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For a particular conditionally heteroscedastic nonlinear (ARCH) pro-
cess for which the conditional variance of the observable sequence rt is the
square of an inhomogeneous linear combination of rs, s < t, we give condi-
tions under which, for integers l ≥ 2, rlt has long memory autocorrelation
and normalized partial sums of rlt converge to fractional Brownian motion.

1. Introduction. A principle stylized fact emerging from the analysis of
many financial time series (such as asset returns and exchange rates) is the
approximate uncorrelatedness of the “return” series rt (often a first difference
of logarithms of the basic observed series) alongside pronounced autocorre-
lation in certain instantaneous nonlinear functions of rt, such as r2

t . Such
behavior is consistent with the property that the conditional mean is zero
(almost surely),

E�rt��t−1� = 0�(1.1)

where �t is the σ-field of events generated by rs, s ≤ t, whereas the conditional
variance,

σ2
t = Var�rt��t−1��(1.2)

is stochastic.
The earliest models of this form assumed that

σ2
t = a +

∞∑
j=1

bjr
2
t−j� t ∈ ��(1.3)

for constants a > 0 and bj ≥ 0 (to ensure that σ2
t > 0), where the bj also sat-

isfy some summability condition, easily achieved in both the ARCH(p) model
of Engle (1982) (wherein bj = 0, j > p) and its GARCH extension of Bollerslev
(1986). However, these latter models imply exponential decay in the autocor-
relations of the r2

t , whereas empirical evidence has frequently suggested a
much greater degree of persistence, possibly consistent with long memory in
r2
t , where autocorrelations are not summable [see, e.g., Whistler (1990), Ding,
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Granger and Engle (1993)]. Such behavior could arise from heavy-tailedness
or structural breaks [see, e.g., Davis and Mikosch (1998), Lobato and Savin
(1998)], but it might also be explained by (1.3), since considerable flexibility
is possible in the choice of the bj. Robinson (1991) referred to the possibility
of bj in (1.3) that correspond to long memory in r2

t and developed tests for
no-ARCH with optimal efficiency against parametric alternatives in the class
(1.3), while Granger and Ding (1995), Ding and Granger (1996) have discussed
such models further. On the other hand, the sufficient conditions established
by Giraitis, Kokoszka and Leipus (2000) for existence of a covariance station-
ary solution in versions of (1.1), (1.2) given by

rt = εtσt�(1.4)

where εt is an independent and identically distributed (iid) sequence having
suitable moments, and σt is the positive square root of σ2

t in (1.3), rule out
long memory autocorrelation in r2

t , so that a full account of the long memory
potential of (1.3) is lacking.

Fortunately, it is easy to find alternative models for which conditions for sta-
tionary long memory of squares and other instantaneous functions are avail-
able. In particular in models of form (1.4) with

σt = f�ηt��(1.5)

where ηt is a possibly vector-valued, possibly Gaussian, unobservable long
memory process, the memory properties of instantaneous functions such as
rlt for integer l ≥ 2, or �rt�α for real α > 0, depend on the character of the
function f. Models of this type with long memory properties have already
been discussed by, for example, Andersen and Bollerslev (1997), Breidt, Crato
and De Lima (1998), Harvey (1998), Robinson and Zaffaroni (1997, 1998).

Here we consider the long memory potential of an alternative class of mod-
els of form (1.4) that is more similar to the ARCH form (1.3). We consider the
model, which one might call LARCH (“Linear ARCH”),

σt = a +
∞∑
j=1

bjrt−j� t ∈ ��(1.6)

Thus with (1.4), we have a special case of the model consisting of (1.1) and

σ2
t =

(
a +

∞∑
j=1

bjrt−j

)2

� t ∈ ��(1.7)

for the first and second conditional moments that was considered by
Robinson [(1991), equation (16)]. Indeed (1.6) with (1.4) is also a special case
of the general class of bilinear models referred to by Granger and Andersen
[(1978), equation (4.1)], though these authors, and the subsequent literature
on bilinear time series models, focussed on forms that specifically exclude the
combination of (1.6) with (1.4). Robinson (1991) contrasted the implications
for third moment behavior of rt under (1.3) and (1.6). Notice also that (1.6),
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unlike (1.3), is not constrained to be nonnegative, so that σt is not a standard
deviation and lacks something of the usual volatility interpretation. However,
constraints on a and bj, of the type needed for (1.3), are not thereby neces-
sary, leading to some convenience of theoretical analysis. Whereas Robinson
(1991) considered weights bj of long memory type in (1.7), this was in con-
nection with testing for no-ARCH against general parametric alternatives of
form (1.2), including short memory ones. Short memory versions of (1.6) (such
as when bj = 0, j > p) may deserve further study, but our results, except for
Theorem 2.1, focus on long memory type bj. Here, we examine the structure
of σt (Theorem 2.1) and its possible long memory behavior (Corollary 2.1),
and give conditions under which powers rlt, for integer l ≥ 2, have long mem-
ory autocorrelation (Theorem 2.2) and their normalized partial sums converge
to fractional Brownian motion (Theorem 2.3). These results and the relevant
conditions are presented in the following section, which also gives the proofs
of Theorem 2.1, Corollary 2.1 and Theorem 2.3, but only the main steps of the
proofs of Theorem 2.2; the remaining details appearing in the following three
sections of the paper.

2. Main results. We introduce first the following assumptions.

Assumption 1. (i) (1.4) and (1.6) hold.
(ii) �εt� is a sequence of iid random variables with zero mean and unit

variance.
(iii) a = 0.

Assumption 2.

b =
{ ∞∑
j=1

b2
j

}1/2

< 1�

Let �t be the σ-field of events generated by εs, s ≤ t.

Theorem 2.1. Let Assumption 1 hold. Then a covariance stationary �t−1-
measurable solution σt, t ∈ �, of (1.4), (1.6) exists if and only if Assumption 2
holds, in which case, for t ∈ �, we have the Volterra expansion

σt = a
∞∑
k=0

∞∑
j1�����jk=1

bj1
· · · bjk

εt−j1
· · · εt−j1−···−jk

(2.1)

and

E�σt� = a�(2.2)

Cov�σ0� σt� = a2

1 − b2

∞∑
j=1

bjbj+t�(2.3)
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Proof. If σt is a covariance stationary �t−1-measurable solution of (1.4),
(1.6) then rt is also covariance stationary with E�r0� = 0, Cov�r0� rt� = 0,
a = 0. Thus E�σ0� = a and

E�σ2
0 � = a2 + b2E�σ2

0 ��(2.4)

to give the first statement of the theorem. We thus have, under Assumption 2,

E�r2
0� = E�σ2

0 � = a2

1 − b2
�(2.5)

We also deduce from (1.6) and stationarity that

Cov�σ0� σt� = E�r2
0�

∞∑
j=1

bjbj+t(2.6)

to give (2.3). Finally (2.1) is obtained by iteration of (1.4), (1.6) as in
Nelson (1990), Giraitis, Kokoszka and Leipus (2000) and is clearly also strictly
stationary. ✷

The iid requirement can be relaxed to a martingale difference one, on
the εt and ε2

t − 1. There is no loss of generality in fixing Var�ε0� = 1. If
Assumption 1(iii) does not hold, so a = 0, we deduce from (2.4) that b = 1, so
Assumption 2 cannot hold. Then, for example, in case b1 = 1, bj = 0, j > 1,
we have instead, subject to convergence, σt = ∏∞

j=1 εt−j, which is a sequence
of uncorrelated variables with zero mean and unit variance, as is rt; triv-
ially rt = σt ≡ 0 is also a solution. Hence we discuss only the case a = 0.
The Volterra expansion (2.1) plays a basic role in the proofs of Theorems 2.2
and 2.3 below.

