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AN EXTENSION OF A RESULT OF ANDJEL

By Tom Mountford

University of California, Los Angeles

We prove, using results for hydrodynamic limits, that an exclusion pro-
cess starting from an ergodic initial distribution converges to product mea-
sure in one dimension. Our only assumption is the existence of a nonzero
mean for the underlying random walk.

1. Introduction. In this note we consider a class of interacting particle
systems closely related to systems of queues in tandem.

Classically interacting particle systems are Markov processes ηt on state
space �0�1��d

. Then ηt�x� = 1 is interpreted to mean that there is a particle
at site x at time t. Necessarily, there can be at most one particle per site at any
given time t. The particles move or are created or destroyed at rates depending
on the state of the configuration ηt locally. In this paper we are interested in
the exclusion process; this is a process where particles are neither created
nor destroyed. Each particle tries to move after waiting exponential amounts
of time. After such times a new site is selected according to some fixed (for
the process) random walk kernel. If at this time the selected site is already
occupied by a particle, the move is suppressed and the first particle stays
where it originally was; otherwise it does move to the new site.

We restrict attention to the one-dimensional exclusion process. This is an
interacting particle system on �0�1�� with generator

�f�ξ� = ∑
x�y

�f�ξxy� − f�ξ��p�y− x�ξ�x��1− ξ�y���

where

ξxy�z� = ξ�z� for z �= x or y�

ξxy�x� = ξ�y�� ξxy�y� = ξ�x�
and where p� � is a probability distribution on the integers.

The exclusion process and tandem systems of queues are intimately related.
The connection has long been recognized (see [6]). There is an explicit mapping
of the totally asymmetric nearest neighbor exclusion process [where p�1� = 1]
to the queuing system consisting of a sequence of independent identically dis-
tributed memoryless servers and customers passing through from one queue
to the succeeding queue: one identifies particles with customers and vacan-
cies with servers. Given a vacancy, if its left neighbor is also vacant then it
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is empty; otherwise all 1’s between the vacancy and the next vacancy to the
left are regarded as customers queuing up for service at the first vacancy.
The particle immediately to the left of the vacancy will be currently receiv-
ing service. One can therefore simply transport results from one set-up to
the other. Another connection (at a heursitic level) is that both the exclusion
process and queueing models possess a conservation property: particles or cus-
tomers are neither created nor destroyed. This common property and similar
coupling arguments enable one to prove similar results for stationary transla-
tion invariant processes or arrival processes for queues. One has the heuristic
that what holds for one system holds for the other. This led to an argument
of [2] for convergence in a translation invariant conservative particle system
being adapted in [10] to give a convergence result for a stationary, ergodic
arrival process that passed through a sequence of memoryless queues. It is
our hope that the approach detailed in this paper can give results for queuing
systems in tandem.

Though it is a bit artificial, one could think of our exclusion process as rep-
resenting a queuing system where particles are customers and sites represent
servers. When customers are served (after an exponential amount of time),
they select a new server according to kernel p� �. If the server chosen is cur-
rently working, then customers engage in a new service with their original
servers.

For technical reasons we will assume in this paper that
∑
n≥0

pn�z� + pn�−z� > 0 ∀ z ∈ ��(I)

∑
x

�x�p�x� <∞�(II)

∑
xp�x� �= 0�(III)

In fact, w.l.o.g., we suppose

�III′� ∑
xp�x� = m > 0�

For a full account see [8], for an account of recent developments see [9] and
for a rich account of “hydrodynamic limits” see [7].

For each α ∈ �0�1�, ρα (product α-Bernoulli measure) is invariant for the
process and (see [8]) it can be shown that there are no other extremal invariant
distributions for the process that are stationary under translations (which is
also the case for arrival processes to a ·/M/1 queue).

It is natural to conjecture that if ξ0 has a distribution that is stationary
under translations and of nonconstant density α, then ξt−→D ρα as t tends to
infinity.

In generality all that is known is that

ξt

D−→
∫ 1

0
λ�dα�ρα�
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a mixture of product measures. If p is symmetric (and irreducible) then we
have indeed that ξt−→D ρα by self-duality (see [8]).

