
The Annals of Applied Probability
2001, Vol. 11, No. 4, 1242–1262

EXACT CONVERGENCE RATES FOR THE DISTRIBUTION OF
PARTICLES IN BRANCHING RANDOM WALKS

By Xia Chen

University of Tennessee

The exact convergence rates of the particle distributions in
supercritical branching random walks and supercritical branching Wiener
processes are obtained and a conjecture of Révész is confirmed.

1. Introduction. Consider a branching particle system starting from one
ancestor at the origin in a d-dimensional space. Independently, each
particle moves to a new site after one time unit after its birth, gives birth to
a random number of offsprings and dies. The same procedure is repeated by all
generations. Throughout, the migration is governed either by a d-dimensional
simple symmetric random walk or by a d-dimensional Wiener process, and the
reproduction by a Galton–Watson tree whose offspring distribution has the
mean m > 1 and finite variance. This model is called branching random walk
(when migration is executed by a random walk), or branching Wiener process
(when migration is executed by a Wiener process). Under our assumptions,
the random sequence �B�t��t≥0 with B�t� being given as the total population
in generation t (t ≥ 0) is a supercritical branching chain. It is well known [see,
cf., Athreya and Ney (1972)] that

lim
t→∞

B�t�
mt

= B a.s.(1.1)

for some random variable B which is not constantly zero.
In addition to their obvious background in the study of population growth

and migration, the models of branching random walks (Wiener processes)
had their origins in the theory of cascade processes. The study of branching
random walks as a probability problem was initiated by Kolmogorov (1941).
[The reader is referred to a survey by Ney (1991) for a historical account and
for general information on this field.] A central limit theorem conjectured by
Harris [(1963), page 75] states that

1
mT

∑
y≤x√T

λ�y
T� −→ BG�x� a.s.
(1.2)

where λ�x
T� is the population of the particles located at x at timeT andG�x�
is the d-dimensional normal distribution function attracting the migration
random walk through the classic central limit theorem. See, for example,
Stam (1966), Asmussen and Kaplan (1976a, b), Athreya and Kaplan (1978),
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Klebaner (1982), Joffe (1987), Biggins (1990), Bramson, Ney and Tao (1992)
and Révész (1994) for the developments on this subject. Concerning the speed
of above convergence, Révész (1994) proves that for each ε > 0,

T1/2−ε
(
1
mT

∑
y≤x√T

λ�y
T� −BG�x�
)
−→ 0 a.s.(1.3)

Like the classic central limit theorem, the central limit theorem for
branching random walks yields its local version [see also Watanabe (1965),
Athreya and Kang (1998a, b) for the local central limit theorems for a variety
of branching Markov processes]. In the case of branching random walk, Révész
(1994) shows that

T1−ε
(
1
2

(
4πT
d

)d/2λ�0
2T�
m2T

−B
)
−→ 0 a.s.(1.4)

Naturally, one wonders if (1.3) and (1.4) suggest exact rates of convergence.
Indeed, a counterpart of (1.4) given in Theorem 4.9 of Révész (1994) says that
for each C > 0, there is a δ = δ�C� > 0 such that

P

{∣∣∣∣12
(
4πT
d

)d/2λ�0
2T�
m2T

−B
∣∣∣∣ ≥ CT

}
≥ δ(1.5)

for sufficiently large T. This observation makes him conjecture [Révész (1994),
page 79] that the sequence

T

(
1
2

(
4πT
d

)d/2λ�0
2T�
m2T

−B
)

 T = 1
2
 � � �(1.6)

weakly converges to some nondegenerate random variable as T→∞.
This paper proposes to find the exact convergence rates for these limit

theorems, and to settle the conjecture raised by Révész in particular. Instead
of the weak convergence proposed by Révész, we shall prove his conjecture
in terms of almost sure convergence as well as L2-convergence. Our tools are
some decompositions given in Révész (1994) and martingale approximations.
The rest of the paper is organized as follows: in Section 2, we give our

results (Theorems 2.1 and 2.2 and Corollary 2.3) for branching random walks.
In Section 3, we point out their analogues (Theorems 3.1 and 3.2) in the case
of branching Wiener processes. Theorems 2.1 and 2.2 and Corollary 2.3 are
proved in Section 4. Due to similarity, only a sketch is given for the proofs of
Theorems 3.1 and 3.2 in Section 5.
The following notations and assumptions will be kept throughout the

article. For x = �x1
 � � � 
 xd�
 y = �x1
 � � � 
 yd� ∈ Rd, x · y and �x� will be used,
respectively, for the inner product between x, y and for the Euclidean norm
of x. The partial order “x ≤ y” is defined by the relation x1 ≤ y1
 � � � 
 xd ≤ yd.
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Given a measurable A ⊂ Rd, �A� denotes its Lebesgue measure. Write

�d�x� =
(
1
2π

)d/2 ∫ x1
−∞

· · ·
∫ xd
−∞
exp
{
−�y�

2

2

}
dy

and let ��x� = �1�x�.
We use the nonnegative integer valued random variable Z to represent the

distribution of the number of children of each individual in our particle system
and assume

m ≡ EZ > 1 and σ2 ≡ Var�Z� <∞�(1.7)

2. Results for branching random walks. We begin with a formal
definition of the local population λ�x
 t�. Let e1
e2
 � � � 
ed be the orthogonal
unit vectors in the d-dimensional lattice Zd and let X be a Zd-valued random
variable independent of Z with

