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Cumulative broadband network traffic is often thought to be well
modeled by fractional Brownian motion (FBM). However, some traffic
measurements do not show an agreement with the Gaussian marginal
distribution assumption. We show that if connection rates are modest
relative to heavy tailed connection length distribution tails, then stable Lévy
motion is a sensible approximation to cumulative traffic over a time period.
If connection rates are large relative to heavy tailed connection length
distribution tails, then FBM is the appropriate approximation. The results are
framed as limit theorems for a sequence of cumulative input processes whose
connection rates are varying in such a way as to remove or induce long range
dependence.

1. Introduction. Recent analysis of broadband measurements shows that the
data sets exhibit three characteristic properties: heavy tails, self-similarity and
long range dependence (LRD). Traditional traffic models using independent inter-
arrival times of jobs with distribution tails of job sizes which are exponentially
bounded imply short range dependence in the traffic and hence are not appropriate
for describing high-speed network traffic. Empirical evidence on the existence
of self-similarity and LRD in traffic measurements can be found in [9, 11, 26].
A common explanation for observed LRD and self-similarity of network traffic is
heavy tailed transmission times. Sometimes, this is due to file lengths being heavy
tailed [2, 8, 10–13] and sometimes due to heavy tailed burst lengths, where a burst
is a period where packet arrivals are not separated by more than some threshold
value [15, 32, 50]. Analysts are largely in agreement about the self-similar nature
of aggregate traffic, at least at time scales above a certain threshold. Empirical [2,
50] and theoretical [17–19, 45] evidence supports the heavy tailed explanation of
the self-similarity.
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The goal of this paper is to mathematically demonstrate that with heavy tailed
connection lengths and constant transmission rates, cumulative traffic at large time
scales can look either heavy tailed or Gaussian depending on whether the rate at
which transmissions are initiated (crudely referred to as the connection rate) is
moderate or quite large.

Various theoretical studies exist which point out that the distribution of
cumulative traffic at large scales can be approximated by a stable law ([15, 24, 37])
or by a normal law ([27, 45, 25]). Empirical conventional wisdom is that traffic
at a heavily loaded link, when sufficiently aggregated, should look Gaussian.
Physical reasons for appearance of the Gaussian marginals include the relatively
low bandwidth of network links and the effect of control mechanisms such as
TCP whose control window limits rates at which packets are sent by different
connections. In practice, however, statistical fitting of either a normal or stable
law to cumulative traffic can be problematic. For example, all estimated marginal
distributions of the traffic traces studies in [15] are far from normal. Using
Nolan’s [31] maximum likelihood method, stable laws were fit to a trace called
UCB 10s but estimates of α, the shape parameter of the fitted stable law, could
not be reproduced by other estimation methods. Thus, there is room for doubt that
either stable or normal is an appropriate fit for these data. Furthermore, in [15],
when analyzing another UCB trace, it was only when a synthetic trace was created
from the UCB trace by artificially making transfer rates constant and equal to
unity, that fractional Brownian motion became an acceptable model for cumulative
traffic.

There are two related models which frame the mathematical discussion:

MODEL (1). the superposition of M ON/OFF sources (see, e.g., [17–19, 26,
45, 50, 44, 28])

and

MODEL (2). the infinite source Poisson model, sometimes called the M/G/∞
input model (see [1, 19–21, 29, 35, 41, 25, 23]).

In Model (1), traffic is generated by a large number of independent ON/OFF
sources such as workstations in a big computer lab. An ON/OFF source transmits
data at a constant rate to a server if it is ON and remains silent if it is OFF.
Every individual ON/OFF source generates an ON/OFF process consisting of
independent alternating ON- and OFF-periods. The lengths of the ON-periods
are identically distributed and so are the lengths of OFF-periods. Support for this
model in the form of statistical analysis of Ethernet Local Area Network traffic of
individual sources was provided in [50]; the conclusions of this study are that the
lengths of the ON- and OFF-periods are heavy tailed and in fact Pareto-like with
tail parameter between 1 and 2. In particular, the lengths of the ON- and OFF-
periods have finite means but infinite variances. Further evidence is in [10, 11, 26]
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which present evidence of Pareto-like tails in file lengths, transfer times and idle
times in World Wide Web traffic.

Model (2), the infinite source Poisson model, assumes transmission initiations
or connections by sources at times of a rate λ Poisson process. The transmission
durations are iid random variables independent of the times of connection
initiation. The transmission lengths have finite mean, infinite variance and heavy
tails. During a transmission, a source transmits at unit rate.

For both models, the process we study is A(t), the cumulative input in [0, t] by
all sources. Because both models assume unit rate transmissions, we may write

A(t)=
∫ t

0
N(s) ds, t > 0,

where N(s) is the number of active sources at time s. For large T , we think of
(A(T t), t ≥ 0) as the process on large time scales. Our results for both models
show that if the connection rate is allowed to depend on T in such a way that it has
a growth rate in T which is moderate (in a manner to be made precise), then A(T ·)
looks like an α-stable Lèvy motion, while if the connection rate grows faster than
a critical value, A(T ·) looks like a fractional Brownian motion.

Section 2 defines the models formally and Section 3 precisely defines slow and
fast growth for the connection rate. Slow growth dissipates correlation in the input
rate process while fast growth preserves it. Subsequent sections show that for our
models, slow growth implies that cumulative input can be approximated by a stable
Lévy motion while fast growth means cumulative input should be approximated
by fractional Brownian motion. Since precise dichotomous conditions are given
for both types of asymptotic behaviors, some guidance is provided about when
to expect each approximation to be applicable in current and future networking
architectures. Such guidance should, of course, be tempered by the realization that
both Models (1) and (2) are simplifications of reality.

2. Model formulation. We now define our two related models and give basic
discussion.

2.1. The ON/OFF model. Consider first a single ON/OFF source such as a
workstation as described in [18]. During an ON-period, the source generates traffic
at a constant rate 1, for example, 1 byte per time unit. During an OFF-period,
the source remains silent and the input rate is 0. Let Xon,X1,X2, . . . be iid non-
negative random variables representing the lengths of ON-periods and Yoff, Y1,

Y2, . . . be iid non-negative random variables representing the lengths of OFF-
periods. We also write

Zi =Xi + Yi, i ≥ 0.

The X- and Y -sequences are assumed independent. For any distribution function
F we write F = 1 − F for the right tail. By Fon/Foff we denote the common
distribution of ON/OFF-periods.
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In what follows, we assume that

F on(x)= x−αonLon(x) and F off(x)= x−αoffLoff(x), x > 0,(2.1)

where αon, αoff ∈ (1,2) and Lon,Loff are slowly varying at infinity. Hence, both
distributions Fon and Foff have finite means µon and µoff but their variances are
infinite. Notice that the tail parameters αon and αoff may be different, hence the
extremes of the ON- and OFF-periods can differ significantly. For the purposes of
this paper, we always assume that

α := αon < αoff.(2.2)

Assuming (2.2) makes the results for Model (1) and Model (2) almost identical.
The case of general αon and αoff can be treated in a similar way; see [30].

Consider the renewal sequence generated by the alternating ON- and OFF-
periods (cf. [18]). Renewals happen at the beginnings of the ON-periods, the inter-
arrival distribution is Fon ∗ Foff and the mean inter-arrival time

µ= EZ1 =µon+µoff.

In order to make the renewal sequence stationary (see [39, page 224]), a delay
random variable T0 is introduced which is independent of the Xi ’s and the Yi’s.
A stationary version of the renewal sequence (Tn) is then given by

T0, Tn = T0 +
n∑

i=1

Zi, n≥ 1.(2.3)

One way to construct the delay variable T0 (see [18]) is as follows. Let B , X(0)
on

and Y
(0)
off be independent random variables, independent of {Yoff, (Xn), (Yn)}, such

that B is Bernoulli with

P (B = 1)= µon/µ= 1− P (B = 0)

and

P (X(0)
on ≤ x)= 1

µon

∫ x

0
F on(s) ds =: F (0)

on (x),

P (Y
(0)
off ≤ x)= 1

µoff

∫ x

0
F off(s) ds =: F (0)

off (x).

Define

T0 = B(X(0)
on + Yoff)+ (1−B)Y

(0)
off .

The renewal sequence (2.3) is then stationary.
The ON/OFF process of one source is now defined as the indicator process

Wt = B 1[0,X(0)
on )

(t)+
∞∑
n=0

1[Tn,Tn+Xn+1)(t), t ≥ 0.(2.4)
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The ON/OFF process W is a binary process with Wt = 1 if t is in an ON-period
and Wt = 0 if t is in an OFF-period. The stationarity of the renewal sequence (2.3)
implies strict stationarity of the process W with mean

EWt = P (Wt = 1)=µon/µ.

The precise rate of decay for γW(h), the covariance function of the stationary
process W , under the assumptions (2.1) and αon < αoff is given in [18]. As h→∞,

γW(h)∼ µ2
off

(α− 1)µ3 h−(α−1)Lon(h)= (const) hF on(h).(2.5)

The process W exhibits LRD (see [3]) in the sense that∑
k

|γW (k)| =∞,(2.6)

Now consider a superposition of M iid ON/OFF sources (W(m)
t , m= 1, . . . ,M ;

t ≥ 0) feeding a server. The number of active sources at time t is

N(t)=NM(t)=
M∑

m=1

W
(m)
t , t ≥ 0.

Note that N(t) is the input rate to the server at time t and can be referred to as the
workload process. Since the sources are iid, (2.5) implies that N exhibits LRD in
the spirit of (2.6), since the stationary version of N satisfies

γN(h)=
M∑
i=1

γW(i)(h)= (const)MhF on(h).

The cumulative input of work to the server or total accumulated work by time t is

A(t)=AM(t)=
∫ t

0
N(s) ds, t ≥ 0.(2.7)

The behavior of the cumulative input process A(t) for the superposition of a large
number of iid ON/OFF sources has been studied in [50, 45] where it was found
that the cumulative input process (properly normalized) of an increasing number
of iid ON/OFF sources converges to fractional Brownian motion in the sense
of convergence of the finite dimensional distributions. Their result is formulated
as a double limit: first, the number M of sources goes to infinity and then the
time-scaling parameter T converges to infinity. This order of taking limits is
crucial for obtaining fractional Brownian motion as limit. When limits are taken
in reversed order, the limits of the finite dimensional distributions are those of
infinite variance stable Lévy motion. The increment process of fractional Brownian
motion, fractional Gaussian noise, exhibits LRD reflecting the LRD in the original
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workload process. This is in contrast to stable Lévy motion, which while self-
similar, has increments which are independent.

