
The Annals of Applied Probability
2001, Vol. 11, No. 3, 608–649

DYNAMIC SCHEDULING OF A SYSTEM WITH TWO PARALLEL
SERVERS IN HEAVY TRAFFIC WITH RESOURCE POOLING:
ASYMPTOTIC OPTIMALITY OF A THRESHOLD POLICY1

By S. L. Bell and R. J. Williams

University of California, San Diego

This paper concerns a dynamic scheduling problem for a queueing
system that has two streams of arrivals to infinite capacity buffers and
two (nonidentical) servers working in parallel. One server can only pro-
cess jobs from one buffer, whereas the other server can process jobs from
either buffer. The service time distribution may depend on the buffer being
served and the server providing the service. The system manager dynami-
cally schedules waiting jobs onto available servers. We consider a parame-
ter regime in which the system satisfies both a heavy traffic condition and
a resource pooling condition. Our cost function is a mean cumulative dis-
counted cost of holding jobs in the system, where the (undiscounted) cost
per unit time is a linear function of normalized (with heavy traffic scaling)
queue length. We first review the analytic solution of the Brownian control
problem (formal heavy traffic approximation) for this system. We “inter-
pret” this solution by proposing a threshold control policy for use in the
original parallel server system. We show that this policy is asymptotically
optimal in the heavy traffic limit and the limiting cost is the same as the
optimal cost in the Brownian control problem. The techniques developed
here are expected to be useful for analyzing the performance of threshold-
type policies in more complex multiserver systems.

1. Introduction. Queueing networks (otherwise known as “stochastic
processing networks” [11]) are used as stochastic models for modern telecom-
munication, manufacturing and computer systems. Some of these networks
allow for flexible scheduling of jobs (see, e.g., [17]) through dynamic (state-
dependent) alternate routing and sequencing. It is a challenging problem to
design dynamic control policies for such networks that are simple to imple-
ment and yet are at least approximately optimal in an appropriate sense. As
one approach to this problem, some authors (see, e.g., [4, 14, 15, 18, 24, 25, 34])
have followed the scheme first suggested by Harrison [8] where analysis of
Brownian control problems (formal heavy traffic approximations to queue-
ing network control problems) is combined with clever interpretation of their
optimal (analytic) solutions to suggest “good” policies for some queueing net-
work control problems. These analytically derived policies (as opposed to ones
derived computationally by discretization of the Brownian control problem;
see, e.g., [9, 10, 20, 22, 23]), have frequently involved threshold-type control.
Although these policies have usually performed well when simulated, there
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are few proofs [19, 26] of the asymptotic optimality (in heavy traffic) of such
policies.

As a step toward providing a rigorous basis for this approach to dynamic
scheduling of queueing networks, here we consider a queueing system (see
Figure 1) consisting of two buffers and two parallel servers with dynamic
scheduling capabilities. This “parallel server system” may be viewed as a sim-
ple model for a parallel computing system where processors have overlapping
capabilities, or for a manufacturing test facility where test machines have
differing primary functions and some overlapping secondary functions. More
importantly, we believe the approach and techniques developed here provide
templates for the treatment of more complex multiserver systems, that is,
systems with two or more parallel servers.

A detailed description of our parallel server system is given in Section 2.
In this Introduction, we outline the structure to facilitate a description of the
main results of the paper. A schematic for our parallel server system is shown
in Figure 1. The circles represent single servers and the open ended rectangles
represent infinite capacity buffers for holding jobs awaiting service. Arrivals to
the two infinite capacity buffers are given by independent renewal processes
with a long run arrival rate of λk for buffer k, k = 1�2. Arrivals to buffer k are
called “class k jobs”. Within each buffer, jobs are ordered according to their
arrival times, with the earliest arrival being at the head of the line. Each job
requires a single service at one of the servers, subject to the restriction that
server 1 can only process jobs of class 1, whereas server 2 can process class
1 and class 2 jobs. Control of the system occurs through allocations of server
time to processing activities defined as follows:

activity 1 = processing of class 1 jobs by server 1,

activity 2 = processing of class 1 jobs by server 2,

activity 3 = processing of class 2 jobs by server 2.

Fig. 1. The parallel server system.
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For concreteness we make the following specific assumptions concerning ser-
vice protocol. Once a job has commenced service at a server, it remains at that
server until its service is complete, even if its service is interrupted for some
time (e.g., by preemption by a job of the other class, if allowed). A server may
not start on a new job of class k until it has finished serving any class k job
that it is working on or that is in suspension. A server cannot work unless it
has a job to work on (in particular, if there are no class 1 jobs in buffer 1 or
at server 1, and server 2 has a class 1 job in process or in suspension, then
server 1 cannot work on the class 1 job assigned to server 2 and must remain
idle until a new class 1 job arrives to the system). For each activity there is
an associated sequence of i.i.d. random variables, specifying the amounts of
service time required by the successive jobs processed by that activity. The
sequences for different activities are mutually independent and are indepen-
dent of the arrival processes. The mean of the service times for activity j is
1/µj, j = 1�2�3.

In this paper, we focus on the parameter regime in which the system is
nominally heavily loaded; that is, �λ1 − µ1�/µ2 is close to 1 − λ2/µ3, which
has the interpretation that the long run fraction of server 2’s time needed
to help process class 1 jobs is close to the long run fraction of time left over
after server 2 processes class 2 jobs. In addition, we assume that a (complete)
resource pooling condition (cf. [10, 12, 18, 24]) is satisfied, that is, in addition,
λ1 > µ1. In particular, in the optimal solution of the Brownian control problem,
the two servers combine to form a single pooled resource or “super-server.” We
consider a cost function which is a mean cumulative discounted cost of holding
jobs in the system, where the (undiscounted) cost per unit time, per unit of
normalized (in heavy traffic scale) queue length, is a constant hk > 0 for class
k, k = 1�2. (Other cost functions could be considered—we chose this one for
concreteness and since it is commonly used in stochastic control.)

The main results of the paper are the following. After reviewing the optimal
solution of the Brownian control problem for our system, we “interpret” this
solution by proposing a dynamic threshold control policy for use in the orig-
inal parallel server system (see Definition 5.1). We show that this threshold
policy is asymptotically optimal in the heavy traffic limit and that the lim-
iting cost is the same as the optimal cost for the Brownian control problem
(see Theorem 5.3). Formally (as in prior work on heavy traffic limit theo-
rems), this involves considering a sequence of parallel server systems (see
Section 3), each member of which has the same basic structure as the sys-
tem described above, but in which combinations of the first-order parameters
approach limiting values at uniform rates (see Assumption 3.1), and in par-
ticular, �λ1−µ1�/µ2 = 1−λ2/µ3 and λ1 > µ1 in the limit. In addition, here we
only consider the case where h1µ2 ≥ h2µ3 in the limit (see Assumption 3.2),
which corresponds to class 2 being the “cheapest” (or equally cheap) class in
which to hold jobs in the heavy traffic limit. For this parameter combination,
one might be tempted to use a static priority policy suggested by an extrapo-
lation of the classical cµ rule (see, e.g., [27]), where c = h here. Such a policy
would require that server 1 work whenever possible and server 2 give priority
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to class 1 jobs over those in class 2. As illustrated by Harrison [10] this greedy
scheduling policy is “disastrously inefficient” and one is led to seek more effi-
cient dynamic policies. In this paper, we propose such a dynamic policy and
prove it is asymptotically optimal. Although not considered here, the comple-
mentary parameter regime h1µ2 < h2µ3 can be treated in a similar manner,
though a little more simply, for in this case the static priority policy suggested
by the cµ rule (i.e., server 2 gives priority to class 2 over class 1) is optimal.

The parallel server system treated here was considered previously by
Harrison [10] under more restrictive assumptions. In particular, Harrison
assumed the arrival processes were Poisson and the service times were
deterministic with specific numeric values (up to a heavy traffic scale factor)
for the arrival and service rates, whereas we allow i.i.d. interarrival and ser-
vice times with arbitrary distributions subject to a finite exponential moment
condition and a relationship between arrival and service rates that ensures
the system is heavily loaded and allows (complete) resource pooling. In addi-
tion, Harrison’s asymptotically optimal control policy only reviews the system
status at fixed intervals of time; that is, it is a so-called “discrete review” policy.
On the other hand, we exhibit an asymptotically optimal “continuous review”
policy which allows changes in service allocations to be made at random times,
according to the state of the system. Our policy is easily described in terms of
a threshold or safety stock level that is used to prevent unnecessary idleness
of servers when there is still work in the system. A final difference is that our
notion of asymptotic optimality involves a mean cumulative discounted cost
whereas Harrison used a pathwise criterion.

Heavy traffic analysis of multiserver systems (parallel server systems with
two or more servers) has also been considered by Kushner and Chen [20] and
Harrison and López [12]. The work of Kushner and Chen considers a different
parameter regime than that considered here. In a sense it is at the opposite
end of the spectrum since our regime allows complete pooling and that of [20]
does not allow for any resource pooling. In addition, solutions of the Brownian
control problem in the regime of [20] are to be found by numerical means [21],
whereas ours are derived by analytic means. The recent work of Harrison and
López [12] identifies a condition for complete resource pooling in heavy traffic
for the multiserver problem and proposes using the BIGSTEP discretization
method of Harrison [9] to find candidates for “good” discrete review policies
for this problem. However, no proof of asymptotic optimality of such policies is
given in [12]. Assuming the heavy traffic resource pooling condition of [12], a
candidate for an asymptotically optimal threshold policy is proposed in [37] for
the multiserver problem. The analysis of the two-server problem considered
in this paper is expected to play a key role in an iterative proof that this
threshold policy is asymptotically optimal for the multiserver problem under
the Harrison–López heavy traffic complete resource pooling condition.

The remainder of this paper is organized as follows. In Section 2 we
complete the description of the parallel server system considered here. This
includes a description of the primitive stochastic processes in our model,
allowed scheduling control policies, and a specification of dynamic equations
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satisfied by the queue length process. In Section 3 we describe the asymptotic
regime in which we seek to analyze the performance of control policies for
our system. In particular, we specify assumptions on the stochastic primitives
that imply our system is asymptotically in heavy traffic (cf. [11]) and satisfies
the complete resource pooling condition of [12]. We describe the normalization
of the queue length process via diffusive scaling and we specify the associated
cost function. In Section 4, following the general scheme proposed in [8], we
state the formal Brownian control problem associated with our parallel server
system and describe an optimal solution for this problem. (A similar descrip-
tion and analysis can be found in [12] for the multiserver system.) In Section 5,
we propose a threshold control policy for the parallel server system. We then
state the main results which show that this policy is asymptotically optimal
in the heavy traffic limit and that the limiting cost is the same as the optimal
cost in the Brownian control problem. An outline of our method of proof is
given in Section 6. The details of the proofs are contained in Sections 7–9.
Here a critical role is played by our analysis in Section 7 of what we call
the residual process, which measures deviations of the class 1 queue length
from the threshold level when our threshold policy is used. This allows us to
establish a form of “state space collapse” (see Theorem 5.2) under this policy.

1.1. Notation and terminology. The set of nonnegative integers will be
denoted by � and the value +∞ will be denoted simply by ∞. For any real
number x, �x	 will denote the integer part of x, that is, the greatest integer
that is less than or equal to x. The m-dimensional (m ≥ 1) Euclidean space
will be denoted by �m and �+ will denote �0�∞�. Let 
 · 
 denote the norm on
�m given by 
x
 =∑m

i=1 
xi
 for x ∈ �m. Vectors in �m should be treated as col-
umn vectors unless indicated otherwise, inequalities between vectors should
be interpreted componentwise, the transpose of a vector a will be denoted by
a′, the diagonal matrix with the entries of a vector a on its diagonal will be
denoted by diag�a�, and the dot product of two vectors a and b will be denoted
by a · b.

For each positive integer m, let Dm be the space of “Skorokhod paths” in �m

having time domain �+. That is, Dm is the set of all functions ω� �+ → �m

that are right continuous on �+ and have finite left limits on �0�∞�. The
member of Dm that stays at the origin in �m for all time will be denoted by 0.
For ω ∈ Dm and t ≥ 0, let

�ω�t = sup
s∈�0� t	


ω�s�
�(1)

Consider Dm to be endowed with the usual Skorokhod J1-topology (see [6]).
Let �m denote the Borel σ-algebra on Dm associated with the J1-topology.
This is the same σ-algebra as the one generated by the coordinate maps; that
is, �m = σ�ω�s�� 0 ≤ s < ∞�. All of the continuous-time processes in this
paper will be assumed to have sample paths in Dm for some m ≥ 1.