P�X = ej� =
1
2d

 j = 1
2
 � � � 
 d

and let {(
X�x
 t
 k�
Z�x
 t
 k�)� x ∈ Zd
 t = 0
1
2
 � � � 
 k = 1
2
 � � � }

be an array of i.i.d. random vectors with(
X�0
0
1�
Z�0
0
1�) = �X
Z��

Intuitively, we coordinate each individual in our particle system by the 3-tuple
�x
 t
 k�, where x represents the birth site, t represents the generation (so the
original ancestor belongs to generation 0) and k is the order number as one
of the members born at x in that generation. For a given individual �x
 t
 k�,
X�x
 t
 k� is interpreted as the migration and Z�x
 t
 k� is the number of the
individual’s children. The local population λ�x
 t� at x ∈ Zd in the generation
t is defined as follows:

λ�x
0� =
{
1
 if x = 0,
0
 if x �= 0,

λ�x
 t� = ∑
y∈Zd

λ�y
t−1�∑
k=1

Ix−y
(
X�y
 t− 1
 k�)Z�y
 t− 1
 k�


where x = �x1
 � � � 
 xd� ∈ Zd and t = 1
2
 � � � . Clearly, λ�x
 t� = 0 if t �≡
x1 + · · · + xd mod(2).
Write

B�t� = ∑
x∈Zd
λ�x
 t�
 t = 0
1
2
 � � � �

Then �B�t��t≥0 is a supercritical Branching chain starting with B�0� = 1 and
having the offspring distribution � �Z� [see, e.g., Athreya and Ney (1972) for
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details of branching chains]. It is well known that when m > 1, �B�t��t≥0
survives with positive probability.
Let

� �t� = � �λ�x
 s�� x ∈ Zd
 s = 0
1
 � � � 
 t�
be the σ-algebra generated by the array

�λ�x
 s�� x ∈ Zd
 s = 0
1
 � � � 
 t��

Theorem 2.1. There exist a real random variable M and a Rd-valued
random variable N such that for each x = �x1
 � � � 
 xd� ∈ Zd,

T

[
1
2

(2πT
d

)d/2λ�x
T�
mT

−B exp
{
−d�x�

2

2T

}]
−→ d

(
1
2
M+ x ·N

)
(2.1)

almost surely as well as in L2-norm, as T→∞ with T ≡ x1+· · ·+xd mod�2�,
where the random variable B is given in (1.1).

In addition, the random variablesM and N satisfy the following:

EM = 0 and EM2 = 4�m2 + σ2�
d�m− 1�3 
(2.2)

EN = 0 and cov�N
N� = m2 + σ2
d�m− 1�2 Id
(2.3)

(
B
M
N

) d= (B
M
−N)
(2.4)

E
[
M�� �t�] = tB�t�

mt
− 1
mt

∑
y∈Zd

�y�2λ�y
 t�
 t = 0
1
 � � � 
(2.5)

E
[
N�� �t�] = 1

mt
∑
y∈Zd
yλ�y
 t�
 t = 0
1
 � � � 
(2.6)

where Id is the d× d identity matrix.
Further, if ��Bk
Mk
Nk��k≥1 are independent copies of �B
M
N� and if

they are independent of �X
Z� then
(
B
M
 �N−BX�) d= 1

m

Z∑
k=1

(
Bk


(
Mk − 2X ·Nk

)

Nk

)
�(2.7)

Theorem 2.2. For each x ∈ Zd,

√
T

[
1
mT

∑
y≤x√T

λ�y
T� −BP{ST ≤ x√T}
]
−→ −∇�d�

√
dx� ·N(2.8)

almost surely as well as in L2-norm, provided T → ∞, where B is given
in (1.1), N is given in Theorem 2.1 and �St� is the symmetric simple random
walk generated by X.
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Remark. Taking x = 0 in (2.1) we see that the sequence in (1.6) converges
almost surely as well as in L2-norm. So the conjecture made by Révész (1994)
is proved. From (1.5) one can also see that the random variableM in Theorem
2.1 is unbounded. By Proposition 1.2.5 of Lawler (1991),

PT�x� ≡ P�ST = x� = 2
(
d

2πT

)d/2
exp
{
−d�x�

2

2T

}
+O(T−2−d/2)

as T→∞ with T ≡ x1 + · · · + xd mod(2). Therefore (2.1) is equivalent to

T1+d/2
[
λ�x
T�
mT

−BPT�x�
]
−→ d

(
d

2π

)d/2(
M+ 2x ·N)�(2.9)

Nevertheless, P�ST ≤ x
√
T� in Theorem 2.2 can not be replaced by

�d�
√
dx�. Indeed, we have the following corollary.

Corollary 2.3. For each x ∈ Zd,

√
T

(
1
mT

∑
y≤x√T

λ�y
T� −B�d�
√
dx�

)

= ∇�d�
√
dx� · (BF�

√
Tx� − 2N)+O�1�
 T→∞

(2.10)

almost surely as well as in L2-norm, where B is given in (1.1), N is given
in Theorem 2.1, F�x� = (f�x1�
 � � � 
 f�xd�) and f: �−∞
∞� −→ �− 1

2 

1
2� is a

periodic function with period 1, f�k� = 0 (k = 0
±1
±2
 � � �) and

f�θ� = 1− 2θ
2

 0 < θ < 1�

Corollary 2.3 shows that asymptotically, the sequence

√
T

(
1
mT

∑
y≤x√T

λ�y
T� −B�d�
√
dx�

)

 T = 1
2
 � � � 


oscillates in a finite random interval. So the exact rate for the global central
limit theorem is established.

