STRONG APPROXIMATION OF THE EMPIRICAL PROCESS OF GARCH SEQUENCES

By István Berkes ${ }^{1}$ and Lajos Horváth
Hungarian Academy of Sciences and University of Utah

Abstract

We obtain a strong approximation for the empirical process of n observed elements of a GARCH sequence. The weak convergence of the empirical process and the law of the iterated logarithm are immediate consequences.

1. Introduction and results. Over the last years several models have been suggested to serve as models for financial data. Many of these models have the property that the conditional variance (or conditional scaling) depends on past observations. Empirical work has confirmed the applicability of these models to analyze financial time series. One of the well-known examples is the autoregressive conditionally heteroskedastic (ARCH) process introduced by Engle (1982). It is used to model exchange rates, stock prices and so on. The ARCH model has been investigated and generalized by several authors; see, for example, Bollerslev (1986) and Gouriéroux (1997). In this paper we investigate the generalized autoregressive conditionally heteroskedastic (GARCH) process introduced by Bollerslev (1986). A GARCH (p, q) process is defined by the equations

$$
\begin{equation*}
y_{k}=\sigma_{k} \varepsilon_{k} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{k}^{2}=\delta+\sum_{1 \leq i \leq p} \beta_{i} \sigma_{k-i}^{2}+\sum_{1 \leq j \leq q} \alpha_{j} y_{k-j}^{2}, \tag{1.2}
\end{equation*}
$$

where $\delta>0, \beta_{i}, 1 \leq i \leq p$ and $\alpha_{j}, 1 \leq j \leq q$ are nonnegative constants. Throughout this paper we assume that $\left\{\varepsilon_{i},-\infty<i<\infty\right\}$ are independent, identically distributed random variables with distribution function H. The main purpose of this paper is to prove limit theorems for the empirical distribution function of $y_{1}, y_{2}, \ldots, y_{n}$ assuming that (1.1) and (1.2) have a unique stationary solution.

Nelson (1990) found a necessary and sufficient condition for the stationarity and ergodicity of the GARCH $(1,1)$ process. He showed that in the case of $p=q=1$, (1.1) and (1.2) have a unique stationary solution if and only if $E \log \left(\beta_{1}+\alpha_{1} \varepsilon_{0}^{2}\right)<0$. A necessary and sufficient condition for the existence of

[^0]a unique stationary solution of (1.1) and (1.2) in the general case was given by Bougerol and Picard (1992a, b). To state this condition, let
\[

$$
\begin{aligned}
& \tau_{n}=\left(\beta_{1}+\alpha_{1} \varepsilon_{n}^{2}, \beta_{2}, \ldots, \beta_{p-1}\right) \in R^{p-1} \\
& \xi_{n}=\left(\varepsilon_{n}^{2}, 0, \ldots, 0\right) \in R^{p-1}
\end{aligned}
$$
\]

and

$$
\alpha=\left(\alpha_{2}, \ldots, \alpha_{q-1}\right) \in R^{q-1}
$$

(Clearly, without loss of generality we may and shall assume $p \geq 2$ and $q \geq 2$.) Define the $(p+q-1) \times(p+q-1)$ matrix A_{n}, written in block form, by

$$
A_{n}=\left[\begin{array}{cccc}
\tau_{n} & \beta_{p} & \alpha & \alpha_{q} \\
I_{p-1} & 0 & 0 & 0 \\
\xi_{n} & 0 & 0 & 0 \\
0 & 0 & I_{q-2} & 0
\end{array}\right]
$$

where I_{p-1} and I_{q-2} are the identity matrices of size $p-1$ and $q-2$, respectively. We have assumed that the innovations $\left\{\varepsilon_{i},-\infty<i<\infty\right\}$ are independent, identically distributed random variables and therefore the random matrices $\left\{A_{n},-\infty<n<\infty\right\}$ are independent and identically distributed. Assume that $E\left(\log ^{+}\left\|A_{0}\right\|\right)<\infty$, where for any $d \times d$ matrix $M,\|M\|$ denotes the matrix norm defined by

$$
\|M\|=\sup \left\{\|M x\|_{d} /\|x\|_{d}: x \in R^{d}, \quad x \neq 0\right\}
$$

where $\|\cdot\|$ is the usual (Euclidean) norm in R^{d}. The top Lyapunov exponent γ associated with the sequence $\left\{A_{n},-\infty<n<\infty\right\}$ is

$$
\gamma=\inf _{1 \leq n<\infty} \frac{1}{n} E \log \left\|A_{0} A_{-1} \cdots A_{-n}\right\|
$$

The condition $E\left(\log ^{+}\left\|A_{0}\right\|\right)<\infty$ and the subadditive ergodic theorem [cf. Kingman (1973)] imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{0} A_{-1} \cdots A_{-n}\right\|=\gamma \quad \text { a.s. } \tag{1.3}
\end{equation*}
$$

Bougerol and Picard (1992a, b) showed that (1.1) and (1.2) have a unique stationary solution if and only if

$$
\begin{equation*}
\gamma<0 \tag{1.4}
\end{equation*}
$$

In this paper we investigate the asymptotic properties of the empirical process

$$
R(s, t)=\sum_{1 \leq i \leq t}\left(I\left\{y_{i} \leq s\right\}-F(s)\right)
$$

where F denotes the distribution function of y_{0}. We make stronger assumptions than $E\left(\log ^{+}\left\|A_{0}\right\|\right)<\infty$ and (1.4), so we can assume that we are using the stationary solution of (1.1) and (1.2). Let

$$
Y_{k}(s)=I\left\{y_{k} \leq s\right\}-F(s)
$$

Theorem 1.1. We assume that

$$
\begin{gather*}
|H(t)-H(s)| \leq C|t-s|^{\theta} \quad \text { with some } 0<C<\infty \text { and } 0<\theta \leq 1, \tag{1.5}\\
E\left(\log ^{+}\left\|A_{0}\right\|\right)^{\mu}<\infty \quad \text { with some } \mu>2+16 / \theta \tag{1.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma_{1}=E\left(\log \left\|A_{0}\right\|\right)<0 . \tag{1.7}
\end{equation*}
$$

Then the series

$$
\begin{equation*}
\Gamma\left(s, s^{\prime}\right)=E Y_{0}(s) Y_{0}\left(s^{\prime}\right)+\sum_{1 \leq n<\infty} E Y_{0}(s) Y_{n}\left(s^{\prime}\right)+\sum_{1 \leq n<\infty} E Y_{0}\left(s^{\prime}\right) Y_{n}(s) \tag{1.8}
\end{equation*}
$$

is absolutely convergent for any $-\infty<s, s^{\prime}<\infty$ and there is a Gaussian process $K(s, t)$ with $E K(s, t)=0, E K(s, t) K\left(s^{\prime}, t^{\prime}\right)=\min \left(t, t^{\prime}\right) \Gamma\left(s, s^{\prime}\right)$, such that

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \sup _{-\infty<s<\infty}|R(s, t)-K(s, t)|=o\left(T^{1 / 2}(\log T)^{-\lambda}\right) \quad \text { a.s. } \tag{1.9}
\end{equation*}
$$

with some $\lambda>0$.
Remark 1.1. In GARCH (1, 1), conditions (1.6) and (1.7) are satisfied if and only if

$$
\begin{equation*}
E\left(\log ^{+}\left(\beta_{1}+\alpha_{1} \varepsilon_{0}^{2}\right)\right)^{\mu}<\infty \quad \text { with some } \mu>2+16 / \theta \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
E \log \left(\beta_{1}+\alpha_{1} \varepsilon_{0}^{2}\right)<0 \tag{1.11}
\end{equation*}
$$

We note again that by Nelson (1990), (1.11) is necessary and sufficient for the existence of the stationary GARCH (1, 1). For general GARCH sequences, (1.7) is more restrictive than (1.4).

Remark 1.2. If $E\left(\log ^{+}\left|\varepsilon_{0}\right|\right)^{\mu}<\infty$ with some $\mu>2+16 / \theta$, then (1.6) holds in any GARCH (p, q) model.

Remark 1.3. Davis, Mikosch and Basrak (1999) showed that if (1.4) holds and $E\left|\varepsilon_{0}\right|^{\mu}<\infty$ with some $\mu>0$, then $\left\{y_{n}^{2},-\infty<n<\infty\right\}$ is strongly mixing with a geometric rate. Combining the mixing property of $\left\{y_{n}^{2}\right\}$ with the main result in Philipp and Pinzur (1980) and Philipp (1984) one could get strong approximations for $\sum_{1 \leq i \leq t}\left(I\left\{y_{i}^{2} \leq s\right\}-F^{*}(s)\right)$, where $F^{*}(s)$ is the distribution function of y_{0}^{2}. However, the method used by Davis, Mikosch and Basrak (1999) does not give a similar result for $R(s, t)$. Also, to get the strong mixing of $\left\{y_{n}^{2}\right\}$, Davis, Mikosch and Basrak (1999) assume that $E\left|\varepsilon_{0}\right|^{\mu}<\infty$ with some $\mu>0$, which is stronger than (1.6).

In the proof of our theorem we will use a totally different approach and establish a new structural property of GARCH sequences which is easier to verify than strong mixing and is much more convenient in applications.
(See Lemma 2.4.) Indeed, we prove that if (1.6), (1.7) hold then there is a sequence $\left\{y_{n}^{\prime}\right\}$ which is close to $\left\{y_{n}\right\}$ (in the sense that $y_{n}-y_{n}^{\prime} \rightarrow 0$ rapidly) and for each $n \geq 1$ the finite sequence $\left\{y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\}$ is not only mixing, but in fact is m-dependent with $m=n^{\rho}$ for some $0<\rho<1$; that is, terms of this sequence with indices differing at least n^{ρ} are independent. This property does not imply strong mixing for $\left\{y_{n}\right\}$ but it is more convenient to use. In fact, it permits us to deduce asymptotic properties of $\left\{y_{n}\right\}$ directly from known results for independent random variables via standard blocking techniques. We note also that this approach requires weaker moment conditions on $\left\{\varepsilon_{n}\right\}$ than the strong mixing technique. It seems likely that the same method will be applicable in many other situations.

