 0 as T → ∞.
Infinite total collision local time. However intuitively appealing and ver-

bally simple to describe the idea is, we need some technical effort to make it
rigorous. We start by showing that the collision local time L
W�� increases in
fact to ∞ almost surely if d = 2�3. Note that this contrasts with dimension
d = 1, where L
W���0�∞� < ∞ almost surely (see [1], Proposition 8). The
difference between dimensions 1 and 2 is that � dies out locally almost surely
if d = 1, whereas it does so only in probability if d = 2. In the latter case, the
clusters recur to visit the window of observation at arbitrarily late times. Of
course, for d = 3 there is no extinction and a law of large numbers applies.

Proposition 4.2. Let d = 2�3. Then

Ex
�0� icl
L
W���0� ∞� = ∞ = 1� x ∈ �d(4.7)

Proof. By spatial homogeneity of Brownian motion and the law of �, it
suffices to consider x = 0. For d = 3, the claim follows from a law of large
numbers (see [2]):

E0

[
�0� icl

[
lim
t→∞

t−1L
W���0� t� = ic

]]
= 1(4.8)

For d = 2, there is no law of large numbers. Rather L
W�� is self-similar in
the sense that (see [2])

E0
�0� icl
L
W���0� t� ∈ •
= E0
�0� icl
T−1L
W���0�Tt� ∈ •� t�T > 0

(4.9)

Note that the events
{
L
W���0�∞� > T

}
are decreasing in T > 0 and due to

the self-similarity all have the same Ɛ0�0� icl probability. Hence

E0
�0� icl
L
W���0�∞� = ∞ =E0

[
�0� icl

[ ⋂
T>0

L
W���0�∞� > T

]]

=E0

[
�0� icl

[ ⋃
T>0

L
W���0�∞� > T

]]

=E0
[
�0� icl

[
L
W���0� ∞� > 0]]

(4.10)
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Analogously

E0
�0� icl
L
W���0�∞� > 0 =E0

[
�0� icl

[⋃
t≥1

L
W���0� t� > 0
]]

=E0
[
�0� icl

[
L
W���0�1� > 0

]]
> 0�

(4.11)

where the inequality follows from E0
Ɛ0� icl
L
W���0�1� = ic > 0. Using the
same trick for

{
L
W���t� ∞� = 0}, we get

E0
�0� icl
L
W���0�∞� = 0 =E0

[
�0� icl

[⋂
t>0

{
L
W���t�∞� = 0}]]

=E0

[
�0� icl

[⋃
t>0

{
L
W���t�∞� = 0}]]

=E0
[
�0� icl

[
� ∈ A�W�]]�

(4.12)

where

A�W� = ⋃
t>0

{
�� L
W���t�∞� = 0}(4.13)

We are done if we can show a suitable 0–1 law for the last expression in
the equation array (4.12), which would imply that the expressions in (4.11)
and (4.10) all equal 1. This is a spinoff of the subsequent lemma, which then
completes the proof of the proposition. ✷

Lemma 4.3 (0–1 law). Assume d ≤ 3. Then one of the following two alter-
natives holds:

Px
W � �0� icl
� ∈ A�W� = 0 = 1� x ∈ �d(4.14)

or

Px
W � �0� icl
� ∈ A�W� = 1 = 1� x ∈ �d(4.15)

Proof. Again by spatial homogeneity, either alternative holds if it does
for x = 0.
We first show that

P0
�0� icl
� ∈ A�W� ∈ �0�1� = 1(4.16)

In fact, let � = ∑
z∈�d �z be a decomposition of � into independent SBM start-

ing in �z
0 = l1z+
0�1�d . Whereas �0� icl


∑
z∈Z �z

t = 0 → 1 as t → ∞, for any
finite Z ⊂ �d, the event A�W� is in the completion of the tail field:

A�W� ∈ ⋂
n∈�

σ��z� �z� ≥ n� �mod �0� icl�(4.17)

The tail field is �0� icl trivial and (4.16) follows.
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Assume now that (4.14) does not hold. Hence P0
W � �0� icl
� ∈ A�W� >
0 > 0 and by (4.16),

P0
W � �0� icl
� ∈ A�W� = 1 > 0(4.18)

Fix t > 0. Note that A�W� = ��� �t+• ∈ A�Wt+•��; hence, we have
�0� icl
� ∈ A�W� =�0� icl
�t+• ∈ A�Wt+•�

=�0� icl
�t+• ∈ A�Wt+• − Wt��
(4.19)

where in the last step we used the spatial translation invariance of �0� icl.
Hence, W �→ �0� icl
� ∈ A�W� is measurable w.r.t. the tail field of the incre-
ments of W and thus constant. By (4.18) we get (4.15). ✷

Remark 4.4. Note that the proof of Proposition 4.2 shows for d = 2 even
the stronger statement that for all x ∈ �2 and Ex�0� icl almost surely,

L
W���0� t� > 0 and L
W���t�∞� = ∞� t > 0(4.20)