The first result for nonstationary p is [1] where it is proved that in the
nearest neighbor case with d = 1, we have the appropriate convergence.
Recently [2] showed that for finite range p (again in d = 1) we have con-
vergence to product measure.

Our result is the following theorem.

Theorem. If ξ0 is stationary under translations with

1
2n+ 1

∑
�x�≤n

ξ0�x�
a�s�−→α ∈ �0�1�

and p satisfies (I), (II), (III) then

ξt

D−→ρα�

It should be noted that since we assume that �xp�x� �= 0� our result is not
an extension of that of [2].

The key ideas are the results of [11] and various coupling ideas. In Section 2
we simply note some “irreducibility” properties. In Section 3 we consider Reza-
khanlou’s work [11] and consequences for particle systems with “first” and
“second” class systems. In Section 4 we give the overall argument and the
theorem’s proof is completed in Section 5.

In the remainder of the introduction we detail simple consequences of the
natural coupling.

We assume that we are given a Harris system generating all processes on
�0�1��. This system consists of an independent Poisson process Nx�y� x� y ∈
� of rate p�y − x�. An exclusion process is constructed from the �N�’s by
stipulating that at t ∈ Nx�y “a particle tries to move from site x to site y.”
That is, for t ∈Nx�y, if immediately before time t,

ξ�x� = 1� ξ�y� = 0 �⇒ ξt�x� = 0� ξt�y� = 1�

Otherwise there is no change in process ξ at time t.
A natural way to show that ξt converges to ρα in distribution as t −→ ∞

is via coupling. We introduce process ξα
t with ξα

0 ∼ ρα (and so ξα
t ∼ ρα ∀ t) and

generated by the same system of Poisson processes as ξ. If we could show that
ξ and ξα couple in the sense that ∀xP�ξt�x� = ξα

t �x�� −→ 1 as t −→ ∞ then
we would have established the desired convergence.

A useful idea extensively exploited in, for example, [5] is to use first and
second class particles. We consider a process ξt on �0�1�2�� [again generated
by �Nx�y�x�y∈�] so that at time t ∈Nx�y. If immediately before t,

ξ�x� = 1� ξ�y� = j then ξt�x� = j� ξt�y� = 1�(I)

ξ�x� = 2� ξ�y� = j �= 1 then ξt�x� = j� ξt�y� = 2�(II)
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Otherwise ξ is unchanged at time t.
This is easily seen if we consider either

�A� ηt�x� = 1 ⇐⇒ ξt�x� = 1

or

�B� ηt�x� = 1 ⇐⇒ ξt�x� �= 0�

Then we have the usual exclusion processes corresponding to p. One can basi-
cally have as many classes of particles as desired. We (as a limit) introduce a
process ηt on �0�1�� with generator

�f�η� = ∑
x�y

�f�ηx�y� − f�η��p�y− x�Iη�x�≤η�y��

where (as before)

ηx�y�z� = η�z� for z �= x�y�

ηx�y�x� = η�y�� ηx�y�y� = η�x�
and we fix �η0�x��x∈� to be iid U�0�1� r.v’s. Then ∀β ∈ �0�1� if we consider

ξ
β
t �x� = 1 ⇐⇒ ηt�x� ≤ β�

Then ξβ is an exclusion process starting in ρβ.
Furthermore, if for β < γ,

ξ
β�γ
t �x� = 1 ⇐⇒ ηt�x� ≤ β�

ξ
β�γ
t �x� = 2 ⇐⇒ ηt�x� ∈ �β� γ��

ξ
β� γ
t �x� = 0 otherwise�

Then ξβ�γ is an exclusion process of first and second class particles.
If η is generated by the same Harris system as our general exclusion process

ξt, then, as already noted,

ξt −→ ρα if ∀xP�ξt�x� = ξα
t �x�� −→ 1�

In our coupling of �ξt� ηt� we suppose η0 is independent of ξ0 and (wlog)
that ξ0 is ergodic so that ∀ t�ξt� ηt� is ergodic. We define