Suppose �Wn�∞n=1 is a sequence of processes with sample paths in Dm for
some m ≥ 1. Then we say that �Wn�∞n=1 is tight if and only if the probability
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measures induced by the Wn’s on �Dm��m� form a tight sequence; that is,
they form a weakly relatively compact sequence in the space of probability
measures on �Dm��m�. The notation “Wn �⇒W”, where W is a process with
sample paths in Dm, will mean that the probability measures induced by the
Wn’s on �Dm��m� converge weakly to the probability measure on �Dm��m�
induced by W. If for each n, Wn and W are defined on the same probability
space, we say that Wn converges to W uniformly on compact time intervals in
probability (u.o.c. in probability) if P��Wn −W�t ≥ ε� → 0 as n→∞ for each
ε > 0 and all t ≥ 0.

2. The parallel server system. The physicial structure of our parallel
server system was described in the Introduction. This structure is the same
as in the model considered in [10]. However, our assumptions on the stochas-
tic primitives as specified below are more general than those of [10] in that
we allow non-Poisson renewal arrivals, i.i.d. random service times and more
general rates.

2.1. Stochastic primitives. All random variables and stochastic processes
in our model are assumed to be defined on a complete probability space
���� , P�. The expectation operation under P will be denoted by E and
P�A�B� will mean P�A ∩B�.

We assume that the system is initially empty.
For k = 1�2, we take as given a sequence of strictly positive i.i.d. random

variables �uk�i�, i = 1�2� � � �� with mean λ−1
k ∈ �0�∞� and squared coefficient

of variation (variance divided by the mean squared) α2
k ∈ �0�∞�. For i =

1�2� � � �, we interpret uk�i� as the time between the arrival of the �i−1�st and
the ith arrival to class k, where the “0th arrival” occurs at time zero. Setting
ξk�0� = 0 and

ξk�n� =
n∑
i=1

uk�i� for n = 1�2� � � � �(2)

we define

Ak�t� = sup�n ≥ 0� ξk�n� ≤ t� for all t ≥ 0�(3)

Then Ak is a renewal process, Ak�t� counts the number of arrivals to class k
that have occurred in �0� t	 and λk is the long run arrival rate to class k.

For j = 1�2�3, we take as given a sequence of strictly positive, i.i.d. random
variables �vj�i�, i = 1�2� � � �� with mean µ−1

j ∈ �0�∞� and squared coefficient
of variation β2

j ∈ �0�∞�. For each j, we interpret vj�i�, i ≥ 1, as the amount
of service time required by the ith job to be processed by activity j. Note that
µj is the long run rate at which activity j can process its associated class of
jobs if the associated server works continuously and exclusively on this class.
For j = 1�2�3, let ηj�0� = 0,

ηj�n� =
n∑
i=1

vj�i� for n = 1�2� � � � �(4)
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and

Sj�t� = sup�n ≥ 0� ηj�n� ≤ t� for all t ≥ 0�(5)

Then S1� S2� S3 are renewal processes and S1�t� represents the number of
class 1 jobs that server 1 could complete if that server worked continuously
in �0� t	, and for j = 2�3, Sj�t� is the number of class j − 1 jobs that server
2 could complete if that server worked continuously and exclusively on class
j− 1 jobs in �0� t	.

We assume that the interarrival time sequences �uk�i�, i = 1�2� � � ��, k =
1�2, and service time sequences �vj�i�, i = 1�2� � � ��, j = 1�2�3, are all mutu-
ally independent. Without loss of generality (by removing an exceptional P-
null set from� if necessary), we may and do assume thatAk�t�� Sj�t�, k = 1�2,
j = 1�2�3, are finite-valued for all t ≥ 0, everywhere on �. (We note that this
also extends to the situation in the next section where we consider a sequence
of parallel server systems.)

2.2. Scheduling control. Scheduling control of the system is exerted
through a three-dimensional service time allocation process

T�t� = �T1�t��T2�t��T3�t��′� t ≥ 0�(6)

For j = 1�2�3, Tj�t� is the cumulative amount of service time devoted to
activity j in the time interval �0� t	. Then

I1�t� ≡ t−T1�t�(7)

is the cumulative idletime of server 1 up to time t,

I2�t� ≡ t−T2�t� −T3�t�(8)

is the cumulative idletime of server 2 up to time t, S1�T1�t�� is the number
of jobs completed by server 1 up to time t, Sj�Tj�t�� is the number of class
j− 1 jobs completed by server 2, for j = 2�3, up to time t, and for

Q1�t� ≡ A1�t� −S1�T1�t�� −S2�T2�t���(9)

Q2�t� ≡ A2�t� −S3�T3�t���(10)

Qk�t� is the number of class k jobs that are either in queue or “in progress”
(i.e., being served or in suspension) at time t.

Now, T must satisfy certain properties that go along with its interpreta-
tion. Indeed, one could give a discrete-event type description of the properties
that T must have, including any application specific constraints such as no
preemption of service. Here we allow very general T’s including those that
may anticipate the future. For our analysis, we shall only need the following
properties of the three-dimensional process T = �T1�T2�T3�′. For j = 1�2�3,
and k = 1�2, and I, Q given by (7)–(10),

Tj�t� ∈ � for each t ≥ 0�(11)

Tj�·� is continuous and nondecreasing with Tj�0� = 0�(12)
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Ik�·� is continuous and nondecreasing with Ik�0� = 0�(13)

Qk�t� ≥ 0 for all t ≥ 0�(14)

Note that conditions (12) and (13) imply that for j = 1�2�3, Tj is uniformly
Lipschitz continuous with a Lipschitz constant of one.

The cost function we use for our control problem involves linear holding
costs associated with the expense of holding (or storing) jobs in the system
until they have completed service. We defer the precise description of this
cost function to the next section, since it is formulated in terms of normalized
queue lengths where the normalization is in diffusion scale, commensurate
with the heavy traffic limiting regime in which we consider our model.

3. Heavy traffic assumptions, scaling and the cost function. Even
for the simple parallel server system described in the last section, the problem
of finding a control policy that minimizes a cost associated with holding jobs
in the system is notoriously difficult. One possible means for discriminating
between policies is to look for policies that outperform others in some asymp-
totic regime. Here we consider the asymptotic regime associated with heavy
traffic limit theorems in which the queue length process is normalized with
diffusive scaling. This corresponds to viewing the system over long intervals
of time of order r2 (where r will tend to infinity in the asymptotic limit) and
regarding a single job as only having a small contribution to the overall cost
of storage, where this is quantified to be of order 1/r. Formally, we consider
a sequence of parallel server systems indexed by r, where r tends to infinity
through a sequence of values in �1�∞�. These systems all have the same basic
structure as that described in the last section; however, the arrival and service
rates, scheduling control and cost function (defined below) may vary with r.
We shall indicate the dependence of relevant parameters and processes on r by
appending a superscript to them. We assume that the interarrival and service
times are given for each r, k = 1�2� j = 1�2�3, i = 1�2� � � �, by

urk�i� =
1
λrk
ǔk�i�� vrj�i� =

1
µrj
v̌j�i��(15)

where the ǔk�i�, v̌j�i� do not depend on r, have mean one and squared coef-
ficients of variation α2

k, β
2
j, respectively. [The above structure is a convenient

means of allowing the sequence of systems to approach heavy traffic by sim-
ply changing arrival and service rates while keeping the underlying sources
of variability ǔk�i�, v̌j�i� fixed. This type of set-up has been used previously
by others in treating heavy traffic limits (see, e.g., Peterson [28]). For a first
reading, the reader may like to simply choose λr = λ; µr = µ for all r.]

To begin with, we make the following assumption on the first-order param-
eters associated with our sequence of networks.

Assumption 3.1. There are strictly positive constants, λ1� λ2� µ1� µ2� µ3,
and real numbers θ1� θ2, such that
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(i) λ1 > µ1,
(ii) 1− ��λ1 − µ1�/µ2� = λ2/µ3,

and as r→∞,
(iii) λrk → λk , k = 1�2,
(iv) µrj → µj, j = 1�2�3,
(v) rµr2��λr1 − µr1�/µr2 − �λ1 − µ1�/µ2� → θ1,
(vi) rµr3�λr2/µr3 − λ2/µ3� → θ2.

Remark. Viewing the limiting values, λk� k = 1�2, µj� j = 1�2�3, as
parameters for a parallel server system of the same type as in the prelimit,
we have the following interpretation of the above conditions. In the limit,
the arrival rate λ1 to class 1 exceeds the service rate µ1 at server 1 and so
the assistance of server 2 is needed to keep the class 1 queue length from
growing without bound. Thus, we regard server 2 as a “helper” to server 1 in
the processing of class 1. The long run fraction of server 2’s time that will be
required in this helper activity is �λ1−µ1�/µ2, since server 2 can process class
1 jobs at a long run rate of µ2. The left member of the equation in (ii) is the
long run fraction of server 2’s time left over after helping process class 1 jobs
and by (ii) this is exactly balanced by the long run fraction of server 2’s time
required to process the class 2 jobs using activity 3. Thus, we may think of the
system as critically loaded in the sense that at the level of long run rates, the
“capacity” of the servers is just sufficient to process the incoming load. Indeed,
under the above assumption, the limiting parameters λk, µj satisfy the heavy
traffic and complete resource pooling conditions of [11] and [12]. We have not
allowed λ1 ≤ µ1 since λ1 = µ1 would not lead to complete resource pooling
and λ1 < µ1 would not satisfy the heavy traffic assumption. Conditions (v)
and (vi) are the analogues for controlled networks of the usual heavy traffic
conditions involving the rates at which traffic intensities approach one. Here,
“nominal” long run fractions of time devoted to activities in the rth system
tend to limiting long run fractions, at a uniform rate across activities.

For each fixed r and control policy Tr with associated queue length Qr and
idletime Ir processes in the rth system, we now define a fluid scaled process
�Tr and diffusion-scaled processes Âr� Ŝr� Q̂r� Îr. Note that Ar� Sr grow at
long run average rates of λr� µr, respectively, and so they are first centered
about their average rate processes before diffusion scaling is applied. For each
t ≥ 0, let

�Tr�t� = r−2Tr�r2t��(16)

Âr�t� = r−1 (Ar�r2t� − λrr2t
)
�(17)

Ŝr�t� = r−1 (Sr�r2t� − µrr2t
)
�(18)

Q̂r�t� = r−1Qr�r2t��(19)

Îr�t� = r−1Ir�r2t��(20)
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We note that the fluid scaling used here is the same as that in [36], but is
different from the fluid scaling used in most works concerned with stability
analysis of queueing networks, where time is only accelerated by a factor of r
and space is divided by a factor of r (see, e.g., [2]). Though both incorporate
the notion of law of large numbers scaling, we shall only need the former
notion of fluid scaling here.

Now, equations (9) and (10) yield the following expressions for the normal-
ized (diffusion scaled) queue length processes:

Q̂r
1�t� ≡ Âr

1�t� − Ŝr1��Tr
1�t�� − Ŝr2��Tr

2�t�� + r�λr1t− µr1�Tr
1�t� − µr2�Tr

2�t���(21)

Q̂r
2�t� ≡ Âr

2�t� − Ŝr3��Tr
3�t�� + r�λr2t− µr3�Tr

3�t���(22)

On combining Assumption 3.1 with the finite variance and mutual indepen-
dence of the stochastic primitives �ǔk�i�� i = 1�2� � � ��, �v̌j�i�� i = 1�2� � � ��, we
may deduce from renewal process functional central limit theorems (cf. [16])
that

�Âr� Ŝr� �⇒ �Ã� S̃� as r→∞�(23)

where Ã� S̃ are mutually independent, Ã is a two-dimensional driftless
Brownian motion that starts from the origin and has diagonal covariance matrix
diag�λ1α

2
1� λ2α

2
2�, and S̃ is a three-dimensional driftless Brownian motion that

starts from the origin and has diagonal covariance matrix diag�µ1β
2
1� µ2β

2
2�

µ3β
2
3�.

For the rth system, we consider a mean cumulative discounted holding cost
for use of a control Tr having associated normalized queue length process Q̂r:

Ĵr�Tr� = E
(∫ ∞

0
e−γth · Q̂r�t�dt

)
�(24)

where γ > 0 is a constant and h = �h1� h2�′, hk > 0 for k = 1�2, is a constant
vector of holding costs.

Remark. We could have allowed γ and h to depend on r and then assumed
some limiting positive values for these constants as r → ∞. Although this
more general situation can be handled by our techniques, we have chosen not
to include this slight generalization here to simplify the exposition without
losing much generality.

We focus here on the following parameter regime.

Assumption 3.2.

h1µ2 ≥ h2µ3�(25)

We shall see that this assumption means that in the (formal) Brownian
control problem associated with our sequence of parallel server systems, it
is cheapest (or equally cheap with equality in Assumption 3.2) to keep the
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“jobs” in class 2. The opposite inequality can be treated in a similar manner,
although a little more simply, for in that case there is an asymptotically opti-
mal static priority control policy; namely, server 2 always gives preemptive
resume priority to class 2 over class 1. We leave the details for this case to
the interested reader.

In addition to the above assumptions, we make the following exponential
moment assumptions which ensure that certain large deviation estimates hold
for the renewal processes Ar

k, S
r
j associated with the interarrival and service

times.