In [50, 45] a double limit is involved and the limit regime is sequential. This
sequential procedure is unsatisfactory both theoretically and in practice. (Similar
remarks are made in [22].) The limiting behavior of the cumulative input process
depends on the relative sizes of the number of sources M , the time-scaling
parameter T and the tail probabilities of the transmission lengths. We study
simultaneous limit regimes, in which both M and T go to infinity at the same
time. We assume that M =MT goes to infinity as T →∞. The ON/OFF models
change as T →∞, and we will refer to the T th model. The number of sources
M =MT plays the role of the connection rate.

2.2. The infinite source Poisson model. Let ("k,−∞< k <∞) be the points
of a rate λ homogeneous Poisson process on R, labeled so that "0 < 0 <

"1 and hence {−"0,"1, ("k+1 − "k, k �= 0)} are iid exponentially distributed
random variables with parameter λ. The random measure which counts the
points is denoted by

∑∞
k=−∞ ε"k

and is a Poisson random measure (PRM) with
mean measure λL, where L stands for Lebesgue measure. We imagine that a
communication system has an infinite number of nodes or sources, and at time
"k a connection is made and some node begins a transmission at constant rate to
the server. As a normalization, this constant rate is taken to be unity. The lengths
of transmissions are random variables Xk . We assume Xon,X1,X2, . . . are iid and
independent of ("k) and

P (Xon > x)= F on(x)= x−αL(x), x > 0, 1 < α < 2,(2.8)

where L is a slowly varying function. Since α ∈ (1,2), the variance of Xon is
infinite and its mean µon is finite. We will need the quantile function

b(t)=
(
1/F on

)←
(t), t > 0(2.9)

which is regularly varying with index 1/α. Here and in what follows, for a given
non-decreasing function g we define the left-continuous generalized inverse of g
as

g←(y)= inf {x : g(x)≥ y} .
We note that

ν =
∞∑

k=−∞
ε("k,Xk),(2.10)

the counting function on R× [0,∞] corresponding to the points {("k,Xk)}, is a
two dimensional Poisson process on R × [0,∞] with mean measure λL × Fon;
cf. [38].
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The first quantity of interest is N(t), the number of active sources at time t ,
which has representation

N(t)=NT (t)=
∞∑

k=−∞
1["k≤t<"k+Xk]

(2.11)
= ν({(s, y) ∈R× (0,∞] : s ≤ t < s + y}).

The notation NT refers to the fact that we will consider a family of Poisson pro-
cesses indexed by the scaling parameter T > 0 such that the intensity λ = λ(T )

goes to infinity as T →∞. For a fixed T , we will refer to the T th model and
λ= λ(T ) will be referred to as the connection rate.

The second expression in (2.11) makes it clear that for each t , N(t) is a Poisson
random variable with parameter

λL× Fon({(s, y) ∈R× (0,∞] : s ≤ t < s + y})
=

∫ t

s=−∞

∫ ∞
y=t−s

λL(ds)× Fon(dy)

= λ

∫ t

−∞
F on(t − s)ds = λµon.

(2.12)

During a transmission, the transmitting node is sending data to the server at unit
rate. The total cumulative input in [0, t] for the T th model is

A(t)=AT (t)=
∫ t

0
N(s) ds.(2.13)

Analogous to (2.5), we find that heavy tailed transmission times Xk induce LRD
in N . By means of a point process argument dating to Cox [7] we can show that

Cov(N(t),N(t + h))= λ

∫ ∞
h

F on(v) dv ∼ (const) hF on(h)

(2.14)
= (const) h−(α−1) L(h),

as h→∞. High variability in transmission times causes LRD in the rate at which
work is offered.

3. The critical input rate. Recall the measures of dependence given by (2.5)
and (2.14). We will find that cumulative input is well approximated by stable Lévy
motion, a process with independent increments, when the connection rate is slow,
or equivalently when dependence in the T th model disappears as T →∞, while
fractional Brownian motion is the appropriate approximation when the connection
rate is fast or dependence in the T th model remains strong as T →∞. In what
follows, we make precise what a “fast” or “slow” connection rate means in both
the infinite source Poisson model and the superposition of ON/OFF processes. The
definitions for the two models are virtually identical apart from obvious changes
in notation.
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3.1. The infinite source Poisson model. Recall that λ= λ(T ) is the parameter
governing the connection rate in the T th model and suppose λ = λ(T ) is a non-
decreasing function of T . We phrase our condition first in terms of the quantile
function b defined in (2.9). The asymptotic behavior of AT (·) depends on whether

Slow Growth Condition 1: lim
T→∞

b(λT )

T
= 0

or

Fast Growth Condition 2: lim
T→∞

b(λT )

T
=∞

holds. Notice that b(·) is regularly varying with index 1/α.
The next lemma provides an alternate way to express the conditions.

LEMMA 1. Assume Fon satisfies (2.8). Consider the stationary version of the
input rate NT (·).
1. The slow growth condition 1 is equivalent to any of the two conditions

lim
T→∞ λT F on(T )= 0 or lim

T→∞ Cov(NT (0),NT (T ))= 0.

2. The fast growth condition 2 is equivalent to any of the two conditions

lim
T→∞ λT F on(T )=∞ or lim

T→∞Cov(NT (0),NT (T ))=∞.

REMARK. The interpretation of the two conditions in terms of the LRD is
nicely observed in [46].

PROOF OF LEMMA 1. In the case of Condition 1, there exists a function
0 < ε(T )→ 0 such that T ε(T )→∞ and b(λT ) = T ε(T ). Thus, by using the
fact that b is regularly varying with exponent 1/α and Theorem 1.5.12 in [5], we
obtain

λT ∼ 1

F on

((
1

F on

)←
(λT )

)
= 1

F on
(b(λT ))= 1

F on
(T ε(T )).(3.1)

Therefore, Condition 1 and Proposition 0.8(iii) in [38] imply

λT F on(T )∼ F on(T )/F on(T ε(T )) → 0.(3.2)

Conversely, if δ(T ) := λT F on(T )→ 0, then using b←(T )∼ 1/F on(T ), we get

b(λT )

T
∼ b(δ(T )b←(T ))

b(b←(T ))
→ 0,

and so Condition 1 and (3.2) are equivalent. Similarly, Condition 2 is the same as

λT F on(T )→∞.(3.3)
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To get the equivalence in terms of the covariances, use (2.14) and∫ ∞
T

F on(s) ds ∼ (const) T F on(T ),

which follows from Karamata’s theorem for regularly varying functions; see [5].
�

We will see that if the rate of increase of λ satisfies Condition 1, then A(T )

is asymptotically a stable random variable while in the alternate case, it is
asymptotically normal.

Proofs in subsequent sections are expedited by the following fact.

LEMMA 2. If Condition 1 holds, then

lim
T→∞

λT 2F on(T )

b(λT )
= 0,(3.4)

and if Condition 2 holds, this limit is infinite.

PROOF. Assume that Condition 1 holds. As with (3.1), set ε(T )= b(λT )/T →
0 so that ε(T )T →∞. Denoting the ratio in (3.4) by r(T ), we see that

r(T )∼ F on(T )

ε(T )F on(T ε(T ))
,

and using the Karamata representation of a regularly varying function (see [5]), we
obtain

r(T )∼ [ε(T )]−1 exp

{
−

∫ T

T ε(T )
u−1 α(u) du

}
(3.5)

for some function α(u)→ α, as u→∞. Since 1 < α < 2, we may pick δ so small
that α − δ > 1 and since T ε(T )→∞, we have for T sufficiently large, that the
right-hand side in (3.5) is bounded from above by

[ε(T )]−1 exp
{−(α − δ) log

(
1/ε(T )

)}= [ε(T )]α−δ−1,

and the right-hand side converges to zero as T →∞. The proof of an infinite limit
under Condition 2 is similar. �

3.2. The ON/OFF model. Recall the ON/OFF model from Section 2.1. In
analogy with the infinite source Poisson model, it is possible to introduce a slow
and a fast growth condition in terms of the number M = M(T ) of ON/OFF
processes. Assume that M =M(T ) is some integer-valued function such that

M(T ) is non-decreasing in T and limT→∞M(T )=∞.

For ease of presentation we usually suppress the dependence of M on T .
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The role of the Poisson intensity λ= λ(T )→∞ is now played by the number
M =M(T )→∞ of ON/OFF sources. As in the former case we introduce growth
conditions on M =M(T ). For the slow growth condition we again use the quantile
function b of Fon introduced in (2.9). The asymptotic behavior of the cumulative
workload A=AM of M iid sources will depend on whether

Slow Growth Condition 1: lim
T→∞

b(MT )

T
= 0

or

Fast Growth Condition 2: lim
T→∞

b(MT )

T
=∞

holds. These conditions are directly comparable to the critical connection rate for
the infinite source Poisson model. For later use, observe that Lemmas 1 and 2 hold
provided M is substituted for λ.

The next two sections discuss why α-stable Lévy motion is the appropriate limit
under slow growth. We begin by studying this result in the slightly simpler context
of the infinite source Poisson model.

4. α-stable approximations for the infinite source Poisson model under
slow growth. In this section we assume Condition 1 holds and show why A is
asymptotically an α-stable Lévy motion.

Recall, for example, from [42], that a continuous in probability process
(Xα,σ,β(t), t ≥ 0) with stationary, independent increments and càdlàg sam-
ple paths is called α-stable Lévy motion if Xα,σ,β(t) ∼ Sα(σ t

1/α, β,0). Here
Sα(σ,β,µ) denotes the α-stable distribution which is characterized by the index of
stability α ∈ (0,2], the scale parameter σ ≥ 0, the skewness parameter β ∈ [−1,1]
and the shift parameter µ ∈R. If X ∼ Sα(σ,β,µ), then its characteristic function
is given by

Ee iθX =


exp {−σα |θ |α (1− iβ sign(θ) tan (πα/2))+ iµθ} , if α �= 1,

exp
{
−σ |θ |

(
1+ iβ

2

π
sign(θ) ln |θ |

)
+ iµθ

}
, if α = 1.

The case α = 2 corresponds to the Gaussian distribution. Notice that X2,σ,β is
Brownian motion, whereas α < 2 implies that Xα,σ,β has infinite variance marginal
distributions. In contrast to Brownian motion which has continuous sample paths
with probability 1, infinite variance stable Lévy motion has discontinuous sample
paths with probability 1.

4.1. The main result. The following theorem is our main result under the slow
growth condition.
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THEOREM 1. If Condition 1 holds, then the process (A(T t), t ≥ 0) describing
the cumulative input in [0, T t], t ≥ 0, satisfies the limit relation

A(T ·)− T λµon(·)
b(λT )

f idi→ Xα,1,1(·).

Here
f idi→ denotes convergence of the finite dimensional distributions.

REMARK. The convergence can be strengthened to M1-convergence by fol-
lowing the proof in [37] or the techniques of Whitt [48, 49, 47]. The convergence
cannot be extended to J1 convergence in the Skorokhod space D [4, 24].