The weak convergence of the empirical process of y_{1}, \ldots, y_{n} is a simple consequence of Theorem 1.1. If $\widehat{K}(s)$ is a Gaussian process with $E \widehat{K}(s)=0$ and $E \widehat{K}(s) \widehat{K}\left(s^{\prime}\right)=\Gamma\left(s, s^{\prime}\right)$, then
as $n \rightarrow \infty$.
Similarly, the law of the iterated logarithm also follows from Theorem 1.1. It is enough to observe that $K(s, n)$ is a partial sum of independent, identically distributed Gaussian processes, so by Ledoux and Talagrand (1991) the law of the iterated logarithm holds for $K(s, n)$. Hence

$$
\limsup _{n \rightarrow \infty}\left(\frac{n}{2 \log \log n}\right)^{1 / 2} \sup _{-\infty<s<\infty}\left|\frac{1}{n} \sum_{1 \leq i \leq n} I\left\{y_{i} \leq s\right\}-F(s)\right|=c \quad \text { a.s. }
$$

with some $0<c<\infty$.
2. Proofs. Let

$$
X_{n}=\left(\sigma_{n+1}^{2}, \ldots, \sigma_{n-p+2}^{2}, y_{n}^{2}, \ldots, y_{n-q+2}^{2}\right) \in R^{p+q-1}
$$

and

$$
B=(\delta, 0, \ldots, 0) \in R^{p+q-1}
$$

Bougerol and Picard (1992a, b) showed that

$$
\begin{equation*}
X_{n}=B+\sum_{0 \leq k<\infty} A_{n} A_{n-1} \cdots A_{n-k} B \tag{2.1}
\end{equation*}
$$

We start with two elementary lemmas.

Lemma 2.1. If (1.7) holds and

$$
\begin{equation*}
E\left(\log ^{+}\left\|A_{0}\right\|\right)^{\mu}<\infty \quad \text { with some } \mu>2 \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
P\left\{\left\|A_{0} A_{-1} \cdots A_{-k}\right\| \geq \exp \left(-\frac{\left|\gamma_{1}\right|}{2} k\right)\right\} \leq C k^{-\mu / 2} \tag{2.3}
\end{equation*}
$$

for all $1 \leq k<\infty$ with some $0<C<\infty$.
Proof. Clearly,

$$
\begin{aligned}
P\{ & \left.\left\|A_{0} A_{-1} \cdots A_{-k}\right\| \geq \exp \left(-\frac{\left|\gamma_{1}\right|}{2} k\right)\right\} \\
& \leq P\left\{\prod_{0 \leq j \leq k}\left\|A_{-j}\right\| \geq \exp \left(-\frac{\left|\gamma_{1}\right|}{2} k\right)\right\} \\
& =P\left\{\sum_{0 \leq j \leq k} \log \left\|A_{-j}\right\| \geq-\frac{\left|\gamma_{1}\right|}{2} k\right\} \\
& \leq P\left\{\sum_{0 \leq j \leq k}\left(\log \left\|A_{-j}\right\|+\left|\gamma_{1}\right|\right) \geq \frac{\left|\gamma_{1}\right|}{2} k\right\} \\
& \leq\left(\frac{2}{\left|\gamma_{1}\right|}\right)^{\mu} k^{-\mu} E\left|\sum_{0 \leq j \leq k}\left(\log \left\|A_{-j}\right\|+\left|\gamma_{1}\right|\right)\right|^{\mu} \\
& \leq C k^{-\mu / 2}
\end{aligned}
$$

with an application of the Rosenthal inequality [cf. Petrov (1995), page 59].
Let

$$
Z_{0}=\sum_{0 \leq k<\infty} A_{0} A_{-1} \cdots A_{-k} B .
$$

Lemma 2.2. If (1.7) and (2.2) hold, then

$$
\begin{equation*}
P\left\{\left\|Z_{0}\right\| \geq t\right\} \leq C(\log t)^{-(\mu-2) / 2} \tag{2.4}
\end{equation*}
$$

for all $t_{0} \leq t<\infty$.
Proof. Choose $0<\rho^{\prime}<1$ so close to 1 that $\left|\log \rho^{\prime}\right|<\left|\gamma_{1}\right| / 2$ and let $c=\rho^{\prime} /\left(1-\rho^{\prime}\right)$. Then using again the Rosenthal inequality [cf. Petrov (1995), page 59], we obtain for $t \geq t_{0}$,

$$
\begin{aligned}
P\left\{\left\|Z_{0}\right\| \geq t\right\} & \leq \sum_{1 \leq k<\infty} P\left\{\left\|A_{0} A_{-1} \cdots A_{-k} B\right\| \geq c\left(\rho^{\prime}\right)^{k} t\right\} \\
& \leq \sum_{1 \leq k<\infty} P\left\{\|B\| \prod_{0 \leq j \leq k}\left\|A_{-j}\right\| \geq c\left(\rho^{\prime}\right)^{k} t\right\} \\
& \leq \sum_{1 \leq k<\infty} P\left\{|\log \delta|+\sum_{0 \leq j \leq k} \log \left\|A_{-j}\right\| \geq \log c+k \log \rho^{\prime}+\log t\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{1 \leq k<\infty} P\left\{\sum_{1 \leq j \leq k}\left(\log \left\|A_{-j}\right\|+\left|\gamma_{1}\right|\right) \geq \log t+\left(\left|\gamma_{1}\right|-\left|\log \rho^{\prime}\right|\right) k\right. \\
& \quad+\log c-|\log \delta|\} \\
& \leq \sum_{1 \leq k<\infty} P\left\{\sum_{1 \leq j \leq k}\left(\log \left\|A_{-j}\right\|+\left|\gamma_{1}\right|\right)>\frac{1}{2}\left(\log t+\frac{\left|\gamma_{1}\right|}{2} k\right)\right\} \\
& \leq \sum_{1 \leq k<\infty} c_{1}\left(\log t+\frac{\left|\gamma_{1}\right|}{2} k\right)^{-\mu} k^{\mu / 2} \\
& \leq \sum_{1 \leq k<\infty} c_{2}\left(\log t+\frac{\left|\gamma_{1}\right|}{2} k\right)^{-\mu / 2} \\
& \leq c_{2} \int_{1}^{\infty}\left(\log t+\frac{\left|\gamma_{1}\right|}{2} x\right)^{-\mu / 2} d x+c_{2}\left(\log t+\frac{\left|\gamma_{1}\right|}{2}\right)^{-\mu / 2} \\
& =\frac{2 c_{2}}{\mu-2}\left(\log t+\frac{\left|\gamma_{1}\right|}{2}\right)^{1-\mu / 2}+c_{2}\left(\log t+\frac{\left|\gamma_{1}\right|}{2}\right)^{-\mu / 2}
\end{aligned}
$$

completing the proof of (2.4).

Let

$$
X_{n}^{\prime}=B+\sum_{0 \leq k \leq\left[n^{\rho}\right]} A_{n} A_{n-1} \cdots A_{n-k} B
$$

with some $0<\rho<1$. We show that X_{n} and X_{n}^{\prime} are near to each other.
LEMMA 2.3. If (1.7) and (2.2) hold, then

$$
\begin{equation*}
P\left\{\left\|X_{n}-X_{n}^{\prime}\right\|>C n^{-\rho(\mu-2) / 2}\right\} \leq C n^{-\rho(\mu-2) / 2} \tag{2.5}
\end{equation*}
$$

with some $C>0$.

Proof. We prove the somewhat stronger inequality

$$
\begin{equation*}
P\left\{\left\|X_{n}-X_{n}^{\prime}\right\|>\exp \left(-c_{1} n^{\rho}\right)\right\} \leq C n^{-\rho(\mu-2) / 2} \tag{2.6}
\end{equation*}
$$

with some c_{1}. First we write

$$
\begin{equation*}
X_{n}-X_{n}^{\prime}=\sum_{\left[n^{\rho}\right]<k<\infty} A_{n} A_{n-1} \cdots A_{n-k} B=A_{n} A_{n-1} \cdots A_{n-\left[n^{\rho}\right]} \widehat{Z}_{N} \tag{2.7}
\end{equation*}
$$

where $N=n-\left[n^{\rho}\right]-1$ and

$$
\widehat{Z}_{N}=\sum_{0 \leq j<\infty} A_{N} A_{N-1} \cdots A_{N-j} B
$$

Since $\left\{A_{n},-\infty<n<\infty\right\}$ are independent and identically distributed, by Lemma 2.1 we have

$$
\begin{align*}
P\left\{\left\|A_{n} A_{n-1} \ldots A_{n-\left[n^{\rho}\right]}\right\| \geq \exp \left(-\frac{\left|\gamma_{1}\right|}{2}\left[n^{\rho}\right]\right)\right\} & \leq c_{2} n^{-\mu \rho / 2} \tag{2.8}\\
& \leq c_{2} n^{-\rho(\mu-2) / 2}
\end{align*}
$$

Since $\widehat{Z}_{N} \stackrel{\mathscr{O}}{=} Z_{0}$ for any N, Lemma 2.2 yields

$$
\begin{equation*}
P\left\{\left\|\widehat{Z}_{N}\right\| \geq \exp \left(\frac{\left|\gamma_{1}\right|}{4}\left[n^{\rho}\right]\right)\right\} \leq c_{3} n^{-\rho(\mu-2) / 2} \tag{2.9}
\end{equation*}
$$

Putting together (2.7)-(2.9) we conclude

$$
\begin{aligned}
& P\left\{\left\|X_{n}-X_{n}^{\prime}\right\| \leq \exp \left(-\frac{\left|\gamma_{1}\right|}{2}\left[n^{\rho}\right]\right) \exp \left(\frac{\left|\gamma_{1}\right|}{4}\left[n^{\rho}\right]\right)\right\} \\
& \quad \geq 1-\left(c_{2}+c_{3}\right) n^{-\rho(\mu-2) / 2}
\end{aligned}
$$

completing the proof of (2.6).
LEMMA 2.4. We assume that (1.7), (2.2) hold and $0<\rho<1$. Then there exist measurable functions $f_{n}: R^{\left[n^{\rho}\right]} \rightarrow R(n=1,2, \ldots)$ such that setting

$$
y_{n}^{\prime}=f_{n}\left(\varepsilon_{n}, \varepsilon_{n-1}, \ldots, \varepsilon_{n-\left[n^{\rho}\right]}\right)
$$

we have

$$
\begin{equation*}
P\left\{\left|y_{n}-y_{n}^{\prime}\right|>C n^{-\rho(\mu-2) / 4}\right\} \leq C n^{-\rho(\mu-2) / 4} \tag{2.10}
\end{equation*}
$$

with some $C>0$.