From (2.3), (2.5) we can also write

Corr�σ0� σt� =
∑∞

j=1 bjbj+t

b2
�

which we recognize as the usual formula for the autocorrelation function in
terms of Wold decomposition weights. We can thus control the memory of σt

by choice of bj. We introduce the next assumption.

Assumption 3. For

0 < c < ∞� 0 < θ < 1�(2.7)

we have

bt ∼ ct−�1+θ�/2 as t → ∞�(2.8)

where “∼” indicates that the ratio of left and right sides tends to 1.

Corollary 2.1. Let Assumptions 1–3 hold. Then

Cov�σ0� σt� ∼ c2
1t

−θ as t → ∞(2.9)
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where

c1 = ac

{
B��1 − θ�/2� θ�

1 − b2

}1/2

�(2.10)

The proof is standard from the long memory literature, using (2.8) and (2.3).
An example of bt satisfying Assumption 3 is

bt = c
��t + �1 − θ�/2�

��t + 1� �(2.11)

which is proportional to the moving average weights in a standard fractional
ARIMA �0�1/2�1 − θ��0� model [see, e.g., Adenstedt (1974), Samorodnitsky and
Taqqu (1994), page 381], so that (1.6) becomes σt = a + ��1 − L��θ−1�/2 − 1�rt, L
being the lag operator. More general bt include the fractional ARIMA
�p� �1 − θ�/2� q� weights. Notice that many of the latter models have bj that
are not all nonnegative and so could not be used in connection with (1.3)

It will be found that, for integer l ≥ 2, rlt has autocorrelations decaying at
the same rate as those of σt when σt has long memory, and that the normalized
partial sums of rlt (like those of σt) converge to fractional Brownian motion.
Notice that typically σt is unobservable, whereas rt is observable, so that its
autocovariances can likely be consistently estimated under suitable conditions.
There is thus the possibility of drawing inferences on the presence and extent
of long memory in rlt. The choice of l likely to be of most interest to empirical
workers is l = 2, especially as finiteness of low-order moments of financial
time series has frequently been questioned. However, subject to finiteness of
moments, the extent to which our approximation to Corr�rl0� rlt� depends of l
may be helpful in validating the model from real data.

To establish the properties of rlt, we impose also this assumption.

Assumption 4 (l). εt has finite 2lth moments such that

�4l − 2l − 1�µ1/l
2l b

2 < 1�(2.12)

where µj = E�εj0�.
For given l, (2.12) is a tighter restriction on b than Assumption 2, that is, a

tighter restriction on c in case (2.10), while (2.12) becomes more stringent as
l increases, since �4l − 2l− 1� and µ

1/l
2l are increasing functions, so that (2.12)

holds also for j < l. When εt is Gaussian µ2l = �2l− 1��2l− 3� · · · 3 · 1, though
in this case it is likely that the factor �4l −2l−1� can be reduced, (2.12) being
only a sufficient condition for the following results.

Theorem 2.2. Let Assumptions 1, 2, 3 and 4�l� hold. Then, for j = 2� � � � � l,

Cov�rj0� rjt � ∼ c2
jt

−θ as t → ∞�(2.13)

where

cj = c1

a
jE�rj0��
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Proof. It suffices to take j = l. Write νtl = �εlt − µl�σl
t , so

rlt = εltσ
l
t = µlσ

l
t + νtl�(2.14)

Since we may write

cl = µl

cl1
a
E�σl

0�

and Assumptions 1 and 4(l) imply that Cov�ν0l� νtl� = Cov�σl
0� νtl� = 0 for

t > 0, it suffices to show that

Cov�σl
0� σ

l
t � ∼ c2

1d
2
l t

−θ�(2.15)

where

dl = lE�σl
0�

a

and that

Cov�ν0l� σ
l
t � = o�t−θ��(2.16)

To consider (2.15), introduce the “remainder” term,

ytl = σl
t − dlσt�(2.17)

Then (2.15) will be a consequence of Corollary 2.1 and

Cov�y0l� ytl� = o�t−θ�� Cov�y0l� σt� = o�t−θ�� Cov�σ0� ytl� = o�t−θ��
These are easy consequences of

Cov�σl′
0 � σ

l′′
t � ∼ dl′dl′′Cov�σ0� σt�� 1 ≤ l′� l′′ ≤ l�(2.18)

and Corollary 2.1, noting that d1 = 1. To show (2.18) we introduce an “inter-
mediate” term

ζt� j �= j
∞∑
k=1

∑
sk<···<s1<t

at−s1� j
bs1−s2

· · · bsk−1−sk
εs1

· · · εsk�(2.19)

where

at� j �= aE
[
σ

j−1
0

]
bt + ∑

0<s<t

Gt−s� jbs�(2.20)

Gt−s� j �= Ht−s� j − Ht−s−1� j�(2.21)

Ht−s� j = E�σj−1
t E�σt�� +

s ���(2.22)

� +
t being the σ-algebra of events generated by εs� s ≥ t. Then we prove (2.18)

by showing that

Cov�σl′
0 � σ

l′′
t � ∼ Cov�ζ0� l′� ζt� l′′ �(2.23)
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and

Cov�ζ0� l′� ζt� l′′ � ∼ dl′dl′′Cov�σ0� σt��(2.24)

We prove (2.23) in Lemma 5.1 and (2.24) in Corollary 4.3. Finally, (2.16) is
proved in Lemma 4.4.

The proof of Theorem 2.2 rests on the approximations

σl
t � dlσt� rlt � µldlσt�(2.25)

“�” meaning that left and right sides have the same autocovariance function,
at long lags j to order o�j−θ�. The typical dominance of the linear term in
approximating the autocovariance of stochastic volatility models also arose in
Andersen and Bollerslev (1997), Robinson and Zaffaroni (1997, 1998). On the
other hand, Ding and Granger (1996) found significant variation with α in
sample autocorrelations of �rt�α computed from stock returns and exchange
rates. To the extent that this phenomenon pertains to long lags, Theorem 2.2
can only explain it in respect of the asymptotic scale factor c2

l of Cov�rl0� rlt�
(which varies with l), not in respect of the decay rate t−θ (which is constant
with respect to l).