3. Results for branching Wiener processes. The construction of the
branching Wiener process is similar. Let W�t� be a standard d-dimensional
Wiener process independent of Z and write W =W�1�. Let{(

W�x
 t
 k�
Z�x
 t
 k�)� x ∈ Rd
 t = 0
1
2
 � � � 
 k = 1
2
 � � � }
be a set of i.i.d. random vectors such that(

W�0
0
1�
Z�0
0
1�) = �W
Z��
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Define

λ�x
0� =
{
1
 if x = 0,
0
 if x �= 0,

λ�x
 t� = ∑
y∈Rd

λ�y
t−1�∑
k=1

Ix
(
y+W�y
 t− 1
 k�)Z�y
 t− 1
 k�


where x ∈ Rd and t = 1
2
 � � �. Clearly, λ�x
 t� = 0 for all but finitely many
x ∈ Rd. Define the random measure

ψ�A
 t� = ∑
x∈A
λ�x
 t� = ∑

y∈Rd

λ�y
t−1�∑
k=1

IA
(
y+W�y
 t− 1
 k�)Z�y
 t− 1
 k�

for all measurable A ⊂ Rd. Let

� �t� = � �λ�x
 s�� x ∈ Rd
 s = 0
1
 � � � 
 t�
= � �ψ�A
 s�� A ⊂ Rd
 s = 0
1
 � � � 
 t�

be the σ-algebra generated by

�λ�x
 s�� x ∈ Zd
 s = 0
1
 � � � 
 t��

Theorem 3.1. There exist a real random variable M and a Rd-valued
random variable N such that for each A ⊂ Rd with �A� > 0 and

∫
A �x�dx <+∞,

T

[
�2πT�d/2ψ�A
T�

mT
−B

∫
A
exp
{
−�x�

2

2T

}
dx

]
−→ �A�

(
1
2
M+ x̄A ·N

)
(3.1)

almost surely as well as in L2-norm, as T→∞, where B is given in (1.1) and

x̄A =
1
�A�

∫
A
xdx�

In addition, the random variablesM and N satisfy the following:

EM = 0 and EM2 = 2d�m2 + σ2��m+ 1�
�m− 1�3 
(3.2)

EN = 0 and cov
(
N
N� = �m2 + σ2�

�m− 1�2 Id
(3.3)

(
B
M
N

) d= (B
M
−N)
(3.4)

E
[
M�� �t�] = dtB�t�

mt
− 1
mt

∫
�y�2ψ�dy
 t�
 t = 0
1
 � � � 
(3.5)

E
[
N�� �t�] = 1

mt

∫
yψ�dy
 t�
 t = 0
1
 � � � �(3.6)
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Further, if ��Bk
Mk
Nk�� are independent copies of �B
M
N� and if they
are independent of �W
Z� then(

B

(
M− �d− �W�2�B)
 �N−BW�)
d= 1
m

Z∑
k=1

(
Bk
 �Mk − 2W ·Nk�
Nk

)
�

(3.7)

Theorem 3.2. For each x = �x1
 � � � 
 xd� ∈ Rd,

√
T

[
ψ
(�y � y ≤ x√T�
T)

mT
−B�d�x�

]
−→ −∇�d�x� ·N(3.8)

almost surely as well as in L2-norm, as T → ∞, where B is given in (1.1)
and N is given in Theorem 3.1.

4. Proof of Theorems 2.1 and 2.2 and Corollary 2.3.

Proof of Theorem 2.1. To prove (2.1) we need only to verify (2.9).
Define, for 0 ≤ t ≤ T and x ∈ Zd,

f�x
T
 t� =mT−t ∑
y∈Zd
λ�y
 t�PT−t�x− y��

According to Lemma 4.3, page 67 in Révész (1994),

E
[
λ�x
T��� �t�] = f�x
T
 t�
 0 ≤ t ≤ T
 x ∈ Zd�(4.1)

We first follow the decomposition given in Révész (1994). Fix a number ε > 0
(which is sufficiently small to satisfy all the needs in the later argument) and
choose t ∼ Tε. For all x ∈ Zd,

λ�x
T�
mT

−PT�x�B =
(
λ�x
T�
mT

− f�x
T
 t�
mT

)

+
(
f�x
T
 t�
mT

−PT�x�B�t�
mt

)

+PT�x�
(
B�t�
mt

−B
)
�

(4.2)

In the proof of Theorem 2.1, we assume that t ≡ x1+· · ·+xd mod(2). As shown
in Révész (1994), the first and the third terms are negligible since [Lemma 4.8,
Révész (1994)]

E

( ∑
y∈Zd

(
λ�y
T�
mT

− f�y
T
 t�
mT

)2)
≤ C · 1

mt�T− t�d/2(4.3)

for some constant C > 0, and since [Theorem 4.8, Révész (1994)]

E

(
B�t�
mt

−B
)2
= O�m−t��(4.4)
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So we need to show that

T1+d/2
(
f�x
T
 t�
mT

−PT�x�B�t�
mt

)
−→ d

(
d

2π

)d/2(
M+ x ·N)(4.5)

almost surely as well as in L2-norm. Notice that

f�x
T
 t�
mT

−PT�x�B�t�
mt

= 1
mt

∑
y∈Zd
λ�y
 t�(PT−t�x− y� −PT�x�)�(4.6)

