EXACT CONVERGENCE RATES FOR THE DISTRIBUTION OF PARTICLES IN BRANCHING RANDOM WALKS

By Xia Chen
University of Tennessee

Abstract

The exact convergence rates of the particle distributions in supercritical branching random walks and supercritical branching Wiener processes are obtained and a conjecture of Révész is confirmed.

1. Introduction. Consider a branching particle system starting from one ancestor at the origin in a d-dimensional space. Independently, each particle moves to a new site after one time unit after its birth, gives birth to a random number of offsprings and dies. The same procedure is repeated by all generations. Throughout, the migration is governed either by a d-dimensional simple symmetric random walk or by a d-dimensional Wiener process, and the reproduction by a Galton-Watson tree whose offspring distribution has the mean $m>1$ and finite variance. This model is called branching random walk (when migration is executed by a random walk), or branching Wiener process (when migration is executed by a Wiener process). Under our assumptions, the random sequence $\{B(t)\}_{t \geq 0}$ with $B(t)$ being given as the total population in generation $t(t \geq 0)$ is a supercritical branching chain. It is well known [see, cf., Athreya and Ney (1972)] that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{B(t)}{m^{t}}=B \quad \text { a.s. } \tag{1.1}
\end{equation*}
$$

for some random variable B which is not constantly zero.
In addition to their obvious background in the study of population growth and migration, the models of branching random walks (Wiener processes) had their origins in the theory of cascade processes. The study of branching random walks as a probability problem was initiated by Kolmogorov (1941). [The reader is referred to a survey by Ney (1991) for a historical account and for general information on this field.] A central limit theorem conjectured by Harris [(1963), page 75] states that

$$
\begin{equation*}
\frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} \lambda(y, T) \longrightarrow B G(x) \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

where $\lambda(x, T)$ is the population of the particles located at x at time T and $G(x)$ is the d-dimensional normal distribution function attracting the migration random walk through the classic central limit theorem. See, for example, Stam (1966), Asmussen and Kaplan (1976a, b), Athreya and Kaplan (1978),

[^0]Klebaner (1982), Joffe (1987), Biggins (1990), Bramson, Ney and Tao (1992) and Révész (1994) for the developments on this subject. Concerning the speed of above convergence, Révész (1994) proves that for each $\varepsilon>0$,

$$
\begin{equation*}
T^{1 / 2-\varepsilon}\left(\frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} \lambda(y, T)-B G(x)\right) \longrightarrow 0 \quad \text { a.s. } \tag{1.3}
\end{equation*}
$$

Like the classic central limit theorem, the central limit theorem for branching random walks yields its local version [see also Watanabe (1965), Athreya and Kang (1998a, b) for the local central limit theorems for a variety of branching Markov processes]. In the case of branching random walk, Révész (1994) shows that

$$
\begin{equation*}
T^{1-\varepsilon}\left(\frac{1}{2}\left(\frac{4 \pi T}{d}\right)^{d / 2} \frac{\lambda(0,2 T)}{m^{2 T}}-B\right) \longrightarrow 0 \quad \text { a.s. } \tag{1.4}
\end{equation*}
$$

Naturally, one wonders if (1.3) and (1.4) suggest exact rates of convergence. Indeed, a counterpart of (1.4) given in Theorem 4.9 of Révész (1994) says that for each $C>0$, there is a $\delta=\delta(C)>0$ such that

$$
\begin{equation*}
P\left\{\left|\frac{1}{2}\left(\frac{4 \pi T}{d}\right)^{d / 2} \frac{\lambda(0,2 T)}{m^{2 T}}-B\right| \geq \frac{C}{T}\right\} \geq \delta \tag{1.5}
\end{equation*}
$$

for sufficiently large T. This observation makes him conjecture [Révész (1994), page 79] that the sequence

$$
\begin{equation*}
T\left(\frac{1}{2}\left(\frac{4 \pi T}{d}\right)^{d / 2} \frac{\lambda(0,2 T)}{m^{2 T}}-B\right), \quad T=1,2, \ldots \tag{1.6}
\end{equation*}
$$

weakly converges to some nondegenerate random variable as $T \rightarrow \infty$.
This paper proposes to find the exact convergence rates for these limit theorems, and to settle the conjecture raised by Révész in particular. Instead of the weak convergence proposed by Révész, we shall prove his conjecture in terms of almost sure convergence as well as L_{2}-convergence. Our tools are some decompositions given in Révész (1994) and martingale approximations.

The rest of the paper is organized as follows: in Section 2, we give our results (Theorems 2.1 and 2.2 and Corollary 2.3) for branching random walks. In Section 3, we point out their analogues (Theorems 3.1 and 3.2) in the case of branching Wiener processes. Theorems 2.1 and 2.2 and Corollary 2.3 are proved in Section 4. Due to similarity, only a sketch is given for the proofs of Theorems 3.1 and 3.2 in Section 5.

The following notations and assumptions will be kept throughout the article. For $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(x_{1}, \ldots, y_{d}\right) \in \mathbf{R}^{d}, x \cdot y$ and $\|x\|$ will be used, respectively, for the inner product between x, y and for the Euclidean norm of x. The partial order " $x \leq y$ " is defined by the relation $x_{1} \leq y_{1}, \ldots, x_{d} \leq y_{d}$.

Given a measurable $A \subset \mathbf{R}^{d},|A|$ denotes its Lebesgue measure. Write

$$
\Phi_{d}(x)=\left(\frac{1}{2 \pi}\right)^{d / 2} \int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{d}} \exp \left\{-\frac{\|y\|^{2}}{2}\right\} d y
$$

and let $\Phi(x)=\Phi_{1}(x)$.
We use the nonnegative integer valued random variable Z to represent the distribution of the number of children of each individual in our particle system and assume

$$
\begin{equation*}
m \equiv E Z>1 \quad \text { and } \quad \sigma^{2} \equiv \operatorname{Var}(Z)<\infty \tag{1.7}
\end{equation*}
$$

2. Results for branching random walks. We begin with a formal definition of the local population $\lambda(x, t)$. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{d}$ be the orthogonal unit vectors in the d-dimensional lattice \mathbf{Z}^{d} and let X be a \mathbf{Z}^{d}-valued random variable independent of Z with

$$
P\left\{X=\mathbf{e}_{j}\right\}=\frac{1}{2 d}, \quad j=1,2, \ldots, d
$$

and let

$$
\left\{(X(x, t, k), Z(x, t, k)) ; x \in \mathbf{Z}^{d}, t=0,1,2, \ldots, k=1,2, \ldots\right\}
$$

be an array of i.i.d. random vectors with

$$
(X(\mathbf{0}, 0,1), Z(\mathbf{0}, 0,1))=(X, Z)
$$

Intuitively, we coordinate each individual in our particle system by the 3 -tuple (x, t, k), where x represents the birth site, t represents the generation (so the original ancestor belongs to generation 0) and k is the order number as one of the members born at x in that generation. For a given individual (x, t, k), $X(x, t, k)$ is interpreted as the migration and $Z(x, t, k)$ is the number of the individual's children. The local population $\lambda(x, t)$ at $x \in \mathbf{Z}^{d}$ in the generation t is defined as follows:

$$
\begin{aligned}
& \lambda(x, 0)= \begin{cases}1, & \text { if } x=\mathbf{0} \\
0, & \text { if } x \neq \mathbf{0}\end{cases} \\
& \lambda(x, t)=\sum_{y \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(y, t-1)} I_{x-y}(X(y, t-1, k)) Z(y, t-1, k),
\end{aligned}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{Z}^{d}$ and $t=1,2, \ldots$ Clearly, $\lambda(x, t)=0$ if $t \not \equiv$ $x_{1}+\cdots+x_{d} \bmod (2)$.

Write

$$
B(t)=\sum_{x \in \mathbf{Z}^{d}} \lambda(x, t), \quad t=0,1,2, \ldots
$$

Then $\{B(t)\}_{t \geq 0}$ is a supercritical Branching chain starting with $B(0)=1$ and having the offspring distribution $\mathscr{L}(Z)$ [see, e.g., Athreya and Ney (1972) for
details of branching chains]. It is well known that when $m>1,\{B(t)\}_{t \geq 0}$ survives with positive probability.