Nevertheless, the approximations (2.25) are quite remarkable and also pro-
vide the leading term in the limit distribution of normalized partial sums of
the rlt. Let Wθ�t�, t ≥ 0 be fractional Brownian motion, that is, a zero-mean
Gaussian process with covariance

EWθ�s�Wθ�t� = �1/2���s�2−θ + �t�2−θ − �t − s�2−θ�
[see Samorodnitsky and Taqqu (1994), Chapter 7]. Let ��·�� denote integer part
and ⇒ the convergence of finite-dimensional distributions.

Theorem 2.3. Under Assumptions 1, 2, 3 and 4(l), for j = 2� � � � � l, as
N → ∞,

Nθ/2−1
��Nt��∑
s=1

(
rjs − E

[
rjs
]) ⇒ χθcjWθ�t�� t ≥ 0�(2.26)

where

χθ =
{

2
�1 − θ��2 − θ�

}1/2

�

Proof. Again we can take j = l. Considering again (2.14), from uncorre-
latedness of νtl,

Var

(
N∑
t=1

νtl

)
≤ µ2lE

(
σ2l

0

)
N = O�N� = o�N2−θ��

E�σ2l
0 � being finite from Lemma 3.1 [replacing l by 2l there and noting

Assumption 4�l�], so we can replace rls by µlσ
l
s. Now employing again (2.17),
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Corollary 5.3 below implies that Var
(∑N

t=1 ytl

) = o�N2−θ�, so it remains to
show that

Nθ/2−1
��Nt��∑
s=1

�σs − a� ⇒ χθc1Wθ�t��(2.27)

For K > 0, (1.4) and (1.6) give

σt − a = ∑
s<t

bt−sεsσs = ∑
s<t

bt−sεsE�σs�� +
s−K� +∑

s<t

bt−sεs�σs − E�σs�� +
s−K��

=� z−
t + z+

t �

Thus,

ZN�t� �=
��Nt��∑
s=1

�σs − a� =
��Nt��∑
s=1

z−
s +

��Nt��∑
s=1

z+
s =� Z−

N�t� + Z+
N�t��

We show first that the term Z+
N �= Z+

N�1� is negligible. We have

Nθ−2 Var�Z+
N� =

{
Nθ−2∑N

t′� t′′=1
∑

s<t′∧t′′ bt′−sbt′′−s

}
× E�ε2

0�σ0 − E�σ0�� +
−K���2��

(2.28)

where the factor in braces is, from Corollary 2.1,

c2
1

E�r2
0�
Nθ−2∑N

t′� t′′=1 �t′ − t′′�−θ�1 + o�1��

→ 2c2
1

E�r2
0�
∫ 1
0 �1 − x�−θxdx = c2

1χ
2
θ

E�r2
0�
�

(2.29)

Thus (2.28) is O�δK�, where

δK �= E��σ0 − E�σ0�� +
−K��2� → 0� K → ∞�

Hence (2.21) follows from

Nθ/2−1Z−
N�t� ⇒ dKWθ�t��(2.30)

if d2
K �= limN→∞ Nθ−2∑N

i�j=1 Cov�z−
i � z

−
j � satisfies

lim
K→∞

dK = χθc1�(2.31)

To prove (2.31), using the fact that ηt �= εtE�σt�� +
t−K�� t ∈ Z, are uncorrelated,

we obtain

d2
K = E�η2

0� lim
N→∞

Nθ−2

{
N∑

t′� t′′=1

∑
s<t′∧t′′

bt′−sbt′′−s

}

= E
[
η2

0

] c2
1χ

2
θ

E�r2
0�
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from (2.29), where

E�η2
0� = E�ε2

0�E��E�σ0�� +
−K��2� →E�σ2

0 � =E�r2
0� = a2/�1−b2�� K → ∞�

To prove the convergence (2.30), note that z−
t is a of form z−

t = ∑
s<t bt−sηs

where ηs� s ∈ � is a stationary sequence of uncorrelated K-dependent random
variables. Hence the central limit theorem (2.30) follows using the same argu-
ment as in the case of an iid sequence �ηs� s ∈ �� [see, e.g., Davydov (1970),
Giraitis and Surgailis (1989)]. ✷

Sections 4 and 5 provide the proofs of the outstanding results (2.16), (2.23)
and (2.24) needed for the proof of Theorem 2.2. First, however, the following
section establishes finiteness of the moments of powers σ0.

3. Moments and diagrams. In this section we discuss diagram formal-
ism for the moments E�σl

t �, l = 2�3� � � �, of the Volterra series (2.1).
Let

∑k� t
S denote the sum over all subsets S = �sk� sk−1� � � � � s1� ⊂ �, sk <

sk−1 < · · · < s1 < s0 = t, k = 0�1� � � � � With any such S we associate the
function

bS �=
k∏

i=1

bsi−1−si
= bt−s1

bs1−s2
· · · bsk−1−sk

and the random variable

εS �= ∏
s∈S

εs = εs1
· · · εsk�

b� = ε� �= 1. Then

σt = a
∞∑
k=0

∑ k� t
S bSεS(3.1)

and

σl
t = al

∑
k1�����kl

∑ k1� t
S1

· · ·∑ kl� t
S1

bS1 · · · bSlεS1 · · · εSl

=� al
∑
�k�l

∑ �k�l� t
�S�l b�S�lε�S�l �(3.2)

In (3.2), the sum
∑

�k�l is taken over all collections �k�l = �k1� � � � � kl� ∈ �l
+,

�+ �= �0�1� � � � � �, ∑�k�l� t
�S�l �= ∑k1� t

S1
· · ·∑kl� t

Sl
, �S�l �= �S1� � � � � Sl� and we put

b�S�l �= bSl · · · bSl , ε�S�l �= εS1 · · · εSl . Then

E�σl
t � = al

∑
�k�l

∑ �k�l� t
�S�l b�S�lµ�S�l �(3.3)
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where

µ�S�l �= E�ε�S�l� = E�εS1 · · · εSl��
In a similar way, for any integers l′� l′′ ≥ 1,

Cov
(
σl′
t � σ

l′′
0

) = al′+l′′ ∑
�k′�l′

∑
�k′′�l′′

∑ �k′�l′ � t
�S′�l′

∑ �k′′�l′′ �0
�S′′�l′′ b�S′�l′b�S′′�l′′ µ̄�S′�l′ � �S′′�l′′ �(3.4)

where

µ̄�S′�l′ � �S′′�l′′ �= Cov
(
ε�S′�l′ � ε�S′′�l′′ )�

for any collections �S′�l′ = �S′
1� � � � � S

′
l′ �, �S′′�l′′ = �S′′

1� � � � � S
′′
l′′ � of subsets of

�. To study the convergence and the asymptotics as t → ∞ of the formal
series (3.3, 3.4), we introduce below a diagram formalism. Observe, by the
independence of εi, i ∈ �,

µ�S�l = 0 unless ��S�l �=
l⋃

i=1

(
Si\

⋃
j =i

Sj

)
= �(3.5)

and

µ̄�S′�l′ � �S′′�l′′ = 0 unless ��S′�l′ ⊂
l′′⋃
i=1

S′′
i and ��S′′�l′′ ⊂

l′⋃
i=1

S′
i�(3.6)

Let �k�l = �k1� � � � � kl� ∈ �l
+ be given. Let I ≡ I��k�l� be the table consisting

of l rows Ij ≡ Ij��k�l� = ��kj� j�� � � � � �1� j�� of length kj ≥ 0, j = 1� � � � � l.
(Some of these rows may be empty, too.) A diagram is an ordered partition
γ = �V1� � � � �Vr� of the table I by nonempty subsets (edges) Vq, q = 1� � � � � r,
r = 1�2� � � �, containing at most one element of any row: �Vq ∩ Ij� ≤ 1� q =
1� � � � � r, j = 1� � � � � l.