Assumption 3.3. For k = 1�2, j = 1�2�3, and all i ≥ 1, let �cf. �15�	

uk�i� =
1
λk
ǔk�i�� vj�i� =

1
µj
v̌j�i��(26)

Assume that there is a non-empty open neighborhood, � , of 0 ∈ � such that for
all l ∈ � and all i ≥ 1,

,ak�l� ≡ logE
(
eluk�i�

)
<∞ for k = 1�2(27)

and

,sj�l� ≡ logE
(
elvj�i�

)
<∞ for j = 1�2�3�(28)

Remark. Note that ,ak�l�, ,sj�l� are defined, with values in �−∞�∞	 for
all values of l. The above assumption guarantees that there is a neighborhood
of 0 ∈ � where these values are finite. Note also that since the �uk�i��∞i=1
(respectively, �vj�i��∞i=1) are i.i.d., the ,ak, ,

s
j do not depend on i and in fact,

the above conditions hold for all i if they hold for i = 1.

4. Brownian control problem. For the convenience of the reader, in this
section we summarize the formulation and analysis of the Brownian control
problem associated with our parallel server problem. For more details, the
reader is referred to [8, 11, 12, 13, 37].

Using the method proposed by Harrison et al. (see [8, 11, 12, 13]), one
arrives at the following formal Brownian control problem approximation
(under diffusive scaling) to the control problem for the parallel server system.
One can obtain this by formally passing to the limit in the control problem
for the rth parallel server system. An important assumption in this formal
procedure is that in the fluid scale of (16), the allocation processes achieve the
long run rates for a balanced system in the heavy traffic limit, that is, for

�T∗�t� ≡
(
t�
�λ1 − µ1�

µ2
t�
λ2

µ3
t

)
� t ≥ 0�(29)

we have formally as r→∞,

�Tr �⇒ �T∗�(30)
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The two-dimensional Brownian motion X̃ is the formal limit in distribution
(as r→∞) of the sequence of processes �X̂r� defined by [cf. (21) and (22)]

X̂r
1�t� = Âr

1�t� − Ŝr1��Tr
1�t�� − Ŝr2��Tr

2�t�� + rµr2
(
λr1 − µr1
µr2

− λ1 − µ1

µ2

)
t�(31)

X̂r
2�t� = Âr

2�t� − Ŝr3��Tr
3�t�� + rµr3

(
λr2
µr3

− λ2

µ3

)
t�(32)

where the functional central limit theorem result (23), a time-change theorem
(together with the assumption that �Tr �⇒ �T∗), and Assumption 3.1 (v) and
(vi), are used to derive formally the covariance matrix and drift for this
Brownian motion. The three-dimensional control process Ỹ in the Brownian
control problem arises as a formal limit of the normalized deviation processes
Ŷr ≡ r��T∗ − �Tr�.

Definition 4.1 (Brownian control problem).

minimize E
(∫ ∞

0
e−γth · Q̃�t�dt

)
(33)

using a three-dimensional control process Ỹ = �Ỹ1� Ỹ2� Ỹ3�′ such that

Q̃1�t� ≡ X̃1�t� + µ1Ỹ1�t� + µ2Ỹ2�t� ≥ 0 for all t ≥ 0�(34)

Q̃2�t� ≡ X̃2�t� + µ3Ỹ3�t� ≥ 0 for all t ≥ 0�(35)

Ĩ1�·� ≡ Ỹ1�·� is nondecreasing, Ĩ1�0� = 0�(36)

Ĩ2�·� ≡ Ỹ2�·� + Ỹ3�·� is nondecreasing, Ĩ2�0� = 0�(37)

where X̃ is a two-dimensional Brownian motion with drift θ = �θ1� θ2�, that
starts from the origin and has diagonal covariance matrix diag�λ1α

2
1+µ1β

2
1+

β2
2�λ1 − µ1�� λ2�α2

2 + β2
3��.

For Q̃ satisfying the above, let

W̃�t� = y · Q̃�t� = y · X̃�t� + Ṽ�t� for all t ≥ 0�(38)

where

y = �y1� y2�′� y1 = 1� y2 =
µ2

µ3
�(39)

Ṽ�t� ≡ µ1Ĩ1�t� + µ2Ĩ2�t� for all t ≥ 0�(40)

The process W̃ is (up to a constant scale factor) the Brownian model analogue
of workload in the original parallel server system. Following [13] (see also [10,
11, 12, 37]), one can convert the Brownian control problem to an “equivalent
workload formulation” expressed in terms of W̃ and Ṽ. This can be solved
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explicitly (cf. [10, 12, 37]) and one finds that a solution of the Brownian control
problem is given by setting

W̃∗�t� = y · X̃�t� + Ṽ∗�t�� Ṽ∗�t� = − inf
0≤s≤t

(
y · X̃�s�)�(41)

that is, W̃∗ is a one-dimensional reflected Brownian motion (cf. [7]) driven by
the one-dimensional Brownian motion y · X̃,

Q̃∗
1�t� = 0� Q̃∗

2�t� = y−1
2 W̃∗�t�� Ĩ∗1�t� = 0� Ĩ∗2�t� = µ−1

2 Ṽ∗�t�(42)

and

Ỹ∗
1�t� = 0� Ỹ∗

2�t� = −µ−1
2 X̃1�t�� Ỹ∗

3�t� = µ−1
3

(
Q̃∗

2�t� − X̃2�t�
)
�(43)

The associated minimum cost is

J∗ ≡ E
(∫ ∞

0
e−γt h · Q̃∗�t�dt

)
�(44)

with Q̃∗ as defined in (41) and (42). The quantity J∗ is finite and can be
computed explicitly as in Section 5.3 of [7].

Now, even though the Brownian control problem can be analyzed exactly, its
solution does not automatically translate to a policy in the original parallel
server system. In particular, since server 1 only serves class 1, there is an
obvious conflict in trying to achieve zero queue length for class 1 in the heavy
traffic limit (Q̃∗

1 = 0) and zero idletime for server 1 in this limit (Ĩ∗1 = 0). Even
if one can guess a reasonable policy, one would still like to be able to analyze
the performance of that policy. To address the aforementioned problems, in the
next section we describe a dynamic threshold policy for the original sequence
of parallel server systems. We then state a theorem which shows this policy
is asymptotically optimal and that under this policy the associated cost Ĵr

for the rth parallel server system converges to the minimal cost J∗ for the
Brownian control problem as r→∞.

5. Threshold policy and statement of asymptotic optimality. We
first describe our candidate for an asymptotically optimal policy. The form of
this policy is motivated by the fact that the solution of the associated Brownian
control problem described in the previous section suggests that in the heavy
traffic limit one should try to keep all of the work in class 2 while attempting
to keep both servers busy unless there is no work in the entire system. To
keep the class 1 queue length low, our policy gives priority to class 1 at server
2, except when the class 1 queue length goes below a certain threshold and
then priority switches to class 2 in an attempt to prevent starvation of server
1 while there is still work in the system. Starvation of server 1 will not be
totally prevented with this policy, but by allowing the threshold level to grow
suitably with r, we can ensure that starvation of server 1 is a rarer and rarer
event as r→∞.
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Definition 5.1 (Threshold policy). Let c0 > 0 be the constant described
below in the proofs of Theorem 7.2 and of uniform integrability in the proof
of Theorem 5.3, and let c be any constant (independent of r) such that c > c0.
For each r ≥ 1, let Lr = �c log r	, the integer part of c log r. In the rth system,
the dynamic threshold control policy is described as follows:

(i) Server 1 operates whenever possible, or equivalently, server 1 is never
idle when there are jobs in buffer 1 or at server 1.

(ii) When the number of class 1 jobs in the system exceeds the threshold
value Lr, server 2 gives preemptive-resume priority to class 1 jobs over class
2 jobs. In particular, when the class 1 queue length reaches Lr+1 from below,
server 2 immediately suspends any work on class 2 jobs and turns to service
of class 1 jobs (if it has a suspended class 1 job, it resumes work on this,
otherwise the server starts work on the next job in buffer 1). Similarly, when
the class 1 queue length reaches a level ≤ Lr from above Lr, server 2 suspends
its service of class 1 jobs and turns to service of class 2 jobs. If there are no
class 2 jobs for server 2 to serve, the server idles until a new class 2 job arrives
or the class 1 queue length reaches Lr + 1 again.

We let Tr�∗ denote the allocation processes associated with use of the above
policy in the rth system.

Remark. Note that it is possible for server 1 to be idle at time t even
though Qr

1�t� > 0 if there is a class 1 job “in progress” at server 2. However,
such times will be inconsequential in the heavy traffic limit.

Remark. For our method of proof to work, c must be sufficiently large.
In the proofs of Theorem 7.2 and of uniform integrability in the proof of
Theorem 5.3, a means for determining a value c0 is described such that our
method works provided c > c0. This value is determined from several appli-
cations of large deviation estimates for the renewal processes associated with
the interarrival and service time sequences (cf. Assumption 3.3). We have not
attempted to give a concise formula for c0 nor to optimize its value, since the
relevant fact is that a threshold of size �c log r	 works for c sufficiently large
and the order of this threshold is the smallest for which our proof works. We
did not investigate whether a threshold of smaller order could be used and
asymptotic optimality still achieved, since we sought to develop a method that
could be readily applied to more complex multiserver systems. The reader
interested in an analysis of the effects of different threshold sizes for some
dynamic scheduling problems is referred to the recent work of Teh [32] in this
direction.

Remark. We wish to emphasize that our proposed policy is only one of
many possible asymptotically optimal policies. We have focussed on our policy
because it is intuitively appealing and easy to describe. Variations of this
policy are certainly possible. For instance, our method of proof would work
if the threshold level satisfied Lr ≥ c log r for c > c0 and Lr = o�r� as r →
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∞, for example, Lr = �log r�1+ε for any ε > 0 will do. We have used Lr =
�c log r	 as this is the smallest order threshold for which our proof works. In
addition, to reduce “chattering” back and forth across a single threshold, one
could introduce a second threshold at 2Lr and an associated “hysteretic policy”
(cf. [31]) such that the additional help of server 2 is only turned on when the
class 1 queue length exceeds this second threshold and that help is turned off
when the class 1 queue length returns to the level Lr or below.

Remark. Although the above policy allows for preemption, there is a cor-
responding threshold policy without preemption that we conjecture has the
same behavior in the heavy traffic limit, since in that regime a single job (in
suspension or not) should not impact the asymptotic behavior of the system.

In Sections 7 and 8 we show that the following form of state-space collapse
holds under this sequence of threshold policies in the heavy traffic limit (as
r→∞).

Theorem 5.2. Consider the sequence of parallel server systems indexed
by r, where the rth system operates under the threshold policy Tr� ∗ described
above. Then the associated normalized queue length and idletime processes
satisfy

�Q̂r
1� Q̂

r
2� Î

r
1� Î

r
2� �⇒ �0� Q̃∗

2�0� Ĩ
∗
2� as r→∞�

where 0 denotes the one-dimensional process that is identically zero, Q̃∗
2 is

a one-dimensional reflected Brownian motion that starts from zero, has drift
�µ3/µ2�θ1 + θ2 (where θ1� θ2 are defined in Assumption 3�1) and has variance

parameter �µ3/µ2�2�λ1α
2
1 + µ1β

2
1 + �λ1 − µ1�β2

2� + λ2�α2
2 + β2

3�; that is, Q̃∗
2 is

described by �41� and �42�, and Ĩ∗2 is a specific multiple of the local time at the
origin of Q̃∗

2, as defined in �41� and �42�.

Recall the definition of J∗ from (44). The following is proved in Section 9
using Theorem 5.2. It shows that J∗ is the best that one can achieve asymptot-
ically and that this asymptotically minimal cost is achieved by the sequence
of dynamic threshold policies �Tr� ∗�. Thus we conclude that our sequence of
threshold policies �Tr� ∗� is asymptotically optimal.

Theorem 5.3. Suppose that �Tr� is any sequence of scheduling control
policies (one for each member of the sequence of parallel server systems). Then

lim inf
r→∞ Ĵr�Tr� ≥ J∗ = lim

r→∞ Ĵ
r�Tr� ∗��(45)

and J∗ <∞.