Let

$$
\mathscr{F}(t)=\mathscr{F}\left\{\lambda(x, s) ; x \in \mathbf{Z}^{d}, s=0,1, \ldots, t\right\}
$$

be the σ-algebra generated by the array

$$
\left\{\lambda(x, s) ; x \in \mathbf{Z}^{d}, s=0,1, \ldots, t\right\}
$$

THEOREM 2.1. There exist a real random variable M and a \mathbf{R}^{d}-valued random variable N such that for each $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{Z}^{d}$,

$$
\begin{equation*}
T\left[\frac{1}{2}\left(\frac{2 \pi T}{d}\right)^{d / 2} \frac{\lambda(x, T)}{m^{T}}-B \exp \left\{-\frac{d\|x\|^{2}}{2 T}\right\}\right] \rightarrow d\left(\frac{1}{2} M+x \cdot N\right) \tag{2.1}
\end{equation*}
$$

almost surely as well as in L_{2}-norm, as $T \rightarrow \infty$ with $T \equiv x_{1}+\cdots+x_{d} \bmod (2)$, where the random variable B is given in (1.1).

In addition, the random variables M and N satisfy the following:

$$
\begin{align*}
& E M=0 \quad \text { and } \quad E M^{2}=\frac{4\left(m^{2}+\sigma^{2}\right)}{d(m-1)^{3}} \tag{2.2}\\
& E N=\mathbf{0} \quad \text { and } \quad \operatorname{cov}(N, N)=\frac{m^{2}+\sigma^{2}}{d(m-1)^{2}} \mathbf{I}_{d}, \tag{2.3}\\
&(B, M, N) \stackrel{d}{=}(B, M,-N), \tag{2.4}\\
& E[M \mid \mathscr{F}(t)]=t \frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\|y\|^{2} \lambda(y, t), \quad t=0,1, \ldots, \tag{2.5}\\
& E[N \mid \mathscr{F}(t)]=\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}} y \lambda(y, t), \quad t=0,1, \ldots, \tag{2.6}
\end{align*}
$$

where \mathbf{I}_{d} is the $d \times d$ identity matrix.
Further, if $\left\{\left(B_{k}, M_{k}, N_{k}\right)\right\}_{k \geq 1}$ are independent copies of (B, M, N) and if they are independent of (X, Z) then

$$
\begin{equation*}
(B, M,(N-B X)) \stackrel{d}{=} \frac{1}{m} \sum_{k=1}^{Z}\left(B_{k},\left(M_{k}-2 X \cdot N_{k}\right), N_{k}\right) \tag{2.7}
\end{equation*}
$$

Theorem 2.2. For each $x \in \mathbf{Z}^{d}$,

$$
\begin{equation*}
\sqrt{T}\left[\frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} \lambda(y, T)-B P\left\{S_{T} \leq x \sqrt{T}\right\}\right] \longrightarrow-\nabla \Phi_{d}(\sqrt{d} x) \cdot N \tag{2.8}
\end{equation*}
$$

almost surely as well as in L_{2}-norm, provided $T \rightarrow \infty$, where B is given in (1.1), N is given in Theorem 2.1 and $\left\{S_{t}\right\}$ is the symmetric simple random walk generated by X.

Remark. Taking $x=0$ in (2.1) we see that the sequence in (1.6) converges almost surely as well as in L_{2}-norm. So the conjecture made by Révész (1994) is proved. From (1.5) one can also see that the random variable M in Theorem 2.1 is unbounded. By Proposition 1.2.5 of Lawler (1991),

$$
P^{T}(x) \equiv P\left\{S_{T}=x\right\}=2\left(\frac{d}{2 \pi T}\right)^{d / 2} \exp \left\{-\frac{d\|x\|^{2}}{2 T}\right\}+O\left(T^{-2-d / 2}\right)
$$

as $T \rightarrow \infty$ with $T \equiv x_{1}+\cdots+x_{d} \bmod (2)$. Therefore (2.1) is equivalent to

$$
\begin{equation*}
T^{1+d / 2}\left[\frac{\lambda(x, T)}{m^{T}}-B P^{T}(x)\right] \rightarrow d\left(\frac{d}{2 \pi}\right)^{d / 2}(M+2 x \cdot N) \tag{2.9}
\end{equation*}
$$

Nevertheless, $P\left\{S_{T} \leq x \sqrt{T}\right\}$ in Theorem 2.2 can not be replaced by $\Phi_{d}(\sqrt{d} x)$. Indeed, we have the following corollary.

Corollary 2.3. For each $x \in \mathbf{Z}^{d}$,

$$
\begin{align*}
& \sqrt{T}\left(\frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} \lambda(y, T)-B \Phi_{d}(\sqrt{d} x)\right) \tag{2.10}\\
& \quad=\nabla \Phi_{d}(\sqrt{d} x) \cdot(B \mathbf{F}(\sqrt{T} x)-2 N)+O(1), \quad T \rightarrow \infty
\end{align*}
$$

almost surely as well as in L_{2}-norm, where B is given in (1.1), N is given in Theorem 2.1, $\mathbf{F}(x)=\left(f\left(x_{1}\right), \ldots, f\left(x_{d}\right)\right)$ and $f:(-\infty, \infty) \longrightarrow\left(-\frac{1}{2}, \frac{1}{2}\right)$ is a periodic function with period $1, f(k)=0(k=0, \pm 1, \pm 2, \ldots)$ and

$$
f(\theta)=\frac{1-2 \theta}{2}, \quad 0<\theta<1 .
$$

Corollary 2.3 shows that asymptotically, the sequence

$$
\sqrt{T}\left(\frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} \lambda(y, T)-B \Phi_{d}(\sqrt{d} x)\right), \quad T=1,2, \ldots,
$$

oscillates in a finite random interval. So the exact rate for the global central limit theorem is established.
3. Results for branching Wiener processes. The construction of the branching Wiener process is similar. Let $W(t)$ be a standard d-dimensional Wiener process independent of Z and write $W=W(1)$. Let

$$
\left\{(W(x, t, k), Z(x, t, k)) ; x \in \mathbf{R}^{d}, t=0,1,2, \ldots, k=1,2, \ldots\right\}
$$

be a set of i.i.d. random vectors such that

$$
(W(\mathbf{0}, 0,1), Z(\mathbf{0}, 0,1))=(W, Z) .
$$

Define

$$
\begin{aligned}
& \lambda(x, 0)= \begin{cases}1, & \text { if } x=\mathbf{0}, \\
0, & \text { if } x \neq \mathbf{0},\end{cases} \\
& \lambda(x, t)=\sum_{y \in \mathbf{R}^{d}} \sum_{k=1}^{\lambda(y, t-1)} I_{x}(y+W(y, t-1, k)) Z(y, t-1, k),
\end{aligned}
$$

where $x \in \mathbf{R}^{d}$ and $t=1,2, \ldots$ Clearly, $\lambda(x, t)=0$ for all but finitely many $x \in \mathbf{R}^{d}$. Define the random measure

$$
\psi(A, t)=\sum_{x \in A} \lambda(x, t)=\sum_{y \in \mathbf{R}^{d}} \sum_{k=1}^{\lambda(y, t-1)} I_{A}(y+W(y, t-1, k)) Z(y, t-1, k)
$$

for all measurable $A \subset \mathbf{R}^{d}$. Let

$$
\begin{aligned}
\mathscr{F}(t) & =\mathscr{F}\left\{\lambda(x, s) ; x \in \mathbf{R}^{d}, s=0,1, \ldots, t\right\} \\
& =\mathscr{F}\left\{\psi(A, s) ; A \subset \mathbf{R}^{d}, s=0,1, \ldots, t\right\}
\end{aligned}
$$

be the σ-algebra generated by

$$
\left\{\lambda(x, s) ; x \in \mathbf{Z}^{d}, s=0,1, \ldots, t\right\} .
$$

Theorem 3.1. There exist a real random variable M and $a \mathbf{R}^{d}$-valued random variable N such that for each $A \subset \mathbf{R}^{d}$ with $|A|>0$ and $\int_{A}\|x\| d x<$ $+\infty$,

$$
\begin{equation*}
T\left[(2 \pi T)^{d / 2} \frac{\psi(A, T)}{m^{T}}-B \int_{A} \exp \left\{-\frac{\|x\|^{2}}{2 T}\right\} d x\right] \rightarrow|A|\left(\frac{1}{2} M+\bar{x}_{A} \cdot N\right) \tag{3.1}
\end{equation*}
$$

almost surely as well as in L_{2}-norm, as $T \rightarrow \infty$, where B is given in (1.1) and

$$
\bar{x}_{A}=\frac{1}{|A|} \int_{A} x d x
$$

In addition, the random variables M and N satisfy the following:

$$
\begin{align*}
E M & =0 \quad \text { and } \quad E M^{2}=\frac{2 d\left(m^{2}+\sigma^{2}\right)(m+1)}{(m-1)^{3}}, \tag{3.2}\\
E N & =\mathbf{0} \quad \text { and } \quad \operatorname{cov}(N, N)=\frac{\left(m^{2}+\sigma^{2}\right)}{(m-1)^{2}} \mathbf{I}_{d}, \tag{3.3}\\
(B, M, N) & \stackrel{d}{=}(B, M,-N), \tag{3.4}\\
E[M \mid \mathscr{F}(t)] & =d t \frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \int\|y\|^{2} \psi(d y, t), \quad t=0,1, \ldots, \tag{3.5}\\
E[N \mid \mathscr{F}(t)] & =\frac{1}{m^{t}} \int y \psi(d y, t), \quad t=0,1, \ldots \tag{3.6}
\end{align*}
$$