In the rest of this section we give the proof of Theorem 1.

4.2. The basic decomposition. We start by giving a decomposition of the
random variable A(T ). We frequently suppress the dependence on T in the
notation.

Let

R1 := {(s, y) : 0 < s ≤ T, y > 0, s + y ≤ T },
R2 := {(s, y) : 0 < s ≤ T, T < s + y},
R3 := {(s, y) : s ≤ 0, 0 < s + y ≤ T },
R4 := {(s, y) : s ≤ 0, T < s + y},

(4.1)

and rewrite (2.13) as

A(T )=∑
k

Xk1[("k,Xk)∈R1] +
∑
k

(T − "k)1[("k,Xk)∈R2]

+∑
k

(Xk + "k)1[("k,Xk)∈R3]

+∑
k

T 1[("k,Xk)∈R4]

=:A1+A2+A3 +A4.

(4.2)

Recall the definition of the PRM ν from (2.10) with mean measure λL×Fon. Note
that Ai is a function of the points of ν in region Ri , and since the Ri ’s are disjoint,
Ai, i = 1, . . . ,4, are mutually independent. Calculations as in (2.12) and use of
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Karamata’s theorem give that as T →∞

λm1 := Eν(R1)= λ

∫ T

0
Fon(T − s) ds ∼ λT,

λm2 := Eν(R2)= λ

∫ T

0
F on(T − s) ds = λ

∫ T

0
F on(z) dz

∼
∫ ∞

0
F on(z) dz= λµon,

λm3 := Eν(R3)= λ

∫ 0

s=−∞

∫ −s+T
y=−s

Fon(dy) ds ∼ λµon,

λm4 := Eν(R4)= λ

∫ 0

s=−∞

∫ ∞
−s+T

Fon(dy) ds = λ

∫ ∞
T

F on(u) du

∼ λT F on(T )/(α − 1)→ 0.

(4.3)

So the mean measure Eν(·) restricted to Ri is finite for i = 1, . . . ,4, which implies
that the points of ν

∣∣
Ri

can be represented as a Poisson number of iid random
vectors:

ν
∣∣
Ri

d=
Pi∑
k=1

ε(tk,i ,jk,i ), i = 1, . . . ,4,

where Pi is a Poisson random variable with mean λmi , which is independent of
the iid pairs (tk,i , jk,i), k ≥ 1, with common distribution

λL(ds)Fon(dy)

λmi

∣∣∣∣
Ri

= L(ds)Fon(dy)

mi

∣∣∣∣
Ri

,(4.4)

for i = 1, . . . ,4. Notice that the distributions of ((tk,i , jk,i)) do not depend on λ,
which only enters into the specification of the mean of Pi , i = 1, . . . ,4. This means
that for fixed T , we can represent the Ai’s as sums of a Poisson number of iid
random variables,

A1
d=

P1∑
k=1

jk,1, A2
d=

P2∑
k=1

(T − tk,2),

A3
d=

P3∑
k=1

(jk,3 + tk,3), A4
d=

P4∑
k=1

T .

(4.5)

4.3. Moments of the summands. In what follows, we will need information
about the moments of the summands in (4.5). All the variables are bounded by T

so all moments exist, but we need to know the asymptotic form of the moments as
T →∞. Let (ti , ji) be random variables with the same distribution as (tk,i , jk,i),
for i = 1, . . . ,4.
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From (4.3) and (4.4), observe that for l ≥ 1,

Ejl1 =
∫ T

0

∫ T−s
y=0

yl L(ds)Fon(dy)

m1
∼ 1

T

∫ T

s=0

∫ T−s
y=0

yl Fon(dy) ds

= 1

T

∫ T

s=0

(∫ s

y=0
ylFon(dy)

)
ds.

(4.6)

For l = 1, since
∫ s

0 yFon(dy)→µon, we have

Ej1→ µon.(4.7)

For l > α, we have, using first a change of variables and then Karamata’s theorem
in the form given in [14], page 579, that

Ejl1

T lF on(T )
∼

∫ 1

0

∫ s

0
yl Fon(T dy)

F on(T )
ds

∼
∫ 1

0

∫ s

0
yl αy−1−α dy ds = α

(l − α)(l − α + 1)
.

(4.8)

For later reference we note that (4.7) and (4.8) imply

Var(j1)

T 2F on(T )
∼

∫ 1

0

∫ s

0
y2 αy−1−α dy ds = α

(2− α)(3− α)
=: σ 2

1(4.9)

and

lim sup
T→∞

E|j1−Ej1|3
T 3F on(T )

≤ lim sup
T→∞

4(Ej3
1 + (Ej1)

3)

T 3F on(T )
= const.(4.10)

Similar calculations for T − t2 give that, for l ≥ 1,

E(T − t2)
l =

∫ T

s=0

∫ ∞
y=T−s

(T − s)l
L(ds)Fon(dy)

m2

∼ 1

µon

∫ T

s=0

∫ ∞
y=T−s

(T − s)l Fon(dy) ds

= 1

µon

∫ T

0
ulF on(u)du,

and therefore, for l ≥ 1, as T →∞, from Karamata’s theorem,

E(T − t2)
l

T l+1F on(T )
∼ 1

µon

∫ 1

0
xl F on(T x)

F on(T )
dx

∼ 1

µon

∫ 1

0
xl−αdx = 1

µon(l − α + 1)
.
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This implies that

Var(T − t2)

T 3F on(T )
∼ 1

µon(3− α)
=: σ 2

2(4.11)

and

lim sup
T→∞

E|T − t2 −E(T − t2)|3
T 4F on(T )

≤ const.(4.12)

Finally, for l ≥ 1,

E(j3+ t3)
l =

∫ 0

s=−∞

∫ T−s
y=−s

(y + s)l
L(ds)Fon(dy)

m3

∼ 1

µon

∫ 0

−∞

∫ T−s
y=−s

(y + s)l Fon(dy) ds,

and thus

E(j3+ t3)
l

T l+1F on(T )
∼ 1

µon

∫ 0

s=−∞

∫ 1−s
y=−s

(y + s)l
Fon(T dy)

F on(T )
ds

∼ 1

µon

∫ 0

s=−∞

∫ 1−s
y=−s

(y + s)l αy−1−α dy ds.

(4.13)

It follows that

Var(j3 + t3)

T 3F on(T )
∼ 1

µon

∫ 0

s=−∞

∫ 1−s
y=−s

(y + s)2 αy−1−α dy ds =: σ 2
3

and

lim sup
T→∞

E|j3− t3 −E(j3− t3)|3
T 4F on(T )

≤ const.

To compute σ 2
3 , observe that

σ 2
3 :=

1

µon

∫ ∞
s=0

∫ 1+s
y=s

(y − s)2αy−α−1dyds

= 1

µon

∫ 1

y=0
αy−α−1

[∫ y

s=0
(y − s)2ds

]
dy

+ 1

µon

∫ ∞
y=1

αy−α−1
[∫ y

s=y−1
(y − s)2ds

]
dy

= 1

µon

∫ 1

y=0
αy−α−1

[
y3

3

]
dy + 1

µon

∫ ∞
y=1

αy−α−1
[

1

3

]
dy

= 1

µon

[
α

3(3− α)
+ 1

3

]
= 1

µon(3− α)
.

(4.14)
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4.4. α-stable limits: one dimensional convergence. We are now in position to
show that if Condition 1 holds, then A(T ) is asymptotically an α-stable random
variable. The plan is to show A1(T ) = A1 is asymptotically stable and Ai(T ) =
Ai , i = 2,3,4, are asymptotically negligible.

It is relatively easy to see that

Ai/b(λT )
P→ 0, i = 2,3,4.(4.15)

We restrict ourselves to the case i = 2; a similar argument works for i = 3,4.
By (4.11), Lemma 2 and Condition 1,

EA2 =EP2 E(T − t2)= [λm2]E(T − t2)∼ (const) λT 2F on(T )= o(b(λT )).

Thus it remains to consider A1. Recall the representation of A1 given in (4.5).
We start with the following decomposition:

A1− λµonT =
P1∑
k=1

(jk,1 −Ej1)+Ej1 [P1 −EP1] + [EA1− λµonT ]

=A11+A12+A13.

By (4.7), Ej1 ∼ µon. Since P1 is Poisson with mean λm1→∞, it satisfies the
central limit theorem, that is,

[λm1]−1/2 [P1 − λm1] d→N(0,1).(4.16)

We conclude that

A12 =OP ([λT ]1/2)= oP (b(λT )),(4.17)

since

lim
T→∞

√
λT

b(λT )
= lim

s→∞
s1/2

b(s)
= 0,

due to s1/2b(s) being regularly varying with index 1
2 − 1

α
< 0, when 1 < α < 2.

By (4.5) and (4.16), A11 is a sum of approximately λm1 ∼ λT iid summands.
Under Condition 1, b(λT )/T → 0, so that for any x > 0 fixed, we eventually have
T − b(λT )x > 0. Therefore, from (4.4) and since b= (1/F on)

←,

λT P (j1 > b(λT )x)= λT

∫ ∫
0≤s≤T

0≤s+y≤T
y>b(λT )x

dsFon(dy)

m1

= λT

∫ T−b(λT )x

s=0
ds

∫ T−s
y=b(λT )x

Fon(dy)

m1

= λT

m1
F on(b(λT )x)(T − b(λT )x)
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− λT

m1

∫ T−b(λT )xx

0
F on(T − s)ds

∼
(

1− b(λT )x

T

)
λT F on(b(λT ) x)

− b(λT )

T

∫ T/b(λT )

x
λT F on(b(λT ) s) ds

∼ x−α.

Following a standard argument using point processes ([38], Exercise 4.4.2.8,
page 222, [35]), we get for t ≥ 0,

X(T )(t) := (
b(λT )

)−1
[λT t]∑
k=1

(jk,1 −Ej1)
d→Xα,1,1(t) in D[0,∞),(4.18)

where the limit is a totally skewed α-stable Lévy random motion. In fact, by
independence, we may couple (4.16) and (4.18) to get joint convergence(

X(T )(·), P1

λT

)
d→ (Xα,1,1(·),1) in D[0,∞)×R.

Using composition and the continuous mapping theorem, one obtains

(
b(λT )

)−1
A11 =X(T )(P1/(λT ))

(4.19)

= (
b(λT )

)−1
P1∑
i=1

(jk,1−Ej1)
d→Xα,1,1(1).