Proof. Define y_{n}^{\prime} in such a way that $\left(y_{n}^{\prime}\right)^{2}$ is identical with the $(p+1)$ th coordinate of X_{n}^{\prime} and y_{n}^{\prime} has the sign of y_{n} (i.e., the sign of ε_{n}). Since X_{n}^{\prime} is a measurable function of $\varepsilon_{n}, \varepsilon_{n-1}, \ldots, \varepsilon_{n-\left[n^{\rho}\right]}$, the same holds for y_{n}^{\prime}. Also, (2.5) implies that

$$
\begin{equation*}
P\left\{\left|y_{n}^{2}-\left(y_{n}^{\prime}\right)^{2}\right|>c_{1} n^{-\rho(\mu-2) / 2}\right\} \leq c_{1} n^{-\rho(\mu-2) / 2} \tag{2.11}
\end{equation*}
$$

We consider the event when $\left|y_{n}^{2}-\left(y_{n}^{\prime}\right)^{2}\right| \leq c_{1} n^{-\rho(\mu-2) / 2}$. The variables y_{n} and y_{n}^{\prime} have the same sign, so we have

$$
\begin{equation*}
\left|y_{n}-y_{n}^{\prime}\right|=\frac{\left|y_{n}^{2}-\left(y_{n}^{\prime}\right)^{2}\right|}{\left|y_{n}+y_{n}^{\prime}\right|} \leq \frac{\left|y_{n}^{2}-\left(y_{n}^{\prime}\right)^{2}\right|}{\left|y_{n}\right|} \tag{2.12}
\end{equation*}
$$

On this event, (2.12) yields that

$$
\begin{aligned}
\left|y_{n}-y_{n}^{\prime}\right| & =\left|y_{n}-y_{n}^{\prime}\right| I\left\{\left|y_{n}\right|>n^{-\rho(\mu-2) / 4}\right\}+\left|y_{n}-y_{n}^{\prime}\right| I\left\{\left|y_{n}\right| \leq n^{-\rho(\mu-2) / 4}\right\} \\
& \leq c_{1} n^{-\rho(\mu-2) / 4}+\left(\left(c_{1}+1\right)^{1 / 2}+1\right) n^{-\rho(\mu-2) / 4}
\end{aligned}
$$

and therefore (2.10) follows from (2.11).

Next we note that condition (1.5) implies that F is also Lipshitz continuous of order θ. Indeed, it follows from the definition of y_{0} that ε_{0} and σ_{0} are independent. Hence by (1.5) we have

$$
\begin{align*}
|F(x)-F(y)| & =\left|P\left\{y_{0} \leq x\right\}-P\left\{y_{0} \leq y\right\}\right| \\
& \leq E\left|H\left(x / \sigma_{0}\right)-H\left(y / \sigma_{0}\right)\right| \tag{2.13}\\
& \leq C \delta^{-\theta / 2}|x-y|^{\theta}
\end{align*}
$$

since $\sigma_{0} \geq \delta^{1 / 2}$ by (1.2). Let

$$
Y_{n}^{\prime}(s)=I\left\{y_{n}^{\prime} \leq s\right\}-F(s)
$$

LEMMA 2.5. If (1.5), (1.7) and (2.2) hold, $0<\rho<1$, then for any $n \geq 2$ and $-\infty<t, s<\infty$ we have

$$
E\left|Y_{0}(s) Y_{n}(t)\right| \leq C n^{-\rho \theta(\mu-2) / 4}
$$

with some $C>0$.

Proof. By Lemma 2.4 there is c_{1} such that $P\left(A^{c}\right) \leq c_{1} n^{-\rho(\mu-2) / 4}$, where

$$
A=\left\{\left|y_{n}-y_{n}^{\prime}\right| \leq c_{1} n^{-\rho(\mu-2) / 4}\right\}
$$

The event $\left\{Y_{n}(s) \neq Y_{n}^{\prime}(s)\right\} \cap A$ implies that y_{n} and y_{n}^{\prime} are on different sides of s, their distance is less than $c_{1} n^{-\rho(\mu-2) / 4}$ and therefore both of them are in the interval $\left(s-c_{1} n^{-\rho(\mu-2) / 4}, s+c_{1} n^{-\rho(\mu-2) / 4}\right)$. According to (2.13),

$$
P\left\{s-c_{1} n^{-\rho(\mu-2) / 4} \leq y_{n} \leq s+c_{1} n^{-\rho(\mu-2) / 4}\right\} \leq c_{2} n^{-\rho \theta(\mu-2) / 4}
$$

and therefore

$$
\begin{equation*}
P\left\{Y_{n}(s) \neq Y_{n}^{\prime}(s)\right\} \leq 2 c_{3} n^{-\rho \theta(\mu-2) / 4} \tag{2.14}
\end{equation*}
$$

By (2.14) we also have

$$
\begin{equation*}
E\left|Y_{n}(s)-Y_{n}^{\prime}(s)\right| \leq c_{3} n^{-\rho \theta(\mu-2) / 4} \tag{2.15}
\end{equation*}
$$

Since $\left|Y_{0}(s)\right| \leq 1$, using (2.15) we get

$$
\begin{equation*}
\left|E Y_{0}(s) Y_{n}(t)-E Y_{0}(s) Y_{n}^{\prime}(t)\right| \leq E\left|Y_{n}(t)-Y_{n}^{\prime}(t)\right| \leq 2 c_{3} n^{-\rho \theta(\mu-2) / 4} \tag{2.16}
\end{equation*}
$$

On the other hand, Lemma 2.4 shows that if $n \geq 2$, then y_{0} and y_{n}^{\prime} are independent, which implies that $Y_{0}(s)$ and $Y_{n}^{\prime}(t)$ are independent. Since $E Y_{0}(s)=0$ we get

$$
E Y_{0}(s) Y_{n}^{\prime}(t)=E Y_{0}(s) E Y_{n}^{\prime}(t)=0
$$

and therefore Lemma 2.5 follows from (2.16).

REMARK 2.1. Under the condition $\mu>2+16 / \theta$ of Theorem 1.1 we can choose $0<\rho<1$ such that $\rho \theta(\mu-2) / 4>1$, establishing the absolute convergence in (1.8).

For any $-\infty<s<t<\infty$ let

$$
\bar{Y}_{n}(s, t)=Y_{n}(t)-Y_{n}(s)=I\left\{s<y_{n} \leq t\right\}-(F(t)-F(s))
$$

and

$$
\bar{Y}_{n}^{\prime}(s, t)=Y_{n}^{\prime}(t)-Y_{n}^{\prime}(s)=I\left\{s<y_{n}^{\prime} \leq t\right\}-(F(t)-F(s))
$$

LEMMA 2.6. If (1.5), (1.6) and (1.7) hold, then there is a $\tau>0$ such that for any $-\infty<s \leq t<\infty$,

$$
\left|E \bar{Y}_{0}(s, t) \bar{Y}_{n}(s, t)\right| \leq \frac{C}{n^{2+\tau}}(F(t)-F(s))^{\tau}
$$

with some $C>0$.
Proof. Following the proof of Lemma 2.5 one can show that for any $0<\rho<1$ there is a constant $c_{1}>0$ such that

$$
\begin{equation*}
\left|E \bar{Y}_{0}(s, t) \bar{Y}_{n}(s, t)\right| \leq c_{1} n^{-\rho \theta(\mu-2) / 4} \tag{2.17}
\end{equation*}
$$

Observing that $E \bar{Y}_{n}^{2}(s, t)=(F(t)-F(s))(1-(F(t)-F(s))) \leq F(t)-F(s)$ for any $n \geq 0$, by the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\left|E \bar{Y}_{0}(s, t) \bar{Y}_{n}(s, t)\right| \leq F(t)-F(s) \tag{2.18}
\end{equation*}
$$

Choosing $0<\rho<1 / 2$ close enough to $1 / 2$ we can have that $\rho \theta(\mu-2) / 4>2$ and therefore Lemma 2.6 follows from (2.17) and (2.18).

LEMMA 2.7. If (1.5), (1.6) and (1.7) hold, then there is a $\tau>0$ such that for any $-\infty<s<t<\infty$,

$$
E\left(\sum_{1 \leq k \leq N} \bar{Y}_{k}(s, t)\right)^{2}=\sigma^{2} N+O\left((F(t)-F(s))^{\tau}\right) \quad \text { as } N \rightarrow \infty
$$

uniformly in s and t, where

$$
\begin{equation*}
\sigma^{2}=\sigma^{2}(s, t)=E \bar{Y}_{1}^{2}(s, t)+2 \sum_{2 \leq k<\infty} E \bar{Y}_{1}(s, t) \bar{Y}_{k}(s, t) \tag{2.19}
\end{equation*}
$$

Proof. For notational simplicity we write \bar{Y}_{k} instead of $\bar{Y}_{k}(s, t)$ and l stands for $F(t)-F(s)$. First we note that by Lemma 2.6 we have

$$
\begin{equation*}
\left|E \bar{Y}_{0} \bar{Y}_{k}\right| \leq \frac{c_{1}}{k^{2+\tau}} l^{\tau}, \quad 0 \leq k<\infty \tag{2.20}
\end{equation*}
$$

with some constants $\tau>0$ and $c_{1}>0$. Thus the series in (2.19) is absolute convergent and

$$
\begin{equation*}
\sigma^{2}(s, t) \leq c_{2}(F(t)-F(s))^{\tau} \tag{2.21}
\end{equation*}
$$