Further, if $\left\{\left(B_{k}, M_{k}, N_{k}\right)\right\}$ are independent copies of (B, M, N) and if they are independent of (W, Z) then

$$
\begin{align*}
& \left(B,\left(M-\left(d-\|W\|^{2}\right) B\right),(N-B W)\right) \\
& \quad \stackrel{d}{=} \frac{1}{m} \sum_{k=1}^{Z}\left(B_{k},\left(M_{k}-2 W \cdot N_{k}\right), N_{k}\right) . \tag{3.7}
\end{align*}
$$

Theorem 3.2. For each $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}$,

$$
\begin{equation*}
\sqrt{T}\left[\frac{\psi(\{y: y \leq x \sqrt{T}\}, T)}{m^{T}}-B \Phi_{d}(x)\right] \longrightarrow-\nabla \Phi_{d}(x) \cdot N \tag{3.8}
\end{equation*}
$$

almost surely as well as in L_{2}-norm, as $T \rightarrow \infty$, where B is given in (1.1) and N is given in Theorem 3.1.

4. Proof of Theorems 2.1 and 2.2 and Corollary 2.3.

Proof of Theorem 2.1. To prove (2.1) we need only to verify (2.9).
Define, for $0 \leq t \leq T$ and $x \in \mathbf{Z}^{d}$,

$$
f(x, T, t)=m^{T-t} \sum_{y \in \mathbf{Z}^{d}} \lambda(y, t) P^{T-t}(x-y) .
$$

According to Lemma 4.3, page 67 in Révész (1994),

$$
\begin{equation*}
E[\lambda(x, T) \mid \mathscr{F}(t)]=f(x, T, t), \quad 0 \leq t \leq T, x \in \mathbf{Z}^{d} \tag{4.1}
\end{equation*}
$$

We first follow the decomposition given in Révész (1994). Fix a number $\varepsilon>0$ (which is sufficiently small to satisfy all the needs in the later argument) and choose $t \sim T^{\varepsilon}$. For all $x \in \mathbf{Z}^{d}$,

$$
\begin{align*}
\frac{\lambda(x, T)}{m^{T}}-P^{T}(x) B= & \left(\frac{\lambda(x, T)}{m^{T}}-\frac{f(x, T, t)}{m^{T}}\right) \\
& +\left(\frac{f(x, T, t)}{m^{T}}-P^{T}(x) \frac{B(t)}{m^{t}}\right) \tag{4.2}\\
& +P^{T}(x)\left(\frac{B(t)}{m^{t}}-B\right) .
\end{align*}
$$

In the proof of Theorem 2.1, we assume that $t \equiv x_{1}+\cdots+x_{d} \bmod (2)$. As shown in Révész (1994), the first and the third terms are negligible since [Lemma 4.8, Révész (1994)]

$$
\begin{equation*}
E\left(\sum_{y \in \mathbf{Z}^{\mathbf{d}}}\left(\frac{\lambda(y, T)}{m^{T}}-\frac{f(y, T, t)}{m^{T}}\right)^{2}\right) \leq C \cdot \frac{1}{m^{t}(T-t)^{d / 2}} \tag{4.3}
\end{equation*}
$$

for some constant $C>0$, and since [Theorem 4.8, Révész (1994)]

$$
\begin{equation*}
E\left(\frac{B(t)}{m^{t}}-B\right)^{2}=O\left(m^{-t}\right) \tag{4.4}
\end{equation*}
$$

So we need to show that

$$
\begin{equation*}
T^{1+d / 2}\left(\frac{f(x, T, t)}{m^{T}}-P^{T}(x) \frac{B(t)}{m^{t}}\right) \longrightarrow d\left(\frac{d}{2 \pi}\right)^{d / 2}(M+x \cdot N) \tag{4.5}
\end{equation*}
$$

almost surely as well as in L_{2}-norm. Notice that

$$
\begin{equation*}
\frac{f(x, T, t)}{m^{T}}-P^{T}(x) \frac{B(t)}{m^{t}}=\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}} \lambda(y, t)\left(P^{T-t}(x-y)-P^{T}(x)\right) . \tag{4.6}
\end{equation*}
$$

By a formula given in Lawler [(1991), page 14],

$$
\begin{aligned}
P^{T-t}(x-y) & =2(2 \pi)^{-d} \int_{A} e^{-i(x-y) \cdot \lambda} \phi^{T-t}(\lambda) d \lambda \\
& =2(2 \pi)^{-d} \int_{A} \cos ((x-y) \cdot \lambda) \phi^{T-t}(\lambda) d \lambda, \\
P^{T}(x) & =2(2 \pi)^{-d} \int_{A} \cos (x \cdot \lambda) \phi^{T}(\lambda) d \lambda,
\end{aligned}
$$

where

$$
\phi(\lambda)=\frac{1}{d} \sum_{j=1}^{d} \cos \lambda_{j}, \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbf{R}^{d}
$$

is the characteristic function of X and $A=[-\pi / 2, \pi / 2] \times[-\pi, \pi]^{d-1}$. By variable substitution,

$$
\begin{aligned}
& P^{T-t}(x-y)-P^{T}(x) \\
& =2(2 \pi)^{-d}(T-t)^{-d / 2} \int_{\sqrt{T-t} A}\left[\cos \left(\frac{(x-y) \cdot \lambda}{\sqrt{T-t}}\right)-\cos \left(\frac{x \cdot \lambda}{\sqrt{T-t}}\right) \phi\left(\frac{\lambda}{\sqrt{T-t}}\right)^{t}\right] \\
& \quad \times \phi\left(\frac{\lambda}{\sqrt{T-t}}\right)^{T-t} d \lambda
\end{aligned}
$$

and, by Taylor's expansion

$$
\begin{aligned}
& \cos \left(\frac{(x-y) \cdot \lambda}{\sqrt{T-t}}\right)-\cos \left(\frac{x \cdot \lambda}{\sqrt{T-t}}\right) \phi\left(\frac{\lambda}{\sqrt{T-t}}\right)^{t} \\
& \quad=\frac{1}{2(T-t)}\left[(x \cdot \lambda)^{2}+t d^{-1}\|\lambda\|^{2}-((x-y) \cdot \lambda)^{2}+o(1)\right]
\end{aligned}
$$

uniformly for all $\|y\| \leq t$ as $T \rightarrow \infty$. Notice that

$$
\phi\left(\frac{\lambda}{\sqrt{T-t}}\right)^{T-t} \longrightarrow \exp \left\{-\frac{\|\lambda\|^{2}}{2 d}\right\}, \quad T \rightarrow \infty
$$

and that $|\phi(\lambda)|<1$ for all $\lambda \in A \backslash\{0\}$. Hence the dominated convergence theorem applies [see, e.g., the proof of Theorem 1.2.1 in Lawler (1991)], which,
combined with the above observations, gives that

$$
\begin{align*}
& P^{T-t}(x-y)-P^{T}(x) \\
& =(2 \pi)^{-d} T^{-1-d / 2}\left[\int\left((x \cdot \lambda)^{2}+t d^{-1}\|\lambda\|^{2}-((x-y) \cdot \lambda)^{2}\right)\right. \\
& \left.\times \exp \left\{-\frac{\|\lambda\|^{2}}{2 d}\right\} d \lambda+o(1)\right] \tag{4.7}\\
& =(2 \pi)^{-d / 2} d^{1+d / 2} T^{-1-d / 2}\left[t-\|y\|^{2}+2 x \cdot y+o(1)\right], \quad T \rightarrow \infty
\end{align*}
$$

uniformly on $\|y\| \leq t$. Since $\lambda(y, t)=0$ for all $\|y\|>t$, from (4.6) we have

$$
\begin{align*}
& T^{1+d / 2}\left(\frac{f(x, T, t)}{m^{T}}-P^{T}(x) \frac{B(t)}{m^{t}}\right) \\
&=(2 \pi)^{-d / 2} d^{1+d / 2} {\left[\frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\|y\|^{2} \lambda(y, t)\right.} \tag{4.8}\\
&\left.+\frac{2}{m^{t}} x \cdot \sum_{y \in \mathbf{Z}^{d}} y \lambda(y, t)+o(1)\right]
\end{align*}
$$

almost surely and in L_{2}-norm as well. Let

$$
M_{t}=t \frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\|y\|^{2} \lambda(y, t)
$$

and

$$
N_{t}=\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}} y \lambda(y, t), \quad t=0,1, \ldots
$$