Remark. The notion of asymptotic optimality used here is also used for
example in Puhalskii-Reiman [29].
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6. Outline of the proof. A key element in the proof of Theorem 5.2 is to
first show (cf. Theorem 7.1) that under the threshold policy,

�Q̂r
1� Î

r
1� �⇒ �0�0� as r→∞�(46)

The idea behind this is that under the threshold control Tr� ∗, once Qr
1 has

reached the threshold level Lr, the normalized class 1 queue length process
Q̂r

1 “keeps close” to the normalized threshold level L̂r ≡ Lr/r, since when it
is above this level, it is driven down towards the level at an average rate of
�µr1 + µr2 − λr1�r and when it is below the level, it is driven up towards the
level at an average rate of �λr1 − µr1�r. Indeed, large deviation estimates for
the renewal processes used in defining the model (cf. Assumption 3.3) are used
to show (cf. Theorem 7.2) that the probability that, on any given compact time
interval, Q̂r

1 deviates by at least L̂r − r−1 from the threshold level L̂r, goes to
zero as r→∞. The result (46) follows from this. It can then be shown using
the model equations for queue length and idletime (cf. Section 2), and the fact
that under Tr� ∗ server 2 cannot be idle if there are jobs in class 2, that the
fluid scaled allocations �Tr� ∗�t� ≡ r−2Tr� ∗�r2t� associated with Tr� ∗ satisfy

�Tr� ∗ �⇒ �T∗ as r→∞�(47)

where �T∗ is defined in (29) (cf. Lemma 8.1). One can then combine the above
to show (cf. Section 8) that

�Q̂r
2� Î

r
2� �⇒ �Q̃∗

2� Ĩ
∗
2� as r→∞�(48)

where Q̃∗
2� Ĩ

∗
2 are given by (41) and (42).

For the proof of Theorem 5.3, we first show (cf. Lemma 9.3) that for any
subsequence that achieves the “lim inf ” on the left side of (45) as a limit and
for which the “lim inf ” is finite, the fluid level asymptotic behavior described
in (30) must hold along the subsequence. This, together with a pathwise lower
bound for hr · Q̂r, where hr = �h1� h2µ

r
2µ3/�µ2µ

r
3��′, allows us to establish the

inequality on the left side of (45). The equality on the right side of (45) follows
from Theorem 5.2, after showing that a certain uniform integrability condition
holds.

7. Residual process. The main result of this section is the following
theorem [cf. (46)].

Theorem 7.1. Consider the sequence of parallel server systems indexed
by r, where the rth system operates under the threshold policy described in
Definition 5.1. Then (

Q̂r
1� Î

r
1

)
�⇒ �0�0� as r→∞�(49)

Throughout this section, it is assumed that in the rth parallel server sys-
tem we use the allocation process Tr� ∗ associated with the threshold policy
described in Definition 5.1. To simplify notation, here we shall simply write
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Tr in place of Tr� ∗, since no other policy is considered in this section. The
associated queue length and idletime processes will be denoted by Qr� Ir,
respectively.

Key to our proof of Theorem 7.1 is the behavior of what we call the residual
process Rr defined by

Rr�t� = Qr
1�t� −Lr� t ≥ 0�(50)

where Lr is the threshold described in Definition 5.1. The idea here is to
move the center of one’s attention to the threshold and to think of Qr

1 as
reaching the threshold level Lr relatively quickly and then “chattering” back
and forth across this threshold, not frequently deviating far from it, so that
Qr

1 rarely again goes as low as the level one or as high as the level 2Lr − 1.
When translated into the behavior ofRr, this means that we seek to show that
once Rr reaches zero, it chatters back and forth across its zero level and rarely
deviates more than ±�Lr − 1� from this level. In particular, the following is
the main technical result of this section.

Theorem 7.2. Let τr0 = inf�t ≥ 0� Qr
1�t� ≥ Lr�. Then, for each t ≥ 0 and

ε > 0,

P�Ir1�τr0� ≥ rε� → 0 as r→∞�(51)

P
(

sup
τr0≤s≤r2t


Rr�s�
 ≥ Lr − 1
)
→ 0 as r→∞�(52)

Here we have used the convention in (51) that Ir1�τr0� = limt→∞ I
r
1�t� on

�τr0 = +∞�, and in (52) that the supremum over an empty set is defined to
equal −∞.

For the proof of (52), we need to establish some preliminary results concern-
ing the properties of arrival and service processes stopped at certain levels,
so that we can apply the results of Appendix A to shifted versions of these
processes. We establish these preliminary results here before turning to the
proofs of Theorems 7.2 and 7.1.

Definition 7.3. For each r ≥ 1, let τr1 = inf�t ≥ τr0� Rr�t� = 1�, τr2 =
inf�t > τr1�Rr�t� ≤ 0� and define recursively τr2n−1 = inf�t > τr2n−2�Rr�t� = 1�,
τr2n = inf�t > τr2n−1� Rr�t� ≤ 0�, for n = 2�3� � � �. We call �τr2n−1� τ

r
2n� the nth

“up” excursion interval for Rr.

Let �∞ = � ∪ �∞�. Consider �3
∞ to be partially ordered by componentwise

inequality, that is, �n1� n2� n3� ≤ �m1�m2�m3� if and only if n1 ≤m1� n2 ≤m2
and n3 ≤m3. Recall the definition of the cumulative interarrival time process
for class 1, ξr1, and the cumulative service time processes for activities 1 and
2, ηr1� η

r
2, in the rth system. For each �p�q� s� ∈ �3

∞, let

� r
pqs = σ�ξr1�· ∧ �p+ 1��� ηr1�· ∧ �q+ 1��� ηr2�· ∧ �s+ 1��� ∨� �(53)
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where � denotes the collection of P-null sets in the complete probability space
���� �P�. Then, �� r

pqs� �p�q� s� ∈ �3
∞� is a multiparameter filtration (cf. [6],

page 85).

Definition 7.4. A (multiparameter) stopping time relative to �� r
pqs�

�p� q� s� ∈ �3
∞� is a random variable � taking values in �3

∞ such that

�� = �p�q� s�� ∈ � r
pqs for all �p�q� s� ∈ �3

∞�(54)

The σ-algebra associated with such a stopping time � is

� r
� = �B ∈ � � B ∩ �� = �p�q� s�� ∈ � r

pqs for all �p�q� s� ∈ �3
∞��(55)

Lemma 7.5. For each r ≥ 1 and each n ≥ 1,

� r
n ≡ �Ar

1�τr2n−1�� Sr1�Tr
1�τr2n−1��� Sr2�Tr

2�τr2n−1���(56)

is a (multiparameter) stopping time relative to the filtration �� r
pqs� �p�q� s� ∈

�3
∞�, where we adopt the convention that each of Ar

1�·�, Sr1�Tr
1�·��, Sr2�Tr

2�·���
takes the value ∞ when evaluated at the time ∞.

This lemma can be proved in a similar manner to Lemma 8.3 in [36].

Lemma 7.6. Let � = ��1��2��3� be a (multiparameter) stopping time
relative to the filtration �� r

pqs� �p�q� s� ∈ �3
∞�. In the following, for notational

convenience, we make the convention that each of ur1�·�� vr1�·�� vr2�·� takes the
value ∞ when its argument takes the value ∞. Then,

�ur1��1 + 1�� vr1��2 + 1�� vr2��3 + 1�� ∈ � r
� �(57)

and on �� ∈ �3�, the conditional distribution of ��ur1��1 + n�� vr1��2 + n�,
vr2��3+n��, n = 2�3� � � �� given � r

� is the same as the (unconditioned) distribu-
tion of the original family of i.i.d. random variables ��ur1�n�� vr1�n�� vr2�n��� n =
1�2� � � ��.

Proof. For the proof of (57), let �+ be the extended positive half line that
is the compactification of �+ with the addition of the point at infinity. Then
for any Borel set B ⊂ ��+�3 and �p�q� s� ∈ �3

∞,

��ur1��1 + 1�� vr1��2 + 1�� vr2��3 + 1�� ∈ B� ∩ �� = �p�q� s��
= ��ur1�p+ 1�� vr1�q+ 1�� vr2�s+ 1�� ∈ B� ∩ �� = �p�q� s���

where the last line is in � r
pqs, by the definition of that σ-algebra and the fact

that � is a stopping time. This is even true if some or all of p�q� s take
the value ∞, since for such values, the corresponding variables from among
ur1�p+ 1�� vr1�q+ 1�� vr2�s+ 1� are deterministic. Hence, (57) holds.
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Now, for Borel sets Bi ∈ ��+�3, i = 1�2� ����, and C ∈ � r
� , we have

P
(��ur1��1 + n�� vr1��2 + n�� vr2��3 + n�� ∈ Bn−1� n = 2�3� � � ��

∩C ∩ �� ∈ �3�)
= ∑

�p�q� s�∈�3

P
(��ur1�p+ n�� vr1�q+ n�� vr2�s+ n�� ∈ Bn−1� n = 2�3� � � ��

∩C ∩ �� = �p�q� s��)
= ∑

�p�q�s�∈�3

P
(�ur1�p+ n�� vr1�q+ n�� vr2�s+ n�� ∈ Bn−1� n = 2�3� � � �

)
·P(C ∩ �� = �p�q� s��)

= P
(�ur1�i�� vr1�i�� vr2�i�� ∈ Bi� i = 1�2� � � �

) ·P(C ∩ �� ∈ �3�)�
where the last two equalities follow from the fact that C ∩ �� = �p�q� s�� ∈
� r
pqs by the definition of � r

� and the fact that the following sequences are i.i.d.
and independent of one another: �ur1�j�, j = 1�2� � � ��, �vr1�j�� j = 1�2� � � ��,
�vr2�j�� j = 1�2� � � ��. The claim following (57) is then immediate. ✷

Proof of Theorem 7�2� We first establish (51). Note that for s ≤ τr0,
Tr

2�s� = 0, Tr
1�s� =

∫ s
0 1�Qr

1�u�>0� du ≤ s, and so

Qr
1�s� = Ar

1�s� −Sr1
(
Tr

1�s�
) ≥ Ar

1�s� −Sr1�s��(58)

Ir1�s� ≤ s�(59)

Let 0 < ε̃ < min��λ1 − µ1�/8� µ1/2� λ1/2� and rε̃ ≥ 1 such that for all r ≥ rε̃,
λr1−µr1 ≥ �λ1−µ1�/2, 
λ1−λr1
 < ε̃ and 
µ1−µr1
 < ε̃. Then, for tr = 8Lr/�λ1 − µ1�
and r ≥ rε̃,

P�Ir1�τr0� > tr� ≤ P�τr0 > tr�
≤ P�Ar

1�tr� −Sr1�tr� ≤ Lr�
≤ P

(
Ar

1�tr� ≥ �λr1 − ε̃�tr� Sr1�tr� ≤ �µr1 + ε̃�tr�

��λr1 − ε̃� − �µr1 + ε̃��tr ≤ Lr
)

+P
(
Ar

1�tr� < �λr1 − ε̃�tr
)
+P

(
Sr1�tr� > �µr1 + ε̃�tr

)
�

(60)

Now, by the choice of tr, for r ≥ rε̃,

�λr1 − µr1 − 2ε̃�tr ≥
(
λ1 − µ1

4

)
tr > Lr(61)

and the first probability in the last inequality in (60) is zero. Furthermore, by
large deviation estimates similar to those given in Appendix A [in particular,
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one uses (184) with ζr�1� = 0, δr = 0 and χrtr + 1 in place of χrt in the right
member there, (188), (181) and (190)], provided tr > 2/ε̃ we have

P�Ar
1�tr�<�λr1− ε̃�tr� ≤ exp

(
−��λr1− ε̃�tr+1�,a�∗1

(
1
λ1

(
1

1− ε̃/3λ1

)))
�(62)

P�Sr1�tr�>�µr1+ ε̃�tr� ≤ exp
(
−��µr1+ ε̃�tr−1�,s�∗1

(
1
µ1

(
1

1+ ε̃/3µ1

)))
�(63)

where ,a� ∗1 � ,
s� ∗
1 are the Legendre–Fenchel transforms of ,a1� ,

s
1, respectively.

Since the values of ,a� ∗1 and ,
s� ∗
1 appearing above are strictly positive and

tr →∞ as r→∞, it follows that

P�Ir1�τr0� > tr� → 0 as r→∞�(64)

and hence (51) holds since tr = o�r� as r→∞.
Since (52) clearly holds for t = 0, we fix t > 0. For the proof of (52), we will

show that

P
(

sup
τr0≤s≤r2t

Rr�s� ≥ Lr − 1
)
→ 0 as r→∞�(65)

The proof of the other half, namely that

P
(

inf
τr0≤s≤r2t

Rr�s� ≤ −�Lr − 1�
)
→ 0 as r→∞�(66)

is very similar. The details of this half are left to the reader, but see the next
paragraph for some comments on the steps in the proof.

In outline, for (65), the proof involves showing the steps (i)–(v) below for
Lr = �c log r	 and c sufficiently large.

(i) The number of complete excursions that Rr makes above zero in an
interval of length r2t is bounded by the number of arrivals to class 1 dur-
ing that time, which in turn is O�r2t� with arbitrarily high probability for r
sufficiently large [cf. (76)].

(ii) For 0 < ε̃ < min��µ1 + µ2 − λ1�/8� λ1/2� µ1/2� µ2/2� and r sufficiently
large, for any time interval of length sr = O�Lr�, the number of new arrivals
to class 1 during such an interval is bounded above by �λr1 + ε̃�sr with a
probability that is at least as large as 1 − C1 exp�−C2L

r�, where C1�C2 are
positive constants that may depend on ε̃, but that do not depend on r.