By stationarity and (2.20) we conclude

$$
\begin{aligned}
E\left(\sum_{1 \leq k \leq N} \bar{Y}_{k}\right)^{2} & =N E \bar{Y}_{1}^{2}+2 \sum_{1 \leq k \leq N-1}(N-k) E \bar{Y}_{1} \bar{Y}_{k+1} \\
& =N \sigma^{2}-2 N \sum_{N \leq k<\infty} E \bar{Y}_{1} \bar{Y}_{k+1}-2 \sum_{1 \leq k \leq N-1} k E \bar{Y}_{1} \bar{Y}_{k+1} \\
& =N \sigma^{2}+O\left(l^{\tau}\right) \text { as } N \rightarrow \infty,
\end{aligned}
$$

and Lemma 2.7 is proved.
The previous arguments also show that

$$
\begin{equation*}
2 \Gamma(s, t)=\sigma^{2}(0, s)+\sigma^{2}(0, t)-\sigma^{2}(s, t) \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}(s, t)=\Gamma(s, s)+\Gamma(t, t)-2 \Gamma(s, t) \tag{2.23}
\end{equation*}
$$

Lemma 2.8. If (1.5), (1.6) and (1.7) hold, then there exist constants $\tau>0$, $0<\rho<1 / 2$ such that for any $x>0$,

$$
\begin{align*}
P\left\{\left|\sum_{1 \leq k \leq N} \bar{Y}_{k}(s, t)\right|>x\right\} \leq & c_{1} \exp \left(-c_{2} x^{2} /\left(N|F(t)-F(s)|^{\tau}\right)\right) \tag{2.24}\\
& +c_{3} \exp \left(-c_{4} x / N^{\rho}\right)+c_{5} x^{-(2+\tau)}
\end{align*}
$$

where c_{1}, \ldots, c_{5} are positive constants.
Proof. To simplify the notation, we write again $\bar{Y}_{k}, \bar{Y}_{k}^{\prime}$ instead of $\bar{Y}_{k}(s, t)$ and $\bar{Y}_{k}^{\prime}(s, t)$. Assume that $s \leq t$ and write $l=F(t)-F(s)$,

$$
S_{N}=\sum_{1 \leq k \leq N} \bar{Y}_{k} \quad \text { and } \quad S_{N}^{\prime}=\sum_{1 \leq k \leq N} \bar{Y}_{k}^{\prime}
$$

Choose $0<\rho<1 / 2$ so that $\rho \theta(\mu-2) / 4>2$ and let τ be the constant in Lemma 2.7. By (2.14) we have

$$
\begin{aligned}
P\left\{\bar{Y}_{k} \neq \bar{Y}_{k}^{\prime}\right\} & \leq c_{6} k^{-\rho \theta(\mu-2) / 4} \\
& \leq c_{6} k^{-(2+\delta)}
\end{aligned}
$$

with some $0<\delta<1$. Since $\left|\bar{Y}_{k}\right| \leq 1$ and $\left|\bar{Y}_{k}^{\prime}\right| \leq 1$, we conclude that

$$
E\left|\bar{Y}_{k}-\bar{Y}_{k}^{\prime}\right|^{p} \leq 8 c_{6} k^{-(2+\delta)},
$$

where $p=2+\delta / 2$ and therefore by the Minkowski inequality we have

$$
\begin{aligned}
\left(E\left|S_{N}-S_{N}^{\prime}\right|^{p}\right)^{1 / p} & \leq \sum_{1 \leq k \leq N}\left(E\left|\bar{Y}_{k}-\bar{Y}_{k}^{\prime}\right|^{p}\right)^{1 / p} \\
& \leq c_{7} \sum_{1 \leq k \leq N} k^{-\nu} \leq c_{8},
\end{aligned}
$$

where $\nu=(2+\delta) /(2+\delta / 2)>1$. Hence using the Markov inequality we get that

$$
\begin{equation*}
P\left\{\left|S_{N}-S_{N}^{\prime}\right|>x\right\} \leq c_{9} x^{-(2+\delta / 2)} . \tag{2.25}
\end{equation*}
$$

According to (2.25), the inequality in (2.24) will be proved if we show that

$$
\begin{equation*}
P\left\{\left|S_{N}^{\prime}\right|>x\right\} \leq c_{1} \exp \left(-c_{2} x^{2} /\left(N l^{\tau}\right)\right)+c_{3} \exp \left(-c_{4} x / N^{\rho}\right) . \tag{2.26}
\end{equation*}
$$

Let us split the interval $[1, N]$ into blocks $I_{1}, J_{1}, I_{2}, J_{2}, \ldots, I_{M}, J_{M}$ with equal length [N^{ρ}]. (The blocks I_{M}, J_{M} can be incomplete.) Clearly, M is proportional to $N^{1-\rho}$. Set

$$
T_{r}^{(1)}=\sum_{k \in I_{r}} \bar{Y}_{k}^{\prime} \quad \text { and } \quad T_{r}^{(2)}=\sum_{k \in J_{r}} \bar{Y}_{k}^{\prime} .
$$

We note that

$$
S_{N}^{\prime}=S_{N}^{(1)}+S_{N}^{(2)}
$$

with

$$
S_{N}^{(1)}=\sum_{1 \leq r \leq M} T_{r}^{(1)} \quad \text { and } \quad S_{N}^{(2)}=\sum_{1 \leq r \leq M} T_{r}^{(2)} .
$$

By the construction of y_{k}^{\prime} (cf. Lemma 2.4), the random variables $T_{r}^{(1)}, r=$ $1,2, \ldots, M$ are independent and

$$
E\left(T_{r}^{(1)}\right)^{2} \leq c_{7} N^{\rho} l^{\tau}
$$

[cf. Lemma 2.7 and (2.21)], and therefore

$$
E\left(S_{N}^{(1)}\right)^{2} \leq c_{8} N l^{\tau} .
$$

Also,

$$
\max _{1 \leq r \leq M}\left|T_{r}^{(1)}\right| \leq N^{\rho} .
$$

Hence by Kolmogorov's exponential bounds [cf. Petrov (1975), page 293] we obtain

$$
P\left\{\left|S_{N}^{(1)}\right|>x\right\} \leq c_{9} \exp \left(-c_{10} x^{2} /\left(N l^{\tau}\right)\right)+c_{11} \exp \left(-c_{12} x / N^{\rho}\right) .
$$

A similar inequality holds for $S_{N}^{(2)}$ and therefore (2.26) is proved.
Next we need an estimate in the central limit theorem for sums of independent, identically distributed random vectors. Let |||| denote the Euclidean norm of vectors and matrices.

Lemma 2.9. Let $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{n}$ be independent, identically distributed random vectors in R^{d} satisfying $E \boldsymbol{\xi}_{1}=\mathbf{0}, \operatorname{cov}\left(\boldsymbol{\xi}_{1}\right)=\mathbf{\Sigma}$ and $m_{4}=E\left\|\boldsymbol{\xi}_{1}\right\|^{4}<\infty$. Let Q_{n} denote the distribution function of $\left(\boldsymbol{\xi}_{1}+\cdots+\boldsymbol{\xi}_{n}\right) / n^{1 / 2}$ and let $\Phi_{\mathbf{\Sigma}}$ be the multivariate normal distribution function with mean $\mathbf{0}$ and covariance matrix $\mathbf{\Sigma}$. Let $h(\mathbf{x})$ be a (real or complex valued) Borel function satisfying $|h(\mathbf{x})| \leq L$ and
$|h(\mathbf{x})-h(\mathbf{y})| \leq L| | \mathbf{x}-\mathbf{y}| |$ for any $\mathbf{x}, \mathbf{y} \in R^{d}$ with some $L>0$. Then there are absolute constants c_{1}, c_{2} and c_{3} such that

$$
\begin{aligned}
& \left|\int_{R^{d}} h d Q_{n}-\int_{R^{d}} h d \Phi_{\mathbf{\Sigma}}\right| \\
& \quad \leq L^{2} c_{1}(\|\mathbf{\Sigma}\|+1)\left\{e^{c_{2} d}\|\mathbf{\Sigma}\|^{2} m_{4}^{4}(\log n)^{d / 2} n^{-1 / 2}+e^{-c_{3} n} d^{d / 2}\right\} .
\end{aligned}
$$

Proof. We can assume without loss of generality that

$$
\xi_{i}=\boldsymbol{\Sigma}^{1 / 2} \xi_{i}^{*}
$$

where $\xi_{1}^{*}, \ldots, \xi_{n}^{*}$ are independent, identically distributed random vectors with $E \xi_{i}^{*}=\mathbf{0}$ and $\operatorname{cov}\left(\xi_{i}^{*}\right)=I_{d}$, the identity matrix of R^{d}. We also note that $E\left\|\mid \xi_{1}^{\prime}\right\|^{4} \leq$ $\|\mathbf{\Sigma}\|^{2} m_{4}$. Let Q_{n}^{*} denote the distribution function of $\left(\xi_{1}^{*}+\cdots+\xi_{n}^{*}\right) / n^{1 / 2}$. We assume that $\left|h^{*}(\mathbf{x})\right| \leq L^{*}$ and $\left|h^{*}(\mathbf{x})-h^{*}(\mathbf{y})\right| \leq L^{*}| | \mathbf{x}-\mathbf{y} \|$. By Theorem 3.2 in Bhattacharya and Rao [(1976), page 113] we have

$$
\begin{align*}
& \left|\int_{R^{d}} h^{*} d Q_{n}^{*}-\int_{R^{d}} h^{*} d \Phi_{I_{d}}\right| \tag{2.27}\\
& \quad \leq\left(L^{*}\right)^{2} c_{1}\left\{e^{c_{2} d}\left(E\left\|\xi_{1}^{\prime}\right\|^{4}\right)^{4}(\log n)^{d / 2} n^{-1 / 2}+e^{-c_{3} n} d^{d / 2}\right\}
\end{align*}
$$

We use (2.27) with $h^{*}(\mathbf{x})=h\left(\mathbf{\Sigma}^{1 / 2} \mathbf{x}\right)$. Since

$$
\left|h\left(\mathbf{\Sigma}^{1 / 2} \mathbf{x}\right)-h\left(\mathbf{\Sigma}^{1 / 2} \mathbf{y}\right)\right| \leq L\left\|\mathbf{\Sigma}^{1 / 2}(\mathbf{x}-\mathbf{y})\right\| \leq L\|\mathbf{\Sigma}\|^{1 / 2}\|\mathbf{x}-\mathbf{y}\|,
$$