Let f�si� j� �i� j� ∈ I� be a function defined on (collections of ) ordered
integers:

skj� j
< skj−1� j

< · · · < s1� j < s0� j� j = 1� � � � l�(3.7)

where �s0�1� � � � � s0� I� �= �s0�l ∈ �l is fixed. With any such f�si� j� �i� j� ∈ I�
and any diagram γ = �V1� � � � �Vr� we associate the sum∑ �s0�l

γ f�si� j� �i� j� ∈ I� = ∑
si� j=s̃q� �i� j�∈Vq�q=1�����r

f�si� j� �i� j� ∈ I�(3.8)

over all integers si� j� i = 1� � � � � kj, j = 1� � � � � l satisfying the inequalities (3.7)
and

si� j = si′� j′ �= s̃q� �i� j�� �i′� j′� ∈ Vq� q = 1� � � � � r(3.9)

and

s̃1 < · · · < s̃r�(3.10)



1012 L. GIRAITIS, P. M. ROBINSON AND D. SURGAILIS

Fig. 1. Graph of example.

In general, the inequalities (3.7) and (3.10) may be incompatible, in which
case the sum (3.8) is zero by definition. It is convenient to picture edges of
a diagram as “vertical sets” connected by curve segments right, as well as
to connect the vertices lying on the same row, thus making γ a graph. The
“vertical edges” V1� � � � �Vr should be placed horizontally in increasing order.
For example, the graph in Figure 1 corresponds to �k�4 = �1�2�2�3� and
γ = �V1� � � � �V5�, V1 = ��3�4��, V2 = ��2�4��, V3 = ��2�2�� �2�3�� �1�4��,
V4 = ��1�3��, V5 = ��1�1��1�2��. According to (3.8), a diagram determines
the choice of “coinciding diagonals” in the summation over integers (3.7). For
example, for γ shown in Figure 1 and �s0�4 = �0�0� t�0�,∑�s0�4

γ denotes the sum
over integers s1�1 < 0, s2�2 < s1�2 < 0, s2�3 < s1�3 < t, s3�4 < s2�4 < s1�4 < 0
satisfying s3�4 =� s̃1 < s2�4 =� s̃2 < s2�2 = s2�3 = s1�4 =� s̃3 < s1�3 =� s̃4 < s1�1 =
s1�2 =� s̃5.

Write �I for the class of all diagrams γ = �V1� � � � �Vr� over I = I��k�l�
such that �Vq� > 1 ∀ q = 1� � � � � r. Then from (3.3), (3.5) one obtains

E�σl
t � = al

∑
�k�l

∑
γ∈�I��k�l�

µγ

∑ �t�l
γ b�S�l �(3.11)

where �t�l �= �t� � � � � t︸ ︷︷ ︸
l

� and where

µγ �= µ�S�l

for �S�l = �S1� � � � � Sl�, Sj = �skj� j
� � � � � s1� j�� j = 1� � � � � l satisfying (3.9,

3.10), depends on γ only. Similarly, for any l′� l′′ ≥ 1,

Cov�σl′
t � σ

l′′
0 � = al′+l′′ ∑

�k′�l′

∑
�k′′�l′′

∑
γ∈�I��k′ � k′′ �l′ � l′′ �

µ̄γ

∑ �t�0�l′ � l′′
γ b�S′�l′b�S′′�l′′ �(3.12)

In (3.12), I��k′� k′′�l′� l′′ � �= I = I′∪I′′ is the table having l′+l′′ rows and consist-
ing of two blocks I′ �= I��k′�l′ �, I′′ �= I��k′′�l′′ �, �t�0�l′� l′′ �= �t� � � � � t︸ ︷︷ ︸

l′

�0� � � � �0︸ ︷︷ ︸
l′′

�,
and

µ̄γ �= µ̄�S′�l′ � �S′′�l′′ = Cov
(
ε�S′�l′ � ε�S′′�l′′ )(3.13)
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depends on γ only. Property (3.6) of the last covariance translates to the dia-
gram language as follows. Call a diagram γ = �V1� � � � �Vr� ∈ �I��k′� k′′�l′ � l′′ �
block-connected if there is an edge Vq which has an nonempty intersection
with both blocks I′� I′′ of the table I� Vq ∩ I′ = �, Vq ∩ I′′ = �. By (3.6), the
last sum on the right-hand side of (3.12) vanishes for each diagram which is
not block connected so that (3.12) involves summation over block-connected
diagrams only.

Lemma 3.1. Let Assumption 1 hold and

�2l − l − 1�1/2�µ�1/ll b < 1�(3.14)

where �µ�j = E��ε�j0�. Then the series (3.3) converges absolutely and defines a

finite moment E�σl
t �.

Proof. By Hölder’s inequality,

�µ�S�l � = ∣∣E�εS1 · · · εSl�∣∣ ≤ �µ���S1�+···+�Sl��/l
l �(3.15)

where �µ�j = E��ε�j0�. Then the lemma follows from∑ �t�l
γ �b�S�l � ≤ b�S1�+···+�Sl�(3.16)

and Lemma 3.2 below.
To show (3.16), consider a diagram γ = �V1� � � � �Vr� ∈ �I, I = I��k�l�. Then

by the Cauchy–Schwarz inequality, V1 being the leftmost edge of γ,∑ �t�l
γ

∣∣b�S�l ∣∣ ≤ b�V1�∑ �t�l
γ′

∣∣b�S′�l ∣∣�(3.17)

where γ′ �= �V2� � � � �Vr�, S′
j �= Sj\V1, �S′

j� = k′
j, j = 1� � � � � l and γ′ ∈ �I′ ,

I′ �= I��k′�l�, �k′�l = �k′
1� � � � � k

′
l�. Indeed, let V1� �V1� = m, connect the first

m rows Si, 1 ≤ i ≤ m, 2 ≤ m ≤ l. Then the summation over sk1�1 = · · · =
skm�m =� s̃ in the sum

∑�t�l
γ contributes to

∑
s̃

m∏
i=1

∣∣bski−1� i−s̃

∣∣ ≤
(∑

s̃

b2
ski−1� i−s̃

)1/2(∑
s̃

m∏
i=2

b2
ski−1� i−s̃

)1/2

≤ bm�(3.18)

Thus, (3.16) follows by repeated use of (3.17). ✷

Lemma 3.2. ��I��k�l�� ≤ �2l − l − 1��k1+···+kl�/2.