(iii) For ε̃ as in (ii) and r sufficiently large, for any time interval of length
sr = O�Lr� that begins at or before r2t and during which class 1 jobs are being
continually processed by activity j ∈ �1�2�, the number of departures from
class 1 during the interval due to such processing is at least �µrj − ε̃�sr with
a probability that is at least as large as 1−C1 exp�−C2L

r�, where C1�C2 are
positive constants that may depend on ε̃, but that do not depend on r.

(iv) Properties (ii) and (iii) imply that with a probability at least as large
as 1−C3 exp�−C2L

r� (where C3 is a positive constant independent of r), any
given excursion of Rr above zero that starts before time r2t lasts for at most
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sr ≡ �Lr − 3�/�λr1 + ε̃� units of time, and, during the excursion, Rr does not
reach the level Lr − 1.

(v) Properties (i) and (iv) imply that provided c is sufficiently large in
Lr = �c log r	, with a probability that can be made arbitrarily close to 1 for
r sufficiently large, Rr does not reach the level Lr − 1 during any of the
excursions above zero that start before r2t.

The details of these steps are provided in the following paragraphs. For
the proof of (66), the steps need to be modified as follows. In (ii) and (iii),
0 < ε̃ < min��λ1 − µ1�/8� λ1/2� µ1/2� µ2/2�, the estimate in (ii) is replaced by
an estimate of the probability that the number of arrivals that can occur in an
interval of length sr that starts at or before r2t is bounded below by �λr1− ε̃�sr;
the estimate in (iii) is replaced by an estimate of the probability that the
number of departures from class 1 that can occur due to continuous process-
ing by activity 1 during an interval of length sr is no more than �µr1 + ε̃�sr;
in (iv) one considers excursions of Rr below zero and sr = �Lr − 3�/�µr1 + ε̃�
and in (v) one shows that with a probability that is arbitrarily close to 1 for r
sufficiently large, Rr does not reach the level −�Lr − 1� during any excursion
below zero that starts before r2t. Since this argument rests on showing that
Rr does not reach −�Lr − 1� (and hence Qr does not reach zero) during the
time interval �τr0� r2t	 with probability tending to 1 as r → ∞, one does not
need to consider the effect of idletime.

The constant c0 referred to in Definition 5.1 of the threshold policy can be
chosen to equal the maximum of those determined such that (65), (66) and the
estimates used to establish uniform integrability in the proof of Theorem 5.3
all hold. (Below we only describe how to determine a value that works for (65),
but a similar estimate holds for (66) and these estimates with a sufficiently
large value of c0 are used to establish the uniform integrability in the proof
of Theorem 5.3).

Fix r ≥ 1. Consider the nth “up” excursion interval for Rr, which begins at
τr2n−1. Note that if τr2n−1 <∞, then a new arrival to class 1 occurs at τr2n−1 and
over the time interval �τr2n−1� τ

r
2n�, both servers will be processing class 1 jobs

only. We define shifted processes as follows. For each n ≥ 1, on �τr2n−1 < ∞�,
define for each s ≥ 0,

A
r�n
1 �s� = Ar

1�τr2n−1 + s� −Ar
1�τr2n−1��(67)

S
r�n
j �s� = Srj�Tr

j�τr2n−1� + s� −Srj�Tr
j�τr2n−1��� j = 1�2�(68)

Ă
r�n
1 �s� = sup�m ≥ 0� ξr1�Ar

1�τr2n−1� +m� − ξr1�Ar
1�τr2n−1�� ≤ s��(69)

S̆
r� n
j �s� = sup�m ≥ 0� ηrj�Srj�Tr

j�τr2n−1�� +m�
(70) − ηrj�Srj�Tr

j�τr2n−1��� ≤ s�� j = 1�2

and for concreteness, on �τr2n−1 = ∞�, define Ar�n
1 � S

r�n
1 � S

r�n
2 � Ă

r�n
1 � S̆

r� n
1 � S̆

r� n
2 ,

to be identically zero. Then on �τr2n−1 <∞�, for 0 ≤ s ≤ τr2n − τr2n−1 we have

Rr�τr2n−1 + s� = 1+Ar�n
1 �s� −Sr�n1 �s� −Sr�n2 �s��(71)
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and, taking account of the fact that a new arrival occurs at τr2n−1 < ∞ and
a job may have been partially served by activity j ∈ �1�2� at τr2n−1 < ∞, we
also have

A
r�n
1 �s� = Ă

r�n
1 �s� and S

r�n
j �s� ≥ S̆

r� n
j �s��(72)

Let 0 < ε̃ < min��µ1+µ2−λ1�/8� λ1/2� µ1/2� µ2/2� and let rε̃ ≥ 1 be chosen
large enough such that all of the following hold for r ≥ rε̃:

r2t >
2
ε̃
� Lr > 3�(73)


λ1 − λr1
 < ε̃� 
µ1 − µr1
 < ε̃� 
µ2 − µr2
 < ε̃�(74)

µr1 + µr2 − λr1 − 3ε̃ >
µ1 + µ2 − λ1

2
�(75)

Henceforth, in this proof we only consider r ≥ rε̃. Let nr = ��λr1 + ε̃�r2t	 + 1.
Then since each excursion of Rr from zero to one requires an arrival to class 1,
using the results of Appendix A [cf. (192)] we have the following estimate on
the probability that there are at least nr − 1 complete and one additional
partial or complete “up” excursion in �0� r2t	:

P�τr2nr−1 ≤ r2t� ≤ P
(
Ar

1�r2t� ≥ nr
)

= P
(
Ar

1�r2t� > �λr1 + ε̃�r2t
)

≤ exp
(
−�λ1r

2t− 1�,a� ∗1

(
1
λ1

(
1

1+ ε̃/3λ1

)))
�

(76)

Now,

P�Rr�s� ≥ Lr − 1 some s ∈ �0� r2t	�
≤ P

(
τr2nr−1 ≤ r2t

)+P
(
τr2nr−1 > r2t� Rr�s� ≥ Lr − 1 some s ∈ �0� r2t	)

≤ P
(
τr2nr−1 ≤ r2t

)
+

nr∑
n=1

P
(
Rr�s� ≥ Lr − 1 some s ∈ �τr2n−1� τ

r
2n�� τr2n−1 ≤ r2t

)
�

(77)

Let sr = �Lr − 3�/�λr1 + ε̃� and for each positive integer n, let

ϒr�n = {
A
r�n
1 �sr� ≤ �λr1 + ε̃�sr�Sr�n1 �sr� ≥ (

µr1 − ε̃
)
sr�

S
r�n
2 �sr� ≥ (

µr2 − ε̃
)
sr� τr2n−1 ≤ r2t

}
�

Then,

P
(
Rr�s� ≥ Lr − 1 some s ∈ �τr2n−1� τ

r
2n�� τr2n−1 ≤ r2t

)
≤ P��ϒr�n�c� τr2n−1 ≤ r2t�
+P�Rr�s� ≥ Lr − 1 some s ∈ �τr2n−1� τ

r
2n�� ϒr�n��

(78)
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where Bc is the complement of B in �. Now, on ϒr�n,

1+Ar�n
1 �sr� −Sr�n1 �sr� −Sr�n2 �sr� ≤ 1+ �λr1 + ε̃− µr1 + ε̃− µr2 + ε̃�sr

≤ 1− �µ1 + µ2 − λ1�
2

· �L
r − 3�

�λr1 + ε̃�
< 0

(79)

for all r ≥ r′ε̃ where r′ε̃ ≥ rε̃ can be chosen independent of n and we have
used the facts that Lr → ∞ and µ1 + µ2 − λ1 > 0. It then follows from the
representation (71) of Rr on �τr2n−1� τ

r
2n� when τr2n−1 <∞ that

τr2n − τr2n−1 < sr on ϒr�n for r ≥ r′ε̃�(80)

Furthermore, on ϒr�n for 0 ≤ s < sr,

1+Ar�n�s� −Sr�n1 �s� −Sr�n2 �s� ≤ 1+ �λr1 + ε̃�sr ≤ Lr − 2�(81)

and so on combining this with (71) and (80) we have that for all r ≥ r′ε, on ϒr�n,

Rr�s� < Lr − 1 for s ∈ (
τr2n−1� τ

r
2n

)
�(82)

Thus the last probability in (78) is zero for all such r. It remains to estimate

P
(
τr2n−1 ≤ r2t� �ϒr�n�c) ≤ P

(
A
r�n
1 �sr� > �λr1 + ε̃�sr� τr2n−1 ≤ r2t

)
+P

(
S
r�n
1 �sr� < �µr1 − ε̃�sr� τr2n−1 ≤ r2t

)
+P

(
S
r�n
2 �sr� < �µr2 − ε̃�sr� τr2n−1 ≤ r2t

)
�

(83)

Recall the definition of � r
n from Lemma 7.5. Now, the set �τr2n−1 < ∞� is

contained in �� r
n ∈ �3� by the convention adopted at the end of Section 2.1

that the arrival and service renewal processes are finite everywhere on �, and
so

P
(
A
r�n
1 �sr� > �λr1 + ε̃�sr� τr2n−1 ≤ r2t

)
≤ E

(
1�� r

n ∈�3�P�Ar�n
1 �sr� > �λr1 + ε̃�sr 
� r

� r
n
�)�

On �� r
n ∈ �3�, by (69), (72), Ar�n

1 is the counting process defined from the
sequence of interarrival time random variables �ur1�Ar

1�τr2n−1�+i�, i = 1�2� � � ��
where by Lemmas 7.5 and 7.6, on �� r

n ∈ �3�, the conditional distribution of
this sequence given � r

� r
n

is equal to that of a sequence of strictly positive
independent random variables where the members indexed by i = 2�3� � � �
are identically distributed with the same distribution as ur1�1�. Hence we may
apply the results of Appendix A [cf. (192)] to conclude that a.s. on �� r

n ∈ �3�,
for sr > 2/ε̃,

P
(
A
r�n
1 �sr� > �λr1 + ε̃�sr 
� r

� r
n

)
≤ exp

(
−(�λr1 + ε̃�sr − 1

)
,
a� ∗
1

(
1
λ1

(
1

1+ ε̃/3λ1

)))

= exp
(
−�Lr − 4�,a� ∗1

(
1
λ1

(
1

1+ ε̃/3λ1

)))
�

(84)
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Similarly, for j = 1�2, using (72) we have

P
(
S
r�n
j �sr� < �µrj − ε̃�sr� τr2n−1 ≤ r2t

)
≤ E

(
1�� r

n ∈�3�P
(
S̆
r� n
j �sr� < �µrj − ε̃�sr� τr2n−1 ≤ r2t 
 � r

� r
n

))
�

(85)

where on �� r
n ∈ �3�� S̆r� nj is the counting process defined from the sequence of

successive service time random variables �vrj�Srj�Tr
j�τr2n−1�� + i�, i = 1�2� � � ��

whose conditional distribution on �� r
n ∈ �3� given � r

� r
n

is that of a sequence of
strictly positive independent random variables in which the members indexed
by i = 2�3� � � � are identically distributed with the same distribution as vrj�1�.
Hence by a slight adaptation of the proof of (193) in Appendix A (to include
the extra event �τr2n−1 ≤ r2t�), for δrj = ε̃/2µrj we have a.s. on �� r

n ∈ �3�,

P
(
S̆
r� n
j �sr� < �µrj − ε̃�sr� τr2n−1 ≤ r2t 
 � r

� r
n

)
≤ exp

(
−�µrj − ε̃�sr,s� ∗j

(
1
µj

(
1+ ε̃

2µj

)))

+P
(
vrj�Srj�Tr

j�τr2n−1�� + 1� > δrjs
r� τr2n−1 ≤ r2t 
 � r

� r
n

)
(86)

≤ exp
(
−�µj − 2ε̃��Lr − 3�

�λ1 + 2ε̃� ,
s� ∗
j

(
1
µj

(
1+ ε̃

2µj

)))

+P
(
vrj�Srj�Tr

j�τr2n−1�� + 1� > δrjs
r� τr2n−1 ≤ r2t 
 �� r

n

)
�

Now, using (192) and (194), for any l0 ∈ � such that l0 > 0 we have

P
(
vrj�Srj�Tr

j�τr2n−1�� + 1� > δrjs
r� τr2n−1 ≤ r2t

)
≤ P

(
Srj�r2t�+1

max
i=1

vrj�i� > δrjs
r

)

≤ P
(
Srj�r2t� > �µrj + ε̃�r2t

)+P
(��µrj+ε̃�r2t	+1

max
i=1

vrj�i� > δrjs
r

)

≤ exp
(
−�µjr2t− 1�,s� ∗j

(
1
µj

(
1

1+ ε̃/3µj

)))
(87)

+ exp
(

log��µrj + ε̃�r2t+ 1� − l0ε̃s
r

2µj
+ ,sj�l0�

)