µt�0� c� = lim
n→∞

1
2αn

∑
�x�≤n

Iξt�x�=1Iηt�x�≤c�
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We can label the ξ-particles so that a particle only moves from site x to site
y at times t ∈Nxy or Nyx and so that the associated η-value for a ξ-particle
never increases. Then the quantity

1
2αn

∑
�x�≤n

Iξt�x�=1Iηt�x�≤c

is equal to a nondecreasing process plus “edge effects” resulting from particles
moving in and out of spatial interval �−n�n�. As n becomes large these “edge
effects become negligible.” Thus we have (simultaneously over all c ∈ �0�1�)
that µt�0� c� increases in time. It is easy to see that we have

µt�0� c� ↑ µ∞�0� c� for µ∞ a measure on �0�1��
As noted if µ∞ is U�0� α� (the uniform distribution on �0� α�) then we have that
asymptotically all ξ-particles are coalesced with η-particles of value in �0� α�
and vice versa. That is, ξt−→D ρα. So in Section 2 we will begin an argument
by contradiction and suppose µ∞ �= U�0� α�.

2. Coupling foundations. We begin this section with a basic result con-
cerning two finite exclusion processes generated by the same Harris system.

An exclusion process on �0�1�I for finite interval I is the Markov process
with generator

�f�ξ� = ∑
x�y∈I

�f�ξxy� − f�ξ��p�y− x�ξ�x��1− ξ�y���

We denote exclusion processes on interval �0�m� by ξm�ηm. We say two such
processes ηm and ξm are coupled if they are generated by the same Harris
sytem.

Lemma 2.1. Under the assumptions for p�·�, there exist an m0 so that for
m ≥m0, if ξm�ηm are coupled exclusion processes on �0�1��0�m�,

ξm
0 �0� = 1 = 1− ηm

0 �0��
ξm
0 �m� = 0 = 1− ηm

0 �m��
then

P

( m∑
i=0
�ξm

0 �i� − ηm
1 �i�� ≤

m∑
i=0
�ξm

0 �i� − ηm
0 �i�� − 2

)
> 0�

Remark. In other words, the lemma asserts that there is a strictly pos-
itive chance that an uncoupled ξm-particle will couple with an uncoupled
ηm-particle if there exist two such particles sufficiently far apart.

Proof of Lemma 2.1. It is easy to see that for m sufficiently large there
will exist a random walk path 0 = x0� x1� x2� � � � � xR = m contained in �0�m�.
Here a random walk path satisfies p�xi − xi−1� > 0∀ i. If R = 1, then trivally
there is a strictly positive chance that the ξm-particle at 0 jumps to site m
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(thereby coupling with the ηm-particle at m) before any other jump. So we
suppose R > 1, use induction on R and suppose that whenever (for whatever
m) there exists a random walk path of length R−1 or less from an uncoupled
ξ-particle to an uncoupled η-particle, a coupling of these two particles may
occur.

First suppose that for some 0 < j < R we have ξm
0 �xj� �= ηm

0 �xj�. If
ξm
0 �xj� = 1 = 1−ηm

0 �xj� then xj� xj+1 · · ·xR is a path of length shorter than R
from an uncoupled ξm-particle to an uncoupled ηm-particle and so the result
follows by induction. Similarly, if ξm

0 �xj� = 0 = 1−ηm
0 �xj�, then x0� x1� � � � � xj

is such a path.
So we assume ξm

0 �xi� = ηm
0 �xi� ∀ 0 < i < R.

Let j = inf�i� ξm
0 �xi� = 0�; in this case with positive probability �ξm�ηm�

moves to �ξm�1� ηm�1��ξm�2� ηm�2� · · · �ξm�j� ηm�j� where �ξm�k� ηm�k��y� =
�ξm

0 � ηm
0 ��y� for y /∈ �x0� x1� � � � xj� and for 0 < k < j,

(
ξm�k� ηm�k

)�xj−k� =
(
ξm
0 � ηm

0

)�xj��
(
ξm�k� ηm�k

)�xr� = �1�1� for r > j− k�

(
ξm�k� ηm�k

)�xr� =
(
ξm
0 � ηm

0

)�xr�� r < j− k

and �ξm�j� ηm�j� is obtained from �ξm�j−1� ηm�j−1� by the ξ-particle at 0 mov-
ing to site xi. If xj = xR = m then this move delivers the coupling. On the
other hand, if xj �= xR then for configuration �ξm�j� ηm�j�x1� x2� � � � xR is a
path of length R−1, from an uncoupled ξ-particle to an uncoupled η-particle.