We claim that $\left\{M_{t}\right\}_{t \geq 0}$ and $\left\{N_{t}\right\}_{t \geq 0}$ are martingales w.r.t. the filtration $\{\mathscr{F}(t)\}_{t \geq 0}$. Indeed,

$$
\begin{align*}
E\left[M_{t} \mid \mathscr{F}(t-1)\right]= & E\left[\left.t \frac{B(t)}{m^{t}} \right\rvert\, \mathscr{F}(t-1)\right] \\
& -\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\|y\|^{2} E[\lambda(y, t) \mid \mathscr{F}(t-1)] \\
= & t \frac{B(t-1)}{m^{t-1}}-\frac{1}{m^{t-1}} \sum_{y \in \mathbf{Z}^{d}}\|y\|^{2} \sum_{z \in \mathbf{Z}^{d}} \lambda(z, t-1) P(y-z) \tag{4.9}\\
= & t \frac{B(t-1)}{m^{t-1}}-\frac{1}{m^{t-1}} \sum_{z \in \mathbf{Z}^{d}} \lambda(z, t-1) E\|z+X\|^{2} \\
= & t \frac{B(t-1)}{m^{t-1}}-\frac{1}{m^{t-1}} \sum_{z \in \mathbf{Z}^{d}} \lambda(z, t-1)\left\{\|z\|^{2}+1\right\}=M_{t-1} .
\end{align*}
$$

The proof for $\left\{N_{t}\right\}_{t \geq 0}$ being a martingale is similar.

To apply the martingale convergence theorem to $\left\{M_{t}\right\}_{t \geq 0}$ and $\left\{N_{t}\right\}_{t \geq 0}$, we compute their second moments. Note that

$$
\begin{aligned}
M_{t} & =\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\left\{t-\|y\|^{2}\right\} \lambda(y, t) \\
& =\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\left\{t-\|y\|^{2}\right\} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)} I_{y-z}(X(z, t-1, k)) Z(z, t-1, k) \\
& =\frac{1}{m^{t}} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)} Z(z, t-1, k) \sum_{y \in \mathbf{Z}^{d}}\left\{t-\|y\|^{2}\right\} I_{y-z}(X(z, t-1, k)) \\
& =\frac{1}{m^{t}} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)} Z(z, t-1, k)\left\{t-\|z+X(z, t-1, k)\|^{2}\right\} .
\end{aligned}
$$

Thus for each $t \geq 1$,

$$
\begin{aligned}
M_{t}-M_{t-1}= & M_{t}-E\left[M_{t} \mid \mathscr{F}(t-1)\right] \\
=\frac{1}{m^{t}} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)}\{ & \left\{Z(z, t-1, k)\left\{t-\|z+X(z, t-1, k)\|^{2}\right\}\right. \\
& \left.-E\left(Z(z, t-1, k)\left\{t-\|z+X(z, t-1, k)\|^{2}\right\}\right)\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
E\left[M_{t}-M_{t-1}\right]^{2} & =\frac{1}{m^{2 t}} \sum_{z \in \mathbf{Z}^{d}} E(\lambda(z, t-1)) \cdot \operatorname{Var}\left\{Z \cdot\left[t-\|z+X\|^{2}\right]\right\} \\
& =\frac{1}{m^{t+1}} \sum_{z \in \mathbf{Z}^{d}} P^{t-1}(z) \operatorname{Var}\left\{Z \cdot\left[t-\|z+X\|^{2}\right]\right\} \\
& =\frac{1}{m^{t+1}} \cdot \operatorname{Var}\left\{Z \cdot\left[t-\left\|S_{t}\right\|^{2}\right]\right\}=\frac{1}{m^{t+1}} E Z^{2} \cdot E\left[t-\left\|S_{t}\right\|^{2}\right]^{2} \\
& =\frac{1}{m^{t+1}}\left(m^{2}+\sigma^{2}\right) \cdot 2\left(t^{2}-t\right) d^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{t=1}^{\infty} E\left[M_{t}-M_{t-1}\right]^{2}=\frac{4\left(m^{2}+\sigma^{2}\right)}{d(m-1)^{3}}<\infty . \tag{4.10}
\end{equation*}
$$

Similarly,

$$
\begin{gathered}
N_{t}=\frac{1}{m^{t}} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)} Z(z, t-1, k)(z+X(z, t-1, k)) \\
N_{t}-N_{t-1}=\frac{1}{m^{t}} \sum_{z \in \mathbf{Z}^{d}} \sum_{k=1}^{\lambda(z, t-1)}\{Z(z, t-1, k)(z+X(z, t-1, k)) \\
\\
\quad-E(Z(z, t-1, k)(z+X(z, t-1, k)))\} .
\end{gathered}
$$

Thus for each $t \geq 1$,

$$
\begin{aligned}
\operatorname{cov} & \left(N_{t}-N_{t-1}, N_{t}-N_{t-1}\right) \\
& =\frac{1}{m^{t+1}} \sum_{z \in \mathbf{Z}^{d}} \sum_{z \in \mathbf{Z}^{d}} P^{t-1}(z) \operatorname{cov}(Z(z+X), Z(z+X)) \\
& =\frac{1}{m^{t+1}} \operatorname{cov}\left(Z S_{t}, Z S_{t}\right)=\frac{1}{m^{t+1}}\left(m^{2}+\sigma^{2}\right) d^{-1} t \mathbf{I}_{d}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{t=1}^{\infty} \operatorname{cov}\left(N_{t}-N_{t-1}, N_{t}-N_{t-1}\right)=\frac{\left(m^{2}+\sigma^{2}\right)}{d(m-1)^{2}} \mathbf{I}_{d} \tag{4.11}
\end{equation*}
$$

By the martingale convergence theorem [see, e.g., page 2, Hall and Heyde (1980)], $\left\{M_{t}\right\}_{t \geq 0}$ and $\left\{N_{t}\right\}_{t \geq 0}$ converge almost surely, as well as in L_{2}-norm, to a real valued random variable M and a \mathbf{R}^{d}-valued random variable N, respectively. Since $M_{0}=0$ and $N_{0}=\mathbf{0}$, we have

$$
E M=0 \quad \text { and } \quad E N=\mathbf{0}
$$

By above computation,

$$
E M^{2}=\frac{4\left(m^{2}+\sigma^{2}\right)}{d(m-1)^{3}} \quad \text { and } \quad \operatorname{cov}(N, N)=\frac{\left(m^{2}+\sigma^{2}\right)}{d(m-1)^{2}} \mathbf{I}_{d}
$$

In view of (4.2), (4.3), (4.4) and (4.8) we have (2.1)-(2.3), (2.5) and (2.6) in Theorem 2.1.

Replace $\{X(x, t, k)\}$ by $\{-X(x, t, k)\}$ and introduce the notations $\lambda^{\prime}(x, t)$, $M_{t}^{\prime}, N_{t}^{\prime}, M^{\prime}, N^{\prime}$ for the replacements of $\lambda(x, t), M_{t}, N_{t}, M, N$ respectively, in our new particle system. By symmetry of migration we have

$$
\begin{equation*}
\left(B, M^{\prime}, N^{\prime}\right) \stackrel{d}{=}(B, M, N) \tag{4.12}
\end{equation*}
$$

On the other hand, $\lambda^{\prime}(x, t)=\lambda(-x, t)$ for all $t \geq 0$ and $x \in \mathbf{Z}^{d}$. Hence we have $M_{t}^{\prime}=M_{t}$ and $N_{t}^{\prime}=-N_{t}$, which leads to $M^{\prime}=M$ and $N^{\prime}=-N$. Therefore, (2.4) follows from (4.12).