Proof. According to (3.10), edges of a diagram γ = �V1� � � � �Vr� are
ordered, and any edge Vq, 2 ≤ �Vq� ≤ l may be chosen in

∑l
i=2

(
l
i

) = 2l − l − 1
ways. The number r of edges does not exceed �k1 +· · ·+kl�/2. This proves the
lemma. ✷
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Remark 3.1. If l = 2 and �εt� is a Gaussian sequence, then condition
(3.14) of Lemma 3.1 can be replaced by

µ2b
2 < 1

and Assumption 4(l) by

7µ1/2
4 b2 < 1�

This easily follows, noting that Eε0 = Eε3
0 = 0 implies that

�γ ∈ �I��k�4�� µγ = 0� ≤
((

4
2

)
+
(

4
4

))�k1+···+k4�/2
= 7�k1+···+k4�/2�

Write

xi�j �= si−1� j − si� j� i = 1� � � � � kj� j = 1� � � � � l

for the differences of the arguments (3.7). Below, we need the following lemma.

Lemma 3.3. Assume that

sup
t≥1

t�1+θ�/2�bt� < ∞�(3.19)

where 0 < θ < 1. Let γ = �V1� � � � �Vr� ∈ �I be a diagram, and �i1� j1�� �i2� j2�
be arbitrary elements of the table I = I��k�l�, which do not belong to the same
row or the same edge. Then for any L1�L2 > 0,∑ �s0�l

γ �b�S�l ��(�xi1� j1
� > L1� �xi2� j2

� > L2
) ≤ Cb��k�l�L−θ

1 L−θ
2 �(3.20)

In (3.20), the constant C does not depend on �k�l, �s0�l, γ, and ��k�l� �= �I� =
k1 + · · · + kl.

Proof. This follows that of (3.16), where we use the Cauchy–Schwarz
inequality (3.17) for any edge which contains (i1� j1) or (i2� j2). Consider an
edge ��i1� j1�� �i� j��� �i� j� = �i2� j2�, j = j1. Assume first s �= si−1� j ≥
si1−1� j1

=� s1. Then the summation over si1�j1
= si� j =� s̃ contributes to∑

S̃

�bs1−s̃bs−s̃����s1 − s̃� > L1�

≤ C
∑

u>L1

u−�1+θ�/2�u−�s1 −s��−�1+θ�/2 ≤C
∑
v>0

�v+L1�−�1+θ�/2v−�1+θ�/2 ≤CL−θ
1 �

For s ≤ s1, a similar bound follows easily. By evaluating in a similar way the
sum over si2� j2

, one obtains (3.20). ✷
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4. The intermediate term ζt� l. From (2.19), it follows that ζt� l� t ∈ � is
strictly stationary, with zero mean and (cross)autocovariance

Cov�ζt� l′� ζ0� l′′ � = l′l′′

1 − b2

∞∑
j=1

aj� l′at+j� l′′�(4.1)

determined by the last convolution. It turns out, that the weights at� l have
similar asymptotic behavior to bt under Assumption 3.

Lemma 4.1. Assume conditions (3.14) and (3.19). Then

�Gt� l� ≤ Ct−1−θ�(4.2)

Furthermore, under Assumption 3,

at� l = E�σl
0�bt + o�bt��(4.3)

Proof. Let us first prove (4.3). By (2.21), (4.2),

∞∑
s=1

Gs� l = H∞� l − H0� l = E�σl
0� − aE�σl−1

0 ��

Hence, (4.3) follows from (2.20),∑
s>t

�Gs� l� = o�1�(4.4)

and ∑
o<s<t

�Gs� l��bt − bt−s� = o�bt��(4.5)

Here, (4.4) is obvious from (4.2). To show (4.5), write∑
0<s<t

�Gs� l��bt − bt−s� ≤ ∑
0<s<t/2

�Gs� l��bt − bt−s�

+ ∑
t/2≤s<t

�Gs� l��bt−s� + �bt�
∑

t/2≤s<t

�Gs� l�

=� J1 + J2 + J3�

From (4.2) and (3.19), the estimates Ji = O�t−�1+3θ�/2� = o�bt�, i = 2�3 eas-
ily follow. Next, J1 = �bt�

∑
0<s<t/2 �Gs� l�ht�s�, where ht�s� �= �1 − �bt−s/bt��

vanishes as t → ∞ for each fixed s ≥ 1, and ht�s� is uniformly bounded for
0 < s < t/2, implying

∑
0<s<t/2 �Gs� l�ht�s� = o�1� by (4.2). This proves (4.5) and

(4.3).
It remains to prove (4.2). Observe, that

E�σt�� +
s � =

t−s∑
k=0

∑
s≤sk<···<s1<t

bt−s1
bs1−s2

· · · bsk−1−sk
εs1

· · · εsk
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has similar structure to σt. Therefore the expectation Ht−s� l can be written
similarly to (3.11):

Ht−s� l = ∑
�k�l

∑
γ∈�I��k�l�

µγ

∑ �t�l
γ b�S�l��S1 ⊂ �s� t���

Therefore,

Gt−s� l = ∑
�k�l

∑
γ∈�I��k�l�

µγ

∑ �t�l
γ b�S�l��∧�S1� = s��(4.6)

where ∧�S� = min�s � s ∈ S�. With (3.14), (3.15) in mind, the bound (4.2) and
the lemma follow from (4.6) and Lemma 4.2 below. Lemma 4.1 is proved. ✷

Lemma 4.2. Let bi� i ≥ 1 satisfy the condition

sup
i≥1

i�1+θ�/2�bi� ≤ D�(4.7)

where D ≥ 1. Then for any �k�l ∈ �l
+ and any diagram γ ∈ �I��k�l�,∑ �t�l

γ �b�S�l ���∧�S1� = s� ≤ D3�k�3b�k��t − s�−1−θ�(4.8)

where �k� = k1 + · · · + kl.

Proof. Write Nγ� t−s for the left-hand side of (4.8). By homogeneity of both
sides of (4.8) with respect to b, it suffices to show the lemma for b = 1, in which
case according to (3.16) ∑

s<t

Nγ� t−s ≤ 1�(4.9)

We prove (4.8) by induction in the number r of edges of γ = �V1� � � � �Vr�.
For r = 1, it follows easily; indeed, in this case, Nγ� t−s = �bt−s��V1� ≤ b2

t−s ≤
D2�t − s�−1−θ.

To show the induction step r−1 → r, let Vq∗�1 ≤ q∗ ≤ r be the edge which
contains the element �k1�1� [= the far left element of the first row of the table
I = I��k�l�]. There are two possibilities: (a) q∗ > 1 and (b) q∗ = 1. In the case
(a), use the Cauchy–Schwarz inequality as in (3.17) to obtain

Nγ� t−s = ∑ �t�l
γ �b�S�l ���∧�S1� = s� ≤ ∑ �t�l

γ′ �b�S′�l ���∧�S′
1� = s� = Nt−s� γ′ �

The diagram γ′ has r′ = r − 1 < r edges and therefore satisfies the inductive
assumption, thereby proving the induction step.