For two coupled processes η� ξ on an interval I, the quantity
∑

I �ξt�x� −
ηt�x�� cannot increase at any time t. If this quantity strictly decreases at time
t, we say that a ξ-particle has joined an η-particle.

We return to the coupled process �ξt� ηt�t≥0. Here ξt is our exclusion process
starting from translation invariant distribution of (nonrandom) density α and
ηt is our process on �0�1��.

If the associated measures �µt = disnηt�0� � ξt�0� = 1� satisfy µt−→D

U�0� α�, then we have ξt−→D ρα. We therefore suppose that µt �→ U�0� α�. In
this case we must have the existence of ε� δ > 0 and 0 < a < α−4δ < α+4δ <
b < b+ δ < 1, so that

µ∞��a� a+ δ�� ≤ δ

α
�1− ε��

µ∞��b� b+ δ�� ≥ δε

α
�

Fix such ε� δ, a and b. These quantities are given to us by our assumption
of nonconvergence. The quantities ε� δ can be thought of as small but need
not be so in principle. We will now introduce ε′ (and later γ) to be numbers
which are very small in comparison to εδ. The large number N will be chosen
so that various laws of large numbers hold (to within some multiple of this ε′

and γ′).



EXTENSION OF A RESULT OF ANDJEL 411

Choose ε′ � �εδ�3 ∧ εδ
1800�1+∑ �x�p�x�� (we will introduce other upper bounds

later). There exist T�= T�ε′�� so that ∀ c ∈ �a� a+ δ� b� b+ δ�; the density of ξ
particles having η-label ≤ c does not increase by more than ε′/4 for t ≥ T.

Now we collapse ηt onto a system of particles with five classes ηi
t, i =

1�2� � � � �5, where

η1
t �x� = 1 ⇐⇒ ηt�x� ≤ a�

η2
t �x� = 1 ⇐⇒ ηt�x� ∈ �a� a+ δ��

η3
t �x� = 1 ⇐⇒ ηt�x� ∈ �a+ δ� b��

η4
t �x� = 1 ⇐⇒ ηt�x� ∈ �b� b+ δ��

η5
t �x� = 1 ⇐⇒ ηt�x� > b+ δ�

Thus each ξt-particle (or vacancy) has an associated η-class in �1�2�3�4�5�.
Our choice of a� b� ε� δ and T ensure that ∀ t ≥ T, the density of ξt vacancies
of η-class 2 is at least εδ−ε′/4, and that the density of ξt-particles of η-class 4
is at least δε− ε′/4.

Thus we have the following lemma.

Lemma 2.2. For N sufficiently large,

N∑
x=0

(
1− ξT�x�

)
η2

T�x� ≥N�εδ− ε′� ≡M�(I)

2N∑
x=N+m0

ξT�x�η4
T�x� ≥N�εδ− ε′� ≡M�(II)

outside of probability ε′2/1010.

In other words, Lemma 2.2 is asserting the existence of many η-type 2
ξ-vacancies and many η-type 4 ξ-particles outside of very small probability.

Labeling. In the last two sections the arguments will turn on the behavior
of ξ-particles and ξ-vacancies. We introduce a labeling of these particles and
vacancies. We first stipulate that the labels should move so that the η-class
of a ξ-vacancy does not decrease; the η-class of a ξ-particle does not increase.

Thus if u and v are ξ-particles at sites x�y, respectively, immediately before
t and immediately before t, ηi�x� = 1� ηj�y� = 1 for i < j, then if t ∈Nx�y, at
time t label u moves from site x to site y while label v moves from site y to
site x. Thus labels can move from site x to site y even though the ξ process
is unchanged at these sites.