By a formula given in Lawler [(1991), page 14],

PT−t�x− y� = 2�2π�−d
∫
A
e−i�x−y�·λφT−t�λ�dλ

= 2�2π�−d
∫
A
cos
(�x− y� · λ)φT−t�λ�dλ


PT�x� = 2�2π�−d
∫
A
cos�x · λ�φT�λ�dλ


where

φ�λ� = 1
d

d∑
j=1
cosλj
 λ = �λ1
 � � � 
 λd� ∈ Rd

is the characteristic function of X and A = �−π/2
 π/2� × �−π
π�d−1. By
variable substitution,

PT−t�x−y�−PT�x�

=2�2π�−d�T−t�−d/2
∫
√
T−tA

[
cos
( �x−y�·λ√

T−t

)
−cos

(
x·λ√
T−t

)
φ

(
λ√
T−t

)t]

×φ
(

λ√
T−t

)T−t
dλ

and, by Taylor’s expansion

cos
( �x− y� · λ√

T− t

)
− cos

(
x · λ√
T− t

)
φ

(
λ√
T− t

)t

= 1
2�T− t�

[
�x · λ�2 + td−1�λ�2 − (�x− y� · λ)2 + o�1�]

uniformly for all �y� ≤ t as T→∞. Notice that

φ

(
λ√
T− t

)T−t
−→ exp

{
−�λ�

2

2d

}

 T→∞

and that �φ�λ�� < 1 for all λ ∈ A \ �0�. Hence the dominated convergence
theorem applies [see, e.g., the proof of Theorem 1.2.1 in Lawler (1991)], which,
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combined with the above observations, gives that

PT−t�x− y� −PT�x�

= �2π�−dT−1−d/2
[ ∫ (

�x · λ�2 + td−1�λ�2 − (�x− y� · λ)2)

× exp
{
−�λ�

2

2d

}
dλ+ o�1�

]

= �2π�−d/2d1+d/2T−1−d/2[t− �y�2 + 2x · y+ o�1�]
 T→∞

(4.7)

uniformly on �y� ≤ t. Since λ�y
 t� = 0 for all �y� > t, from (4.6) we have

T1+d/2
(
f�x
T
 t�
mT

−PT�x�B�t�
mt

)

= �2π�−d/2d1+d/2
[
t
B�t�
mt

− 1
mt

∑
y∈Zd

�y�2λ�y
 t�

+ 2
mt
x · ∑
y∈Zd
yλ�y
 t� + o�1�

]
(4.8)

almost surely and in L2-norm as well. Let

Mt = t
B�t�
mt

− 1
mt

∑
y∈Zd

�y�2λ�y
 t�

and

Nt =
1
mt

∑
y∈Zd
yλ�y
 t�
 t = 0
1
 � � � �

We claim that �Mt�t≥0 and �Nt�t≥0 are martingales w.r.t. the filtration
�� �t��t≥0. Indeed,

E
[
Mt�� �t− 1�] = E[tB�t�

mt
�� �t− 1�

]

− 1
mt

∑
y∈Zd

�y�2E[λ�y
 t��� �t− 1�]

= tB�t− 1�
mt−1

− 1
mt−1

∑
y∈Zd

�y�2 ∑
z∈Zd
λ�z
 t− 1�P�y− z�

= tB�t− 1�
mt−1

− 1
mt−1

∑
z∈Zd
λ�z
 t− 1�E�z+X�2

= tB�t− 1�
mt−1

− 1
mt−1

∑
z∈Zd
λ�z
 t− 1�{�z�2 + 1} =Mt−1�

(4.9)

The proof for �Nt�t≥0 being a martingale is similar.
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To apply the martingale convergence theorem to �Mt�t≥0 and �Nt�t≥0, we
compute their second moments. Note that

Mt =
1
mt

∑
y∈Zd

{
t− �y�2}λ�y
 t�

= 1
mt

∑
y∈Zd

{
t− �y�2} ∑

z∈Zd

λ�z
t−1�∑
k=1

Iy−z
(
X�z
 t− 1
 k�)Z�z
 t− 1
 k�

= 1
mt

∑
z∈Zd

λ�z
t−1�∑
k=1

Z�z
 t− 1
 k� ∑
y∈Zd

{
t− �y�2}Iy−z(X�z
 t− 1
 k�)

= 1
mt

∑
z∈Zd

λ�z
t−1�∑
k=1

Z�z
 t− 1
 k�{t− �z+X�z
 t− 1
 k��2}�

Thus for each t ≥ 1,

Mt −Mt−1 =Mt −E
[
Mt�� �t− 1�]

= 1
mt

∑
z∈Zd

λ�z
 t−1�∑
k=1

{
Z�z
 t− 1
 k��t− �z+X�z
 t− 1
 k��2�

−E
(
Z�z
 t− 1
 k�{t− �z+X�z
 t− 1
 k��2})}�

Hence,

E
[
Mt −Mt−1

]2 = 1
m2t

∑
z∈Zd
E
(
λ�z
 t− 1�) · Var{Z · [t− �z+X�2]}

= 1
mt+1

∑
z∈Zd
Pt−1�z�Var{Z · [t− �z+X�2]}

= 1
mt+1

· Var{Z · [t− �St�2]} = 1
mt+1

EZ2 ·E[t− �St�2]2
= 1
mt+1

�m2 + σ2� · 2�t2 − t�d−1�

Therefore,

∞∑
t=1
E
[
Mt −Mt−1

]2 = 4�m2 + σ2�
d�m− 1�3 <∞�(4.10)
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Similarly,

Nt =
1
mt

∑
z∈Zd

λ�z
 t−1�∑
k=1

Z�z
 t− 1
 k�(z+X�z
 t− 1
 k�)