Lemma 2.9 is proved.
The inner product of vectors will be denoted by $\langle\cdot, \cdot\rangle$.
Lemma 2.10. We assume that the conditions of Lemma 2.8 are satisfied. Let $-\infty<s_{1}<s_{2} \cdots<s_{d}<\infty$ and

$$
\boldsymbol{\xi}_{k}=\left(Y_{k}\left(s_{1}\right), Y_{k}\left(s_{2}\right), \ldots, Y_{k}\left(s_{d}\right)\right), \quad 1 \leq k<\infty .
$$

Then for any $\mathbf{u} \in R^{d}$ we have

$$
\begin{align*}
& \left|E \exp \left(i\left\langle\mathbf{u}, N^{-1 / 2} \sum_{1 \leq k \leq N} \xi_{k}\right\rangle\right)-\exp \left(-\frac{1}{2}\left\langle\mathbf{u}, \Gamma_{d} \mathbf{u}\right\rangle\right)\right| \\
& \leq C_{1}\|\mathbf{u}\|^{2}\left\{d N^{-\tilde{\rho}}+\exp \left(C_{2} d\right) N^{-1 / 4}(\log N)^{d / 2}\right. \tag{2.28}\\
& \left.\quad+d^{d / 2} \exp \left(-C_{3} N^{1 / 2}\right)\right\},
\end{align*}
$$

where Γ_{d} is the matrix $\left(\Gamma\left(s_{i}, s_{j}\right), 1 \leq i, j \leq d\right), C_{1}, C_{2}$ and C_{3} are absolute constants and $\tilde{\rho}>0$ is a constant depending on ρ in Lemma 2.8.

Proof. In our argument we will repeatedly use the observation that if $\boldsymbol{\xi}, \xi^{\prime}$ are random variables in R^{d}, then

$$
\begin{align*}
E\left\|\boldsymbol{\xi}-\boldsymbol{\xi}^{\prime}\right\| & \leq \lambda \quad \text { implies }\left|E \exp (i\langle\mathbf{u}, \boldsymbol{\xi}\rangle)-E \exp \left(i\left\langle\mathbf{u}, \boldsymbol{\xi}^{\prime}\right\rangle\right)\right| \tag{2.29}\\
& \leq \lambda\|\mathbf{u}\| \quad \text { for any } \mathbf{u} \in R^{d}
\end{align*}
$$

This is clear from the inequality $\left|e^{i x}-e^{i y}\right| \leq|x-y|$, valid for any real x and y.
Similarly to $\boldsymbol{\xi}_{k}$, we introduce

$$
\dot{\xi}_{k}^{\prime}=\left(Y_{k}^{\prime}\left(s_{1}\right), Y_{k}^{\prime}\left(s_{2}\right), \ldots, Y_{k}^{\prime}\left(s_{d}\right)\right), \quad 1 \leq k<\infty
$$

Let ρ be the constant in Lemma 2.8. By (2.14) we have

$$
E\left|Y_{k}(s)-Y_{k}^{\prime}(s)\right|^{2} \leq c_{1} k^{-\rho \theta(\mu-2) / 4} \quad \text { for any }-\infty<s<\infty
$$

and therefore

$$
\begin{equation*}
E\left\|\boldsymbol{\xi}_{k}-\boldsymbol{\xi}_{k}^{\prime}\right\| \leq\left(c_{1} d\right)^{1 / 2} k^{-\rho \theta(\mu-2) / 8}, \quad 1 \leq k<\infty . \tag{2.30}
\end{equation*}
$$

Since $\rho \theta(\mu-2) / 8>1$, we get from (2.30) that

$$
\begin{equation*}
E\left\|\sum_{1 \leq k \leq N}\left(\xi_{k}-\xi_{k}^{\prime}\right)\right\| \leq c_{2} d^{1 / 2}, \quad 1 \leq N<\infty \tag{2.31}
\end{equation*}
$$

with some absolute constant c_{2}. Putting together (2.29) and (2.31) we conclude

$$
\begin{align*}
& \left|E \exp \left(i\left\langle\mathbf{u}, N^{-1 / 2} \sum_{1 \leq k \leq N} \boldsymbol{\xi}_{k}\right\rangle\right)-E \exp \left(i\left\langle\mathbf{u}, N^{-1 / 2} \sum_{1 \leq k \leq N} \boldsymbol{\xi}_{k}^{\prime}\right\rangle\right)\right| \tag{2.32}\\
& \quad \leq c_{2}\|\mathbf{u}\| d^{1 / 2} N^{-1 / 2}
\end{align*}
$$

for any $\mathbf{u} \in R^{d}$.
Let us split the interval $[1, N]$ into blocks $I_{1}, J_{1}, I_{2}, J_{2}, \ldots, I_{M}, J_{M}$ so that the length of I_{r} is $\left[N^{\rho^{*}}\right.$] and the length of J_{r} is $\left[N^{\rho}\right], 1 \leq r \leq M$ (the last block may be incomplete) with some ρ^{*} satisfying $\rho<\rho^{*}<1 / 2$. Then M is proportional to $N^{1-\rho^{*}}$. Introduce

$$
T_{r}=\sum_{i \in I_{r}} \xi_{i}, \quad T_{r}^{\prime}=\sum_{i \in I_{r}} \xi_{i}^{\prime} \quad \text { and } \quad T_{r}^{\prime \prime}=\sum_{i \in J_{r}} \xi_{i}^{\prime} .
$$

Then

$$
\begin{equation*}
\sum_{1 \leq i \leq N} \xi_{i}^{\prime}=\sum_{1 \leq r \leq M} T_{r}^{\prime}+\sum_{1 \leq r \leq M} T_{r}^{\prime \prime} . \tag{2.33}
\end{equation*}
$$

The separation between the terms of the sums $T_{1}^{\prime}, \ldots, T_{M}^{\prime}$ is at least $\left[N^{\rho}\right]$, and thus the random vectors $T_{1}^{\prime}, \ldots, T_{M}^{\prime}$ are independent and similarly $T_{1}^{\prime \prime}, \ldots, T_{M}^{\prime \prime}$ are independent. Let \mathscr{L}_{r} denote the joint law of T_{r} and T_{r}^{\prime}. By (2.30) we have that

$$
\begin{equation*}
E\left\|T_{r}-T_{r}^{\prime}\right\| \leq c_{1} d^{1 / 2} \sum_{k \in I_{r}} k^{-\rho \theta(\mu-2) / 8} \tag{2.34}
\end{equation*}
$$

Since $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{M}^{\prime}$ are independent, we can construct independent random vectors $\widetilde{T}_{1}, \widetilde{T}_{2}, \ldots, \widetilde{T}_{M}$ such that the joint law of $\left(\widetilde{T}_{r}, T_{r}^{\prime}\right)$ is \mathscr{L}_{r} for each $1 \leq$ $r \leq M$. By (2.33) we have

$$
\begin{equation*}
\sum_{1 \leq i \leq N} \xi_{i}^{\prime}=S_{M}^{(1)}+S_{M}^{(2)}+S_{M}^{(3)} \tag{2.35}
\end{equation*}
$$

where

$$
S_{M}^{(1)}=\sum_{1 \leq r \leq M} \widetilde{T}_{r}, S_{M}^{(2)}=\sum_{1 \leq r \leq M} T_{r}^{\prime \prime} \quad \text { and } \quad S_{M}^{(3)}=\sum_{1 \leq r \leq M}\left(T_{r}^{\prime}-\widetilde{T}_{r}\right) .
$$

The vectors (T_{r}, T_{r}^{\prime}) and ($\widetilde{T}_{r}, T_{r}^{\prime}$) have the same distribution, so (2.34) yields

$$
E\left\|T_{r}^{\prime}-\widetilde{T}_{r}\right\| \leq c_{1} d^{1 / 2} \sum_{k \in I_{r}} k^{-\rho \theta(\mu-2) / 8}
$$

and therefore

$$
\begin{equation*}
E\left\|S_{M}^{(3)}\right\| \leq c_{2} d^{1 / 2} \tag{2.36}
\end{equation*}
$$

where c_{2} depends only on ρ, θ and μ. On the other hand, by (2.30) and Lemma 2.7 we have

$$
\begin{aligned}
E\left\|T_{r}^{\prime \prime}\right\| & \leq E\left\|\sum_{i \in J_{r}} \xi_{i}\right\|+E\left\|\sum_{i \in J_{r}}\left(\xi_{i}-\xi_{i}^{\prime}\right)\right\| \\
& \leq c_{3} d N^{\rho / 2}+c_{4} d^{1 / 2} \\
& \leq c_{5} d N^{\rho / 2}
\end{aligned}
$$

and since $T_{1}^{\prime \prime}, T_{2}^{\prime \prime}, \ldots, T_{M}^{\prime \prime}$ are independent we get that

$$
E\left\|S_{M}^{(2)}\right\|^{2} \leq c_{5}^{2} d^{2} N^{\rho} M \leq c_{6} d^{2} N^{\rho+1-\rho^{*}},
$$

that is,

$$
\begin{equation*}
E\left\|S_{M}^{(2)}\right\| \leq c_{6}^{1 / 2} d N^{\left(\rho+1-\rho^{*}\right) / 2} \tag{2.37}
\end{equation*}
$$

Putting together (2.35)-(2.37) and (2.29) we conclude that

$$
\begin{align*}
& \left|E \exp \left(i\left\langle\mathbf{u}, N^{-1 / 2} \sum_{1 \leq k \leq N} \xi_{k}^{\prime}\right\rangle\right)-E \exp \left(i\left\langle\mathbf{u}, N^{-1 / 2} \sum_{1 \leq r \leq M} \widetilde{T}_{r}\right\rangle\right)\right| \tag{2.38}\\
& \quad \leq c_{7}\|\mathbf{u}\| d N^{\left(\rho+1-\rho^{*}\right) / 2} N^{-1 / 2} .
\end{align*}
$$

Next we write

$$
\frac{1}{N^{1 / 2}} \sum_{1 \leq r \leq M} \widetilde{T}_{r}=\frac{1}{M^{1 / 2}} \sum_{1 \leq r \leq M} \widetilde{T}_{r} /(N / M)^{1 / 2} .
$$