≤ exp
(
−�µjr2t− 1�,s� ∗j

(
1
µj

(
1

1+ ε̃/3µj

)))

+ exp
(

log��µrj + ε̃�t� + 1+ 2 log r− l0ε̃�Lr − 3�
2µj�λ1 + 2ε̃� + ,

s
j�l0�

)
�

Combining all of the above from (76) onwards we have for all r sufficiently
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large,

P
(
Rr�s� ≥ Lr − 1 some s ∈ �0� r2t	)
≤ exp

(
−�λ1r

2t− 1�,a� ∗1

(
1
λ1

(
1

1+ ε̃/3λ1

)))

+nr
{
exp

(
−�Lr − 4�,a� ∗1

(
1
λ1

(
1

1+ ε̃/3λ1

)))

+
2∑

j=1

{
exp

(−�µj − 2ε̃��Lr − 3�
λ1 + 2ε̃

,
s� ∗
j

(
1
µj

(
1+ ε̃

2µj

)))
(88)

+ exp
(
−�µjr2t− 1�,s� ∗j

(
1
µj

(
1

1+ ε̃/3µj

)))

+ exp
(

1+ log��µrj + ε̃�t� + 2 log r− l0ε̃�Lr − 3�
2µj�λ1 + 2ε̃� + ,

s
j�l0�

)}}
�

Since nr ≤ �λ1 + 2ε̃�te2 log r + 1, it follows that there is a constant c0 such that
for any c > c0 and Lr = �c log r	, the above tends to zero as r→∞. ✷

Proof of Theorem 7.1. Fix t ≥ 0 and let ε > 0. Then, by Theorem 7.2 and
the properties of Lr, there is an rε ≥ 1 such that whenever r ≥ rε, 2Lr/r < ε
and

P�Ir1�τr0� ≥ rε� < ε(89)

P
(

sup
τr0≤s≤r2t


Rr�s�
 ≥ Lr − 1
)
< ε�(90)

Note that under the threshold policy, server 1 is only idle when buffer 1 is
empty, that is, Ir1 can increase only if Qr

1 ≤ 1. (The bound of 1 occurs here
because there may be a class 1 customer in service or in suspension at server
2 when buffer 1 is empty.) In particular, if server 1 incurs some idletime in
�τr0� r2t	, that is, Ir1�r2t�−Ir1�τr0� > 0, thenRr�s� ≤ −Lr+1 for some s ∈ �τr0� r2t	.
Thus, for all r ≥ rε,

P
(�Q̂r

1�t ≥ ε or �Îr1�t ≥ ε
)

= P
(�Qr

1�r2t ≥ rε or �Ir1�r2t ≥ rε
)

≤ P
(

sup
τr0≤s≤r2t

Qr
1�s� ≥ 2Lr or Ir1�τr0� ≥ rε or Ir1�r2t� − Ir1�τr0� > 0

)

≤ P
(

sup
τr0≤s≤r2t


Rr�s�
 ≥ Lr − 1
)
+P�Ir1�τr0� ≥ rε� < 2ε�

(91)

Since t and ε were arbitrary, the desired result follows. ✷

8. Weak convergence under the threshold policy. This section is
devoted to the proof of Theorem 5.2. Throughout this section, as in the pre-
vious one, we assume that the allocation processes Tr� ∗ associated with the
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threshold policy described in Definition 5.1 are used in the rth parallel server
system, and to simplify the notation, in proofs we simply use Tr in place
of Tr� ∗.

In addition to the scaled processes defined in (16)–(20), we define the fol-
lowing fluid and diffusion scaled processes. For each t ≥ 0, let

�Ar�t� = r−2Ar�r2t��(92)

�Sr�t� = r−2Sr�r2t��(93)

�Ir�t� = r−2Ir�r2t��(94)

�Qr�t� = r−2Qr�r2t�(95)

and let

Ŵr�t� = yr · Q̂r�t��(96)

where yr = �yr1� yr2�′ and yr1 = 1, yr2 = µr2/µ
r
3. Recall the definition of �T∗

from (29). Define e� �0�∞� → �0�∞� such that e�t� = t for all t ≥ 0. The proof
of Theorem 5.2 depends on the following lemma which we prove first.

Lemma 8.1. For the fluid scaled allocation processes, �Tr� ∗
j , j = 1�2�3, we

have,

�Tr� ∗ �⇒ �T∗ as r→∞�(97)

Proof. We first note that if �Zr� is a sequence of processes and Z is a
continuous deterministic process (such as �T∗ or the identically zero process
0), then Zr �⇒ Z is equivalent to Zr → Z u.o.c. in probability (uniformly on
compact time intervals in probability). This is implicitly used several times in
the proof below to combine statements involving convergence in distribution
to deterministic processes.

By (7),

0 ≤ t− �Tr
1�t� = �Ir1�t� = r−1Îr1�t� for all t ≥ 0�(98)

and so, since Îr1 �⇒ 0 as r→∞ by Theorem 7.1, it follows that

�Tr
1 �⇒ �T∗

1 as r→∞�(99)

where �T∗
1�t� = t for all t ≥ 0. Now, by (21), for each t ≥ 0,

�Qr
1�t� = r−1Âr

1�t� − r−1Ŝr1��Tr
1�t��

− r−1Ŝr2��Tr
2�t�� + λr1t− µr1�Tr

1�t� − µr2�Tr
2�t��

(100)

By using the fact that �Tr
j�t� ≤ t for all t ≥ 0, j = 1�2, to obtain an estimate

like (165), we deduce from the functional central limit result (23) and the
continuous mapping theorem (cf. [1], page 77) that(

r−1Âr
1�·�� r−1Ŝr1��Tr

1�·��� r−1Ŝr2��Tr
2�·��

) �⇒ �0�0�0� as r→∞�(101)
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On combining (100) and (101) with Theorem 7.1, we conclude that

λr1e�·� − µr1�Tr
1�·� − µr2�Tr

2�·� �⇒ 0 as r→∞�(102)

It then follows from this, (99), and Assumption 3.1, that

�λr1 − µr1�
µr2

e�·� − �Tr
2�·� �⇒ 0 as r→∞�(103)

and hence by (29) and Assumption 3.1,

�Tr
2 �⇒ �T∗

2 as r→∞�(104)

It remains to show that

�Tr
3 �⇒ �T∗

3 as r→∞�(105)

For this, since by (8),

�Tr
3�t� = t− �Tr

2�t� − �Ir2�t�� t ≥ 0�(106)

on taking (104), the definition of �T∗
3 and Assumption 3.1 into account, we see

that it suffices to show that

�Ir2 �⇒ 0 as r→∞�(107)

Now, by (96), (7), (8), (21), (22), we have for each t ≥ 0,

�Wr�t� ≡ r−1Ŵr�t� = yr · �Qr�t� = yr · �Xr�t� + µr1�Ir1�t� + µr2�Ir2�t��(108)

where for X̂r defined in (31) and (32),

�Xr ≡ r−1X̂r �⇒ 0 as r→∞�(109)

by similar reasoning to that for (101), using (23) and Assumption 3.1. Thus,
for t ≥ 0,

yr2
�Qr

2�t� = ζ̄r�t� + µr2�Ir2�t��(110)

where, by (109) and Theorem 7.1 we have

ζ̄r ≡ yr · �Xr + µr1�Ir1 − �Qr
1 �⇒ 0 as r→∞�(111)

Here, yr2 > 0, µr2 > 0, �Qr
2�t� ≥ 0, ζ̄r�0� = 0, �Ir2�0� = 0, and �Ir2 is continuous

and nondecreasing. Furthermore, from the definition of the threshold policy
we note that the idletime at server 2 can increase only if there are no class
2 jobs in the system, and hence �Ir2 can only increase if �Qr

2 is zero. It follows
from these characteristics that �yr2 �Qr

2, µ
r
2
�Ir2� is the unique solution of the one-

dimensional Skorokhod problem (cf. Proposition B.1) for ζ̄r and hence

�Ir2�t� = −�µr2�−1 inf
0≤s≤t

ζ̄r�s�(112)

and (107) follows from this by the continuous mapping theorem and (111). ✷
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Proof of Theorem 5.2. For each t ≥ 0, we have by multiplying (108)
through by r that

Ŵr�t� = yr · Q̂r�t� = yr · X̂r�t� + µr1Îr1�t� + µr2Îr2�t��(113)

where X̂r is defined by (31) and (32). By the functional central limit theorem
result (23), Lemma 8.1, and a random time change theorem (cf. [1], Section 17),
we have as r→∞,(

Âr
1�·�� Âr

2�·�� Ŝr1��Tr
1�·��� Ŝr2��Tr

2�·��� Ŝr3��Tr
3�·��

)
�⇒ (

Ã1�·�� Ã2�·�� S̃1��T∗
1�·��� S̃2��T∗

2�·��� S̃3��T∗
3�·��

)
�

It then follows from the definition of X̂r and Assumption 3.1 that(
X̂r

1� X̂
r
2

) �⇒ (
X̃1� X̃2

)
as r→∞�(114)

where

X̃1�t� = Ã1�t� − S̃1��T∗
1�t�� − S̃2��T∗

2�t�� + θ1t�(115)

X̃2�t� = Ã3�t� − S̃3��T∗
3�t�� + θ2t�(116)

so that X̃ is a two-dimensional Brownian motion with drift as described in
Definition 4.1. Rearranging (113), we have

yr2Q̂
r
2�t� = ζ̂r�t� + µr2Îr2�t��(117)

where

ζ̂r ≡ yr · X̂r + µr1Îr1 − Q̂r
1 �⇒ y · X̃ as r→∞�(118)

by (114), Theorem 7.1 and Assumption 3.1. By the same reasoning as in the
proof of Lemma 8.1, using uniqueness of the solution to the Skorokhod prob-
lem, we have

Îr2�t� = −�µr2�−1 inf
0≤s≤t

ζ̂r�s��(119)

It then follows from (117), (118), (119) and the continuous mapping theorem
that (

Q̂r
2� Î

r
2

) �⇒ (
Q̃∗

2� Ĩ
∗
2

)
as r→∞�(120)

where Q̃∗
2� Ĩ

∗
2 are given by (41) and (42). Combining this with Theorem 7.1

yields

�Q̂r� Îr� Ŵr� �⇒ �Q̃∗� Ĩ∗� W̃∗� as r→∞�(121)

where Q̃∗� Ĩ∗� W̃∗ are defined in (41) and (42). ✷
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9. Asymptotic optimality of the threshold policy. The purpose of this
section is to prove Theorem 5.3. Before proceeding with the proof, we first
establish some preliminary results concerning fluid scaled processes.

In this section, T = �Tr� will be any sequence of scheduling control policies
(one for each member of the sequence of parallel server systems). The associ-
ated queue length and idletime processes will be denoted by Qr, Ir and the
fluid and diffusion scaled versions of these processes will be denoted by �Qr��Ir
and Q̂r� Îr, respectively. We also let

J�T� = lim inf
r→∞ Ĵr�Tr��(122)

where Ĵr�Tr� is defined in (24). When our sequence of threshold policies �Tr� ∗�
is used, we append a superscript ∗ to the queue length, idletime etc. processes
(e.g., Qr� ∗� Ir� ∗, etc.).

Definition 9.1 (C-tightness). In the following, a sequence of processes
with paths in Dm for some m ≥ 1 is called C-tight if it is tight in Dm and
any weak limit point of the sequence (obtained as a weak limit along a sub-
sequence) has continuous paths almost surely.

Lemma 9.2. Let �Tr� be any sequence of scheduling control policies �one
for each member of the sequence of parallel server systems�� Then

�� �Qr�·�� �Ar�·�� �Sr�·�� �Tr�·���Ir�·���(123)

is C-tight.

Proof. It follows from (23) that

� �Ar�·�� �Sr�·�� �⇒ �λ�·�� µ�·�� as r→∞�(124)

where λ�t� = λt and µ�t� = µt for all t ≥ 0. In addition, since they cor-
respond to cumulative allocations of time, each of the three components of
Tr is uniformly Lipschitz continuous with a Lipschitz constant less than or
equal to 1 and this property is preserved by the fluid scaled processes �Tr. It
follows immediately from this and (124) that �� �Ar�·�� �Sr�·�� �Tr�·��� is C-tight
(cf. Theorem 15.5 in [1]). From the equations (7)–(10) for queue length and
idletime we have

�Qr
1�t� = �Ar

1�t� − �Sr1��Tr
1�t�� − �Sr2��Tr

2�t���(125)

�Qr
2�t� = �Ar

2�t� − �Sr3��Tr
3�t���(126)

�Ir1�t� = t− �Tr
1�t��(127)

�Ir2�t� = t− �Tr
2�t� − �Tr

3�t��(128)

Combining these with the C-tightness established above and a random time
change theorem (cf. [1], page 145) yields the desired result. ✷
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The next lemma in particular implies that, when searching for an asymp-
totically optimal policy, we may restrict to those policies whose associated
fluid scaled allocation processes converge (along a subsequence) to those given
by �T∗.