It remains to consider A13. By (4.6) and Karamata’s theorem,

A13 = E(A1)− λµonT =Ej1 EP1− λT µon(4.20)

= λ

∫ T

0

[∫ s

0
y Fon(dy)−µon

]
ds

=−λ
∫ T

0

∫ ∞
s

y Fon(dy) ds

∼−(const) λT 2F on(T )= o(b(λT )).(4.21)

The last limit relation follows from Lemma 2. Combining the limit relations (4.15),
(4.17), (4.19) and (4.20), we conclude that A(T ) has the desired α-stable limit.
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4.5. α-stable limits: finite dimensional convergence. We restrict ourselves to
showing the convergence of the 2-dimensional distributions; the general case is
completely analogous. Note that for t > 0,

A(T t)− λµonT t

b(λT )
= A(T t)− λµonT t

b(λT t)
· b(λT t)

b(λT )
⇒Xα,1,1(1)t

1/α d=Xα,1,1(t).

Suppose t1 < t2. The same arguments as for the one dimensional convergence
show that it suffices to consider the joint convergence of [b(λT )]−1(A1(T ti) −
λT ti µon), i = 1,2. We can write

A1(T t2) = A1(T t1)+
∑

T t1<"k≤T t2

Xk1["k+Xk≤T t2] +
∑

0<"k≤T t1

Xk1[T t1<"k+Xk≤T t2]

=: A1(T t1)+A21(T (t2 − t1))+A22.

Observe that A1(T t1) and A21(T (t2 − t1)) are independent and that A21(T (t2 −
t1))

d= A1(T (t2 − t1)). Hence the proof of the 2-dimensional distributions follows

from the 1-dimensional convergence if one can show that [b(λT )]−1A22
P→ 0.

However,

EA22 = E

(∫ ∫
0≤s≤T t1,T t1<s+u≤T t2

uν(ds, du)

)
= λ

∫ ∫
0≤s≤T t1,T t1<s+u≤T t2

uds Fon(du)

= λ

∫ T t1

s=0

(∫ T t2−s
u=T t1−s

uFon(du)

)
ds

= λT 2F on(T )

∫ t1

0

(∫ t2−s
u=t1−s

u
Fon(T du)

F on(T )

)
ds

∼ λT 2F on(T )

[∫ t1

0

α

α− 1

(
(t1 − s)−(α−1)− (t2 − s)−(α−1)

)
ds

]
= o(b(λT )),

by Lemma 2. This concludes the proof of Theorem 1. �

5. α-stable approximations for the superposition of ON/OFF processes
under slow growth. Recall the ON/OFF model from Section 2.1 and the slow
and fast growth conditions on M =MT from Section 3.2.

5.1. The main result for α := αon < αoff. In this section we show that the
cumulative input process (A(T t), t ≥ 0) as introduced in (2.7) has a limiting
α-stable Lévy motion provided the slow growth Condition 1 holds, that is,
b(MT )= o(T ).
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The following theorem is our main result on the weak convergence of the pro-
cess A. To formulate it, we will need the following notation:

c := µoff/µ
1+1/α and σ := C−1/α

α ,

where

Cα = 1− α

"(2− α) cos(πα/2)
.(5.1)

THEOREM 2. If Slow Growth Condition 1 holds, then the process (A(T t),

t ≥ 0) describing the cumulative input in [0, T t], t ≥ 0, satisfies the limit relation

A(T ·)− TMµ−1µon(·)
b(MT )

f idi→ cXα,σ,1(·)

where
f idi→ denotes convergence of the finite dimensional distributions and Xα,σ,1

is an α-stable Lévy motion as described at the beginning of Section 4.

REMARK 1. Theorems 1 and 2 have some striking similarities. Both results
yield α-stable Lévy motions in the limit under slow growth conditions which are
also directly comparable in terms of the quantile function of Fon. Moreover, the
normalizations in both results were defined in a similar way. Although we feel that
it might be possible, we were not able to treat the convergence in the two models
in a unified way.

REMARK 2. As for the infinite source Poisson model, the convergence cannot
be extended to functional convergence in (D[0,∞), J1) (although it has been
claimed in the literature) since the J1-limiting process of a sequence of processes
with a.s. continuous sample paths should have a.s. continuous sample paths. An
alternative proof of the impossibility of J1-convergence, using an extreme value
argument, was given in [43].

REMARK 3. The case of general αon, αoff ∈ (1,2) is treated in [30]. The
results are qualitatively the same, yielding a limiting min(αon, αoff)-stable Lévy
motion. Moreover, the skewness parameter of the limit process may vary between
−1 and +1, depending on the right tails of Fon and Foff.

In the rest of this section we give the proof of our main result. It will be
convenient to split the proof into different parts.

5.2. The basic decomposition. As for the proof of Theorem 1, we give a
decomposition of the cumulative input process. In what follows, we will adapt
the notation of Section 2.1 for the mth source. Whenever we consider only one
source we will suppress the dependence on m in the notation.
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Recall the construction of a stationary version of the renewal sequence (Tn)

given in (2.3). We consider the renewal sequence (T
(m)
n ) corresponding to the mth

source and define the corresponding renewal counting process

ξ
(m)
T :=

∞∑
n=0

1[0,T ](T (m)
n ) with mean µT =Eξ

(m)
T = T/µ.

For convenience, we also write

Z
(m)
i =X

(m)
i + Y

(m)
i , i ≥ 1.

We have the following basic decomposition of A(T ) for M iid sources
[cf. (2.4)]:

A(T ) =
M∑

m=1

B(m) min
(
T, (X(0)

on )(m)
)+ M∑

m=1

ξ
(m)
T∑
k=1

X
(m)
k

−
M∑

m=1

max
(
0, T (m)

ξ
(m)
T −1

+X
(m)

ξ
(m)
T

− T
)
1[ξ (m)

T ≥1]

=:A1+A2 +A3.

REMARK. The above decomposition of A(T ) is similar to the infinite source
Poisson model; see (4.2). The crucial difference is that, for every m, the counting
process ξ

(m)
T is heavily dependent on the sequence (X

(m)
k ) which appears in

the random sum representation of A2. This fact makes the proof below more
complicated. The basic idea of the proof consists of replacing the counting
processes ξ

(m)
T in A2 simultaneously by their identical means µT . After the

replacement, the resulting process is a sum of iid random variables and so classical
limit theory for sums of iid random variables comes in. The replacement described
above is provided by a large deviation result given in the Appendix.

5.3. A1 and A3 are asymptotically negligible. We show under the slow growth
condition on M that the terms A1 and A3 vanish in the limit. The case A1 is
relatively easy.

LEMMA 3. As T →∞,

[b(MT )]−1(A1−EA1)
P→ 0.

PROOF. We have

[b(MT )]−1EA1 ≤M [b(MT )]−1E min(T ,X(0)
on )
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Using Karamata’s theorem, we obtain

M [b(MT )]−1
∫ T

0
P (X(0)

on > x)dx

≤ (const)M [b(MT )]−1 T 2−α Lon(T )→ 0.
(5.2)

In the last step we used Lemma 2. �

In the rest of the section we show that A3 is asymptotically negligible. By virtue
of the slow growth condition b(MT )= o(T ), we can find a function εT → 0 such
that

b(MT )= o(εT T ) and 1/ log(T )= o(εT ) as T →∞.(5.3)

For example, we could let

εT =
(
b(MT )

T

)1/2 ∨ 1√
logT

.

LEMMA 4. Assume that εT satisfies (5.3). Then the relation

MP(|ξT −µT |> εT µT )= o(1) as T →∞
holds.

PROOF. First we treat the case ξT > (1 + εT )µT . Since Zi = Xi + Yi has
a regularly varying right tail there exist iid mean-zero random variables Ei

concentrated on [−EZ1,∞) and a positive number x0 such that for some β > 0

P (Z1 −EZ1 > x)≥ P (E1 > x)

for x ≥−EZ1 and P (E1 > x)= e−βx, x ≥ x0.

Then a stochastic domination argument shows that with mT = [(1+ εT )µT ],
P (ξT > (1+ εT )µT )=P (T0+Z1 + · · · +ZmT

≤ T )

≤P (Z1+ · · · +ZmT
−mT µ≤ T −mT µ)

≤P (E1+ · · · +EmT
≤ T −mTµ)

=P ((mT Var(E1))
−1/2(E1 + · · · +EmT

)≤−aT )=: p(T ),

where

aT := (mT Var(E1))
−1/2 (mT µ− T ).

Since µT = T/µ, we have for some |θT | ≤ 1, that

aT ∼ (const)
εT T + θT√

T
∼ (const)εT T

1/2,
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and hence for all large T

aT ≥ T 1/6,

since εT T
1/2 ≥ (logT )−1/2T 1/2 ≥ T 1/6. The classical Cramér result on large

deviations for sums of iid random variables with moment generating function
existing in a neighborhood of the origin (see [33], Theorem 3, Chapter VIII) gives
for large T ,

p(T )≤ P ((mT Var(E1))
−1/2(E1 + · · · +EmT

)≤−T 1/6)

≤ (const)>(−T 1/6)≤ (const) e−T 1/3/4,

where > is the standard normal distribution function. Finally, since the slow
growth condition on M holds we have using Lemma 1 that

MP(ξT > (1+ εT )µT )≤M e−T 1/3/4 = o(1).(5.4)

Next we treat the case ξT < (1−εT )µT . Choose βn = n−[(1−εn)µn]µ∼ εnn

with εT obeying (5.3). Notice that as T →∞,

β−1
T (Z1 + · · · +Z[(1−εT )µT ] − [(1− εT )µT ]µ) P→ 0.

An application of Corollary 1 in Appendix A shows that

P (ξT < (1− εT )µT )= P (T0+Z1 + · · · +Z[(1−εT )µT ] > T )

∼ P (Z1+ · · · +Z[(1−εT )µT ] − [(1− εT )µT ]µ> βT )

∼ [(1− εT )µT ]P (Z > βT )

∼ µT P (Z > εT T )= (const) T P (Z > εT T )

∼ (const)

(
MP(Z > b(MT ))

P (Z > εT T )

)−1

= o(M−1),

due to the function 1/P [Z > x] being regularly varying with index α, and (5.3).
(See [38], Proposition 0.8 (iii), page 23.) �

We need another auxiliary result.

LEMMA 5. For all δ > 0,

M [b(MT )]−1 EXξT 1[XξT
>δb(MT )] 1[ξT≥1] → 0 as T →∞.



44 MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN

PROOF. Choose εT → 0 such that (5.3) holds. Using Karamata’s theorem, we
have for large T ,

M[b(MT )]−1
∫ ∞
δb(MT )

P (XξT > x, |ξT −µT | ≤ εT µT , ξT ≥ 1) dx

≤M [b(MT )]−1
∫ ∞
δb(MT )

P
(

max
i≥1, |i−µT |≤εT µT

Xi > x
)
dx

≤ (const)M [b(MT )]−1 εT µT

∫ ∞
δb(MT )

F on(x) dx

≤ (const) δ1−α εT → 0.