In time interval �T�kN� (k to be fixed later) we will introduce a labeling
scheme for η particles that will respect the priorities. We will subdivide prior-
ity (or class 2) so that η-class 2 particles in spatial interval �0�N� at time T
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will be assigned a new class 2∗; η-class η-4 particles in �N+m0�2N� at time
T will be assigned a new class 4∗. The priority scheme will be

1 over 2 over 2∗ over 3 over 4∗ over 4 over 5�

It should be noted that while the labeling of particles will thus differ from
previous labelings, the overall coupled processes are the same. Of course as far
as our original process is concerned, η-class 2∗ particles are simply η-class 2
particles, similarly for η-class 4∗ particles.

Assuming the conclusions of Lemma 2.2, let us label M ξ-vacancies of
η-class 2∗ in �0�N� at time T, i1� i2� � � � � iM. Let us label M ξ-particles of
η-class 4∗ j1� � � � � jM. We now describe the motion of labels ih� jl.

Let xt�ih� denote the position of ξ-vacancy ih at time t. If η-particle u (u
of whatever class) at time t is at site w = xt�ih�, we say that u is associated
with ih at time t (and vice versa).

First we detail the motion of ih if xt−�ih� = w and ih is associated with a
class / η-particle at t− and t ∈Nw�y.

If at t− the η-class of site y is ≤ / then nothing happens to label ih (it
remains at w). If the η-class at y greater than /, then ih moves to y at time
t if and only if ξt−�y� = 0. Otherwise ih stays at w and its η-class increases.

Next, if xt−�ih� = w and ih is associated with a class / η-particle (/ ∈
�1�2�2∗�3�4∗�4�5�) and t ∈ Ny�w then if (at t−) the η-class of site y is less
than /, ih moves to site y (and remains associated to the same η-particle). If
the η-class of site y is greater than or equal to / then ih moves to y if and
only if ξt−�y� = 1. In this case the η-class of ih may increase.

The motion of ξt-particles jl is similarly determined. The important fact is
that:

(*) For ξ-vacancies ih the class of the associated η-particle never decreases.
(**) For ξ-particles jl the class of associated η-particle never increases.

3. A result of Rezakhanlou. The key tool of this paper is a result of
Rezakhanlou [11]; for our purposes (though much more is proved in his paper)
his theorem is as follows.

Theorem. Let f be a positive function that is bounded by 1 and continuous
except at finitely many points. Let ηN

t be a sequence of exclusion processes on
�/N with �ηN

0 �x�� independent Bernoulli, P�ηN
0 �x� = 1� = f�x� for x ∈ �/N.

Then for interal I we have ∀γ > 0,

P

(∣∣∣∣ 1N
∑

x∈��/N�∩I
ηN

Nt�x� −
∫
I
u�t� x�dx

∣∣∣∣ > γ

)
−→ 0 as N −→∞�

where u is the unique entropy solution to

∂u

∂t
+m

∂�u�1− u��
∂x

= 0� u�0� x� = f�x��

[Note that ηN has particles that try to jump from x to y at rate p�N�y−x��.]
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Remark. [11] actually only explicitly treats the case where p is finite range
(but otherwise assumptions I–III hold). However, in d = 1, the arguments
carry over to our case without much trouble.

We consider this theorem first for f1 and f2 with f1 ≡ a+δ and f2 ≡ a+δ
on �0�1�c ≡ a on �0�1�. If u1� u2 are the corresponding solutions to Burger’s
equation with initial f1 and f2, then

u1 ≥ u2 ∀ t� x and
∫
�u1 − u2�dx

is constant in t (conservation property). However (see, e.g., [7]), u1 = u2 on
�m�1− 2a− 2δ�t�1+m�1− 2a− δ�t�c.

Now by a very elementary argument we have that the number of particles
in space interval �0�N� at time 0 but not in �0�N� at time T or not in �0�N�
at time 0 but in �0�N� at time T is very small compared to N with very large
probability. Thus we have the following.

Proposition 3.1. As N −→ ∞ we have ∀γ > 0�P �number of 2∗ particles
outside �mN�1− 2a− 2δ�t, N�1+m�1− 2a− δ��t� at time Nt ≥Nγ� −→ 0.