Lemma 9.3. Let T = �Tr� be a sequence of scheduling control policies such
that J�T� <∞. Consider a subsequence �Tr′ � of �Tr� along which the lim inf
in the definition of J�T� is achieved; that is,

lim
r′→∞

Ĵr′ �Tr′ � = J�T��(129)

Then,

� �Qr′ �·�� �Ar′ �·�� �Sr′ �·�� �Tr′ �·���Ir′ �·��
�⇒ �0� λ�·�� µ�·�� �T∗�·��0� as r′ → ∞�

(130)

where �T∗ is defined by �29�, 0 denotes the constant process that stays at the
origin in �2 for all time, and λ�t� = λt, µ�t� = µt for all t ≥ 0.

Proof. From Lemma 9.2 it follows that

�� �Qr′ �·�� �Ar′ �·�� �Sr′ �·�� �Tr′ �·���Ir′ �·���(131)

is C-tight. Thus, it suffices to show that all weak limit points of this sequence
are given by the right member of (130). For this, suppose that

� �Q�·�� �A�·�� �S�·�� �T�·���I�·���(132)

is obtained as a weak limit of (131) along a subsequence indexed by r′′. Without
loss of generality, by appealing to the Skorokhod representation theorem (cf.
[6], Theorem 3.1.8), we may choose an equivalent distributional representation
(for which we use the same symbols) such that all of the random processes
in (131) indexed by r′′, as well as the limit (132), are defined on the same
probability space and the convergence in distribution is replaced by almost
sure convergence on compact time intervals, so that a.s.,

� �Qr′′ �·�� �Ar′′ �·�� �Sr′′ �·�� �Tr′′ �·���Ir′′ �·��
→ � �Q�·�� �A�·�� �S�·�� �T�·���I�·�� u.o.c. as r′′ → ∞�

(133)

From (124) we have that a.s., �A�·� = λ�·� and �S�·� = µ�·�. We next show that
a.s., �Q�·� ≡ 0. Combining the fact that limr′′→∞ Ĵr′′ �Tr′′ � = J�T� < ∞ with
(133) and Fatou’s lemma, we have

0 = lim
r′′→∞

1
r′′
Ĵr′′ �Tr′′ � ≥ E

(∫ ∞
0
e−γt lim inf

r′′→∞

(
h · �Qr′′ �t�

)
dt

)

= E
(∫ ∞

0
e−γth · �Q�t�dt

)
�

(134)
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Since hk > 0, k = 1�2, and a.s., �Q has continuous paths in �+ ×�+, it follows
from the above that a.s., �Q�·� ≡ 0. Then, by letting r′′ → ∞ in (125)–(128) and
using (124), (133), we have a.s., for each t ≥ 0,

0 = λ1t− µ1
�T1�t� − µ2

�T2�t��(135)

0 = λ2t− µ3
�T3�t��(136)

�I1�t� = t− �T1�t��(137)

�I2�t� = t− �T2�t� − �T3�t��(138)

Multiplying (135) by µ−1
2 and (136) by µ−1

3 and adding the two expressions
together while recalling Assumption 3.1(ii) we obtain

µ1

µ2

�I1�t� + �I2�t� = 0�(139)

Since a.s., each component of �I�·� inherits the property from �Ir′′ �·� that it is
nonnegative for all time, it follows from (139) that a.s., �I1�·� = 0 = �I2�·�. It
then follows from (137) that �T1�·� = �T∗

1�·�, and (136) together with (138) yield
�T3�·� = �T∗

3�·� and �T2�·� = �T∗
2�·�. ✷

Proof of Theorem 5�3. We first concentrate on proving the inequality on
the left side of (45). For this, let T ≡ �Tr� be a sequence of scheduling control
policies. If J�T� = ∞, then the inequality holds trivially and so we assume
that J�T� < ∞. Recall the definitions of y = �y1� y2�′ = �1� µ2/µ3�′, yr =
�1� µr2/µr3�′, and of Ŵr from (96). Let

hr1 = h1 and hr2 =
h2y

r
2

y2
= h2µ

r
2µ3

µ2µ
r
3
�(140)

Note that by Assumption 3.2 we have

h1

h2
≥ µ3

µ2
= yr1
y2
�(141)

Then, using (113) (which holds for any scheduling control policy), we have for
all t ≥ 0,

hr · Q̂r�t� = h2

(
h1

h2
Q̂r

1�t� +
yr2
y2
Q̂r

2�t�
)
≥ h2

(
yr1
y2
Q̂r

1�t� +
yr2
y2
Q̂r

2�t�
)

= h2

y2

(
yr · X̂r�t� + V̂r�t�

)
�

where X̂r is given by (31) and (32) and

V̂r�t� = µr1Î
r
1�t� + µr2Îr2�t��(142)

Now, since hr · Q̂r�t� ≥ 0 for all t ≥ 0 and Îr1� Î
r
2 are nondecreasing and start

from zero, it follows from the well-known minimality of the solution of the
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Skorokhod problem (cf. Proposition B.1), that

V̂r�t� ≥ − inf
0≤s≤t

�yr · X̂r�s�� for all t ≥ 0�(143)

and hence

hr · Q̂r�t� ≥ h2

y2
ϕ�yr · X̂r��t� for all t ≥ 0�(144)

where ϕ�x��t� ≡ x�t�− inf 0≤s≤t x�s� for all t ≥ 0 and x ∈ D satisfying x�0� = 0.
Now, let �Tr′ � be a subsequence of �Tr� such that limr′→∞ Ĵr′ �Tr′ � = J�T�.

By (130), the fact that the limit there is deterministic, and (23), we have that
as r′ → ∞,

�Âr′ �·�� Ŝr′ �·�� �Tr′ �·�� �⇒ �Ã�·�� S̃�·�� �T∗�·���(145)

By invoking the Skorokhod representation theorem, we may assume without
loss of generality that the convergence above is a.s. uniform on compact time
intervals (u.o.c.) and then for X̂r� X̃ given by (31), (32), (115), (116), using
Assumption 3.1 we have that a.s. as r′ → ∞,

�Âr′ �·�� Ŝr′ �·�� �Tr′ �·�� X̂r′ �·�� → �Ã�·�� S̃�·�� �T∗�·�� X̃�·�� u.o.c.(146)

Then, by (21) and (22) and Fatou’s lemma, we have

J�T� = lim
r′→∞

Ĵr′ �Tr′ � ≥ E
(∫ ∞

0
e−γt lim inf

r′→∞

(
h · Q̂r′ �t�

)
dt

)
�(147)

Now we claim that a.s., for all t ≥ 0,

lim inf
r′→∞

�h · Q̂r′ �t�� ≥ h · Q̃∗�t��(148)

where Q̃∗ is given by (41) and (42). To see this, fix ω ∈ � such that ω is in the
set of probability 1 where the convergence in (146) holds u.o.c., and fix t ≥ 0.
If the left member of the inequality (148) is infinite at ω, then the inequality
clearly holds. On the other hand, if the left member is finite at ω, then there
is a further subsequence indexed by r′′ (possibly depending on ω and t) such
that

lim
r′′→∞

�h · Q̂r′′ �t�ω�� = lim inf
r′→∞

�h · Q̂r′ �t�ω�� <∞�(149)

Since hk > 0 and Q̂r′′
k �t�ω� ≥ 0 for k = 1�2, it follows that Q̂r′′

2 �t�ω� is bounded
as r′′ → ∞, and then using the fact that hr2 → h2 > 0 we have

lim
r′′→∞

�h2 − hr
′′

2 �Q̂r′′
2 �t�ω� = 0�(150)
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Then, using (144), (146), the continuity of ϕ on D and (41), (42), we have

lim
r′′→∞

h · Q̂r′′ �t�ω� = lim
r′′→∞

(
h1Q̂

r′′
1 �t�ω� + hr

′′
2 Q̂

r′′
2 �t�ω� + �h2 − hr

′′
2 �Q̂r′′

2 �t�ω�
)

= lim
r′′→∞

(
hr

′′ · Q̂r′′ �t�ω�)
≥ lim inf

r′′→∞
h2

y2
ϕ
(
yr

′′ · X̂r′′)�t�ω�
= h2

y2
ϕ�y · X̃��t�ω� = h2

y2
W̃∗�t�ω� = h · Q̃∗�t�ω��

(151)

Thus, (148) holds. Now, substituting this in (147), we conclude that

J�T� ≥ E
(∫ ∞

0
e−γt h · Q̃∗�t�dt

)
≡ J∗�(152)

This completes the proof of the inequality in the left side of (45).
Suppose now that the threshold policy Tr� ∗ is used in the rth parallel server

system. For the purpose of establishing the finiteness of J∗ and the equality
in the right side of (45), by appealing to Theorem 5.2 and the Skorokhod
representation theorem, we may assume that a.s.,

Q̂r� ∗ → Q̃∗ u.o.c. as r→∞�(153)

where Q̃∗� Ĩ∗ are given by (41) and (42). Then for

Ĥr� ∗ ≡ h · Q̂r� ∗ and H̃∗ ≡ h · Q̃∗�(154)

we have

Ĥr� ∗ → H̃∗ �m×P�-a.e.(155)

where dm = γe−γt dt on �R+��+� and �+ denotes the Borel σ-algebra on �+.
Then, since ��+ ×���+ × � �m×P� is a probability space, to establish

Ĵr�Tr� ∗� ≡ E
(∫ ∞

0
e−γtĤr� ∗�t�dt

)
→ J∗ <∞ as r→∞�(156)

it suffices to show that

lim sup
r→∞

E
(∫ ∞

0
e−γt

(
Ĥr� ∗�t�)2 dt) <∞�(157)

which implies the required uniform integrability. From (113) we have

Ĥr� ∗ = h · Q̂r� ∗ ≤
(
h1

yr1
+ h2

yr2

)
Ŵr� ∗�(158)

where

Ŵr� ∗ = yr · Q̂r� ∗ = yr · X̂r� ∗ + V̂r� ∗(159)
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and

X̂
r� ∗
1 �t� = Âr

1�t� − Ŝr1��Tr� ∗
1 �t�� − Ŝr2��Tr� ∗

2 �t��(160)

+ rµr2
(
λr1 − µr1
µr2

− λ1 − µ1

µ2

)
t�

X̂
r� ∗
2 �t� = Âr

2�t� − Ŝr3��Tr� ∗
3 �t�� + rµr3

(
λr2
µr3

− λ2

µ3

)
t�(161)

V̂r� ∗�t� = µr1Î
r� ∗
1 �t� + µr2Î r� ∗2 �t��(162)

Now, by the definition of �Tr� ∗� Î r� ∗2 can only increase if Q̂r� ∗
2 is zero and Q̂r� ∗

1
is at or below the level Lr/r. Thus, it follows from an oscillation inequality
for solutions of a perturbed Skorokhod problem (cf. the proof of Theorem 5.1
in [35]) that

µr2Î
r� ∗
2 �t� ≤ − inf

0≤s≤t
(
yr · X̂r� ∗�s� + µr1Î r� ∗1 �s�)+ yr1Lrr−1

≤ sup
0≤s≤t

∣∣yr · X̂r� ∗�s�∣∣+ µr1Î r� ∗1 �t� + yr1Lrr−1�
(163)

where we have used the fact that Î r� ∗1 is nondecreasing to obtain the last
inequality. Combining the above, we see that to prove (157) it suffices to show
that as functions of t the following are all in a bounded subset of L1�m� ≡
L1��+��+�m� for r sufficiently large:

E
(

sup
0≤s≤t

(
Âr
k�s�

)2)
� E

(
sup
0≤s≤t

(
Ŝrj��Tr� ∗

j �s��)2)� E
((
Î
r� ∗
1 �t�)2)�(164)

k = 1�2, j = 1�2�3. We establish estimates that show this for the last two
expectations in (164), the estimates for the first expectation being similar to
those for the middle one. For later use we note that due to the exponential
decay factor in m, any polynomial in t is in L1�m�.