Nt −Nt−1 =
1
mt

∑
z∈Zd

λ�z
 t−1�∑
k=1

{
Z�z
 t− 1
 k�(z+X�z
 t− 1
 k�)
−E(Z�z
 t− 1
 k�(z+X�z
 t− 1
 k�))}�

Thus for each t ≥ 1,
cov�Nt −Nt−1
Nt −Nt−1�

= 1
mt+1

∑
z∈Zd

∑
z∈Zd
Pt−1�z�cov

(
Z�z+X�
Z�z+X�)

= 1
mt+1

cov
(
ZSt
ZSt

) = 1
mt+1

�m2 + σ2�d−1tId�

Consequently,

∞∑
t=1

cov�Nt −Nt−1
Nt −Nt−1� =
�m2 + σ2�
d�m− 1�2 Id�(4.11)

By the martingale convergence theorem [see, e.g., page 2, Hall and
Heyde (1980)], �Mt�t≥0 and �Nt�t≥0 converge almost surely, as well as in
L2-norm, to a real valued random variable M and a Rd-valued random
variable N, respectively. SinceM0 = 0 and N0 = 0, we have

EM = 0 and EN = 0�

By above computation,

EM2 = 4�m2 + σ2�
d�m− 1�3 and cov�N
N� = �m2 + σ2�

d�m− 1�2 Id�

In view of (4.2), (4.3), (4.4) and (4.8) we have (2.1)–(2.3), (2.5) and (2.6) in
Theorem 2.1.
Replace

{
X�x
 t
 k�} by {−X�x
 t
 k�} and introduce the notations λ′�x
 t�,

M′
t, N

′
t,M

′, N′ for the replacements of λ�x
 t�,Mt, Nt,M, N respectively, in
our new particle system. By symmetry of migration we have

(
B
M′
N′) d=(B
M
N)�(4.12)

On the other hand, λ′�x
 t� = λ�−x
 t� for all t ≥ 0 and x ∈ Zd. Hence we have
M′
t = Mt and N′

t = −Nt, which leads to M′ = M and N′ = −N. Therefore,
(2.4) follows from (4.12).
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We now prove (2.7). Let λ∗�x
T − 1
 k� be the population of the particles
located at x at time T who are descended from the original ancestor’s kth
child; let

Bk�t� =
∑
x∈Zd
λ∗�x
T− 1
 k�

and write

Bk = lim
t→∞

Bk�t�
mt−1

�

Then

λ�x
T� =
Z∑
k=1
λ∗�x
T− 1
 k� =∑

z

Iz�X�
Z∑
k=1
λ∗�x
T− 1
 k�

and, �Bk� are i.i.d. random variables independent of �X
Z� and distributed
as � �B�. Notice that

∑
z

Iz�X�
Z∑
k=1
PT−1�x− z�Bk =mB

∑
z

Iz�X�PT−1�x− z��

Similar to (4.7), for �z� = 1,

PT−1�x− z� −PT�x� = d
(
d

2π

)d/2
T−1−d/2

[
1− �z�2 + 2x · z+ o�1�]

= d
(
d

2π

)d/2
T−1−d/2

(
2x · z+ o�1�)

as T→∞. Therefore,

∑
z

Iz�X�
Z∑
k=1

[
λ∗�x
T− 1
 k�

mT−1
−BkPT−1�x− z�

]

= m
(
λ�x
T�
mT

−BPT�x�
)
−mBd

(
d

2π

)d/2
T−1−d/2

∑
z

Iz�X�
(
2x · z+ o�1�)

= m
(
λ�x
T�
mT

−BPT�x�
)
−mBd

(
d

2π

)d/2
T−1−d/2�2x ·X+ o�1�) a.s.

Applying (2.9) to the above relation we have

M+ 2x · �N−BX� = 1
m

Z∑
k=1

{�Mk − 2X ·Nk� + 2x ·Nk
}
a.s.
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where ��Mk
Nk�� are independent copies of �M
N� and ��Mk
Nk�� are inde-
pendent of �X
Z�. Since x ∈ Zd is arbitrary and since

B = 1
m

Z∑
k=1
Bk


we have (2.7). ✷

Proof of Theorem 2.2. Consider the following decomposition:

1
mT

∑
y≤x√T

λ�y
T�−BP{ST≤x√T}

= 1
mT

∑
y≤x√T

(
λ�y
T�−f�y
T
t�)+ ∑

y≤x√T

f�y
T
t�
mT

−P{ST≤x√T}B�t�mt +P
{
ST≤x

√
T
}(B�t�
mt

−B
)
�

Again, we let t ∼ Tε for some sufficiently small ε > 0. In view of (4.4), the
third term in the above decomposition is negligible. Since λ�y
T� = 0 for all
�y� > T,( ∑

y≤x√T

(
λ�y
T� − f�y
T
 t�)

)2
≤KTd/2 ∑

y∈Zd

(
λ�y
T� − f�y
T
 t�)2


where K > 0 is a constant. By (4.3), the first term is also negligible.
Therefore, we only need to deal with the second term, that is, to prove that

√
T

[ ∑
y≤x√T

f�y
T
 t�
mT

−P{ST ≤ x√T}B�t�mt
]
−→ −∇�d�

√
dx� ·N(4.13)

almost surely as well as in L2-norm.
Notice that

1
mT

∑
y≤x√T

f�y
T
 t� −P{ST ≤ x√T}B�t�mt
= 1
mt

∑
y∈Zd

[
P
{
ST−t ≤ x

√
T− y}−P{ST ≤ x√T}]λ�y
 t��

(4.14)