We now prove (2.7). Let $\lambda^{*}(x, T-1, k)$ be the population of the particles located at x at time T who are descended from the original ancestor's k th child; let

$$
B_{k}(t)=\sum_{x \in \mathbf{Z}^{d}} \lambda^{*}(x, T-1, k)
$$

and write

$$
B_{k}=\lim _{t \rightarrow \infty} \frac{B_{k}(t)}{m^{t-1}}
$$

Then

$$
\lambda(x, T)=\sum_{k=1}^{Z} \lambda^{*}(x, T-1, k)=\sum_{z} I_{z}(X) \sum_{k=1}^{Z} \lambda^{*}(x, T-1, k)
$$

and, $\left\{B_{k}\right\}$ are i.i.d. random variables independent of (X, Z) and distributed as $\mathscr{L}(B)$. Notice that

$$
\sum_{z} I_{z}(X) \sum_{k=1}^{Z} P^{T-1}(x-z) B_{k}=m B \sum_{z} I_{z}(X) P^{T-1}(x-z) .
$$

Similar to (4.7), for $\|z\|=1$,

$$
\begin{aligned}
P^{T-1}(x-z)-P^{T}(x) & =d\left(\frac{d}{2 \pi}\right)^{d / 2} T^{-1-d / 2}\left[1-\|z\|^{2}+2 x \cdot z+o(1)\right] \\
& =d\left(\frac{d}{2 \pi}\right)^{d / 2} T^{-1-d / 2}(2 x \cdot z+o(1))
\end{aligned}
$$

as $T \rightarrow \infty$. Therefore,

$$
\begin{aligned}
& \sum_{z} I_{z}(X) \sum_{k=1}^{Z}\left[\frac{\lambda^{*}(x, T-1, k)}{m^{T-1}}-B_{k} P^{T-1}(x-z)\right] \\
& \quad=m\left(\frac{\lambda(x, T)}{m^{T}}-B P^{T}(x)\right)-m B d\left(\frac{d}{2 \pi}\right)^{d / 2} T^{-1-d / 2} \sum_{z} I_{z}(X)(2 x \cdot z+o(1)) \\
& \quad=m\left(\frac{\lambda(x, T)}{m^{T}}-B P^{T}(x)\right)-m B d\left(\frac{d}{2 \pi}\right)^{d / 2} T^{-1-d / 2}(2 x \cdot X+o(1)) \quad \text { a.s. }
\end{aligned}
$$

Applying (2.9) to the above relation we have

$$
M+2 x \cdot(N-B X)=\frac{1}{m} \sum_{k=1}^{Z}\left\{\left(M_{k}-2 X \cdot N_{k}\right)+2 x \cdot N_{k}\right\} \quad \text { a.s. },
$$

where $\left\{\left(M_{k}, N_{k}\right)\right\}$ are independent copies of (M, N) and $\left\{\left(M_{k}, N_{k}\right)\right\}$ are independent of (X, Z). Since $x \in \mathbf{Z}^{d}$ is arbitrary and since

$$
B=\frac{1}{m} \sum_{k=1}^{Z} B_{k}
$$

we have (2.7).
Proof of Theorem 2.2. Consider the following decomposition:

$$
\begin{aligned}
\frac{1}{m^{T}} & \sum_{y \leq x \sqrt{T}} \lambda(y, T)-B P\left\{S_{T} \leq x \sqrt{T}\right\} \\
= & \frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}}(\lambda(y, T)-f(y, T, t))+\sum_{y \leq x \sqrt{T}} \frac{f(y, T, t)}{m^{T}} \\
& \quad-P\left\{S_{T} \leq x \sqrt{T}\right\} \frac{B(t)}{m^{t}}+P\left\{S_{T} \leq x \sqrt{T}\right\}\left(\frac{B(t)}{m^{t}}-B\right)
\end{aligned}
$$

Again, we let $t \sim T^{\varepsilon}$ for some sufficiently small $\varepsilon>0$. In view of (4.4), the third term in the above decomposition is negligible. Since $\lambda(y, T)=0$ for all $\|y\|>T$,

$$
\left(\sum_{y \leq x \sqrt{T}}(\lambda(y, T)-f(y, T, t))\right)^{2} \leq K T^{d / 2} \sum_{y \in \mathbf{Z}^{d}}(\lambda(y, T)-f(y, T, t))^{2}
$$

where $K>0$ is a constant. By (4.3), the first term is also negligible.
Therefore, we only need to deal with the second term, that is, to prove that

$$
\begin{equation*}
\sqrt{T}\left[\sum_{y \leq x \sqrt{T}} \frac{f(y, T, t)}{m^{T}}-P\left\{S_{T} \leq x \sqrt{T}\right\} \frac{B(t)}{m^{t}}\right] \longrightarrow-\nabla \Phi_{d}(\sqrt{d} x) \cdot N \tag{4.13}
\end{equation*}
$$

almost surely as well as in L_{2}-norm.
Notice that

$$
\begin{align*}
& \frac{1}{m^{T}} \sum_{y \leq x \sqrt{T}} f(y, T, t)-P\left\{S_{T} \leq x \sqrt{T}\right\} \frac{B(t)}{m^{t}} \tag{4.14}\\
& \quad=\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}}\left[P\left\{S_{T-t} \leq x \sqrt{T}-y\right\}-P\left\{S_{T} \leq x \sqrt{T}\right\}\right] \lambda(y, t)
\end{align*}
$$

Write

$$
\begin{align*}
& P\left\{S_{T-t} \leq x \sqrt{T}-y\right\}-P\left\{S_{T} \leq x \sqrt{T}\right\} \\
& \quad=\left(P\left\{S_{T} \leq x \sqrt{T}-y\right\}-P\left\{S_{T} \leq x \sqrt{T}\right\}\right) \tag{4.15}\\
& \quad+\left(P\left\{S_{T-t} \leq x \sqrt{T}-y\right\}-P\left\{S_{T} \leq x \sqrt{T}-y\right\}\right) \\
& \quad=(I)+(I I) \quad \text { (say). }
\end{align*}
$$

Uniformly on $\|y\| \leq t$,

$$
\begin{array}{r}
(I)=-(1+o(1)) \sum_{j=1}^{d} \operatorname{sgn}\left(y_{j}\right) P\left\{x_{j} \sqrt{T}-\left|y_{j}\right|<S_{T}^{(j)} \leq x_{j} \sqrt{T},\right. \tag{4.16}\\
\left.S_{T}^{(k)} \leq x_{k} \sqrt{T}, k \neq j, 1 \leq k \leq d\right\}
\end{array}
$$

as $T \rightarrow \infty$, where $S_{T}^{(1)}, \ldots, S_{T}^{(d)}$ are the components of S_{T}. We claim that for each $1 \leq j \leq d$, uniformly on $\|y\| \leq t$,

$$
\begin{align*}
& P\left\{x_{j} \sqrt{T}-\left|y_{j}\right|<S_{T}^{(j)} \leq x_{j} \sqrt{T}, S_{T}^{(k)} \leq x_{k} \sqrt{T}, k \neq j, 1 \leq k \leq d\right\} \\
& \quad=\left\{\begin{array}{cl}
(1+o(1)) T^{-1 / 2} \frac{d}{d x}(\Phi(x)) \\
\times\left[|y|+\left(1-(-1)^{|y|}\right)(-1)^{T+[x \sqrt{T}]}\right], & \text { as } d=1, \\
(1+o(1)) T^{-1 / 2}\left|y_{j}\right| \frac{\partial}{\partial x_{j}}\left(\Phi_{d}(\sqrt{d} x)\right), & \text { as } d \geq 2 .
\end{array}\right. \tag{4.17}
\end{align*}
$$