For t ≥ 0 and j ∈ �1�2�3�, since �Tr� ∗
j is continuous and 0 ≤ �Tr� ∗

j �s� ≤ s for
all s, we have

sup
0≤s≤t

∣∣Ŝrj(�Tr� ∗
j �s�)∣∣ ≤ sup

0≤s≤t

∣∣Ŝrj�s�∣∣�(165)

so it suffices to focus on estimating the right member above. By the definition
of the sum of i.i.d service times ηrj used to define Srj, we have that

� r
j �n� ≡ µrj η

r
j�n� − n� n = 0�1�2� � � �(166)

is an L2-martingale relative to the filtration �	 r� j
n �∞n=0 where 	

r� j
n = σ�vrj�i�,

i = 1� � � � � n� ∨ � and the quadratic variation process of this discrete-time
martingale is given by �� r

j 	n = β2
jn� n = 0�1�2� � � � where β2

j is the squared
coefficient of variation of the service times �vrj�i��∞i=1 (recall that this does
not depend upon r). Now, Srj�r2t� + 1 is a stopping time for the filtration

�	 r� j
n �∞n=0 and in a similar manner to that for equation (196) of [36] we have
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by Doob’s inequality, the quadratic variation of � r
j , and Lorden’s inequality

for the mean-value of a renewal process at time r2t, that

E
(

sup
0≤s≤t

∣∣� r
j �Srj�r2s� + 1�∣∣2) ≤ 4β2

jE
(
Srj�r2t� + 1

)
≤ 4β2

j�µrjr2t+ β2
j + 2��

(167)

Now, we estimate Ŝrj�s� in terms of � r
j as follows:

Ŝrj�s� = −r−1� r
j �Srj�r2s� + 1� + ε̂rj�(168)

where

ε̂rj = r−1µrj
(
ηrj�Srj�r2s� + 1� − r2s

)− r−1�(169)

and by bounding the residual service time at r2s by the full service time that
straddles r2s, we have


ε̂rj
 ≤ r−1µrjv
r
j�Srj�r2s� + 1� + r−1

= r−1(� r
j �Srj�r2s� + 1� −� r

j �Srj�r2s�� + 2
)

≤ 2r−1
(

sup
0≤s≤t


� r
j �Srj�r2s� + 1�
 + 1

)
�

(170)

Thus,

sup
0≤s≤t


Ŝrj�s�
 ≤ 3r−1
(

sup
0≤s≤t


� r
j �Srj�r2s� + 1�
 + 1

)
(171)

and hence using (167) we have since r ≥ 1,

E
(

sup
0≤s≤t


Ŝr�s�
2
)
≤ 18�1+ 4β2

j�µrjt+ β2
j + 2���(172)

where the right member is in a bounded subset of L1�m�.
We now turn our attention to estimating E��Î r� ∗1 �t��2�. For this we will use

estimates contained in the proof of Theorem 7.2. In order for these estimates
to be small enough to imply the desired L1�m�-boundedness, the constant c0
in the definition of the threshold policy Tr�∗ needs to be sufficiently large (and
possibly larger than what is required for the results of Theorem 7.2 alone to
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hold). Now, since Ir1�r2t� ≤ r2t, we have, using the notation of Section 7,

E
(�Î r� ∗1 �t��2) = ∫ ∞

0
P
(�Î r� ∗1 �t��2 > s

)
ds =

∫ r2t2

0
P
(
I
r�∗
1 �r2t� > r

√
s
)
ds

≤
∫ r2t2

0

{
P�Ir�∗1 �τr0� > r

√
s� +P

(
sup

τr0≤u≤r2t


Rr�u�
 ≥ Lr − 1
)}

ds

≤
(
tr

r

)2

+
∫ r2t2

�tr/r�2
P�Ir� ∗1 �τr0� > tr�ds

+ r2t2P
(

sup
τr0≤u≤r2t


Rr�u�
 ≥ Lr − 1
)
�

(173)

where tr = 8Lr/�λ1−µ1� and we have used the fact that Ir� ∗1 �r2t�−Ir� ∗1 �τr0� = 0
if supτr0≤u≤r2t 
Rr�u�
 < Lr − 1. By the proof of Theorem 7.2, [including the
estimate analogous to (88) needed to prove (66)], there is r0 ≥ 1 (not depending
on t) and positive, finite constants C1–C6 (not depending on t or r) such that
for all r ≥ r0,

P�Ir1�τr0� > tr� ≤ C1 exp�−C2L
r�(174)

[cf. (60)–(63)] and

P
(

sup
τr0≤s≤r2t


Rr�s�
 ≥ Lr − 1
)

≤ �C3 +C4r
2t�2(exp�−C5L

r� + exp�−C6r
2t�)�

(175)

On substituting these estimates in (173), we have for r ≥ r0,

E
((
Î
r� ∗
1 �t�)2) ≤ (

tr

r

)2

+ r2t2C1 exp�−C2L
r�

+ r2t2�C3 +C4r
2t�2(exp�−C5L

r� + exp�−C6r
2t�)�

(176)

Using the fact that for c > 0, xe−cx� x2e−cx� x3e−cx are bounded on �+ (with
r2t in place of x), we see that for Lr = c log r and c sufficiently large (chosen
independently of t and r), the right member above defines a bounded sequence
of functions in L1�m� for r ≥ r0. ✷

APPENDIX A

Large deviation bounds for renewal processes. In this section we
state and prove some estimates for large deviations of renewal processes.
These estimates are applied in Section 7 to the arrival and service renewal
processes, Ar and Sr and to shifts of these processes. While we believe that
the results of this section are at least known in folklore, we could not find
results in the literature that duplicate those that we need and so we give
some justification here. In this section, we have reused some of the symbols
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defined earlier for other purposes. For more details on the properties of the
Legendre–Fenchel transform used in this section, in the context of large devi-
ations, see [5], and in general, see [30].

In the following, r ≥ 1 is an index that takes values in a sequence of real
numbers tending to infinity.

For r ≥ 1 fixed, let �ζr�i��∞i=1 be a sequence of strictly positive, independent
random variables such that �ζr�i��∞i=2 are identically distributed. Assume that
there is a nonempty open neighborhood � r of the origin such that

,r�l� ≡ logE
[
elζ

r�i�
]
<∞ for all l ∈ � r� i = 2�3� � � � �(177)

It follows that ζr�i� for i ≥ 2 has finite mean mr = E�ζr2	 ∈ �0�∞� and we let
νr = 1/mr. For n = 0�1�2� � � � � define

Xr�n� =
n∑
i=1

ζr�i� and X̌r�n� =
n+1∑
i=2

ζr�i��(178)

where an empty sum is defined to have value zero. For each t ≥ 0, let

Nr�t� = sup�n ≥ 0� Xr�n� ≤ t��(179)

the renewal process associated with Xr. Recall that �x	 denotes the greatest
integer part of any real number x. Then for ε > 0, κr ≡ νr + ε and t > 2/ε, by
Markov’s inequality and the i.i.d. nature of �ζr�i��∞i=2, we have for each l ≥ 0,

P�Nr�t� > κrt� = P�Nr�t� ≥ �κrt	 + 1�
= P�Xr��κrt	 + 1� ≤ t�
≤ P�X̌r��κrt	� < t�
≤ eltE�exp�−lX̌r��κrt	��	
= exp�lt+ �κrt	,r�−l��
≤ exp�lt+ �κrt− 1�,r�−l���

(180)

where we have used the fact that ,r�−l� ≤ 0 for l ≥ 0, by the nonnegativity
of the ζr�i�. By minimizing the right member above over l ≥ 0 (which is the
same as minimizing over all l since 0 < t/κrt − 1 < mr = ��d/dl�,r��0�), we
obtain a form of Cramér’s large deviation inequality (cf. [5], page 27),

P�Nr�t� > κrt� ≤ exp
(
−�κrt− 1�,r� ∗

(
t

κrt− 1

))

≤ exp
(
−�κrt− 1�,r� ∗

(
1

νr + 1
2ε

))(181)

where

,r� ∗�x� ≡ sup
l∈�

�lx− ,r�l��� x ∈ ��(182)



DYNAMIC SCHEDULING OF TWO PARALLEL SERVERS 645

is the Legendre–Fenchel transform of ,r and we have used the facts that
t > 2

ε
and ,r� ∗ takes values in �0�∞	, is convex with a minimum of zero at

mr = 1/νr, ,r� ∗�x� is decreasing (to zero) for x < mr and increasing from zero
for x > mr. Indeed, ,r� ∗ is strictly convex at x =mr and so,

,r� ∗
(

1

νr + 1
2ε

)
> 0�(183)

Similarly, for ε > 0, χr ≡ νr − ε > 0, δr = ε/2νr, t ≥ 0 and l ≥ 0, we have

P�Nr�t� < χrt� ≤ P�Xr��χrt	 + 1� > t�
= P�X̌r��χrt	� > t− ζr�1��
≤ P�X̌r��χrt	� > t�1− δr�� +P�ζr�1� > δrt�
≤ exp�−lt�1− δr� + χrt,r�l�� +P�ζr�1� > δrt�

≤ exp
(
−χrt,r� ∗

(
1− δr
χr

))
+P�ζr�1� > δrt�

≤ exp
(
−χrt,r� ∗

(
1
νr

(
1+ ε

2�νr − ε�
)))

+P�ζr�1� > δrt��

(184)

where we have used the fact that ,r�l� ≥ 0 for l ≥ 0 and we have minimized
over l ≥ 0, which is the same as minimization over all l since

1− δr
χr

= 1− ε/2νr
νr − ε = 1

νr

(
1+ ε

2�νr − ε�
)
> mr�(185)

Now suppose that for each r and i = 2�3� � � �,

ζr�i� = ν

νr
ζ�i��(186)

where �ζ�i��∞i=2 is a sequence of i.i.d. random variables with mean m = 1/ν
where it is assumed that ν = limr→∞ νr is finite and strictly positive, and there
is a nonempty open neighborhood � of 0 ∈ � such that for i = 2�3� � � �,

,�l� ≡ logE
(
elζ�i�

)
<∞ for all l ∈ � �(187)

Then (177) holds with � r = �νr/ν�� and for all l ∈ �, x ∈ �,

,r�l� = ,

(
lν

νr

)
� ,r� ∗�x� = ,∗

(
xνr

ν

)
�(188)

where

,∗�x� ≡ sup
l∈�

�lx− ,�l���(189)

and ,∗ is convex, takes values in �0�∞	, ,∗� 1
ν
� = 0, and ,∗�x� is increasing for

x > 1
ν

and decreasing for x < 1
ν
. Furthermore, since , is differentiable at 0,

,∗�x� > 0 for x '= 1
ν
.
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For ε < ν/2, since νr → ν, there is rε ≥ 1 such that for all r ≥ rε, 
νr−ν
 < ε
and

νr

ν

(
1

νr + 1
2ε

)
≤ 1
ν

(
1

1+ ε/3ν
)
<

1
ν
�(190)

1
ν

(
1+ ε

2�νr − ε�
)
≥ 1
ν

(
1+ ε

2ν

)
>

1
ν
�(191)

On combining this with (188), the inequalities above for Nr yield for r ≥ rε,
κr = νr + ε, t > 2

ε
,

P�Nr�t� > κrt� ≤ exp
(
−�κrt− 1�,∗

(
1
ν

(
1

1+ ε/3ν
)))

≤ exp
(
−�νt− 1�,∗

(
1
ν

(
1

1+ ε/3ν
)))(192)

and for r ≥ rε, χr = νr − ε, δr = ε/2νr, t ≥ 0,

P�Nr�t� < χrt� ≤ exp
(
−χrt,∗

(
1
ν

(
1+ ε

2ν

)))
+P�ζr�1� > δrt��(193)

where the values of the quantities involving ,∗ in the above are strictly
positive.

In our application, the following will be needed to estimate the last probabil-
ity in (193) above. Let �υr�i��∞i=1 be a sequence of i.i.d. random variables, each
with the same distribution as the ζr�i�� i = 2�3� � � � satisfying (186) above.
Then for any n ≥ 1, and a fixed l0 ∈ � such that l0 > 0,

P
(

n
max
i=1

υr�i� > δrt

)
≤ nP�υr�1� > δrt� ≤ exp

(
log n− l0εt

2ν
+ ,�l0�

)
�(194)

where we have used the fact that δr = ε/2νr and (188) with l = l0ν
r/ν. In our

application, both t and n will depend on r and tend to infinity as r tends to
infinity, in such a way that tr = O�log r� and nr = O�r2�. We see from the
above that if tr/ log r is sufficiently large for all r sufficiently large, then we
will have

P
(

nr

max
i=1

υr�i� > δrtr
)
→ 0 as r→∞�(195)

Indeed, this will still hold if we multiply the left member above by a quantity
of order r2, provided tr/ log r is even a little bigger.
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APPENDIX B

One-dimensionalSkorokhodproblem. The following result is used sev-
eral times in the paper. We record it here for ease of reference. For a proof, see [3]
or Theorem 5.1 of [35].

Proposition B.1. Let x ∈ D such that x�0� = 0. Then there is a unique
pair �w�v� ∈ D2 such that:

(i) w�t� = x�t� + v�t� ≥ 0 for all t ≥ 0,
(ii) v is nondecreasing and v�0� = 0,
(iii)

∫
�0�∞� 1�0�∞��w�t��dv�t� = 0.

This unique solution is given by �w∗� v∗� where for each t ≥ 0,

v∗�t� = − inf
0≤s≤t

x�s�� w∗�t� = x�t� + v∗�t��(196)

Furthermore, for any pair �w�v� ∈ D2 satisfying (i) and (ii) [but not necessarily
(iii)], we have for all t ≥ 0,

v�t� ≥ v∗�t�� w�t� ≥ w∗�t��(197)
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