Write

P
{
ST−t ≤ x

√
T− y}−P{ST ≤ x√T}

=
(
P
{
ST ≤ x

√
T− y}−P{ST ≤ x√T})

+
(
P
{
ST−t ≤ x

√
T− y}−P{ST ≤ x√T− y})

= �I� + �II� (say)�

(4.15)
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Uniformly on �y� ≤ t,

�I� = −(1+ o�1�) d∑
j=1
sgn�yj�P

{
xj
√
T− �yj� < S�j�T ≤ xj

√
T


S
�k�
T ≤ xk

√
T
k �= j
1 ≤ k ≤ d

}(4.16)

as T→∞, where S�1�T 
 � � � 
 S�d�T are the components of ST. We claim that for
each 1 ≤ j ≤ d, uniformly on �y� ≤ t,

P
{
xj
√
T− �yj� < S�j�T ≤ xj

√
T
S

�k�
T ≤ xk

√
T
k �= j
1 ≤ k ≤ d}

=




(
1+ o�1�)T−1/2 d

dx

(
��x�)

× [�y� + (1− �−1��y�)�−1�T+�x√T�]
 as d = 1,(
1+ o�1�)T−1/2�yj� ∂∂xj

(
�d�

√
dx�)
 as d ≥ 2.

(4.17)

We only prove (4.16) in the case d ≥ 2, as the proof for the case d = 1
is similar but much simpler. Without loss of generality, we only consider the
case j = 1. By a combinatorial argument we can see that for any measurable
A1
 � � � 
Ad ⊂ R,

P
{
S
�1�
T ∈ A1
 � � � 
 S�d�T ∈ Ad

}
= 1
dT

∑
k1+···+kd=T

T!
k1! · · ·kd!

d∏
j=1
P
{ Skj ∈ Aj}
(4.18)

where  St is a one-dimensional symmetric random walk. In particular,

P
{
x1
√
T− �y1� < S�1�T ≤ x1

√
T
S

�k�
T ≤ xk

√
T
2 ≤ k ≤ d

}

= 1
dT

∑
k1+···+kd=T

T!
k1! · · ·kd!

( ∑
x1
√
T−�y1�<z≤x1

√
T

P
{ Sk1 = z}

)

×
d∏
j=2
P
{ Skj ≤ xj√T}�

Notice that P
{ Sk1 = z} = 0 when k1 �≡ z mod(2), and

P
{ Sk1 = z} ∼ 2T−1/2

√
d

2π
exp
{
−dx

2
1

2

}



when k1 ≡ z mod(2) and k1 ∼ d−1T as T→∞. On the other hand,
#
{
z ∈ Z � x1

√
T− �y1� < z ≤ x1

√
T and z ≡ k1 mod�2�

}
= 1

2

[�y1� + (1− �−1��y1�)�−1�k1+�x1√T�]�
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Consider Cramér’s large deviation [cf. Theorem 2.2.30 of Dembo and Zeitouni
(1992)] which gives in our case

1
dT

∑
�k1
 ���
 kd�∈AT�δ�

T!
k1! · · ·kd!

= O(e−αT)
 T→∞(4.19)

for any δ > 0, where α = α�δ� > 0 is a constant and
AT�δ� =

{�k1
 � � � 
 kd� ∈ Zd�k1 + · · · + kd = T
kj ≥ 0 �j = 1
 � � � 
 d�
and �kj − d−1T� ≥ δT for some 1 ≤ j ≤ d

}
�

[We only need that the left-hand side of (4.19) tend to zero here, which is
referred to as the law of large numbers. We give (4.19) for the needs of the
later development]. Therefore,

P
{
x1
√
T− �y1� < S�1�T ≤ x1

√
T+ �y1�
 S�k�T ≤ xk

√
T
 2 ≤ k ≤ d

}

= (
1+ o�1�) 1

dT
∑

k1+···+kd=T

T!
k1! · · ·kd!

[
�y1� +

(
1− �−1��y1�)�−1�k1+�xk√T�]

×T−1/2
√
d

2π
exp
{
−dx

2
1

2

} d∏
j=2
�
(√
dxj

)

= (
1+ o�1�)T−1/2 ∂

∂x1

(
�d�

√
dx�)

×
[
�y1� +

(
1− �−1��y1�)�−1��x1√T�(1− 2

d

)T]

= (
1+ o�1�)T−1/2 ∂

∂x1

(
�d�

√
dx�

)
�y1�
 T→∞�

By (4.16) and (4.17),

�I� =



−T−1/2 d

dx
���x��[

y+ �1− �−1��y��sgn�y��−1�T+�x
√
T� + o�1�]
 as d = 1,

−T−1/2[∇�d�√dx� · y+ o�1�]
 as d ≥ 2

(4.20)

holds uniformly on �y� ≤ t as T→∞.
Note that when d ≥ 2,

�II� = ∑
z∈Zd
Pt�z�[P�ST−t ≤ x√T− y� −P�ST−t ≤ x√T− y− z�]

= − ∑
z∈Zd
Pt�z�T−1/2[∇�d�√dx� · z+ o�1�]

= −T−1/2[E�∇�d�√dx� ·St� + o�1�] = o�T−1/2�
 T→∞

(4.21)

holds uniformly on �y� ≤ t, where the second equality follows from an obvious
modification of (4.20). Similarly, (4.21) is also true when d = 1.
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Combining (4.14), (4.15), (4.20), (4.21) we can see that as d ≥ 2,