Choose cT →∞ such that b(MT ) = o(c−1
T εT T ). It follows from the proof of

Lemma 4 that

MP(|ξT −µT |> εT µT )= o(c−αT ).(5.5)

Let K > 0 be a constant so large that T K > cT b(MT ) for large T . The following
bound is straightforward:∫ ∞

δb(MT )
P (XξT 1[ξT≥1] > x, |ξT −µT |> εT µT ) dx

≤
∫ cT b(MT )

δb(MT )
P (|ξT −µT |> εT µT ) dx

+
∫ ∞
cT b(MT )

P (XξT > x, 1≤ ξT < (1− εT )µT ) dx

+
∫ T K

cT b(MT )
P (ξT > (1+ εT )µT ) dx +

∫ ∞
T K

P (XξT 1[ξT≥1] > x)dx

=: I1 + I2+ I3 + I4.

Obviously, by (5.5),

M[b(MT )]−1I1 = (cT − δ)M P (|ξT −µT |> εT µT )= o(1).

Moreover, by Karamata’s theorem,

M[b(MT )]−1I2 ≤M[b(MT )]−1
∫ ∞
cT b(MT )

P

(
max

1≤i≤(1−εT )µT

Xi > x

)
dx

≤ (const)M[b(MT )]−1 µT

∫ ∞
cT b(MT )

F on(x) dx

∼ (const) c1−α
T

Lon(cT b(MT ))

Lon(b(MT ))
= (const) cT

F on(cT b(MT ))

F on(b(MT ))
.



STABLE MOTION OR FBM? 45

Using the right-hand inequality in Proposition 2 in Appendix B, with x = cT ,
t = b(MT ) and ε = α − 1 − δ > 0 for some small δ > 0, gives that there is a
fixed t0 such that for x ≥ 1 and t ≥ t0,

F on(cT b(MT ))

F on(b(MT ))
≤ (α − δ) c

−(1+δ)
T .

This shows that M[b(MT )]−1I2→ 0.
As for the proof of Lemma 4 [see (5.4)] we conclude that

M[b(MT )]−1I3 ≤M[b(MT )]−1
∫ T K

cT b(MT )
e−T 1/3/4 dx = o(1) as T →∞

since the slow growth condition on M holds. Using Markov’s inequality and [16],
(8.12) in Theorem I.8.1, we have for ε ∈ (0, α− 1) and K sufficiently large,

I4 ≤ EXα−ε
ξT

1[ξT≥1]
∫ ∞
T K

x−α+ε dx

= (const)EXα−ε
ξT

1[ξT≥1] T −K(α−1−ε)

= o(T −K(α−1−ε)+1).

The slow growth condition on M implies that M = o(T α−1+ε). Therefore,

M[b(MT )]−1I4 = o(T −K(α−1−ε)+α+ε)= o(1),

provided K is chosen so large that K > (α + ε)/(α − 1− ε). Combining all the
estimates above, we finally proved the statement of the lemma. �

Now we are ready to deal with A3.

LEMMA 6. As T →∞,

[b(MT )]−1[A3 −EA3] P→ 0.

PROOF. Fix δ > 0. Define the iid random variables

X̂
(m)
T :=max

(
0, T (m)

ξ
(m)
T −1

+X
(m)

ξ
(m)
T

− T
)

1[ξ (m)
T ≥1]

and their truncated versions

X̃
(m)
T = X̂

(m)
T I[X̂(m)

T ≤δb(MT )]
By virtue of Lemma 5, it suffices to show that

[b(MT )]−1
M∑

m=1

(
X̃

(m)
T −EX̃T

) P→ 0.
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The variance of the sum on the left-hand side is given by

M[b(MT )]−2 Var(X̃T )≤M[b(MT )]−2EX̃2
T ,

and so it suffices to show that the right-hand side converges to zero. Assume
εT → 0 satisfies (5.3). Then we have

EX̃2
T ≤ δ2[b(MT )]2 P (|ξT −µT |> εT µT )

+
∫ δ2[b(MT )]2

0
P (XξT >

√
x, |ξT −µT | ≤ εT µT ) dx

=: I1+ I2.

By Lemma 4 we have

M[b(MT )]−2I1 = o(1).

An application of Karamata’s theorem yields that

M[b(MT )]−2I2 ≤M[b(MT )]−2
∫ δ2[b(MT )]2

0
P
(

max|i−µT |≤εT µT

Xi >
√
x
)
dx

≤ (const)M[b(MT )]−2εT µT

∫ δ2[b(MT )]2

0
F on(
√
x) dx

∼ (const)εT δ
2MTF on(δb(MT ))∼ (const) δ2−α εT = o(1).

This completes the proof. �

5.4. α-stable limits: one dimensional convergence. In this section we show
that the random variables A2 = A2(T ) weakly converge to a stable distribution
as T →∞. This fact and the results of the previous section, together with a
Slutsky argument, prove the convergence of the one dimensional distributions in
Theorem 2.

Introduce the iid mean zero random variables

J
(m)
k :=X

(m)
k − roffZ

(m)
k = ronX

(m)
k − roffY

(m)
k

= ron(X
(m)
k −µon)− roff(Y

(m)
k −µoff),

where

ron := µoff/µ and roff :=µon/µ.

The tails of the Jk’s are regularly varying: as x→∞

P (Jk > x)∼ rαonLon(x)

xα
and P (Jk ≤−x)∼ r

αoff
off Loff(x)

xαoff
.
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Write

ST,m :=
ξ
(m)
T∑
k=1

J
(m)
k .

The following decomposition will be useful:

A2 =
M∑

m=1

ST,m + roff

M∑
m=1

T
(m)

ξ
(m)
T

1{ξ (m)
T ≥1} − roff

M∑
m=1

T
(m)

0 1{ξ (m)
T ≥1}

=: A21+A22+A23.

In what follows, we show that A21 has an α-stable limit whereas A22 and A23
are asymptotically negligible. By Lemma 3 it follows that [b(MT )]−1EA23→ 0.
Following the argument for Theorem 5.3 in Chapter I of [16] or [39], page 47, we
obtain

E(TξT 1{ξT≥1})=E

(
ξT∑
i=1

Zi + T0 1{ξT≥1}
)
= T +E(T0 1{ξT≥1}).(5.6)

By virtue of Lemma 2, we have for large T

M

b(MT )
E(TξT − T )= M

b(MT )
E(T0 1{ξT≥1})≤ (const)

MT 2F on(T )

b(MT )
→ 0,

since T 2F on(T )∼ T 2−αL(T ), as T →∞. Hence,

[b(MT )]−1(A22−EA22)= roff[b(MT )]−1
M∑

m=1

[(T (m)

ξ
(m)
T

− T )−E(TξT − T )] P→ 0.

Again using the argument for Theorem 5.3 in Chapter I of [16], we obtain

EA21=MEξT EJ1 = 0.

In the remainder of this section we prove that A21 has an α-stable limit. In
[33, Theorem 8 in Chapter IV] one can find the following necessary and sufficient
conditions for the sums of row-wise iid random variables ST,m, m= 1, . . . ,M , to
converge weakly to an α-stable distribution Sα(c C

−1/α
α ,1,0) where Cα is defined

in (5.1): as T →∞,

(A) M P (ST,1 > xb(MT ))→ cαx−α for all x > 0,

(B) M P (ST,1 ≤−xb(MT ))→ 0 for all x > 0,

(C) lim
ε↓0

lim sup
T→∞

M [b(MT )]−2 Var(ST,1 1{|ST,1|<εb(MT )})= 0.

See also [35, 38] for point process interpretations of these conditions.
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We have ST,1 = S(1)(T )− S(2)(T ), where

S(1)(T )= ron

ξT∑
k=1

(Xk −µon) and S(2)(T )= roff

ξT∑
k=1

(Yk −µoff).

Define

Sn =
n∑

k=1

Jk, S(1)
n = ron

n∑
k=1

(Xk −µon), S(2)
n = roff

n∑
k=1

(Yk −µoff).

The proof of (A), (B) and (C) is now presented via a series of lemmas.

LEMMA 7. For all x > 0,

MP(−S(1)
[µT ] > xb(MT ))= o(1) as T →∞.

PROOF. Let D :=DT be a positive function such that D→ 0 and as T →∞,

DM→∞ and Db(MT )→∞.(5.7)

Introduce the random variables

X̃k :=Xk1[Xk≤Db(MT )] and S̃(1)
n :=

n∑
k=1

(X̃k −EX̃),

and assume without loss of generality that ron = 1. We have

p(T ) := P (−S(1)
[µT ] > xb(MT ))≤ P (−S̃(1)

[µT ] > xb(MT )−µTE(X− X̃)).

Using Karamata’s theorem and noticing that E(X− X̃)= ∫∞
Db(MT ) F on(x) dx, we

have

µT E(X− X̃)

b(MT )
∼ (const)

D1−α

M

Lon(Db(MT ))

Lon(b(MT ))

= (const)
D

M

F on(Db(MT ))

F on(b(MT ))
.

(5.8)

Using the left-hand inequality of Proposition 2 in Appendix B, with x = 1/D,
t =Db(MT ) and ε = 2− α gives that there is a fixed t0 such that for x ≥ 1 and
t ≥ t0 the right-hand side of (5.8) is bounded by

(const)

α− 1

1

DM
,

which is o(1) by (5.7). So we may bound the probability p(T ) for large T from
above by

p(T )≤ P
(
−[Var(X̃)µT ]−1/2S̃

(1)
[µT ] > aT (x)

)
where aT (x)= xb(MT )/2

[Var(X̃)µT ]1/2
.



STABLE MOTION OR FBM? 49

Using a non-uniform Berry–Esséen estimate in the central limit theorem (see [34,
Theorem 5.16]), the right-hand side is bounded by

>(aT (x))+ (const)
E|X̃|3

µ
1/2
T [Var(X̃)]3/2 (1+ aT (x))

3
,(5.9)

where > denotes the right tail of the standard normal distribution. Notice that

aT (x)∼ (const)
(

M

D2−α
Lon(b(MT ))

Lon(Db(MT ))

)1/2

= (const)
(
M

D2

F on(b(MT ))

F on(Db(MT ))

)1/2

.

As above we apply the left-hand inequality of Proposition 2 in Appendix B, to
obtain that for large T

aT (x) > (const) (α − 1)M1/2,

so the first term in (5.9) decreases at an exponential (in M) rate and, hence, is
o(M−1). The second term behaves asymptotically as

(const) T
[Db(MT )]3−αLon(Db(MT ))

[xb(MT )]3
(5.10)

∼ (const) x−3 D3

M

F on(Db(MT ))

F on(b(MT ))
.

Using the left-hand inequality of Proposition 2 in Appendix B, as before, gives
that the right-hand side of (5.10) is bounded from above by

(const)

α− 1
x−3 D

M
= o(M−1).