We note that $\widetilde{T}_{r} /(N / M)^{1 / 2}$ are independent identically distributed random vectors. Since $\Gamma(s, t)$ is a bounded function, there is a constant c_{8} such that

$$
\left\|\operatorname{cov}\left(\widetilde{T}_{r} /(N / M)^{1 / 2}\right)\right\| \leq c_{8} d,
$$

and therefore Lemma 2.9 yields

$$
\begin{align*}
& \left|E \exp \left(i\left\langle\mathbf{u}, \frac{1}{N^{1 / 2}} \sum_{1 \leq r \leq M} \widetilde{T}_{r}\right\rangle\right)-\exp \left(-\frac{1}{2}\left\langle\mathbf{u}, \Gamma_{d} \mathbf{u}\right\rangle\right)\right| \\
& \quad \leq c_{9} d\left\{d^{2} e^{c_{10} d}(\log M)^{d / 2} d^{4} M^{-1 / 2}+e^{-c_{11} M} d^{d / 2}\right\}\|\mathbf{u}\|^{2} \tag{2.39}\\
& \quad \leq c_{12}\left\{N^{-\left(1-\rho^{*}\right) / 2}(\log N)^{d / 2} \exp \left(c_{13} d\right)+d^{d / 2} \exp \left(-c_{14} N^{1-\rho^{*}}\right)\right\}\|\mathbf{u}\|^{2}
\end{align*}
$$

Combining (2.32), (2.38) and (2.39) we get Lemma 2.10.
The following lemma will be used to estimate the increments of the approximating Gaussian process.

LEMMA 2.11. We assume that the conditions of Lemma 2.8 are satisfied. Let $\{K(s, t),-\infty<s<\infty, 0 \leq t<\infty\}$ be a Gaussian process with mean zero and covariance $E K(s, t) K\left(s^{\prime}, t^{\prime}\right)=\min \left(t, t^{\prime}\right) \Gamma\left(s, s^{\prime}\right)$. For any $-\infty<a<a^{\prime}<\infty$ and $0 \leq b<b^{\prime}<\infty$ let $Z\left(\left[a, a^{\prime}\right] \times\left[b, b^{\prime}\right]\right)$ denote the maximal fluctuation of K over the rectangle $\left[a, a^{\prime}\right] \times\left[b, b^{\prime}\right]$. Then for any $x \geq C_{1}$ we have

$$
\begin{align*}
P\left\{Z\left(\left[a, a^{\prime}\right] \times\left[b, b^{\prime}\right]\right)\right. & \left.>C_{2} x\left(\left(b^{\prime}-b\right)^{1 / 2}+\left(b^{\prime}\right)^{1 / 2}\left(F\left(a^{\prime}\right)-F(a)\right)^{\tau / 2}\right)\right\} \\
& \leq C_{3} e^{-x^{2} / 2} \tag{2.40}
\end{align*}
$$

where C_{1}, C_{2}, C_{3} are absolute constants and $\tau>0$ is from Lemma 2.6.
Proof. Using (2.21)-(2.23), one can easily verify that

$$
\begin{equation*}
E\left(K\left(s, t_{2}\right)-K\left(s, t_{1}\right)\right)^{2}=\Gamma(s, s)\left(t_{2}-t_{1}\right) \leq c_{1}\left(t_{2}-t_{1}\right) \tag{2.41}
\end{equation*}
$$

and

$$
\begin{align*}
E\left(K\left(s_{2}, t\right)-K\left(s_{1}, t\right)\right)^{2} & =t\left(\Gamma\left(s_{1}, s_{1}\right)+\Gamma\left(s_{2}, s_{2}\right)-2 \Gamma\left(s_{1}, s_{2}\right)\right) \tag{2.42}\\
& =t \sigma^{2}\left(s_{1}, s_{2}\right) \leq c_{2} t\left(F\left(s_{2}\right)-F\left(s_{1}\right)\right)^{\tau}
\end{align*}
$$

Let

$$
\widehat{Z}(u, v)=K\left(a+u\left(a^{\prime}-a\right), b+v\left(b^{\prime}-b\right)\right)-K(a, b), \quad 0 \leq u, v \leq 1
$$

The estimates in (2.41) and (2.42) imply that the conditions of Fernique's inequality are satisfied [cf. Lai (1974)] and therefore an upper bound for the tail of the distribution of $\sup _{0 \leq u, v \leq 1}|\widehat{Z}(u, v)|$ can be easily obtained. The proof of (2.40) is complete now.

LEMMA 2.12. For any $T \geq 1, \lambda \geq T^{1 / 2}$ and any $-\infty<a<b<\infty$ we have

$$
P\left\{\sup _{a \leq s<s^{\prime} \leq b, 0 \leq t \leq T}\left|\sum_{k \leq t} \bar{Y}_{k}\left(s, s^{\prime}\right)\right| \geq \lambda\right\} \leq C_{1} \exp \left(-\frac{C_{2} \lambda^{2}}{T(b-a)^{\delta}}\right)+\frac{C_{3}}{T^{\delta}}
$$

where C_{1}, C_{2}, C_{3} and δ are positive constants.

Proof. Since $\bar{Y}_{k}\left(s, s^{\prime}\right)=\bar{Y}_{k}\left(0, s^{\prime}\right)-\bar{Y}_{k}(0, s)$, it suffices to prove that

$$
\begin{equation*}
P\left\{\sup _{0 \leq s \leq b, 0 \leq t \leq T}\left|\sum_{k \leq t} \bar{Y}_{k}(0, s)\right| \geq \lambda\right\} \leq \widetilde{C}_{1} \exp \left(-\frac{\widetilde{C}_{2} \lambda^{2}}{T b^{\delta}}\right)+\frac{\widetilde{C}_{3}}{T^{\delta}} \tag{2.43}
\end{equation*}
$$

Let, for any integers $u \geq 1$ and $v \geq 1$,

$$
M_{u, v}=\max _{0 \leq i<2^{u}, 0 \leq j<2^{v}}\left|\sum_{T j 2^{-v} \leq k \leq T(j+1) 2^{-v}} \bar{Y}_{k}\left(b i 2^{-u}, b(i+1) 2^{-u}\right)\right| .
$$

It is easy to see that for any $0 \leq s \leq b, 0 \leq t \leq T$ and any integer $L \geq 1$ we have

$$
\begin{equation*}
\left|\sum_{k \leq t} \bar{Y}_{k}(0, s)\right| \leq \sum_{1 \leq u, v \leq L} M_{u, v}+\frac{2 T}{2^{L}} \tag{2.44}
\end{equation*}
$$

Let $\varepsilon>0$ be a small positive number to be chosen later. If $\lambda \geq T^{1 / 2}, 1 \leq u$, $v \leq L$, then we have, using Lemma 2.8 and (2.13),

$$
\begin{aligned}
&\left.P\left\{M_{u, v} \geq \lambda 2^{-\varepsilon(u+v)}\right)\right\} \\
& \leq 2^{u+v}\left[c_{1} \exp \left(-c_{2} \lambda^{2} 2^{-2 \varepsilon(u+v)} /\left(T 2^{-v}\left(b 2^{-u}\right)^{\tau \theta}\right)\right)\right. \\
&\left.+c_{3} \exp \left(-c_{4} \lambda 2^{-\varepsilon(u+v)} /\left(T 2^{-v}\right)^{\rho}\right)+c_{5}\left(\lambda 2^{-\varepsilon(u+v)}\right)^{-(2+\tau)}\right] \\
& \leq 2^{u+v}\left[c_{1} \exp \left(-c_{2} \lambda^{2} 2^{\tau \theta(u+v) / 2} /\left(T b^{\tau \theta}\right)\right)\right. \\
&+c_{3} \exp \left(-c_{4} T^{1 / 2-\rho} 2^{-\varepsilon u}+c_{5} 2^{8 L} T^{-(1+\tau / 2)}\right] \\
& \leq 2^{u+v}\left[c_{1} \exp \left(-c_{2} \lambda^{2} 2^{\tau \theta(u+v) / 2} /\left(T b^{\tau \theta}\right)\right)\right. \\
&\left.+c_{6} 2^{c_{7} L \varepsilon} T^{-2}+c_{5} 2^{8 L \varepsilon} T^{-(1+\tau / 2)}\right] \\
& \leq 2^{u+v}\left[c_{1} \exp \left(-c_{2} \lambda^{2} 2^{\tau \theta(u+v) / 2} /\left(T b^{\tau \theta}\right)\right)+c_{8} 2^{c_{9} L \varepsilon} T^{-(1+\tau / 2}\right],
\end{aligned}
$$

provided that $\varepsilon<\min (1 / 4, \tau \theta / 4)$. We used here the fact that $\exp (-x) \leq c_{r} x^{-r}$ for any $r>0$ and $x>0$, where c_{r} is a positive constant depending on r. Thus setting

$$
A=\left\{M_{u, v} \geq \lambda 2^{-\varepsilon(u+v)} \text { for some } 1 \leq u, v \leq L\right\}
$$

we have

$$
\begin{aligned}
P\{A\} \leq & \sum_{1 \leq u, v \leq L} 2^{u+v} c_{1} \exp \left(-c_{2} \lambda^{2} 2^{\tau \theta(u+v) / 2} /\left(T b^{\tau \theta}\right)\right)+c_{8} 2^{c_{9} L \varepsilon+2 L+2} T^{-(1+\tau / 2)} \\
\leq & \sum_{1 \leq u, v \leq L} 2^{u+v} c_{1} \exp \left(-c_{2} \lambda^{2}\left(2^{\tau \theta u / 2}+2^{\tau \theta v / 2}\right) /\left(T b^{\tau \theta}\right)\right) \\
& \quad+c_{8} 2^{c_{9} L \varepsilon+2 L+2} T^{-(1+\tau / 2)} \\
= & \left(\sum_{1 \leq u \leq L} 2^{u} c_{1}^{1 / 2} \exp \left(-c_{2} \lambda^{2} 2^{\tau \theta u / 2} /\left(T b^{\tau \theta}\right)\right)\right)^{2}+c_{8} 2^{c_{9} L \varepsilon+2 L+2} T^{-(1+\tau / 2)} \\
\leq & c_{10} \exp \left(-c_{11} \lambda^{2} /\left(T b^{\tau \theta}\right)\right)+c_{8} 2^{c_{9} L \varepsilon+2 L+2} T^{-(1+\tau / 2)},
\end{aligned}
$$

since the terms of the last sum decrease at least exponentially for $u \geq u_{0}$. On the set A^{c} we clearly have

$$
\sum_{1 \leq u, v \leq L} M_{u, v} \leq \lambda \sum_{1 \leq u, v \leq L} 2^{-\varepsilon(u+v)} \leq c_{12} \lambda
$$

and thus choosing $L \geq 1$ so that $T^{1 / 2} \leq 2^{L} \leq 2 T^{1 / 2}$, it follows that the righthand side of (2.44) is not greater than $c_{12} \lambda+2 T^{1 / 2} \leq c_{13} \lambda$ with the exception of a set of probability not greater than $c_{10} \exp \left(-c_{11} \lambda^{2} /\left(T b^{\tau \theta}\right)\right)+c_{14} T^{-\tau / 4}$ provided that $\varepsilon>0$ is so small that $c_{9} \varepsilon \leq \tau / 2$. Thus (2.43) is proved.