Similarly we have u2 ≡ b, taking Burger’s equation solutions ui with u1
initially equal to b on �1�2�c and equal to b+ δ on �1�2�.

Proposition 3.2. As N −→ ∞ we have ∀γ > 0�P �number of 4∗ particles
outside ��1+mt�1− 2b− δ��N� �2+mt�1− 2b��N� at time Nt ≥Nγ� −→ 0.

Taken together we have the following proposition.

Proposition 3.3. Fix k > 1
m�b−a−δ� , then ∀γ > 0 fixed we have P�all but

γN2∗ particles are to the right of all but γN4∗ particles at time kN� > 1 − γ
for N sufficiently large.

In addition to previous demands on N we assume N is sufficiently large
that Proposition 3.3 holds with γ = �ε′�2/1010.

4. Statement of Proof. Consider a ξ-vacancy that is at timeT associated
with a η-type 2∗ particle ih (necessarily at a site on �0�N� at time T).

If this ξ-vacancy remains associated to a η-type 2∗ particle (not necessarily
the same one) throughout �T�kN� then (with overwhelming probability) it
should (by Proposition 3.3) have had to pass over many ξ-particles associated
with a η-type 4∗ particle. From our coupling, the rate at which a ξ-vacancy
moves from site x to site y is bounded by p�y−x�+p�x−y�. [What it actually
is depends on the �ξ�η� configuration.]

Thus we have that N can be chosen so large that ∀1 ≤ h ≤M,

�D�
P�ih leaves interval �−2CN�2CN� in time kN�

≤ �ε′�3 for C = 3k
(
1+∑ �x�p�x�)�
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where the bound is independent of �ξ�η�T, similarly for ξ-particles jl, 1 ≤
l ≤M.

Letm0 be the constant of Lemma 2.1. We can choosem1 so that ��x�≥m1
��x�+

m0�p�x� ≤ �ε′�2/�k+ 1�.
Now for ξ-vacancy ih we say anm1 jump occurs at time t if xt�ih�−xt−�ih� ≥

m1. Let

X�ih� =
∑

m1 jumps t≤kN
�xt�ih� − xt−�ih� +m0��

We similarly say for ξ-particle jl that an m1 jump occurs if xt�jl�−
xt−�jl� ≤ −m1.

Let X�jl� = �m1 jump at t<kN�m0 + xt−�jl� − xt�jl��. By the law of large
numbers we can choose N so large that

�E�

∀ 1 ≤ h� l ≤M

P�X�ih� ≥ �ε′�3/2N� ≤ �ε′�2�
P�X�jl� ≥ �ε′�3/2N� ≤ �ε′�2�

The idea of our proof is that, with large probability by time kN, either a rea-
sonable number of the ξ-vacancies of η-type 2∗ are now associated with higher
η-types or a reasonable number of ξ-particles of η-type 4∗ are now associated
with lower η-types [and by assumption (D) this will have taken place inside
[−2CN�2CN]], or (by Proposition 3.3) a large number of ξ-vacancies of η-type
2∗ have passed by a large number of ξ-particles of η-type 4∗.

However, the former case is forbidden by our choice of T. For the latter,
stipulation (E) on the size of N means that, outside of small probability, most
ξ-vacancies will pass close to most ξ-particles while the former travel to the
right of the latter, outside of very small probability.

5. Completion of proof. An ξ-vacancy ih can pass ξ-particle jl in three
ways:

1. For some t ⊂ �T�kN�, xt�j/� ∈ �xt�ih� +m0� xt�ih� +m1 +m0�;
2. For some t ∈ �T�kN�, xt�ih� +m0 > xt�j/� > xt−�ih� +m1 +m0;
3. For some t ∈ �T�kN�, xt�j/� −m0 < xt�ih� < xt−�j/� − �m1 +m0�.

Assumptions (E) on the size of N imply that the expected number of j/

passed in manner (2) or (3) is likely to be small. So it remains to consider the
possibility of many j/ passing by ih after coming “within range.” By Lemma 2.1
if j/ is in �xt�ih�+m0� xt�ih�+m1+m0� then (if both have their original η-class)
there is a reasonable chance of some coupling taking place. A problem (to be
addressed via “windows”) is that the coupling between η-2∗-particles and ξ-
particles in �xt�ih� +m0� xt�ih� +m1 +m0� might not involve j/ or ih.