This completes the proof. �

Let εT → 0 and define the event

BT := {|ξT −µT | ≤ εT µT }.(5.11)

LEMMA 8. For all x > 0,

MP(|ST,1 − S[µT ]|> xb(MT ), BT )= o(1) as T →∞.

PROOF. Using [34], Theorem 2.3, we have

P (|ST,1 − S[µT ]|> xb(MT ), BT )≤ P
(

max|j−µT |≤εT µT

|Sj − S[µT ]|> xb(MT )
)

≤ (const)P (|S[εT µT ]|> xb(MT )/2).



50 MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN

Applying the same result, we also see that

P (|S[εT µT ]|> xb(MT )/2)= P (|S(1)
[εT µT ] − S

(2)
[εT µT ]|> xb(MT )/2)

≤ (const)
2∑

i=1

P
(
S
(i)
[εT µT ] − Ŝ

(i)
[εT µT ] > xb(MT )/4

)
,

where Ŝ(1) and Ŝ(2) are independent copies of S(1) and S(2). Using Corollary 1 in
Appendix A, we see that the two probabilities on the right-hand side multiplied by
M are asymptotic to

(const)M εT µT

[
[xb(MT )]−αLon(b(MT ))+ [xb(MT )]−αoffLoff(b(MT ))

]
∼ (const) x−α εT → 0.

This completes the proof. �

LEMMA 9. For all x > 0,

MP(S[µT ] ≤ −xb(MT ))= o(1) as T →∞.

PROOF. We have

P (S[µT ] ≤ −xb(MT ))≤ P
(
−S(1)
[µT ] > xb(MT )/2

)
+ P

(
S
(2)
[µT ] > xb(MT )/2

)
.

The first probability is o(M−1) by Lemma 7. The second probability can be treated
as follows. Let δ > 0 such that α + δ < αoff. Using Markov’s inequality and
a bound for the (α + δ)th moment of sums of independent mean-zero random
variables (see [33], page 60), we obtain

MP(S
(2)
[µT ] > xb(MT )/2)≤ (const)M[xb(MT )]−α−δE|S(2)

[µT ]|α+δ

≤ (const)
MµT

[b(MT )]α+δ
E|Y |α+δ
xα+δ ,

which is o(1) since T/(b(T ))α+δ is regularly varying with index −δ/α. �

In the following lemma we finally conclude that A21 converges to an α-stable
limit.

LEMMA 10. Let c and σ be as in Theorem 2. Then

[b(MT )]−1A21
d→ cXα,σ,1(1) as T →∞.
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PROOF. We prove (A), (B) and (C); see the beginning of this section.
Proof of (A). We have to show that for all x > 0,

MP(ST,1 > xb(MT ))→ cα x−α as T →∞.

Recall the definition of the event BT from (5.11). By virtue of Lemma 4 it suffices
to consider the probability P (ST,1 > xb(MT ), BT ). For δ ∈ (0,1) we have

P (ST,1 > xb(MT ), BT )≤ P (ST,1 − S[µT ] > δxb(MT ), BT )

+ P (S[µT ] > (1− δ)xb(MT )).

The first probability is o(M−1) by Lemma 8. Using Corollary 1 in Appendix A

and noticing that S[µT ]/b(MT )
P→ 0, we obtain

MP(S[µT ] > (1− δ)xb(MT ))∼MµT P (J1 > (1− δ)xb(MT ))

∼ rαonµ
−1 (1− δ)−αx−α.

(5.12)

A lower bound is given by

P (ST,1 > xb(MT ), BT )

≥ P (ST,1 − S[µT ] >−δxb(MT ), S[µT ] > (1+ δ)xb(MT ),BT )

≥ P (S[µT ] > (1+ δ)xb(MT ))− P (ST,1 − S[µT ]
≤ −δxb(MT ), BT )− P (Bc

T ).

The second and third probabilities are o(M−1) by Lemmas 8 and 4. Then, using
Corollary 1 in Appendix A [as in (5.12)], gives

MP(S[µT ] > (1+ δ)xb(MT ))∼ rαonµ
−1 (1+ δ)−αx−α.(5.13)

The proof of (A) is complete by letting δ→ 0 in (5.12) and (5.13).
Proof of (B). We prove that for all x > 0,

MP(ST,1 ≤−xb(MT ))→ 0.

For δ ∈ (0,1) we have

P (ST,1 ≤−xb(MT ), BT )≤ P (ST,1 − S[µT ] ≤ −δxb(MT ), BT )

+ P (S[µT ] ≤ −(1− δ)xb(MT )).

The first probability is o(M−1) by Lemma 8 and so is the second one by virtue of
Lemma 9. This completes the proof of (B).

Proof of (C). We show that

lim
ε↓0

lim sup
T→∞

M

[b(MT )]2 Var(ST,11{|ST,1|<εb(MT )})= 0.
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We have

Var(ST,11{|ST,1|<εb(MT )})≤
∫ ε2[b(MT )]2

0
P (ST,1 >

√
x) dx

+
∫ ε2[b(MT )]2

0
P (ST,1 ≤−

√
x) dx.

In our proof we will only consider the first integral. The second one can be treated
analogously. Obviously,

M

[b(MT )]2
∫ ε2[b(MT )]2

0
P (ST,1 >

√
x) dx

≤ ε2 + M

[b(MT )]2
∫ ε2[b(MT )]2

ε2[b(MT )]2/M
P (ST,1 >

√
x) dx

=: ε2+ p(T , ε).

By virtue of Lemma 4 it suffices to replace in p(T , ε) the event {ST,1 >
√
x}

with {ST,1 >
√
x,BT }. Combining the upper bound in the proof of (A) with the

argument in the proof of Lemma 8, we obtain the following bound for p(T , ε):

M

[b(MT )]2
∫ ε2[b(MT )]2

ε2[b(MT )]2/M

[
(const)P (|S[εT µT ]|>

√
x/4)+ P (S[µT ] >

√
x/2)

]
dx.

As in the proof of Lemma 8, we can use a symmetrization inequality and
Corollary 1 in Appendix A to show that the first term is o(1) as T →∞. Another
application of Corollary 1 in Appendix A yields

M

[b(MT )]2
∫ ε2[b(MT )]2

0
P (S[µT ] >

√
x/2) dx

∼ (const)
M

[b(MT )]2 (ε2[b(MT )]2)1−α/2Lon(b(MT ))

∼ (const) ε2−α.

Now let ε go to zero to obtain the desired relation (C).
This completes the proof that the one dimensional distributions converge to a

stable law. �

5.5. α-stable limits: finite dimensional convergence. In this section we com-
plete the proof of Theorem 2 by showing that the finite dimensional distributions
of A21 = A21(T ) converge to those of α-stable Lévy motion. We will only show
convergence of the 2-dimensional distributions since the general case is analogous.
The following lemma is the key to this convergence.
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LEMMA 11. Let b1, b2 ∈R, t2 ≥ t1 ≥ 0. Define

Z
(1)
T := b1

µT t1∑
k=1

J
(m)
k and Z

(2)
T := b2

µT t2∑
k=µT t1+1

J
(m)
k .

Then we have, as T →∞, for all x > 0,

MP
(
Z

(1)
T +Z

(2)
T > xb(MT )

)∼MP
(
Z

(1)
T > xb(MT )

)
+MP

(
Z

(2)
T > xb(MT )

)
∼ rαon

µ
[bα1 I[b1>0]t1 + bα2 I[b2>0](t2 − t1)]x−α.

PROOF. For δ ∈ (0,0.5), we have

P
(
Z

(1)
T > (1+ δ)xb(MT )

)
P
(∣∣Z(2)

T

∣∣≤ δxb(MT )
)

+ P
(
Z

(2)
T > (1+ δ)xb(MT )

)
P
(∣∣Z(1)

T

∣∣≤ δxb(MT )
)

≤ P
(
Z

(1)
T +Z

(2)
T > xb(MT )

)
≤

2∑
i=1

P
(
Z

(i)
T > (1− δ)xb(MT )

)
+ P

(
Z

(1)
T > δxb(MT )

)
P
(
Z

(2)
T > δxb(MT )

)
.

Now the result follows from Corollary 1 in Appendix A by first letting T →∞
and then δ→ 0. �

The next lemma establishes convergence of the 2-dimensional finite dimen-
sional distributions of (A(T t), t ≥ 0) by virtue of the results in Section 5.3 in
combination with a Slutsky argument.

LEMMA 12. Let b1, b2 ∈R and t2 ≥ t1 ≥ 0. Then, as T →∞,

b1A21(T t1)+ b2(A21(T t2)−A21(T t1))

d→ b1 cXα,σ,1(t1)+ b2 (cXα,σ,1(t2)− cXα,σ,1(t1)).

PROOF. Define

ST,m := b1 [b(MT )]−1

ξ
(m)
T t1∑
k=1

J
(m)
k + b2 [b(MT )]−1

ξ
(m)
T t2∑

k=ξ (m)
T t1
+1

J
(m)
k .
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According to Petrov [33], Theorem 8 in Chapter IV, we have to show that as
T→∞,

(A) M P (ST,1 > x)→ cα[bα1 I[b1>0]t1 + bα2 I[b2>0](t2 − t1)]x−α for all x >0,

(C) lim
ε↓0

lim sup
T→∞

M Var(ST,11{|ST,1|<ε})= 0.

We will only give the proof of (A). The proof of (C) follows in the same way as in
the proof of Lemma 10. Let εT → 0 satisfy (5.3). Since we know from Lemma 4
that as T →∞,

MP(|ξT tj −µT tj |> εT µT tj )= o(1), j = 1,2,

it suffices to consider in (A) the intersection of the event {ST,1 > x} with

BT = {|ξT tj −µT tj | ≤ εT µT tj , j = 1,2}.
For δ ∈ (0,1) we have

P (ST,1 > x, BT )≤ P

(
b1

[ξT t1∑
k=1

Jk −
µT t1∑
k=1

Jk

]
> δx b(MT )/2, BT

)

+ P

(
b2

[ ξT t2∑
k=ξT t1+1

Jk −
µT t2∑

k=µT t1+1

Jk

]
> δx b(MT )/2, BT

)

+ P

(
b1

µT t1∑
k=1

Jk + b2

µT t2∑
k=µT t1+1

Jk > (1− δ)x b(MT )

)
.

The first and second probabilities are o(M−1) by Lemma 8. By Lemma 11,
M times the third probability is asymptotic to

MP

(
b1

µT t1∑
k=1

Jk > (1− δ)x b(MT )

)

+MP

(
b2

µT t2−µT t1∑
k=1

Jk > (1− δ)x b(MT )

)

∼ rαon

µ
[bα1 I[b1>0]t1 + bα2 I[b2>0](t2 − t1)]x−α.