Exit measures. Now we make precise the idea of the collision local time
collected by individual “infinitesimal particles” from the introduction of this
subsection. Note that the idea of using exit measures for this purpose was
employed successfully also by Dawson, Fleischmann and Mueller [3] (see
also [12]).
Choose a sample � according to �0� icl. Recall that d = 2�3. From

Proposition 4.2 it follows that the following stopping times ofW are Px almost
surely finite:

τK = inf�t > 0 � L
W���0� t� ≥ K�� K ≥ 0(4.21)

For each of these stopping times we could define Dynkin’s stopped measure,
which is approximately what we want. However, this is a (random) measure
on the particles’ path space and needs a construction of historical CSBM. This
is not too hard to do, but we prefer to follow a slightly more elementary route.
We would like to consider the joint process of W and its collision local

time L
W��. It will, however, be convenient to introduce the trivariate (time-
homogeneous) Markov process W̃ = �W�L�I� on �d × 
0�∞� × 
0�∞�, where
for t ≥ 0,

It = t + I0�

Lt =L0 + L
W���I0� It��
(4.22)

with I0�L0 ≥ 0. For this enriched process W̃, started in �W0�0�0�, each τK is
an exit time,

τK = inf�t > 0 � W̃t �∈ A��(4.23)

where

A = �d × 
0�K� × 
0�∞�
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We can define the catalytic branching process X̃�, which is the catalytic
superprocess �on �d × 
0�∞� × 
0�∞�� with underlying motion W̃, with “crit-
ical binary” branching and with branching functional L. For an initial state
m̃ ∈ �f��d × 
0�∞� × 
0�∞��, we denote its law by P�

m̃. Note that for

m̃ concentrated on �d × �0� × �0� with
m̃�• × 
0�∞� × 
0�∞�� = m�•��

(4.24)

X
�
T�•� and X̃

�
T�• × 
0�∞� × �T�� coincide in distribution. Hence we are done

if we can show that

lim sup
T→∞

P
�

m̃
�X̃�
T� > ε = 0� ε > 0(4.25)

[Note that the P
�
0�m almost sure convergence statement (1.9) of Theorem 2

follows from this because ��X�
t ��t≥0 is a nonnegative martingale and hence

almost surely convergent.]
For an exit time τ of a domain A ⊂ �d × 
0�∞� × 
0�∞�, we can define the

exit measure X̃�
τ by the following procedure. Let X̃�� τ be defined as X̃� but

with W̃τ∧• instead of W̃ as motion (and with Lτ∧• as branching functional).
That is, the infinitesimal particles get frozen when they reach the boundary
∂A of A. Finally, let X̃�

τ be the measure that is supported by ∂A and that is
obtained as the monotone limit

X̃�
τ = lim

t→∞
X̃

�� τ
t �∂A ∩ •�(4.26)

Note that for m̃ as in (4.24) and τ a finite exit time we have

E
�

m̃
X̃�
τ  =

∫
m�dx�Px
W̃τ ∈ •(4.27)

For the exit measures X̃�
τ we have the so-called special Markov property, which

amounts to saying that if τ ≤ σ are exit times of W̃, then we obtain X̃
�
σ from

X̃
�
τ by starting the process afresh (cf. [6], Theorem 1.6 and [7], Theorem 1.5).

More precisely, if for ϕ ∈ C+
c ��d×
0�∞�×
0�∞�� and x ∈ �d×
0�∞�×
0�∞�,

we define

�V�
σϕ��x� = − logE�

δx

exp�−�X̃�

σ� ϕ���(4.28)

then

E
�
m̃
exp�−�X̃�

σ� ϕ�� = E
�
m̃
exp�−�X̃�

τ �V
�
σϕ��(4.29)

In particular, if ∂A = A1∪A2,A1∩A2 = � and X̃��1 and X̃��2 are independent
processes (given their initial states) of the type introduced already with X̃�� i

0 =
X̃

�
τ �Ai ∩ •�, i = 1�2, then X̃

�
σ is equal in distribution to their sum,

X̃�
σ
d= X̃��1

σ + X̃��2
σ (4.30)

Now we come back to our concrete situation. Here σ ≡ T, τ = τK ∧ T,
A = �d × 
0�K� × 
0�T�, and ∂A = A1 ∪ A2, where A1 = �d × 
0�K� × �T�,
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and A2 = �d ×�K�×
0�T. Assume that m̃ is as in (4.24). Hence, using (4.27)
we get

E�
�X̃��1
T � =E

�

m̃
X̃�
τK∧T�A1�

=
∫
m�dx�Px
τK > T → 0� T → ∞

(4.31)

On the other hand, X̃�
τK∧T�A2� = X̃

�
τK�A2�, thus

P�
X̃��2
T �= 0 ≤ P

�

m̃
X̃�
τK

�A2� > 0(4.32)

Now we employ a result of [3], Lemma 14, that the process ��X̃�
τt��t≥0 is Feller’s

branching diffusion. Hence we have P�

m̃
�X̃�
τK� > 0 = 1− e−�m�/K and thus

P�
�X̃��2
T � > 0 ≤ 1− e−�m�/K(4.33)

Combining (4.30), (4.31) and (4.33), where we first let T → ∞ and then K →
∞, we get that (4.25) holds. ✷
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