Let now Vq∗ = V1 be the far left edge of γ. Without loss of generality,
assume �V1� = m ≥ 2 connects the first m rows Ii, 1 ≤ i ≤ m of the table
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I = I��k�l�. Then using the notation of (3.17 and 3.18), one can rewrite the
product �b�S�

l � in (4.8) as

�b�S�l � = �b�S′�l �
m∏
i=1

�bski−1�i −s� = �b�S′�l �
m∏
i=1

�bsk′
i
� i−s��(4.10)

Using the inequalities �bsk′
1�1

−sbsk′
2�2

−s� ≤ �1/2��b2
sk′

1�1
−s + b2

sk′
2�2

−s�, �bi� ≤ 1 ∀ i,

from (4.10) one obtains

2Nγ� t−s ≤ ∑
s<s̃<t

b2
s̃−s

∑ �t�l
γ′ �b�S′�l �(��∧�S′

1� = s̃� + ��∧�S′
2� = s̃�)

≤ 2
∑

s<s̃<t

b2
s̃−sNγ′� t−s̃�

Put �k′� �= k′
1 + · · · + k′

l; then �k′� ≤ �k� + 2 and

Nγ� t ≤ ∑
t/�k′ �<u<t

b2
uNγ′� t−u + ∑

t−t/�k′ �≤t−u<t

b2
uNγ′� t−u�(4.11)

Here, b2
u��u > t/�k′�� ≤ D2�u�−1−θ��u > t/�k′�� ≤ D2�k′�1+θt−1−θ. Similarly, by

the inductive assumption.

Nγ′� t−u��t − u ≥ t − t/�k′�� ≤ D3�k′�3�t − u�−1−θ��t − u ≥ t − t/�k′��
≤ D3�k′�3��k′�/��k′� − 1��1+θt−1−θ�

Substituting these inequalities into the right-hand side of (4.11) and using
(4.9) and b = 1, we obtain

t1+θNγ� t ≤ D2�k′�1+θ+D3�k′�3��k′�/��k′�−1��1+θ ≤ D3��k′�2+�k′�3��k′�/��k′�−1�2��
In view of the inequality n2 + n3�n/�n− 1��2 ≤ �n+ 2�3, which is true for any
integer n ≥ 2, this proves the induction step r − 1 → r and Lemma 4.2 also.

✷

From (4.1) and Lemma 4.1 we deduce the corollary.

Corollary 4.3. Under Assumptions 3 and 4(l), for any 1 ≤ l′, l′′ ≤ l,

Cov�ζt�l′� ζ0�l′′ � = l′l′′E�σl′
0 �E�σl′′

0 � Cov�σt� σ0��1 + o�1���(4.12)

Lemma 4.4. Under the assumptions of Theorem 2.2, relation (2.16) holds.

Proof. Note from (2.1) that for t ≥ 1 σt can be written as

σt = a
∞∑
k=0

∑
sk<···<s1<1

bt−s1
· · · bsk−1−sk

εs1
· · · εsk

= a−1
t−1∑
s=0

�E�σt�� +
s � − E�σt�� +

s+1��E�σs��−1� + E�σt��−1��
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where

E�σt�� +
s � − E�σt�� +

s+1� = a
t∑

k=1

∑
s=sk<···<s1<t

bt−s1
· · · bsk−1−sk

εs1
· · · εsk(4.13)

and

E�σs��−1� = a
∞∑
k=0

∑
sk<···<s1<0

bs−s1
· · · bsk−1−sk

εs1
· · · εsk �

Set g+
s �= a−1�E�σs�� +

s �−E�σs�� +
s+1��, 0 ≤ s ≤ t−1, g+

t �= 1, g−
s �= E�σs��−1�,

0 ≤ s ≤ t. Then

σt =
t∑

s=0

g+
s g

−
s �

Hence

Cov�ν0l� σ
l
t � =E��εl0 − Eεl0�σl

0�σl
t − Eεlt��

=
t∑

s1�����sl=0� min si=0

E

[
�εl0 − Eεl0�

l∏
i=1

g+
si

]
E

[
σl

0

l∏
i=1

g−
si

]
�

(4.14)

where we use the fact that σl
0� g

−
s �0 ≤ s ≤ t are �−1-measurable, and g+

s �

1 ≤ s ≤ t are � +
1 -measurable. Note that E�g−

s �2l ≤ Eσ2l
s = Eσ2l

0 < ∞ by
Assumption 4�l� and Lemma 3.1, and therefore∣∣∣∣∣E

[
σl

0

l∏
i=1

g−
si

]∣∣∣∣∣ ≤ �Eσ2l
0 �1/2

l∏
i=1

(
E�g−

si
�2l)1/2l ≤ Eσ2l

0(4.15)

is bounded uniformly in si�1 ≤ i ≤ l. On the other hand, taking into account
the definition of g+

s and (4.13), the first expectation on the right-hand side of
(4.14) can be written similarly to (3.12) and (3.13) with the help of diagrams,
yielding

t∑
s1�����sl=0� min si=0

∣∣∣∣∣E
[
�εl0 − Eεl0�

l∏
i=1

g+
si

]∣∣∣∣∣
≤ C

∑
�k�l

µ
�k�/l
2l

∑
γ∈�I��k�l�

∑ �t�l
γ �b�S�l ���∧�S1� = 0�

≤ Ct−1−θ
∑
�k�l

µ
�k�/l
2l �2l − l − 1��k�/2�

according to Lemmas 3.1 and 4.2. The last sum being finite under Assumption
4�l�, this completes by (4.14), (4.15) the proof of Lemma 4.4. ✷
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5. The remainder term ytl. In this section we study the asymptotic
behavior of the autocovariances of the difference ytl = σl

t − lE�σl
0�σt, to which

end, we first study the (cross)autocovariances Cov�σl′
t � σ

l′′
0 � for l′� l′′ = 1� � � � � l.

Lemma 5.1. Under Assumptions 3 and 4�l�, for any 1 ≤ l′� l′′ ≤ l,

Cov�σl′
t � σ

l′′
0 � = Cov�ζt�l′� ζ0�l′′ � + O�t−θ−λ��(5.1)

where

λ = θ�1 − θ�/�1 + θ� > 0�(5.2)

Proof. To prove the lemma, we write the covariances in terms of diagrams
and perform cancellation in the corresponding expressions, leaving out terms
which are O�t−θ−λ�.

We start by recalling the diagram formula (3.12) for the covariance
Cov�σl′

t � σ
l′′
0 �, where the summation is taken over block-connected diagrams.

We compare this formula with Cov�ζt�l′� ζ0�l′′ � which we rewrite in a similar
way, using a special type of diagram which we call regular. Roughly speaking, a
regular diagram connects the two l-blocks I′� I′′ of the table I = I��k′�l� �k′′�l�
only by edges having two elements and all belonging to the same pair of rows.