A lower bound for MP(ST,1 > x, BT ) can be found in the same way as in the
proof of Lemma 10. This completes the proof. �

We finally established that the finite dimensional distributions of the processes
(A(T t), t ≥ 0) converge to those of the α-stable Lévy motion. This concludes the
proof of Theorem 2.
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6. FBM approximations for the infinite source Poisson model under fast
growth. The next two sections relate fast connection rates associated with strong
correlations of NT (·) and fractional Brownian motion limits. Section 6 studies
the infinite source Poisson model and the subsequent Section 7 considers the
superposition of ON/OFF sources.

Recall that a mean-zero Gaussian process (BH (t), t ≥ 0) with a.s. continuous
sample paths is called fractional Brownian motion if it has covariance structure

Cov(BH (t),BH (s))= σ 2
H

2

(
|t|2H + |s|2H − |t − s|2H

)
for some σH > 0, H ∈ (0,1).

The case H = 1/2 corresponds to Brownian motion and, if H ∈ (1/2,1), the
autocovariance function of the increment process (BH (t)−BH(t − 1))t=1,2,..., so-
called fractional Gaussian noise, satisfies relation (2.6), that is, it exhibits LRD. If
σH = 1 we call BH standard fractional Brownian motion. For more properties of
fractional Brownian motion we refer to the monograph [42].

6.1. The main result. The following theorem is our main result under the fast
growth condition.

THEOREM 3. If Condition 2 holds, then the process (A(T t), t ≥ 0) describ-
ing the total accumulated input in [0, T t], t ≥ 0, satisfies the limit relation

A(T ·)− λµonT (·)
[λT 3F on(T )σ 2]1/2

d→ BH(·),

Here
d→ denotes weak convergence in (D[0,∞), J1), BH is standard fractional

Brownian motion, H = (3− α)/2 and σ 2 is given by (6.6) below.

REMARK. Notice that H = (3 − α)/2 ∈ (0.5,1). Hence the corresponding
fractional Gaussian noise sequence of BH exhibits LRD in the sense of (2.6). This
is in contrast to Theorem 1 where the limiting process, α-stable Lévy motion, has
independent increments.

In the rest of this section we provide the proof of Theorem 3. As for Theorem 1,
the decomposition of Section 4.2 will be the key for deriving the Gaussian limit.
As in Section 4 we give the proof in several steps. We use the same notation as in
that section.

6.2. FBM limits: one dimensional convergence. We show that when λ(T )

grows faster, so that Condition 2 holds and b(λT )/T →∞, (A(T ) − λµonT )/

σT (1) is asymptotically normal, where we define

σ 2
T (1)= λ(T )(T )3F on(T ).(6.1)
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For this, consider the decomposition and representation (4.2) and (4.5), which in
particular gives that

λµonT =EA(T )=EA1+EA2+EA3+EA4,

so that

A(T )− λµonT = (A1− P1Ej1)+ (A2− P2E(T − t2))

+ (A3− P3E(j3+ t3))+ (A4− P4T )

+ (P1−EP1)Ej1 + (P2−EP2)E(T − t2)

+ (P3−EP3)E(j3+ t3)+ (P4 −EP4)T .

Here, since Pi −EPi =OP (
√
EPi), i = 1,2,3, by the central limit theorem and

the fact that Var(P4)= E(P4)→ 0, it follows from (4.3), (4.7), (4.11) and (4.13),
and straightforward calculation that

A(T )− λµonT = (A1 − P1Ej1)+ (A2 − P2E(T − t2))

+ (A3− P3E(j3+ t3))

+ (A4− P4T ))+ oP (σT (1)).

(6.2)

We explain the oP -term above with the following sample explanation: Define
ηT = (P1− λm1)/

√
λT so that {ηT } is a family of asymptotically normal random

variables and therefore

P1− λm1√
λT 3F̄on(T )

= P1− λm1√
λT

·
√

λT

λT T 2F̄on(T )
= ηT

√
1

T 2F̄on(T )

P→ 0.

The first three terms in (6.2) will be shown to be asymptotically normal and the
fourth is of smaller order. We start by considering

A1− P1Ej1
d=

P1∑
k=1

(jk,1 −Ej1)

where P1 is Poisson with mean λm1. To see why A1 is asymptotically normal,
observe there are approximately λT iid summands. We check Lyapunov’s
condition ([14], page 286, [40], page 319) for asymptotic normality of the sums

Sn =
n∑

k=1

(jk,1 −Ej1).

From (4.9), (4.10) we have with σ 2
1 = α/((2− α)(3− α)):

Var(S[λT ]) ∼ λT T 2F on(T )σ 2
1 = σ 2

T (1)σ
2
1 ,

L
(3)
[λT ] :=

[λT ]∑
k=1

E|jk,1 −Ej1|3 ≤ (const) λT T 3F on(T ).
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Therefore using (3.3) we have for Lyapunov’s ratio

L
(3)
[λT ]

σ−3
T (1)

≤ (const)
λT T 3F̄on(T )(
λT 3F̄on(T )

)3/2 =
1√

λT F̄on(T )

→ 0

as T →∞. Since Lyapunov’s condition implies asymptotic normality, we get by
the invariance principle for triangular arrays of iid random variables that

BT (·) := σ−1
T (1) S[λT ·]

d→B(·)σ1 in D[0,∞),

where B(·) is a standard Brownian motion. We still have (4.16) at our disposal, so
joint convergence holds:(

BT (·), P1

λT

)
d→ (

σ1B(·),1
)

in D[0,∞)×R.

We get after composing that

(A1− P1Ej1)/σT (1)
d→N(0, σ 2

1 )(6.3)

It follows in a completely analogous way that

(A2− P2E(T − j2))/σT (1)
d→N(0, σ 2

2 ),

(A3− P3E(t3 − j3))/σT (1)
d→N(0, σ 2

3 ),

(A4 − P4T )/σT (1)
d→ 0.

(6.4)

Together, (6.2)–(6.4) show that

(A(T )− λµonT )/σT (1)
d→ N(0, σ 2),(6.5)

where

σ 2 = σ 2
1 + σ 2

2 + σ 2
3 =

α

(2− α)(3− α)
+ 2

µon(3− α)

= 1

3− α

[
α

2− α
+ 2

µon

]
.

(6.6)

6.3. FBM limits: finite dimensional convergence and tightness. For conve-
nience we write GT for the quantity in Theorem 3, that is,

GT (t)= A(T t)− λµonT t

[λT 3F on(T )σ 2]1/2
.

It follows by the method of proof of (6.5), that the one dimensional distributions of
GT converge to those of BH . Suppose now that the finite dimensional distributions
of GT were proved to be asymptotically jointly normal. Let {G(t), t ≥ 0} be a
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Gaussian process whose finite dimensional distributions match the weak limits of

the finite dimensional distributions of GT (·). We know that for each t , GT (t)
d→

G(t). We also know that for any h > 0,

{GT (t + h)−GT (h), t ≥ 0} =
{∫ T t

0
(N(s + T h)− λµon) ds, t ≥ 0

}
/σT (1)

d=
{∫ T t

0
(N(s)− λµon) ds, t ≥ 0

}
/σT (1)

= {GT (t), t ≥ 0},
since N(·) is stationary. So for each T , {GT (t), t ≥ 0} has stationary increments
and hence so does {G(t), t ≥ 0}. Therefore

Var(G(t))=Var
(
G(t + h)−G(h)

)
= EG2(t + h)+EG2(h)− 2EG(h)G(t + h)

so that

Cov
(
G(h),G(t + h)

)= 1
2

(
EG2(t + h)+EG2(h)−Var

(
G(t)

))
and thus the covariance, and hence the finite dimensional distributions of G(·),
are determined by the one dimensional marginal distributions of G(·). This means

G(·) d= BH(·).
This argument shows it is enough to prove that the finite dimensional

distributions of GT (·) are asymptotically normal. To show this, it is sufficient to
show that the increments of GT (·) are jointly asympotically normal. The proof
uses the same methods as for one dimensional convergence and we hence only
give a brief sketch.

Consider, for example, the joint distribution of GT (u) and GT (u+ v)−GT (u)

for u, v > 0. By decomposing as in (4.1), both for T replaced by uT and by
(u+ v)T , and considering all intersections of the sets in the two decompositions,
the problem is reduced to proving asymptotic joint normality of functions of the
Poisson points in a number of disjoint sets. Since the sets are disjoint, and the
functions hence independent, the sets may be considered separately. A typical such
set is given by

R = {(s, y) : 0 < s ≤ uT,uT − s < y ≤ (u+ v)T − s}
which contributes

Au
d=

P∑
k=1

(T u− "k)1[("k,Xk)∈R]
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to GT (u) and

Av
d=

P∑
k=1

Xk1[("k,Xk)∈R]

to GT (u+ v)−GT (u), where P is a Poisson random variable with mean λm :=
λL× Fon(R). However, here the upper summation limits P may be replaced by
λm using the same method as in Section 6.2, and asymptotic joint normality with
non-random summation limits is straightforward. It follows that Au and Av are
jointly asymptotically normal. Similar arguments for the other sets complete the
proof of finite dimensional convergence of GT to BH .

To prove tightness of GT in D[0,K], for K fixed, we rewrite (4.2), with T

replaced by U = uT (and hence with {Ai,Pi} defined from U instead of from T )
and 0≤ u≤K , as

A(U)− λµonU =A(U)−EA(U)=
4∑

i=1

(Ai −EAi),(6.7)

with the aim to bound the fourth moments of the increments of GT . Let c be
a generic constant whose value may change from appearance to appearance. We
first show that

E(A1−EA1)
4/σ 4

T (1)≤ cu2.(6.8)

Now, with notation as in (4.5),

A1−EA1 =A1 − P1Ej1 + P1Ej1 −EP1Ej1,(6.9)

and

E(A1− P1Ej1)
4 = E

(
P1∑
k=1

(jk,1 −Ej1)

)4

= E

(
E

{ P1∑
k=1

(jk,1 −Ej1)

4

|P1

})
≤ 6E(P 2

1 (E(j1 −Ej1)
2)2 + P1E(j1−Ej1)

4)

≤ c{EP 2
1 (Ej

2
1 )

2 +EP1Ej
4
1 )}.

(6.10)

The first inequality in the previous display results from the following reasoning.
Suppose {ξn, n≥ 1} are iid, Eξn = 0, Eξ4

n <∞. Then

E

 p∑
i=1

ξi

4

=E

( ∑
i,j,k,l

ξiξj ξkξl

)
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where i, j, k, l range in {1, . . . , p}. Because Eξn = 0, this expectation becomes∑=+∑ �= where

∑= =
p∑

1=i=j=k=l
Eξ4

1 = pEξ4
1 ,

and
∑ �= is the sum over (i, j, k, l) where not all indices are equal and no one index

is different from all the rest. Consequently there must be two pairs of equal indices.
Returning to (6.10), and recalling (4.3) and that EP1= λm1 [cf. also the derivation
of (4.9)], we get

EP 2
1 (Ej

2
1 )

2/σ 4
T (1)

≤ {(λm1+ 1)Ej2
1 /σ

2
T (1)}2

∼
{(

1+ 1

λm1

)
U3F on(U)

T 3F on(T )

∫ 1

0

∫ 1−s
0

y2Fon(Udy)

F on(U)
ds

}2

.