Initially, we have no windows. If at time t, ih is not “in a window” then a
window �xt�ih�� xt�ih�+m0+m1� is created at time t. If (i) ih has an associated
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η-value 2∗ at time t; (ii) in interval �xt�ih�� xt�ih�+m0+m1� is a ξ-particle j/

associated with a η-particle of type 4∗.
A window �xt0

�ih�� xt0
�ih�+m0+m1� will survive until (a) there is a joining

(inside the interval) of a ξ-particle with a type 2∗ (or lower) η-particle, or the
coupled exclusion process �ξ�η� evolves so that such a joining is impossible on
�xt0
�ih�� xt0

�ih� +m0 +m1� without particles entering or leaving the window;
(b) A ξ- or η-particle on �xt0

�ih� + m1 + m0�∞� tries to jump to a site in
�−∞� xt�ih� +m1 +m0� or a ξ- or η-particle in �−∞� xt0

�ih�� tries to jump to
a site in �xt0

�ih��∞�.
The various windows in existence at a given time may overlap. Thus when

there is a joining of a ξ-particle with a η-type 2∗ (or lower) particle, it may be
simultaneously occurring within (at most m0+m1) many windows. We wish to
credit this coupling to a marked ξ-vacancy ih. To do this we randomly choose
among the windows having a claim, and then, given our window, we randomly
choose an ih to credit among the (again as most m0 +m1) eligible ih’s in that
window.

We define W�ih� (a lower bound on the number of windows that ih has been
in) as follows.

Let

Sh
0 = 0�

Th
1 = inf

{
t ≥ Sh

0 � �ih is in a window)
}
�

For v ≥ 1,

Sh
v = inf

{
t > Th

v � the window
[
xTh

v
� xTh

v
+m0 +m1

]
dies

}
�

Th
v = inf

{
t > Sh

v−1� �ih is in a window�}�
Of course, often Th

v = Sh
v−1.

Definition. W�ih� = sup
{
v� Sh

v ≤ kN
}
.

The idea is that a typical ih cannot pass through or past many j/ withoutW
becoming large and that W cannot become large without ih becoming credited.

Lemma 5.1. For some c �depending on m0�m1 but not on N� we have
�uniformly over all �ξ�η�T� and ih, P�W�ih� > R, ih is not credited� ≤ �1−c�R.

Proof. This simply follows from the Markov property and the fact that
there are only finitely possible �ξ�η� configurations on ��0�1��0�m0+m1��2.

Proof of Theorem. Let B be the event that in time �T�kN� on interval
�−�2CN +m1 +m0�� 2CN +m1 +m0� at least εδ

20Nξ-particles change their
η-class to 3 or lower or at least εδ

20Nξ-vacancies change their class to 3 or
higher.
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Obviously, if P�B� > 1/3 (say) then we have that [by ergodicity of �ξ�η�T]
the density of ξ-particles taking η-value in �0� a+ δ� or in �0� b� will increase
by at least 1/6 εδ

20�4C+ 2�m1+m0�
N �  ε′ which will contradict our definition of T, and

thereby the assumption that Mt �→ U�0� α�.
We consider the following “bad” events:

1. The number of 2∗ η-particles that are ξ-vacant is less than M =N�εδ−ε′�
or the number of 4∗ η-particles that are ξ-occupied is less than M.

2. The number of ih, 1 ≤ h ≤ M so that X�ih� ≥ ε′3/2N is ≥ ε′N or the
number of jl, 1 ≤ l ≤M so that X�jl� ≥ ε′3/2N is greater than or equal to
ε′N.

3. The number of ih or j/ that leave �−2CN�2CN� in time interval �T�kN�
is greater than or equal to ε′N.

4. The conclusion of Proposition 3.3 does not hold with γ = �ε′�2/1010.
5. At least one ih has the property that ih is associated with a η- 2∗ particle

as time kN, ih is not credited and W�ih� ≥ εδN
5�m1+2m0�2 .