1
mT

∑
y≤x√T

f�y
T
 t� −P{ST ≤ x√T}B�t�mt
= −T−1/2

[
∇�d�

√
dx� ·

(
1
mt

∑
y∈Zd
yλ�y
 t�

)
+ o�1�

]

almost surely as well as in L2-norm. This also holds in the case d = 1 as∣∣∣∣ 1mT
∑
y∈Z

(
1− �−1��y�)sgn�y�λ�y
 t�∣∣∣∣

=
∣∣∣∣ ∑
y∈Z

(
1− �−1��y�)sgn�y�[λ�y
 t�

mt
−Pt�y�B

]∣∣∣∣
≤ ∑
y∈Z

∣∣∣∣λ�y
 t�mt
−Pt�y�B

∣∣∣∣ −→ 0
 T→∞


where the last step follows from Theorem 4.3 and Theorem 4.5 in Révész
(1994).
So (4.13) follows from (2.6) and martingale convergence theorem. ✷

Proof of Corollary 2.3. By Theorem 2.2, it is enough to prove the
following multivariate version of the Edgeworth expansion:

P�ST ≤ x
√
T� = �d�

√
dx� +T−1/2∇�d�

√
dx� · F�

√
Tx� + o(T−1/2)�(4.22)

When d = 1, by Theorem 6, page 171 of Petrov (1975) we have

P�ST ≤ x
√
T� = ��x� + 1√

T
�′�x�

∞∑
l=1

sin
(
2lπ

√
Tx
)

πl
+ o(T−1/2)

= ��x� +T−1/2�′�x�f�
√
Tx� + o(T−1/2)


(4.23)

where the last step follows from the Fourier expansion.
Consider the case when d > 1. From (4.18),

P
{
ST ≤ x

√
T
} = 1
dT

∑
k1+···+kd=T

T!
k1! · · ·kd!

d∏
j=1
P
{ Skj ≤ xj√T}�(4.24)

By a treatment similar to the one used in the proof of (4.17), the expansion
(4.22) follows from (4.19), (4.23) and (4.24). ✷
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5. Proofs of Theorems 3.1 and 3.2. Let Pt�x
A� be the transition
probability of �W�t��. Then

Pt�x
A� =
(
1
2πt

)d/2 ∫
A
exp
{
−�y− x�

2

2t

}
dy
 t > 0�

Define, for each t ≤ T,

F�A
T
 t� =mT−t ∑
x∈Rd
PT−t�x
A�λ�x
 t� =mT−t

∫
PT−t�x
A�ψ�dx
 t��

By Lemma 6.3 in Révész (1994), for each 0 ≤ t < T,
E
[
ψ�A
T��� �t�] = F�A
T
 t��(5.1)

The proof here is similar to the one given in Section 4, except that the
range of branching Wiener process is no longer bounded in probability. We
shall overcome such a difficulty by truncation. From this motive we need the
following lemma.

Lemma 5.1. There exists a constant C > 0 depending only on m and σ2

such that

E
[∫
f�x�1�dx
 t�

]2
≤ Cm2tEf2

(
W�t�)(5.2)

for every function f on Rd and t.

Proof. By (5.1),

E
[∫
f�x�1�dx
 t�

]
=
∫
f�x�F�dx
 t
0� =mtEf(W�t�)�(5.3)

Notice that∫
f�x�1�dx
 t� −E

[∫
f�x�1�dx
 t�

]

=
t∑
s=1

[∫
f�x�F�dx
 t
 s� −

∫
f�x�F�dx
 t
 s− 1�

]



∫
f�x�F�dx
 t
 s�

=mt−s ∑
x∈Rd
Pt−sf�x�λ�x
 t�

= mt−s ∑
x∈Rd
Pt−sf�x�

∑
y∈Rd

λ�y
t−1�∑
k=1

Ix
(
y+W�y
 t− 1
 k�)Z�y
 t− 1
 k�

= mt−s ∑
y∈Rd

λ�y
s−1�∑
k=1

Pt−sf
(
y+W�y
 s− 1
 k�)Z�y
 s− 1
 k��
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In view of (5.1) we have∫
f�x�F�dx
 t
 s� −

∫
f�x�F�dx
 t
 s− 1�

= mt−s ∑
y∈Rd

λ�y
s−1�∑
k=1

[
Pt−sf

(
y+W�y
 s− 1
 k�)Z�y
 s− 1
 k�

−E(Pt−sf(y+W�y
 s− 1
 k�)Z�y
 s− 1
 k�)]�
Hence,

E
[∫
f�x�F�dx
 t
 s� −

∫
f�x�F�dx
 t
 s− 1�

]2
= m2t−2s ∑

y∈Rd
E
(
λ�y
 s− 1�)Var(Pt−sf�y+W�Z)

= m2t−s−1
∫
Ps−1�0
 dy�Var

(
Pt−sf�y+W
A�Z

)
= m2t−s−1 Var

(
Pt−sf

(
W�s�)Z)

≤ m2t−s−1�m2 + σ2�E(Pt−sf(W�s�))2
≤ m2t−s−1�m2 + σ2�E(Pt−sf2(W�s�))
= m2t−s−1�m2 + σ2�Ef2(W�t�)�

Therefore, by orthogonality from (5.1) we have

Var
[∫
f�x�1�dx
 t�

]
=

t∑
s=1
m2t−s−1�m2 + σ2�Ef2(W�t�)

≤ m2t · m
2 + σ2

m�m− 1�Ef
2(W�t�)�

(5.4)