To give a formal definition, let �i′�i′′ �1 ≤ i′ ≤ l′�1 ≤ i′′ ≤ l′′� denote the class
of edges V ⊂ I = I′ ∪I′′ such that �V� = 2 and V∩I′

i′ = �, V∩I′′
i′′ = �, where

I′
i′� I

′′
i′′ , 1 ≤ i′ ≤ l′, 1 ≤ i′′ ≤ l′′ denote rows of I′ = I��k′�l′ �, I′′ = I��k′′�l′′ �,

respectively.

Definition 5.2. A diagram γ = �V1� � � � �Vr� ∈ �I will be said regular if it
is block connected and there exist 1 ≤ i′ ≤ l′, 1 ≤ i′′ ≤ l′′ such that, for any
q = 1� � � � � r, either Vq ∈ �i′�i′′ , or Vq ⊂ I′, or Vq ⊂ I′′ hold, and, moreover, if
Vq ∈ �i′�i′′ for some 1 ≤ q ≤ r, then Vq′ ∈ �i′�i′′ for any 1 ≤ q′ < q such that

Vq′ ∩ �I′
i′ ∪ I′′

i′′ � = ��(5.3)

The last property says that the edges Vq ∈ �i′�i′′ connecting the blocks I′� I′′,
connect pairwise consecutive elements of the corresponding rows I′

i′� I
′′
i′′ , start-

ing from the left. A block-connected diagram γ ∈ �I which is not regular will
be called irregular. Write �

reg
I � �

irreg
I for the corresponding classes of diagrams.

By definition,

�
reg
I =

l′⋃
i′=1

l′′⋃
i′′=1

�
reg
I �i′� i′′�(5.4)

is the union of disjoint classes �
reg
I �i′� i′′� corresponding to given i′� i′′ in

Definition 5.2. In general, given a table I, the class �
reg
I may be empty as

well.
Let us introduce one more class of diagrams. Namely, the class �̃

irreg
I ⊂ �

irreg
I

consists of irregular diagrams γ = �V1� � � � �Vr� which are obtained from a
regular diagram γ̃ = �Ṽ1� � � � � Ṽr̃� ∈ �

reg
I �i′� i′′� �1 ≤ i′ ≤ l′�1 ≤ i′′ ≤ l′′�� r̃ > r
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as follows: any edge of γ either coincides with some edge of γ̃, or is a union of
an edge of γ̃ which intersects both blocks I′� I′′, and one or two other edges of
γ̃ lying entirely in one or two different blocks, respectively.

It is not hard to verify, using (2.19–2.22) and (4.6), that the covariance (4.1)
can be written as

Cov�ζt�l′� ζ0�l′′ � = ∑
�k′�l′

∑
�k′′�l′′

∑
γ∈�reg

I ∪�̃irreg
I

µ̃γ

∑ �t�0�l′ �l′′
γ b�S′�l′b�S′′�l′′ �(5.5)

where µ̃γ �= µγ for γ ∈ �
reg
I , and, in the case when γ ∈ �̃

irreg
I is obtained from

a diagram γ̃ as described above, µ̃γ �= µγ̃. It follows from (3.15) that µ̃γ and
µγ satisfy a similar inequality,

max��µγ�� �µ̃γ�� ≤ 2�µ��I�/l
l = 2�µ����k′�l′ �+��k′′�l′′ ��/l

l �(5.6)

��k′�l′ � = k′
1 + · · · + k′

l′� ��k′′�l′′ � = k′′
1 + · · · + k′′

l′′ being the number of elements of
the blocks I′� I′′, respectively, and l = l′ + l′′. Then, by comparing (3.12) and
(5.5), it is easily seen that the relation (5.2) follows from∑

�k′�l′

∑
�k′′�l′′

∑
γ∈�irreg

l

�µ��I�/l
l

∑ �t�0�l′ �l′′
γ

∣∣b�S′�l′b�S′′�l′′ ∣∣ = O�t−θ−λ��(5.7)

With Lemma 3.2 in mind, (5.7) follows from the lemma.

Lemma 5.2. For any A > b, there is a constant C < ∞ such that, for any

�k′�l′ ∈ �l′
+� �k′′�l′′ ∈ �l′′

+ and any γ ∈ �
irreg
I , I = I��k′� k′′�l′�l′′ �,∑ �t�0�l′ �l′′

γ

∣∣∣b�S′�l′b�S′′�l′′
∣∣∣ ≤ CA�I�t−θ−λ�(5.8)

Proof. Let γ ∈ �V1� � � � �Vr� ∈ �
irreg
I , I = I′ ∪ I′′, I′ = I��k′�l′ �, I′′ =

I��k′′�l′′ � be given. Put q∗ = max�q = 1� � � � � r:Vq ∩ I′ = ��Vq ∩ I′′ = ��. In
other words, Vq∗ is the first edge from the right which connects I′� I′′. There
are two possibilities:

(c.1) �Vq∗ � = 2.
(c.2) �Vq∗ � ≥ 3.

Consider the case (c.1). Let

Vq∗ = ��i′
∗� j

′
∗�� �i′′

∗� j
′′
∗��� s∗ �= si′∗�j′∗ = si′′∗�j′′∗ �

�i′
∗� j

′
∗� ∈ I′� �i′′

∗� j
′′
∗� ∈ I′′. Choose L �= t�1−θ�/�1+θ� = o�t�. Then

wt �= ∑ �t�0�l′ �l′′
γ

∣∣b�S′�l′b�S′′�l′′
∣∣=∑ �t�0�l′ �l′′

γ

∣∣b�S′�l′b�S′′�l′′
∣∣��s∗ < −L�

+∑ �t�0�l′ �l′′
γ

∣∣b�S′�l′b�S′′�l′′
∣∣��s∗ > −L�

= � w−
t�L + w+

t�L�

(5.9)
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Consider w+
t�L. Let

I∗ �=
r⋃

q=q∗

Vq = �Vq∗� ∪ I′
∗ ∪ I′′

∗�

where, by the definition of Vq∗ ,

I′
∗ �= ⋃

q=q∗+1�����r�Vq⊂I′
Vq� I′′

∗ �= ⋃
q=q∗+1�����r�Vq⊂I′′

Vq�

Then I′
∗ = I��k′

∗�l′ �, I′′
∗ = I��k′′

∗�l′′ �, where �k′
∗�l′ = �k′

1�∗� � � � � k
′
l′�∗�� �k′′

∗�l′′ =
�k′′

1�∗� � � � � k
′′
l′′�∗� are the vectors of lengths of rows of the tables I′

∗ ⊂ I′� I′′
∗ ⊂ I′′,

respectively. Then, by applying the Cauchy–Schwarz inequality as in (3.17),
one obtains