We only prove (4.16) in the case $d \geq 2$, as the proof for the case $d=1$ is similar but much simpler. Without loss of generality, we only consider the case $j=1$. By a combinatorial argument we can see that for any measurable $A_{1}, \ldots, A_{d} \subset \mathbf{R}$,

$$
\begin{align*}
& P\left\{S_{T}^{(1)} \in A_{1}, \ldots, S_{T}^{(d)} \in A_{d}\right\} \\
& \quad=\frac{1}{d^{T}} \sum_{k_{1}+\cdots+k_{d}=T} \frac{T!}{k_{1}!\cdots k_{d}!} \prod_{j=1}^{d} P\left\{\bar{S}_{k_{j}} \in A_{j}\right\}, \tag{4.18}
\end{align*}
$$

where \bar{S}_{t} is a one-dimensional symmetric random walk. In particular,

$$
\begin{aligned}
& P\left\{x_{1} \sqrt{T}-\left|y_{1}\right|<S_{T}^{(1)} \leq x_{1} \sqrt{T}, S_{T}^{(k)} \leq x_{k} \sqrt{T}, 2 \leq k \leq d\right\} \\
& \quad=\frac{1}{d^{T}} \sum_{k_{1}+\cdots+k_{d}=T} \frac{T!}{k_{1}!\cdots k_{d}!}\left(\sum_{x_{1} \sqrt{T}-\left|y_{1}\right|<z \leq x_{1} \sqrt{T}} P\left\{\bar{S}_{k_{1}}=z\right\}\right) \\
& \quad \times \prod_{j=2}^{d} P\left\{\bar{S}_{k_{j}} \leq x_{j} \sqrt{T}\right\} .
\end{aligned}
$$

Notice that $P\left\{\bar{S}_{k_{1}}=z\right\}=0$ when $k_{1} \not \equiv z \bmod (2)$, and

$$
P\left\{\bar{S}_{k_{1}}=z\right\} \sim 2 T^{-1 / 2} \sqrt{\frac{d}{2 \pi}} \exp \left\{-\frac{d x_{1}^{2}}{2}\right\},
$$

when $k_{1} \equiv z \bmod (2)$ and $k_{1} \sim d^{-1} T$ as $T \rightarrow \infty$. On the other hand,

$$
\begin{aligned}
& \#\left\{z \in \mathbf{Z}: x_{1} \sqrt{T}-\left|y_{1}\right|<z \leq x_{1} \sqrt{T} \text { and } z \equiv k_{1} \bmod (2)\right\} \\
& \quad=\frac{1}{2}\left[\left|y_{1}\right|+\left(1-(-1)^{\left|y_{1}\right|}\right)(-1)^{k_{1}+\left[x_{1} \sqrt{T}\right]}\right] .
\end{aligned}
$$

Consider Cramér's large deviation [cf. Theorem 2.2.30 of Dembo and Zeitouni (1992)] which gives in our case

$$
\begin{equation*}
\frac{1}{d^{T}} \sum_{\left(k_{1}, \ldots, k_{d}\right) \in A_{T}(\delta)} \frac{T!}{k_{1}!\cdots k_{d}!}=O\left(e^{-\alpha T}\right), \quad T \rightarrow \infty \tag{4.19}
\end{equation*}
$$

for any $\delta>0$, where $\alpha=\alpha(\delta)>0$ is a constant and

$$
\begin{array}{r}
A_{T}(\delta)=\left\{\left(k_{1}, \ldots, k_{d}\right) \in \mathbf{Z}^{d} ; k_{1}+\cdots+k_{d}=T, k_{j} \geq 0(j=1, \ldots, d)\right. \\
\left.\quad \text { and }\left|k_{j}-d^{-1} T\right| \geq \delta T \text { for some } 1 \leq j \leq d\right\} .
\end{array}
$$

[We only need that the left-hand side of (4.19) tend to zero here, which is referred to as the law of large numbers. We give (4.19) for the needs of the later development]. Therefore,

$$
\begin{aligned}
& P\left\{x_{1} \sqrt{T}-\left|y_{1}\right|<S_{T}^{(1)} \leq x_{1} \sqrt{T}+\left|y_{1}\right|, S_{T}^{(k)} \leq x_{k} \sqrt{T}, 2 \leq k \leq d\right\} \\
&=(1+o(1)) \frac{1}{d^{T}} \sum_{k_{1}+\cdots+k_{d}=T} \frac{T!}{k_{1}!\cdots k_{d}!}\left[\left|y_{1}\right|+\left(1-(-1)^{\left|y_{1}\right|}\right)(-1)^{k_{1}+\left[x_{k} \sqrt{T}\right]}\right] \\
& \times T^{-1 / 2} \sqrt{\frac{d}{2 \pi}} \exp \left\{-\frac{d x_{1}^{2}}{2}\right\} \prod_{j=2}^{d} \Phi\left(\sqrt{d} x_{j}\right) \\
&=(1+o(1)) T^{-1 / 2} \frac{\partial}{\partial x_{1}}\left(\Phi_{d}(\sqrt{d} x)\right) \\
& \times\left[\left|y_{1}\right|+\left(1-(-1)^{\left|y_{1}\right|}\right)(-1)^{\left[x_{1} \sqrt{T}\right]}\left(1-\frac{2}{d}\right)^{T}\right] \\
&=(1+o(1)) T^{-1 / 2} \frac{\partial}{\partial x_{1}}\left(\Phi_{d}(\sqrt{d} x)\right)\left|y_{1}\right|, \quad T \rightarrow \infty
\end{aligned}
$$

By (4.16) and (4.17),

$$
(I)= \begin{cases}-T^{-1 / 2} \frac{d}{d x}(\Phi(x)) & \tag{4.20}\\ {\left[y+\left(1-(-1)^{|y|}\right) \operatorname{sgn}(y)(-1)^{T+[x \sqrt{T}]}+o(1)\right],} & \text { as } d=1 \\ -T^{-1 / 2}\left[\nabla \Phi_{d}(\sqrt{d} x) \cdot y+o(1)\right], & \text { as } d \geq 2\end{cases}
$$

holds uniformly on $\|y\| \leq t$ as $T \rightarrow \infty$.
Note that when $d \geq 2$,

$$
\begin{align*}
(I I) & =\sum_{z \in \mathbf{Z}^{d}} P^{t}(z)\left[P\left\{S_{T-t} \leq x \sqrt{T}-y\right\}-P\left\{S_{T-t} \leq x \sqrt{T}-y-z\right\}\right] \\
& =-\sum_{z \in \mathbf{Z}^{d}} P^{t}(z) T^{-1 / 2}\left[\nabla \Phi_{d}(\sqrt{d} x) \cdot z+o(1)\right] \tag{4.21}\\
& =-T^{-1 / 2}\left[E\left(\nabla \Phi_{d}(\sqrt{d} x) \cdot S_{t}\right)+o(1)\right]=o\left(T^{-1 / 2}\right), \quad T \rightarrow \infty
\end{align*}
$$

holds uniformly on $\|y\| \leq t$, where the second equality follows from an obvious modification of (4.20). Similarly, (4.21) is also true when $d=1$.

Combining (4.14), (4.15), (4.20), (4.21) we can see that as $d \geq 2$,

$$
\begin{aligned}
\frac{1}{m^{T}} & \sum_{y \leq x \sqrt{T}} f(y, T, t)-P\left\{S_{T} \leq x \sqrt{T}\right\} \frac{B(t)}{m^{t}} \\
& =-T^{-1 / 2}\left[\nabla \Phi_{d}(\sqrt{d} x) \cdot\left(\frac{1}{m^{t}} \sum_{y \in \mathbf{Z}^{d}} y \lambda(y, t)\right)+o(1)\right]
\end{aligned}
$$

almost surely as well as in L_{2}-norm. This also holds in the case $d=1$ as

$$
\begin{aligned}
& \left|\frac{1}{m^{T}} \sum_{y \in \mathbf{Z}}\left(1-(-1)^{|y|}\right) \operatorname{sgn}(y) \lambda(y, t)\right| \\
& \quad=\left|\sum_{y \in \mathbf{Z}}\left(1-(-1)^{|y|}\right) \operatorname{sgn}(y)\left[\frac{\lambda(y, t)}{m^{t}}-P^{t}(y) B\right]\right| \\
& \quad \leq \sum_{y \in \mathbf{Z}}\left|\frac{\lambda(y, t)}{m^{t}}-P^{t}(y) B\right| \rightarrow 0, \quad T \rightarrow \infty,
\end{aligned}
$$

where the last step follows from Theorem 4.3 and Theorem 4.5 in Révész (1994).

So (4.13) follows from (2.6) and martingale convergence theorem.