Now we are ready to construct the approximating process. We approximate the increments of $R(s, t)$ with normal random variables and from these random variables we construct a suitable $K(s, t)$. Let

$$
t_{k}=\left[\exp \left(k^{1-\varepsilon}\right)\right], \quad p_{k}=2\left[t_{k}^{\rho}\right], \quad q_{k}=[\log k / \log 4], \quad d_{k}=2^{q_{k}},
$$

where $\varepsilon>0$ is a small number to be specified later and ρ is taken from Lemma 2.6. Set

$$
M_{k}=t_{k+1}-t_{k}-p_{k}
$$

and

$$
\begin{aligned}
s_{i} & =s_{k, i}=(i-1) / d_{k}, \quad 1 \leq i \leq d_{k}, \\
\eta_{k, i} & =R\left(s_{i}, t_{k+1}\right)-R\left(s_{i}, t_{k}+p_{k}\right), \quad 1 \leq i \leq d_{k}
\end{aligned}
$$

and

$$
\boldsymbol{\eta}_{k}=\left(\eta_{k, 1}, \ldots, \eta_{k, d_{k}}\right) .
$$

Clearly $\eta_{k, i}$ can be written as

$$
\eta_{k, i}=\sum_{j=t_{k}+p_{k+1}}^{t_{k+1}} Y_{j}\left(s_{i}\right),
$$

so Lemma 2.10 can be used to estimate the difference between the distribution functions of $M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}$ and a normal random variable $N\left(\mathbf{0}, \Gamma_{k}\right)$, where $\Gamma_{k}=\left(\Gamma\left(s_{i}, s_{j}\right), 1 \leq i, j \leq d_{k}\right)$. The Prohorov-Lévy distance between the distributions of $M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}$ and $N\left(\mathbf{0}, \Gamma_{k}\right)$ will be denoted by $\Psi_{\mathrm{PL}}\left(M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}, N\left(\mathbf{0}, \Gamma_{k}\right)\right)$.

Lemma 2.13. We assume that the conditions of Lemma 2.8 are satisfied. Then

$$
\Psi_{\mathrm{PL}}\left(M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}, N\left(\mathbf{0}, \Gamma_{k}\right)\right) \leq C_{1} \exp \left(-C_{2} k^{\varepsilon}\right)
$$

with any $0<\varepsilon<1 / 4$, where C_{1} and C_{2} are absolute constants.

Proof. In the argument that follows, c_{1}, c_{2}, \ldots will be absolute constants. By Lemma 2.10 we have

$$
\begin{align*}
& \left.\mid E \exp \left(i \mid \mathbf{u}, M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}\right)\right) \left.-\exp \left(-\frac{1}{2}\left\langle\mathbf{u}, \Gamma_{k} \mathbf{u}\right\rangle\right) \right\rvert\, \\
& \leq c_{1}\|\mathbf{u}\|^{2}\left\{d_{k} M_{k}^{-\left(\rho^{*}-\rho\right) / 2}+\exp \left(c_{2} d_{k}\right) M_{k}^{-\left(1-\rho^{*}\right) / 2}\left(\log M_{k}\right)^{d_{k} / 2}\right. \\
& \left.\leq \| d_{k}^{d_{k} / 2} \exp \left(-c_{3} M_{k}^{1-\rho^{*}}\right)\right\} \\
& \leq \mathbf{u} \|^{2}\left[c_{4} k^{1 / 2} \exp \left(-c_{5} k^{1-\varepsilon}\right) \quad\right. \tag{2.45}\\
& \quad+c_{6} \exp \left(c_{2}\left(k^{1 / 2}-c_{7} k^{1-\varepsilon}+c_{8} k^{1 / 2}(1-\varepsilon) \log k\right)\right) \\
& \left.\quad+c_{9} \exp \left(c_{10} k^{1 / 2} \log k-c_{11} k^{1-\varepsilon}\right)\right] \\
& \leq c_{12}\|\mathbf{u}\|^{2} \exp \left(-c_{13} k^{1-\varepsilon}\right),
\end{align*}
$$

assuming that $\varepsilon<1 / 2$. Using an analogue of the Berry-Esseen inequality [cf. Berkes and Philipp (1979), Lemma 2.2] we have that

$$
\begin{align*}
\Psi_{\mathrm{PL}}(& \left.M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}, N\left(\mathbf{0}, \Gamma_{k}\right)\right) \\
\quad \leq & \frac{16 d_{k}}{T} \log T \tag{2.46}\\
& +T^{d_{k}} \int_{\|\mathbf{u}\| \leq T}\left|E \exp \left(i\left\langle\mathbf{u}, M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}\right\rangle\right)-\exp \left(-\frac{1}{2}\left\langle\mathbf{u}, \Gamma_{k} \mathbf{u}\right\rangle\right)\right| d \mathbf{u} \\
& +P\left\{\left\|N\left(\mathbf{0}, \Gamma_{k}\right)\right\|>T / 2\right\}
\end{align*}
$$

for any $T>0$. By (2.45) we have

$$
\begin{align*}
& \int_{\|\mathbf{u}\| \leq T}\left|\exp \left(i\left\langle\mathbf{u}, M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}\right\rangle\right)-\exp \left(-\frac{1}{2}\left\langle\mathbf{u}, \Gamma_{k} \mathbf{u}\right\rangle\right)\right| d \mathbf{u} \tag{2.47}\\
& \quad \leq c_{12} T^{2}(2 T)^{d_{k}} \exp \left(-c_{13} k^{1-\varepsilon}\right) .
\end{align*}
$$

If $\left\|N\left(\mathbf{0}, \Gamma_{k}\right)\right\|>T$, then the absolute value of at least one of the coordinates of $N\left(\mathbf{0}, \Gamma_{k}\right)$ is larger than $T / d_{k}^{1 / 2}$. Since the function $\Gamma(s, t)$ is bounded, we get that

$$
\begin{align*}
P\left\{\left\|N\left(\mathbf{0}, \Gamma_{k}\right)\right\|>T\right\} & \leq c_{15} d_{k} \exp \left(-c_{17} T^{2} / d_{k}\right) \tag{2.48}\\
& \leq c_{15} k^{1 / 2} \exp \left(-c_{17} T^{2} k^{-1 / 2}\right)
\end{align*}
$$

Choosing $T=\exp \left(k^{\varepsilon}\right)$ with any $0<\varepsilon<1 / 4$ in (2.46)-(2.48), the proof of Lemma 2.13 is complete.

Now we can return to the construction. Similarly to $\eta_{k, i}$ we define

$$
\eta_{k, i}^{\prime}=\sum_{j=t_{k}+p_{k}+1}^{t_{k+1}} Y_{j}^{\prime}\left(s_{i}\right), \quad 1 \leq i \leq d_{k},
$$

and let $\boldsymbol{\eta}_{k}^{\prime}=\left(\eta_{k, 1}^{\prime}, \ldots, \eta_{k, d_{k}}^{\prime}\right)$. Using (2.31) and Lemma 2.12 we get that

$$
\begin{equation*}
\Psi_{\mathrm{PL}}\left(M_{k}^{-1 / 2} \boldsymbol{\eta}_{k}^{\prime}, N\left(\mathbf{0}, \Gamma_{k}\right)\right) \leq c_{1} \exp \left(-c_{2} k^{\varepsilon}\right) \tag{2.49}
\end{equation*}
$$

for any $0<\varepsilon<1 / 4$ with some constants c_{1} and c_{2}. The vector $\boldsymbol{\eta}_{k}^{\prime}$ depends only on the random variables $\left\{y_{j}^{\prime}, t_{k}+p_{k}+1 \leq j \leq t_{k+1}\right\}$. Thus there is a separation
$p_{k}=2\left[t_{k}^{\rho}\right]$ between the sets of random variables defining the vectors $\boldsymbol{\eta}_{k-1}^{\prime}$ and $\boldsymbol{\eta}_{k}^{\prime}$ and therefore $\boldsymbol{\eta}_{1}^{\prime}, \boldsymbol{\eta}_{2}^{\prime}, \ldots$ are independent. By (2.49) and the Strassen (1964)-Dudley (1976) representation theorem, in light of the independence of $\boldsymbol{\eta}_{1}^{\prime}, \boldsymbol{\eta}_{2}^{\prime}, \ldots$ we can define independent normal vectors ξ_{1}, ξ_{2}, \ldots such that $\boldsymbol{\xi}_{k} / M_{k}^{1 / 2}$ is $N\left(\mathbf{0}, \Gamma_{k}\right)$ and

$$
\begin{align*}
P\left\{\left\|\boldsymbol{\eta}_{k}^{\prime} / M_{k}^{1 / 2}-\boldsymbol{\xi}_{k} / M_{k}^{1 / 2}\right\|\right. & \left.\geq c_{1} \exp \left(-c_{2} k^{\varepsilon}\right)\right\} \tag{2.50}\\
& \leq c_{1} \exp \left(-c_{2} k^{\varepsilon}\right) .
\end{align*}
$$