Finally, the desired conclusion follows from (5.3) and (5.4). ✷

To prove Theorem 3.1 and 3.2, we now follow Révész’s decomposition again

ψ�A
T�
mT

−B
(

1
2πT

)d/2 ∫
A
exp
{
−�x�

2

2T

}
dx

=
(
ψ�A
T�
mT

− F�A
T
 t�
mT

)

+
(
F�A
T
 t�
mT

−PT�0
A�
B�t�
mt

)

+PT�0
A�
(
B�t�
mt

−B
)
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ψ
(�y�y ≤ x√T�
T)

mT
−B�d�x�

=
(
ψ
(�y�y ≤ x√T�
T)

mT
− F

(�y�y ≤ x√T�
T
 t)
mT

)

+
(
F
(�y�y ≤ x√T�
T
 t)

mT
−�d�x�

B�t�
mt

)
+�d�x�

(
B�t�
mt

−B
)



where we let t = Tε for a small constant ε > 0. By (4.4) and the inequality
given in Lemma 6.11 of Révész (1994), one can see that only the second term
in each of these two decompositions contributes to the limit behaviors given
in our theorems. In other words, (3.1) and (3.8) are equivalent to

T1+d/2
(
F�A
T
 t�
mT

−PT�0
A�
B�t�
mt

)
−→ �A�

(
1
2π

)d/2(1
2
M+ x̄A ·N

)
(5.5)

and

√
T

(
F
(�y�y ≤ x√T�
T
 t)

mT
−�d�x�

B�t�
mt

)
−→ −∇�d�x� ·N
(5.6)

respectively.
We first prove (5.5). Notice that

F�A
T
 t�
mT

−PT�0
A�
B�t�
mt

= 1
mt

∫ [
PT−t�x
A� −PT�0
A�

]
ψ�dx
 t�

= 1
mt

∫
�x�≤t

[
PT−t�x
A� −PT�0
A�

]
ψ�dx
 t�

+ 1
mt

∫
�x�>t

[
PT−t�x
A� −PT�0
A�

]
ψ�dx
 t�

and that, by Lemma 5.1,

E

[
1
mt

∫
�x�>t

[
PT−t�x
A�−PT�0
A�

]
ψ�dx
t�

]2
=O(P{�W�t��>t})=O(e−ct)�

So (5.5) is equivalent to

T1+d/2
[
1
mt

∫
�x�≤t

[
PT−t�x
A� −PT�0
A�

]
ψ�dx
 t�

]

−→ �A�
(
1
2π

)d/2(1
2
M+ x̄A ·N

)
�

(5.7)

On the other hand,

PT−t�x
A� −PT�0
A�

= 1
2

(
1
2π

)d/2
�A�T−1−d/2

[
dt− �x�2 + 2

�A�
∫
A
�x · y�dy+ o�1�

]
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where the error term o�1� tends to 0 uniformly over �x� ≤ t as T→∞. Hence

T1+d/2
1
mt

∫
�x�≤t

[
PT−t�x
A� −PT�0
A�

]
ψ�dx
 t�

= 1
2

(
1
2π

)d/2 �A�
mt

∫
�x�≤t

[
dt− �x�2 + 2

�A�
∫
A
�x · y�dy

]
ψ�dx
 t� + o�1�

= 1
2

(
1
2π

)d/2
�A�
[
dt
B�t�
mt

− 1
mt

∫
�x�2ψ�dx
 t� + 2x̄A

1
mt

∫
xψ�dx
 t�

]
+ o�1�

almost surely as well as in L2-norm, where the last step follows from a
truncation estimate via Lemma 5.1.
Similarly as in Section 4, we can show that

Mt ≡ dt
B�t�
mt

− 1
mt

∫
�x�2ψ�dx
 t� and Nt ≡

1
mt

∫
xψ�dx
 t�

are two martingales with

E
[
Mt −Mt−1

]2 = 2
mt+1

�m2 + σ2�dt2


cov
(
Nt −Nt−1
Nt −Nt−1

) = 1
mt+1

�m2 + σ2�Id

for all t ≥ 1. By the martingale convergence theorem �Mt� and �Nt� converge,
almost surely as well as in L2-norm, to some random variables M and N,
respectively. Further,

EM2 =
∞∑
t=1
E
[
Mt −Mt−1

]2 = 2d�m2 + σ2��m+ 1�
�m− 1�3 


cov
(
N
N

) = ∞∑
t=1

cov
(
Nt −Nt−1
Nt −Nt−1

) = �m2 + σ2�
�m− 1�2 Id�

Hence we have (5.7) [and therefore (3.1)–(3.3), (3.5), (3.6)]. We omit the proofs
of (3.4) and (3.7), as they are analogous to that of (2.4)and (2.7), respectively.
We now come to the proof of (5.6). Note that for all �y� ≤ t, uniformly we

have

�d

(√
T

T− tx−
y√
T− t

)
−�d�x� = −T−1/2

[∇�d�x� · y+ o�1�]�
Hence, by truncation (Lemma 5.1) we have

√
T

(
F
(�y�y ≤ x√T�
T
 t)

mT
−�d�x�

B�t�
mt

)

=
√
T
1
mt

∫ [
P
{
W�T− t� ≤ x

√
T− y}−�d�x�]ψ�dy
 t�

= −∇�d�x� ·
(
1
mt

∫
yψ�dy
 t�

)
+ o�1�
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almost surely as well as in L2-norm. So (5.6) follows from (3.6) and the
martingale convergence theorem. ✷
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Ney, P. E. (1991). Branching random walks. In Spatial Stochastic Process (K. S. Alexander and

J. C. Watkins, eds.) Birkhäuser, Boston. 3–22.
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