Proof of Corollary 2.3. By Theorem 2.2, it is enough to prove the following multivariate version of the Edgeworth expansion:

$$
\begin{equation*}
P\left\{S_{T} \leq x \sqrt{T}\right\}=\Phi_{d}(\sqrt{d} x)+T^{-1 / 2} \nabla \Phi_{d}(\sqrt{d} x) \cdot \mathbf{F}(\sqrt{T} x)+o\left(T^{-1 / 2}\right) . \tag{4.22}
\end{equation*}
$$

When $d=1$, by Theorem 6, page 171 of Petrov (1975) we have

$$
\begin{align*}
P\left\{S_{T} \leq x \sqrt{T}\right\} & =\Phi(x)+\frac{1}{\sqrt{T}} \Phi^{\prime}(x) \sum_{l=1}^{\infty} \frac{\sin (2 l \pi \sqrt{T} x)}{\pi l}+o\left(T^{-1 / 2}\right) \tag{4.23}\\
& =\Phi(x)+T^{-1 / 2} \Phi^{\prime}(x) f(\sqrt{T} x)+o\left(T^{-1 / 2}\right),
\end{align*}
$$

where the last step follows from the Fourier expansion.
Consider the case when $d>1$. From (4.18),

$$
\begin{equation*}
P\left\{S_{T} \leq x \sqrt{T}\right\}=\frac{1}{d^{T}} \sum_{k_{1}+\cdots+k_{d}=T} \frac{T!}{k_{1}!\cdots k_{d}!} \prod_{j=1}^{d} P\left\{\bar{S}_{k_{j}} \leq x_{j} \sqrt{T}\right\} . \tag{4.24}
\end{equation*}
$$

By a treatment similar to the one used in the proof of (4.17), the expansion (4.22) follows from (4.19), (4.23) and (4.24).
5. Proofs of Theorems 3.1 and 3.2. Let $P_{t}(x, A)$ be the transition probability of $\{W(t)\}$. Then

$$
P_{t}(x, A)=\left(\frac{1}{2 \pi t}\right)^{d / 2} \int_{A} \exp \left\{-\frac{\|y-x\|^{2}}{2 t}\right\} d y, \quad t>0 .
$$

Define, for each $t \leq T$,

$$
F(A, T, t)=m^{T-t} \sum_{x \in \mathbf{R}^{d}} P_{T-t}(x, A) \lambda(x, t)=m^{T-t} \int P_{T-t}(x, A) \psi(d x, t) .
$$

By Lemma 6.3 in Révész (1994), for each $0 \leq t<T$,

$$
\begin{equation*}
E[\psi(A, T) \mid \mathscr{F}(t)]=F(A, T, t) . \tag{5.1}
\end{equation*}
$$

The proof here is similar to the one given in Section 4, except that the range of branching Wiener process is no longer bounded in probability. We shall overcome such a difficulty by truncation. From this motive we need the following lemma.

Lemma 5.1. There exists a constant $C>0$ depending only on m and σ^{2} such that

$$
\begin{equation*}
E\left[\int f(x) \Psi(d x, t)\right]^{2} \leq C m^{2 t} E f^{2}(W(t)) \tag{5.2}
\end{equation*}
$$

for every function f on \mathbf{R}^{d} and t.
Proof. By (5.1),

$$
\begin{equation*}
E\left[\int f(x) \Psi(d x, t)\right]=\int f(x) F(d x, t, 0)=m^{t} E f(W(t)) \tag{5.3}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
& \int f(x) \Psi(d x, t)-E\left[\int f(x) \Psi(d x, t)\right] \\
&=\sum_{s=1}^{t}\left[\int f(x) F(d x, t, s)-\int f(x) F(d x, t, s-1)\right], \\
& \int f(x) F(d x, t, s) \\
&=m^{t-s} \sum_{x \in \mathbf{R}^{d}} P_{t-s} f(x) \lambda(x, t) \\
&=m^{t-s} \sum_{x \in \mathbf{R}^{d}} P_{t-s} f(x) \sum_{y \in \mathbf{R}^{d}} \sum_{k=1}^{\lambda(y, t-1)} I_{x}(y+W(y, t-1, k)) Z(y, t-1, k) \\
&=m^{t-s} \sum_{y \in \mathbf{R}^{d}} \sum_{k=1}^{\lambda(y, s-1)} P_{t-s} f(y+W(y, s-1, k)) Z(y, s-1, k) .
\end{aligned}
$$

In view of (5.1) we have

$$
\begin{aligned}
\int f(x) F(d x, t, s)-\int & f(x) F(d x, t, s-1) \\
=m^{t-s} \sum_{y \in \mathbf{R}^{d}} \sum_{k=1}^{\lambda(y, s-1)}[& P_{t-s} f(y+W(y, s-1, k)) Z(y, s-1, k) \\
& \left.-E\left(P_{t-s} f(y+W(y, s-1, k)) Z(y, s-1, k)\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& E\left[\int f(x) F(d x, t, s)-\int f(x) F(d x, t, s-1)\right]^{2} \\
& \quad=m^{2 t-2 s} \sum_{y \in \mathbf{R}^{d}} E(\lambda(y, s-1)) \operatorname{Var}\left(P_{t-s} f(y+W) Z\right) \\
& \quad=m^{2 t-s-1} \int P_{s-1}(0, d y) \operatorname{Var}\left(P_{t-s} f(y+W, A) Z\right) \\
& \quad=m^{2 t-s-1} \operatorname{Var}\left(P_{t-s} f(W(s)) Z\right) \\
& \quad \leq m^{2 t-s-1}\left(m^{2}+\sigma^{2}\right) E\left(P_{t-s} f(W(s))\right)^{2} \\
& \quad \leq m^{2 t-s-1}\left(m^{2}+\sigma^{2}\right) E\left(P_{t-s} f^{2}(W(s))\right) \\
& \quad=m^{2 t-s-1}\left(m^{2}+\sigma^{2}\right) E f^{2}(W(t)) .
\end{aligned}
$$

Therefore, by orthogonality from (5.1) we have

$$
\begin{align*}
\operatorname{Var}\left[\int f(x) \Psi(d x, t)\right] & =\sum_{s=1}^{t} m^{2 t-s-1}\left(m^{2}+\sigma^{2}\right) E f^{2}(W(t)) \tag{5.4}\\
& \leq m^{2 t} \cdot \frac{m^{2}+\sigma^{2}}{m(m-1)} E f^{2}(W(t))
\end{align*}
$$

Finally, the desired conclusion follows from (5.3) and (5.4).
To prove Theorem 3.1 and 3.2, we now follow Révész's decomposition again

$$
\begin{aligned}
& \frac{\psi(A, T)}{m^{T}}-B\left(\frac{1}{2 \pi T}\right)^{d / 2} \int_{A} \exp \left\{-\frac{\|x\|^{2}}{2 T}\right\} d x \\
& \quad=\left(\frac{\psi(A, T)}{m^{T}}-\frac{F(A, T, t)}{m^{T}}\right) \\
& \quad+\left(\frac{F(A, T, t)}{m^{T}}-P_{T}(0, A) \frac{B(t)}{m^{t}}\right) \\
& \quad+P_{T}(0, A)\left(\frac{B(t)}{m^{t}}-B\right),
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\psi(\{y ; y \leq x \sqrt{T}\}, T)}{m^{T}}-B \Phi_{d}(x) \\
& \quad=\left(\frac{\psi(\{y ; y \leq x \sqrt{T}\}, T)}{m^{T}}-\frac{F(\{y ; y \leq x \sqrt{T}\}, T, t)}{m^{T}}\right) \\
& \quad+\left(\frac{F(\{y ; y \leq x \sqrt{T}\}, T, t)}{m^{T}}-\Phi_{d}(x) \frac{B(t)}{m^{t}}\right)+\Phi_{d}(x)\left(\frac{B(t)}{m^{t}}-B\right),
\end{aligned}
$$

where we let $t=T^{\varepsilon}$ for a small constant $\varepsilon>0$. By (4.4) and the inequality given in Lemma 6.11 of Révész (1994), one can see that only the second term in each of these two decompositions contributes to the limit behaviors given in our theorems. In other words, (3.1) and (3.8) are equivalent to

$$
\begin{equation*}
T^{1+d / 2}\left(\frac{F(A, T, t)}{m^{T}}-P_{T}(0, A) \frac{B(t)}{m^{t}}\right) \longrightarrow|A|\left(\frac{1}{2 \pi}\right)^{d / 2}\left(\frac{1}{2} M+\bar{x}_{A} \cdot N\right) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{T}\left(\frac{F(\{y ; y \leq x \sqrt{T}\}, T, t)}{m^{T}}-\Phi_{d}(x) \frac{B(t)}{m^{t}}\right) \longrightarrow-\nabla \Phi_{d}(x) \cdot N \tag{5.6}
\end{equation*}
$$

respectively.
We first prove (5.5). Notice that

$$
\begin{aligned}
\frac{F(A, T, t)}{m^{T}}-P_{T}(0, A) \frac{B(t)}{m^{t}}= & \frac{1}{m^{t}} \int\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t) \\
= & \frac{1}{m^{t}} \int_{|x| \leq t}\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t) \\
& +\frac{1}{m^{t}} \int_{|x|>t}\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t)
\end{aligned}
$$

and that, by Lemma 5.1,

$$
E\left[\frac{1}{m^{t}} \int_{|x|>t}\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t)\right]^{2}=O(P\{|W(t)|>t\})=O\left(e^{-c t}\right)
$$