w+
t�L ≤B�I\I∗� ∑

s∗>−L

∑ �t�l′
γ′∗

∑ �0�l′′
γ′′∗

�bsi′∗−1�j′∗ −s∗ ��bsi′′∗−1�j′′∗ −s∗ �
∣∣b�S′

∗�l′
∣∣∣∣b�S′′

∗ �l′′ ∣∣
=B�I\I∗� ∑

s∗>−L

∑
s∗<s′∗<t

∑
s∗<s′′∗<0

�bs′∗−s∗ ��bs′′∗−s∗ �

×∑ �t�l′
γ′∗

∣∣b�S′
∗�l′
∣∣��∧�S′

j′�∗� = s′
∗�
∑ �0�l′′

γ′′∗

∣∣b�S′′
∗ �l′′ ∣∣��∧�S′′

j′′�∗� = s′′
∗��

(5.10)

where �S′
∗�l′ �= �S′

1�∗� � � � � S
′
l′�∗�, �S′′

∗�l′′ �= �S′′
1�∗� � � � � S

′′
l′′�∗�, S′

i�∗ �= �si�j: �i� j� ∈
I′

∗�, S′′
i�∗ �= �si�j: �i� j� ∈ I′′

∗� are the corresponding sub-collections of integers
(3.9) determined by the diagrams γ′

∗ = �Vq:Vq ⊂ I′
∗�� γ′′

∗ = �Vq:Vq ⊂ I′′
∗�.

Applying Lemma 4.2 to (5.10), one obtains

w+
t�L ≤CB�I��I′�3�I′′�3 ∑

−L<s∗<0

∑
s∗<s′∗<t

∑
s∗<s′′∗<0

�s′
∗ − s∗�−�1+θ�/2

× �s′′
∗ − s∗�−�1+θ�/2�t − s′

∗�−1−θ�s′′
∗ �−1−θ�

(5.11)

Hence, by applying the inequality∑
s′

�s′ − s�−�1+θ�/2
+ �t − s′�−1−θ

+ ≤ C�t − s�−�1+θ�/2
+ �(5.12)

(where �t�−β
+ �= �t�−β ∧ 1� β > 0� t ∈ �) and using �I′�3 �I′′�3 ≤ �I�3, we get

w+
t�L ≤Cb�I��I�3 ∑

−L<s∗<0

�s∗�−�1+θ�/2�t − s∗�−�1+θ�/2

≤Cb�I��I�3t−�1+θ�/2
L∑

s=1

s−�1+θ�/2

≤Cb�I��I�3L�1−θ�/2t−�1+θ�/2 = Cb�I��I�3t−θ−λ�

(5.13)

where λ = θ�1 − θ�/�1 + θ�.
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Consider w−
t�L. As γ is irregular, by definition it contains an edge Vq∗∗�

q∗∗ < q∗ which either:

(c.1.1) connects the blocks I′� I′′, but does not belong to the same class �j′∗�j′′∗
as Vq∗ does or

(c.1.2) Vq∗∗ belongs to the block I′ and contains an element from the line
I′
j′∗

, or Vq∗∗ belongs to the block I′′ and contains an element from the line I′′
j′′∗

.

Consider case (c.1.1). Assume for simplicity �Vq∗∗ � = 2�Vq∗∗ = ��i′
∗∗� j

′
∗∗��

�i′′
∗∗� j

′′
∗∗��, where j′

∗∗ = j′
∗� j

′′
∗∗ = j′′

∗ (the remaining cases can be treated simi-
larly). Put s∗∗ �= si′∗∗�j′∗∗ = si′′∗∗�j′′∗∗ . As the common arguments (3.9) are ordered
according to the ordering of edges, we have in the sum w−

t�L the inequalities

s∗∗ < s∗ < −L�(5.14)

As s0�j′∗ = t, among the intervals xi�j′∗ = si−1�j′∗ − si�j′∗� i = 1� � � � � i′
∗ in the sum

w−
t�L, there exists at least one “large” interval xi′•�j′′∗ of length

xi′•�j′∗ > �t + L�/�I′
j′∗

� ≥ t/�I′� ∃i′
• = 1� � � � � i′

∗�(5.15)

In a similar way it follows from (5.14) that among the intervals xi�j′′∗∗ =
si−1�j′′∗∗ − si�j′′∗∗� i = 1� � � � � i′′

∗∗ there is at least one “large” interval xi′′• �j′′∗∗ of
length

xi′′• �j′′∗∗ > L/�I′′
j′′∗∗

� ≥ L/�I′′� ∃i′′
• = 1� � � � � i′′

∗∗�(5.16)

Moreover, the two vertices �i′
•� j

′
∗�� �i′′

•� j
′′
∗∗� do not belong to the same edge

Vq of our diagram. (Indeed, as they belong to the different blocks, so such an
edge, if it exists, must be necessarily be either Vq∗ or Vq∗∗ , which is clearly
impossible. Hence, by (5.15, 5.16) and Lemma 3.3,

w−
t�L ≤ CB�I��t/�I′��−θ�L/�I′′��−θ ≤ CB�I��I�2�Lt�−θ = CB�I��I�2t−θ−λ�(5.17)

Relations (5.12), (5.17) prove the lemma in case (c.1.1).
Case (c.1.2). Assuming again for simplicity that �Vq∗∗ � = 2,

Vq∗∗ = ��z′′
∗∗� u

′′
∗∗�� �i′′

∗∗� j
′′
∗∗�� ⊂ I′′�

where u′′
∗∗ = j∗′′ (the remaining cases can be treated similarly). Put s∗∗ �=

sz′∗∗�u′∗∗ = si′′∗∗�j′′∗∗ . Again (5.14) holds, and (5.15, 5.16) are valid. Therefore, we
get (5.17) using the same argument as above.

Case (c.2) remains. Assume for simplicity Vq∗ = ��i′
∗� j

′
∗�� �i′′

∗� j
′′
∗�� �i′′

∗∗� j
′′
∗∗��,

where the last two vertices belong to I′′. Then similarly to (5.11) and three
times using (5.12), one obtains

wt ≤ Cb�I��I�3 ∑
s∗<0

∑
s∗<s′∗<t

∑
s∗<s′′∗<0

�s′
∗ − s∗�−�1+θ�/2�s′′

∗ − s∗�−1−θ�t − s′
∗�−1−θ�s′′

∗ �−1−θ

≤ Cb�I��I�3t−�1+θ�/2�

where �1 + θ�/2 > θ + λ �0 < θ < 1�. Lemma 5.2 is proved. ✷
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Corollary 5.3. Under the conditions of Lemma 5.1,

Cov �σl
t � σ

l
0� = d2

l Cov �σt� σ0��1 + o�1��
and

Cov �ytl� y0l� = o�t−θ��

Proof. The first relation follows from Lemma 5.1 and Corollary 4.3. To
show the second one, write

Cov�ytl� y0l� = Cov�σl
t � σ

l
0� − dl�Cov�σl

t � σ0� + Cov�σt� σ
l
0�� + d2

lCov�σt� σ0��
and again apply Lemma 5.1 and Corollary 4.3. ✷
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