By lower bounds for N�D, and E and Proposition 3.3, we have that the
probability of (1) → (4) occurring is bounded by 1/10. By Lemma 5.1 the
probability of (5) is bounded byN�1−c�εδN/5�m1+2m0�2 < 1/10 ifN is sufficiently
large (as we will take N to be).

So with probability 1−1/10−1/10 = 8/10 (at least) we have that (1)→ (5)
do not occur. We claim that in this case event B must occur. If not, then
by �1�c there are M labelled η- 2∗ ξ-vacancies ih in �0�N� and M labelled
η-4∗ ξ-particles jl in �N+m0�2N� at time T.

By (3)c and Bc occurring we have that for at least �M − ε′N − Nεδ
20 �h in

�1� � � � �M� and �M−ε′N−Nεδ
20 �/ in �1� � � � �M�ih� j/ remains inside �−2CN�+

2CN� in time interval �T�kN� and ih retains a η-2∗ value, j/ an η-4∗ value
throughout.

By (4)c of these at least M − ε′N − Nεδ
20 − ε′N ih’s will be to the right of

M− ε′N− Nεδ
20 − ε′N of the j/’s. Let the two indexes be

I ⊆ �1� � � � �M�� �I� ≥M− ε′N− Nεδ

20
− ε′N�

J = �1� � � � �M�� �J� ≥M− ε′N− Nεδ

20
− ε′N�

By (2)c we finally have subsets

I′ ⊆ �1� � � � �M�� J′ ≤ �1� � � � �M��

�I′�� �J′� ≥M− ε′N− Nεδ

20
− ε′N− ε′N ≥ 8Nεδ

10
�

Taking subsets if necessary we suppose �I′�� �J′� = 8Nεδ
10 . For N large so that

h ∈ I′, / ∈ J′ �
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(a) xt�ih�, xt�j/� ∈ �−2CN�2CN� ∀ t ∈ �T�kN�.
(b) xkN�ih� > xkN�j/�.
(c) At time kN, ih has η-value 2∗ and j/ has value 4∗.
(d) X�ih� ≤ ε′3/2N, X�j/� ≤ ε′3/2N.

For / ∈ J′, let D/ = �h� for some t ∈ �T�kN�, xt�j/� − m0 < xt�ih� <
xt−�j/� − �m1 +m0��.

By hypothesis, ∀ / ∈ J′�D/� ≤ ε′3/2N so �/∈J′ �D/� ≤ ε′3/2N 8Nεδ
10 . So by

Chebyshev number of h ∈ I′� �/∈J′Ih∈D/
≥ ε′N is less than or equal toNεδε′1/2.

So let I′′ = �h ∈ I′ � �/∈J′Ih∈D/
≤ ε′N�; then �I′′� ≥ 7

10Nεδ.
As noted, if (b) occurs for h ∈ I′′, / ∈ J′ then either for some t ∈ �T�kN�,

(A) xt�ih� +m0 ≤ xt�j/� ≤ xt�ih� +m0 +m1;
(B) xt�j/� −m0 < xt�ih� < xt−�j/� − �m1 +m0�;
(C) xt�ih� +m0 +m1 < xt�j/� < xt�ih� +m0.

By property (d) of I′ and therefore of I′′, the number of / such that (C) holds
is bounded by ε′3/2N; by definition of I′′ the number of / so that (B) holds is
bounded by ε′N, so for h ∈ I′′ at least �J′� − ε′N− ε′3/2N ≥ 7Nεδ

10 / satisfy (A).
We denote this subset of J′ by Gh. By definition of window, for every Sh

i at
mostm1+2m0 j/ inGh can pass fromm1+m0 to the right of ih to less thanm0
to the right. Thus it must be the case that for h ∈ I′′W�ih� ≥ 7Nεδ

10 /m1 + 2m0.
Thus by (5) we must have ih is credited. ∀h ∈ I′′ but as xt�ih� ∈ �−2CN,

2CN�∀t ∈ �T�kN�. This means that at least �I′′� ξ-particles decreased their
η-value to 2∗ or lower in �−2CN−�m0+m1�2CN+m0+m1�; that is,B occurs. ✷
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