So (5.5) is equivalent to

$$
\begin{align*}
& T^{1+d / 2}\left[\frac{1}{m^{t}} \int_{|x| \leq t}\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t)\right] \\
& \quad \longrightarrow|A|\left(\frac{1}{2 \pi}\right)^{d / 2}\left(\frac{1}{2} M+\bar{x}_{A} \cdot N\right) \tag{5.7}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& P_{T-t}(x, A)-P_{T}(0, A) \\
& \quad=\frac{1}{2}\left(\frac{1}{2 \pi}\right)^{d / 2}|A| T^{-1-d / 2}\left[d t-\|x\|^{2}+\frac{2}{|A|} \int_{A}(x \cdot y) d y+o(1)\right]
\end{aligned}
$$

where the error term $o(1)$ tends to 0 uniformly over $|x| \leq t$ as $T \rightarrow \infty$. Hence

$$
\begin{aligned}
& T^{1+d / 2} \frac{1}{m^{t}} \int_{|x| \leq t}\left[P_{T-t}(x, A)-P_{T}(0, A)\right] \psi(d x, t) \\
& \quad=\frac{1}{2}\left(\frac{1}{2 \pi}\right)^{d / 2} \frac{|A|}{m^{t}} \int_{\|x\| \leq t}\left[d t-|x|^{2}+\frac{2}{|A|} \int_{A}(x \cdot y) d y\right] \psi(d x, t)+o(1) \\
& \quad=\frac{1}{2}\left(\frac{1}{2 \pi}\right)^{d / 2}|A|\left[d t \frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \int|x|^{2} \psi(d x, t)+2 \bar{x}_{A} \frac{1}{m^{t}} \int x \psi(d x, t)\right]+o(1)
\end{aligned}
$$

almost surely as well as in L_{2}-norm, where the last step follows from a truncation estimate via Lemma 5.1.

Similarly as in Section 4, we can show that

$$
M_{t} \equiv d t \frac{B(t)}{m^{t}}-\frac{1}{m^{t}} \int\|x\|^{2} \psi(d x, t) \quad \text { and } \quad N_{t} \equiv \frac{1}{m^{t}} \int x \psi(d x, t)
$$

are two martingales with

$$
\begin{aligned}
E\left[M_{t}-M_{t-1}\right]^{2} & =\frac{2}{m^{t+1}}\left(m^{2}+\sigma^{2}\right) d t^{2} \\
\operatorname{cov}\left(N_{t}-N_{t-1}, N_{t}-N_{t-1}\right) & =\frac{1}{m^{t+1}}\left(m^{2}+\sigma^{2}\right) \mathbf{I}_{d}
\end{aligned}
$$

for all $t \geq 1$. By the martingale convergence theorem $\left\{M_{t}\right\}$ and $\left\{N_{t}\right\}$ converge, almost surely as well as in L_{2}-norm, to some random variables M and N, respectively. Further,

$$
\begin{aligned}
E M^{2} & =\sum_{t=1}^{\infty} E\left[M_{t}-M_{t-1}\right]^{2}=\frac{2 d\left(m^{2}+\sigma^{2}\right)(m+1)}{(m-1)^{3}} \\
\operatorname{cov}(N, N) & =\sum_{t=1}^{\infty} \operatorname{cov}\left(N_{t}-N_{t-1}, N_{t}-N_{t-1}\right)=\frac{\left(m^{2}+\sigma^{2}\right)}{(m-1)^{2}} \mathbf{I}_{d}
\end{aligned}
$$

Hence we have (5.7) [and therefore (3.1)-(3.3), (3.5), (3.6)]. We omit the proofs of (3.4) and (3.7), as they are analogous to that of (2.4)and (2.7), respectively.

We now come to the proof of (5.6). Note that for all $|y| \leq t$, uniformly we have

$$
\Phi_{d}\left(\sqrt{\frac{T}{T-t}} x-\frac{y}{\sqrt{T-t}}\right)-\Phi_{d}(x)=-T^{-1 / 2}\left[\nabla \Phi_{d}(x) \cdot y+o(1)\right]
$$

Hence, by truncation (Lemma 5.1) we have

$$
\begin{aligned}
\sqrt{T} & \left(\frac{F(\{y ; y \leq x \sqrt{T}\}, T, t)}{m^{T}}-\Phi_{d}(x) \frac{B(t)}{m^{t}}\right) \\
& =\sqrt{T} \frac{1}{m^{t}} \int\left[P\{W(T-t) \leq x \sqrt{T}-y\}-\Phi_{d}(x)\right] \psi(d y, t) \\
& =-\nabla \Phi_{d}(x) \cdot\left(\frac{1}{m^{t}} \int y \psi(d y, t)\right)+o(1)
\end{aligned}
$$

almost surely as well as in L_{2}-norm. So (5.6) follows from (3.6) and the martingale convergence theorem.

Acknowledgments. Part of this work was done when the author was at the University of Utah and stimulating discussions with Professor Davar Khoshnevisan are gratefully acknowledged. Thanks also go to Professor Jan Rosinski who brought the author's attention to the Edgeworth expansion that led to Corollary 2.3 in its present form.

REFERENCES

Asmussen, S. and Kaplan, N. (1976a). Branching random walks I. Stochastic Process. Appl. 4 1-13.
Asmussen, S. and Kaplan, N. (1976b). Branching random walks II. Stochastic Process. Appl. 4 15-31.
Athreya, K. B. and Kang, H.-J. (1998a). Some limit theorems for positive recurrent branching Markov chains I. Adv. in Appl. Probab. 30 693-710.
Athreya, K. B. and Kang, H.-J. (1998b). Some limit theorems for positive recurrent branching Markov chains II. Adv. in Appl. Probab. 30 711-722.
Athreya, K. B. and Kaplan, N. (1978). The additive property and its application in branching processes. Adv. in Appl. Probab. 5 27-60.
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.
Biggins, J. D. (1990). The central limit theorem for the supercritical branching random walk, and related results. Stochastic Process. Appl. 34 255-274.
Bramson, M., NEy, P. E. and TaO, J. (1992). The population composition of a multitype branching random walk. Ann. Appl. Probab. 2 575-596.
Dembo, A. and Zeitouni, O. (1992). Large Deviations Techniques and Applications. Jones \& Bartlett, Boston.
Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.
Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.
JOFFE, A. (1987). Diffusion approximation of multitype branching processes. In Probability Theory and Mathematical Statistics $231-36$. VNU Science Press, Utrecht.
Klebaner, C. F. (1982). Branching random walk in varying environments. Adv. in Appl. Probab. 14 359-367.
Kolmogorov, A. N. (1941). Über das logarithmisch normale Vertilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. Doklady 31 99-101.
LaWler, G. (1991). Intersections of Random Walks. Birkhäuser, Boston.
Ney, P. E. (1991). Branching random walks. In Spatial Stochastic Process (K. S. Alexander and J. C. Watkins, eds.) Birkhäuser, Boston. 3-22.

Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.
RÉvÉSZ, P. (1994). Random Walks of Infinitely Many Particles. World Scientific, Singapore.
Stam, A. J. (1966). On a conjecture of Harris. Z. Wahrsch. Verw. Gebiete. 5 202-206.
WATANABE, S. (1965). On the branching process for Brownian particles with an absorbing boundary. J. Math. Kyoto Univ. 4 185-198.

[^0]: Received August 2000; revised November 2000.
 AMS 2000 subject classifications. 60F05, 60I15, 60F25.
 Key words and phrases. Supercritical branching random walk, supercritical branching Wiener process, local limit theorem, central limit theorem.