Putting together (2.31) and (2.50) we get that

$$
\begin{equation*}
P\left\{\left\|\boldsymbol{\eta}_{k} / M_{k}^{1 / 2}-\xi_{k} / M_{k}^{1 / 2}\right\| \geq \delta_{k}\right\} \leq \delta_{k}, \quad k=1,2, \ldots, \tag{2.51}
\end{equation*}
$$

where $\delta_{k}=c_{3} \exp \left(-c_{4} k^{\varepsilon}\right)$ for any $0<\varepsilon<1 / 4$ with some c_{3} and c_{4}. The joint distribution of ξ_{1}, ξ_{2}, \ldots matches the joint distribution of the increments of a Gaussian process with zero mean and covariance $\min \left(t, t^{\prime}\right) \Gamma\left(s, s^{\prime}\right)$. Hence there is a Gaussian process $\{K(s, t),-\infty<s<\infty, 0 \leq t<\infty\}$ with mean 0 and the above covariance such that

$$
\xi_{k, i}=K\left(s_{i}, t_{k+1}\right)-K\left(s_{i}, t_{k}+p_{k}\right), \quad i \leq i \leq d_{k} .
$$

Now (2.51) and the Borel-Cantelli lemma imply that there is a random variable $k_{0}=k_{0}(\omega)$ such that

$$
\begin{equation*}
\left|\eta_{k, i}-\xi_{k, i}\right| \leq c_{5} t_{k}^{1 / 2} \exp \left(-c_{4} k^{\varepsilon}\right), \quad 1 \leq i \leq d_{k} \tag{2.52}
\end{equation*}
$$

for all $k \geq k_{0}$. Thus suitable vertical increments of R and K are close to each other. So Theorem 1.1 will be proved if we can control the oscillations of $R(s, t)$ and $K(s, t)$.

Modifying slightly the definitions of $\eta_{k, i}$ and $\xi_{k, i}$ we introduce

$$
\eta_{k, i}^{*}=R\left(s_{i}, t_{k+1}\right)-R\left(s_{i}, t_{k}\right), \quad 1 \leq i \leq d_{k}
$$

and

$$
\xi_{k, i}^{*}=K\left(s_{i}, t_{k+1}\right)-K\left(s_{i}, t_{k}\right), \quad 1 \leq i \leq d_{k} .
$$

Next we show that (2.52) implies

$$
\begin{equation*}
\left|\eta_{k, i}^{*}-\xi_{k, i}^{*}\right| \leq c_{6} t_{k}^{1 / 2} \exp \left(-c_{7} k^{\varepsilon}\right), \quad 1 \leq i \leq d_{k} \tag{2.53}
\end{equation*}
$$

for all $k \geq k_{0}$, where $0<\varepsilon<1 / 4$ and c_{6}, c_{7} are constants. Indeed, the difference between $\eta_{k, i}$ and $\eta_{k, i}^{*}$ is bounded by $p_{k} \leq 2 t_{k}^{\rho} \leq c_{8} t_{k}^{1 / 2} \exp \left(-c_{9} k^{\varepsilon}\right)$. On the other hand, $E\left(\xi_{k, i}-\xi_{k, i}^{*}\right)^{2} \leq c_{10} p_{k}$ and therefore

$$
P\left\{\max _{1 \leq i \leq d_{k}}\left|\xi_{k, i}-\xi_{k, i}^{*}\right|>k p_{k}^{1 / 2}\right\} \leq d_{k} \exp \left(-c_{11} k^{2}\right) \leq \frac{c_{12}}{k^{2}},
$$

so the Borel-Cantelli lemma gives

$$
\max _{1 \leq i \leq d_{k}}\left|\xi_{k, i}-\xi_{k, i}^{*}\right| \leq c_{13} k p_{k}^{1 / 2} \leq c_{14} t_{k}^{1 / 2} \exp \left(-c_{15} k^{\varepsilon}\right)
$$

if $k \geq k_{0}=k_{0}(\omega)$. The proof of (2.53) is now complete.

Let $\widehat{R}_{i, k}$ denote the maximal oscillation of $R(s, t)$ over the rectangle $\left[s_{i}, s_{i+1}\right] \times$ [t_{k}, t_{k+1}] and let $\widehat{K}_{i, k}$ denote the same increment with respect to K. We claim that there are constants ε^{\prime} and c_{16} and a random variable $k_{0}(\omega)$ such that

$$
\begin{equation*}
\max _{1 \leq i \leq d_{k}} \widehat{R}_{i, k} \leq c_{16} t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime}} \tag{2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{1 \leq i \leq d_{k}} \widehat{K}_{i, k} \leq c_{16} t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime}} \tag{2.55}
\end{equation*}
$$

if $k \geq k_{0}$. By Lemma 2.11 and (2.13) we have

$$
P\left\{\max _{1 \leq i \leq d_{k}} \widehat{K}_{i, k}>c_{17} \log k\left(\left(t_{k+1}-t_{k}\right)^{1 / 2}+t_{k+1}^{1 / 2} d_{k}^{-\theta \tau / 2}\right)\right\} \leq c_{18} \frac{1}{k^{2}}
$$

and thus the Borel-Cantelli lemma gives

$$
\begin{aligned}
\max _{1 \leq i \leq d_{k}} \widehat{K}_{i, k} & \leq 2 c_{17} \log k\left(\left(t_{k+1}-t_{k}\right)^{1 / 2}+t_{k+1}^{1 / 2} d_{k}^{-\theta \tau / 2}\right) \\
& \leq c_{18}\left(t_{k}^{1 / 2} k^{-\varepsilon / 2}+t_{k}^{1 / 2} k^{-\theta \tau / 8}\right) \log k \\
& \leq c_{19} t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime}}
\end{aligned}
$$

with some ε^{\prime} small enough, if $k \geq k_{0}$. Hence (2.55) is proved. Replacing Lemma 2.11 with Lemma 2.12, similar arguments give (2.54).

Now a geometrical picture shows that

$$
R\left(s_{i}, t_{k}\right)=\sum_{1 \leq l \leq k-1} \eta_{l, i_{l}}^{*}+\sum_{1 \leq l \leq k-1}\left(R\left(s_{i_{l}}, t_{l}\right)-R\left(s_{i_{l-1}}, t_{l}\right)\right)
$$

and

$$
K\left(s_{i}, t_{k}\right)=\sum_{1 \leq l \leq k-1} \xi_{l, i_{l}}^{*}+\sum_{1 \leq l \leq k-1}\left(K\left(s_{i_{l}}, t_{l}\right)-K\left(s_{i_{l-1}}, t_{l}\right)\right)
$$

where i_{1}, i_{2}, \ldots are suitably chosen integers satisfying $\left|i_{l}-i_{l-1}\right| \leq 1$. Thus using (2.53)-(2.55) we get for all $1 \leq i \leq d_{k}$ and $k \geq k_{0}$,

$$
\begin{align*}
\left|R\left(s_{i}, t_{k}\right)-K\left(s_{i}, t_{k}\right)\right| \leq & c_{6} \sum_{1 \leq l \leq k-1} t_{l}^{1 / 2} \exp \left(-c_{7} l^{\varepsilon}\right) \\
& +\sum_{1 \leq l \leq k-1} \max _{1 \leq i \leq d_{l}} \widehat{R}_{i, l}+\sum_{1 \leq l \leq k-1} \max _{1 \leq i \leq d_{l}} \widehat{K}_{i, l} \\
\leq & c_{20} k t_{k}^{1 / 2} \exp \left(-c_{7} k^{\varepsilon}\right)+c_{16} k t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime}} \tag{2.56}\\
& +c_{16} k t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime}} \\
\leq & c_{21} t_{k}^{1 / 2}\left(\log t_{k}\right)^{-\varepsilon^{\prime} / 2}
\end{align*}
$$

if $k \geq k_{0}$. The approximation in Theorem 1.1 follows immediately from (2.54)-(2.56).

REFERENCES

Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 29-54.
Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327.
Bougerol, P. and Picard, N. (1992a). Strict stationary of generalized autoregressive processes. Ann. Probab. 20 1714-1730.
Bougerol, P. and Picard, N. (1992b). Stationarity of GARCH processes and of some nonnegative time series. J. Econometrics 52 115-127.
Davis, R. A., Mikosch, T. and Basrak, B. (1999). Sample ACF of multivariate stochastic recurrence equations with applications to GARCH. Preprint.
DUDLEY, R. M. (1976). Probabilities and metrics: convergence of laws on metric spaces, with a view to statistical testing. Aarhus Univ. Lecture Notes Ser. 45.
ENGLE, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50 987-1008.
Gourièroux, C. (1997). ARCH Models and Financial Applications. Springer, Berlin.
Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883-909.
LAI, T. L. (1974). Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes. Z. Wahrsch. Verw. Gebiete 29 7-19.
Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
Nelson, D. B. (1990). Stationarity and persistence in $\operatorname{GARCH}(1,1)$ model. Econometric Theory 6 318-334.
Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.
Petrov, V. V. (1995). Limit Theorems of Probability Theory. Clarendon Press, Oxford.
Philipp, W. (1984). Invariance principles for sums of mixing random elements and the multivariate empirical process. In Limit Theorems in Probability and Statistics (I. Berkes, E. Csáki and P. Révész, eds.) 843-873. North-Holland, Amsterdam.
Philipe, W. and Pinzur, L. (1980). Almost sure approximation theorems for the multivariate empirical process. Z. Wahrsch. Verw. Gebiete 54 1-13.
Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211-226.

A. Rényi Institute of Mathematics	Department of Mathematics
Hungarian Academy of Sciences	University of Utah
P.O. Box 127	155 South 1440 East
H-1364 Budapest	Salt LaKe City, UTAH 84112-0090
Hungary	E-MAIL: horvath@math.utah.edu
E-MAIL: berkes@renyi.hu	

[^0]: Received May 2000; revised November 2000.
 ${ }^{1}$ Supported by the Hungarian National Foundation for Scientific Research, Grant T29621. AMS 2000 subject classifications. Primary 60F17; secondary 60G50.
 Key words and phrases. $\operatorname{GARCH}(p, q)$, empirical process, strong approximation, rates of convergence, estimates for increments.