(6.11)

The left-hand inequality in Proposition 2 in Appendix B, with x = 1/u, t = U

gives that there is a fixed u0 > 0 with F on(U)/F on(T ) bounded by a constant
times (U/T )−α−ε for ε = 2− α and U > u0, so that then

U3F on(U)

T 3F on(T )
≤ (const)

U

T
= u.

On the other hand, for 0 <U < u0,

U3F on(U)

T 3F on(T )
≤ u2

0

T 2F on(T )

U

T
≤ cu.

Since the double integral in (6.11) is bounded by a constant by Karamata’s
theorem, we obtain that for the case when λm1 ≥ 1,

EP 2
1 (Ej

2
1 )

2/σ 4
T ≤ cu2.(6.12)

Similarly, also using (3.3),

EP1Ej
4
1 /σ

4
T ≤ c

U5F on(U)

λT 6F on(T )2
≤ c

1

λT F on(T )

U5F on(U)

T 5F on(T )
≤ cu2,(6.13)

and, still assuming λm1 ≥ 1, by (4.7),

E((P1−EP1)Ej1)
4/σ 4

T = (3(EP1)
2 +EP1)(Ej1)

4/σ 4
T

≤ c(λm1)
2/σ 4

T ≤ c
U2

T 6F on(T )2
≤ cu2.

(6.14)

Together, (6.9)–(6.14) show that (6.8) holds for λm1 ≥ 1.
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If instead EP1 = λm1 ≤ 1 then also EP 4
1 ≤ c and using that 0 ≤ j1 ≤ U we

obtain

E(A1−EP1E(j1))
4/σ 4

T ≤ cU4/σ 4
T ≤

1

(λT F on(T ))2

(
U

T

)4

≤ cu2.(6.15)

Thus, (6.8) holds also in this case, and thus generally.
Calculations along the same lines give the same bounds as in (6.8) for E(Ai −

EAi)
4/σ 4

T for i = 2, . . . ,4. Since AT has stationary increments, it then follows
from (6.7) that

E(GT (t + u)−GT (t))
4 =EGT (u)

4 ≤ cu2,

for 0≤ u≤K,0≤ t + u≤K . By [4], Theorem 12.3, {GT } then is tight in the J1

topology on D[0,K]. Since K > 0 is arbitrary and since we already have shown
finite dimensional convergence, this proves Theorem 3.

7. FBM approximations for the superposition of ON/OFF processes under
fast growth. In this section we assume that the fast growth Condition 2 holds.
Define

dT := [T 3−αLon(T )M]1/2.

By Lemma 1, Condition 2 is equivalent to o(dT )= T , since

dT

T
= [M T F on(T )]1/2.

The sequence (dT ) will serve as the normalization in the central limit theorem for
the total accumulated input A(T ) in [0, T ]. This is intuitively clear from the fact
that A(T ) is the sum of the M iid cumulative workload processes

G
(m)
T :=

∫ T

0
(W(m)

u −EW(m)
u ) du, m= 1, . . . ,M,

each of which has variance (cf. [50])

Var(GT )∼ σ 2
0 T 3−αLon(T ) as T →∞,(7.1)

where

σ 2
0 :=

2µ2
off "(2− α)/(α − 1)

µ3 "(4− α)
.
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7.1. The main result. Under the fast growth condition, the processes (A(T t),

t ≥ 0) have a fractional Brownian motion as limit.

THEOREM 4. If Condition 2 holds, then the processes (A(T t), t ≥ 0)
describing the cumulative input in [0, T t], t ≥ 0, satisfy the limit relation

A(T ·)− TMµ−1µon(·)
dT

d→ σ0 BH(·).(7.2)

Here
d→ denotes weak convergence in C[0,∞) and BH is standard fractional

Brownian motion with H = (3− α)/2.

7.2. Proofs. One dimensional convergence is established in the following
lemma.

LEMMA 13. For every t ≥ 0,

d−1
T

M∑
m=1

G
(m)
T t

d→N(0, σ 2
0 t

3−α) d= σ0BH(t).(7.3)

PROOF. In [34], Theorem 4.2, we find the following necessary and sufficient
conditions for (7.3): as T →∞

(A) M P (|GT t | ≥ ε dT )→ 0 for all ε > 0,

(B) M d−2
T Var(GT t 1[|GT t |≤τ dT ])→ σ 2

0 t
3−α for some τ > 0,

(C) M d−1
T E(GT t 1[|GT t |≤τ dT ])→ 0 for some τ > 0.

(A) and (C) follow from the fact that P (|GT | ≥ ε dT ) = 0 for large T , since
T = o(dT ) and |GT | ≤ T a.s. The proof of (B) follows from the same observation
in combination with (7.1). �

Now, it is only a small step to prove convergence of the finite dimensional
distributions of A. We only consider 2-dimensional convergence, since the general
case is completely analogous. We have to show that, for b1, b2 ∈R and t2 ≥ t1 ≥ 0,

d−1
T

M∑
m=1

[
b1G

(m)
T t1
+ b2G

(m)
T t2

] d→ b1σ0BH(t1)+ b2σ0BH(t2).

Again using [34], Theorem 4.2, one has to show the statements corresponding to
(A)–(C) above. The proofs of (A) and (C) follow in the same way as in Lemma 13.
For (B) we have to show that for t1 ≤ t2, as T →∞,

Md−2
T Cov(GT t1,GT t2)→

σ 2
0

2

[
t2H
1 + t2H

2 − (t2 − t1)
2H

]
= Cov(σ0BH(t1), σ0BH(t2)).

(7.4)
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But this follows from

Cov(GT t1,GT t2)= 1
2

[
Var(GT t1)+Var(GT t2)−Var(GT t2 −GT t1)

]
,

the fact that G has stationary increments and (7.1). Therefore, the finite dimen-
sional distributions of A converge to those of fractional Brownian motion.

It remains to show that the family of stochastic processes in (7.2) is tight in
C[0,K] for any fixed K > 0. We will show that for small u > 0 and T ≥ T ∗,

E

∣∣∣∣∣∣d−1
T

M∑
m=1

G
(m)
T u

∣∣∣∣∣∣
2

≤ (const) u1+ε,

for some small ε > 0. Then Theorem 12.3 in Billingsley [4] gives the result.

According to (7.1) we have for T large enough

E

∣∣∣∣∣∣d−1
T

M∑
m=1

G
(m)
T u

∣∣∣∣∣∣
2

= M

d2
T

EG2
T u =

EG2
T u

T 3−αLon(T )
≤ 2σ 2

0
EG2

T u

EG2
T

.

By (7.1) we know that the function EG2
x is regularly varying with index 3− α.

Using the left-hand inequality of Proposition 2 in Appendix B, with x = 1/u,
t = T u and some small ε > 0 such that 3 − α − 2ε > 1, gives that there is a
fixed t0 such that for u≤ 1 and T u≥ t0,

EG2
T u

EG2
T

<
1

1− ε
u3−α−ε.

For T u < t0 we have for large enough T

EG2
T u

T 3−αLon(T )
≤ (T u)2

T 3−αLon(T )
≤ (T u)1+ε t1−ε

0

T 3−αLon(T )

= T 1−(3−α−ε)

Lon(T )
t1−ε
0 u1+ε ≤ t1−ε

0 u1+ε.

Since 3− α − ε > 1+ ε we have for T large enough and u≤ 1

E

∣∣∣∣∣∣d−1
T

M∑
m=1

G
(m)
T u

∣∣∣∣∣∣
2

≤max(2σ 2
0 /(1− ε), t1−ε

0 ) u1+ε.

This completes the proof. �
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APPENDIX A

A. Large deviations of heavy-tailed sums. We present a large deviation
result which is frequently used in the proof of Theorem 2. Let (Zk, k ≥ 1) be
iid random variables with distribution F such that

F(x)= x−α1L1(x), x > 0, for some α1 > 0 and L1 slowly varying,(A.1)

and denote by

Sn =Z1 + · · · +Zn, n≥ 1,

the corresponding partial sums. Define

µ2(x)= x−2
∫
|u|≤x

u2 dF (u).

The following large deviation result was proved in [6].

PROPOSITION 1. Let βn→∞ such that Sn/βn
P→ 0. Suppose Bn ⊂ [βn,∞).

If the condition

lim
n→∞ sup

x∈Bn

∣∣∣nµ2(x) ln(nF (x))
∣∣∣= 0(A.2)

holds, then

lim
n→∞ sup

x∈Bn

∣∣∣∣P (Sn > x)

nF(x)
− 1

∣∣∣∣= 0.(A.3)

REMARK. Writing Mn = maxk=1,...,n Zk for the partial maxima of the Z-
sequence, we see that we can replace nF(x) in (A.3) by P (Mn > x). This means
that the large deviation {Sn > x} is essentially due to the event {Mn > x}.

A consequence is the following result.

COROLLARY 1. In addition to (A.1) assume that EZ = 0 and either

F(−x)= x−α2L2(x), x > 0, for some α2 > α1,

α1 ∈ (1,2) and L2 slowly varying,

or

F(−x)= 0 for x > x0, some x0 > 0.

Then (A.3) holds with βn = anhn and Bn = [βn,∞) where (hn) is any sequence
with hn ↑∞ and (an) satisfies nF (an)∼ 1.
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PROOF. Since (a−1
n Sn) weakly converges to an α1-stable distribution relation

β−1
n Sn

P→ 0 is immediate. Moreover, by Karamata’s theorem,

µ2(x)≤ (const)P (|Z|> x), x > 0,

and so (A.2) is satisfied since

nµ2(x) ln(nP (Z > βn))≤ (const) nP (|Z|> βn) ln(nP (|Z|> βn))→ 0.

This concludes the proof. �

APPENDIX B

B. Bounds for regularly varying functions. Let U(x) be a regularly varying
function with index ρ ∈R, that is, for x > 0,

lim
t→∞

U(tx)

U(t)
= xρ.

The following result can be found in [38], Proposition 0.8 (ii).

PROPOSITION 2. Take ε > 0. Then there is a fixed t0 such that for x ≥ 1 and
t ≥ t0,

(1− ε) xρ−ε < U(tx)

U(t)
< (1+ ε) xρ+ε.

These bounds are called the Potter bounds in [5].
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