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Let F be a nonarchimedean local field and let T be a torus over F . With T NR denoting the Néron–Raynaud
model of T , a result of Chai and Yu asserts that the model T NR

×OF OF/p
m
F is canonically determined

by (Trl(F),3) for l � m, where Trl(F)= (OF/p
l
F , pF/p

l+1
F , ε) with ε denoting the natural projection

of pF/p
l+1
F on pF/p

l
F , and 3 := X∗(T ). In this article we prove an analogous result for parahoric group

schemes attached to facets in the Bruhat–Tits building of a connected reductive group over F .

1. Introduction

Let F be a nonarchimedean local field, OF its ring of integers, and pF its maximal ideal. Let T be
a torus over F . Such a torus is canonically determined by the lattice 3 := X∗(T ) together with the
action of 0F = Gal(Fs/F) on it (here Fs is a separable closure of F). For large m, the action of 0F

on 3 factors through the quotient 0F/I m
F of 0F , where I m

F is the m-th higher ramification subgroup
(with upper numbering) of the inertia group IF . This Galois group depends only on truncated data
Trm(F) := (OF/p

m
F , pF/p

m+1
F , ε), where ε is the natural projection of pF/p

m+1
F on pF/p

m
F , via Deligne’s

theory; see (b) below.
Let T NR denote the Néron–Raynaud model of T (see [Bosch et al. 1990]). The main result of [Chai

and Yu 2001] asserts that T NR
×OF OF/p

m
F is canonically determined by (Trl(F),3) for l � m (see

Theorem 8.5 of [Chai and Yu 2001] for the precise statement; the parameters that l depends on are
also explicitly determined there). With T denoting the neutral component of T NR this also implies that
T ×OF OF/p

m
F is canonically determined by (Trl(F),3) with l as above. From the point of view of

Bruhat–Tits theory, when the connected reductive group is a torus, the model T can be thought of as
its Iwahori (or parahoric) group scheme. The purpose of this article is to prove an analogous result for
parahoric group schemes attached to facets in the Bruhat–Tits building of a connected reductive group
over F .

Our motivation for proving such a result arises naturally from the question of generalizing Kazhdan’s
theory of studying representation theory of split p-adic groups over close local fields to general connected
reductive groups. Let us briefly recall the Deligne–Kazhdan correspondence:

(a) Given a local field F ′ of characteristic p and an integer m ≥ 1, there exists a local field F of
characteristic 0 such that F ′ is m-close to F , i.e., OF/p

m
F
∼=OF ′/p

m
F ′ .
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(b) Deligne [1984] proved that if Trm(F) ∼= Trm(F ′), then the Galois groups Gal(Fs/F)/I m
F and

Gal(F ′s/F ′)/I m
F ′ are isomorphic. This gives a bijection

{Iso. classes of cont., complex, f.d. representations of Gal(Fs/F) trivial on I m
F }

←→ {Iso. classes of cont., complex, f.d. representations of Gal(F ′s/F ′) trivial on I m
F ′}.

Moreover, all of the above holds when Gal(Fs/F) is replaced by WF , the Weil group of F .

(c) Let G be a split, connected reductive group defined over Z. For an object X associated to the field F ,
we will use the notation X ′ to denote the corresponding object over F ′. Kazhdan [1986] proved that
given m ≥ 1, there exists l ≥ m such that if F and F ′ are l-close, then there is an algebra isomorphism
Kazm :H(G(F), Km)→H(G(F ′), K ′m), where Km is the m-th usual congruence subgroup of G(OF ).
Hence, when the fields F and F ′ are sufficiently close, we have a bijection

{Iso. classes of irr. admissible representations (5, V ) of G(F) such that 5Km 6= 0}

←→ {Iso. classes of irr. admissible representations (5′, V ′) of G(F ′) such that 5′K
′
m 6= 0}.

These results suggest that, if one understands the representation theory of Gal(Fs/F) for all local fields
F of characteristic 0, then one can use it to understand the representation theory of Gal(F ′s/F ′) for a
local field F ′ of characteristic p, and similarly, with an understanding of the representation theory of
G(F) for all local fields F of characteristic 0, one can study the representation theory of G(F ′), for F ′

of characteristic p. This method has proved useful for studying the local Langlands correspondence for
reductive p-adic groups in characteristic p via the corresponding theory in characteristic 0 (see [Badulescu
2002; Lemaire 2001; Ganapathy 2015; Aubert et al. 2016; Ganapathy and Varma 2017]). An obvious
observation, that goes into proving the Kazhdan isomorphism, is

G(OF )/Km ∼= G(OF/p
m
F )
∼= G(OF ′/p

m
F ′)
∼= G(OF ′)/K ′m (1-1)

if the fields F and F ′ are m-close.
A useful variant of the Kazhdan isomorphism is now available for split reductive groups. Let I

be the standard Iwahori subgroup of G. It is shown in [Bruhat and Tits 1984] that there is a smooth
affine group scheme I defined over OF with generic fiber G ×Z F such that I(OF ) = I . Define
Im := Ker(I(OF )→ I(OF/p

m
F )). In Section 3 of [Ganapathy 2015], a presentation has been written

down for this Hecke algebra H(G, Im) (extending Theorem 2.1 of [Howe 1985] for GLn). Furthermore if
the fields F and F ′ are m-close, an argument of J.K. Yu (see Section 3.4.A of [Ganapathy 2015]) gives
an isomorphism

β : I/Im→ I ′/I ′m . (1-2)

Let us note here that unlike (1-1), the above isomorphism is not obvious since the group scheme I
is defined over OF and not over Z. In fact the above isomorphism is obtained by proving that the
reduction I×OF OF/p

m
F depends only on Trm(F) and then evaluating it at the OF/p

m
F -points. Using the

presentation and this isomorphism, one gets an obvious map ζm :H(G(F), Im)→H(G(F ′), I ′m), when
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the fields F and F ′ are m-close (also see [Lemaire 2001] for GLn), which was shown in [Ganapathy
2015] to be an isomorphism of rings. Hence we obtain a bijection

{Iso. classes of irr. ad. representations (5, V ) of G(F) with 5Im 6= 0}

←→ {Iso. classes of irr. ad. representations (5′, V ′) of G(F ′) with 5′I
′
m 6= 0}.

When one wants to prove the Kazhdan isomorphism or its variant for general connected reductive
groups, one is naturally led to consider parahoric subgroups, study the reduction of the underlying
parahoric group schemes mod pm

F , and prove that they are determined by truncated data. That is the goal
of the present article. Our proof is different from J.K.Yu’s approach of proving (1-2) for the Iwahori
group scheme of a split p-adic group. We will use the construction of the parahoric group scheme via the
Artin–Weil theorem (see [Landvogt 1996]). Let us summarize the main results of this paper.

First, given a split connected reductive group over Z, one can unambiguously work with this group
over an arbitrary field after base change. More generally, given a connected reductive group G over F ,
we first need to make sense of what it means to give a group G ′ over F ′ where F ′ is suitably close
to F . Let us first explain how this is done for quasisplit groups. Let (R,1) be a based root datum
and let (G0, T0, B0, {uα}α∈1) be a pinned, split, connected, reductive Z-group with based root datum
(R,1). We know that the F-isomorphism classes of quasisplit groups Gq that are F-forms of G0 are
parametrized by the pointed cohomology set H 1(0F ,Aut(R,1)) (see Theorem 3.2). Let Eqs(F,G0)m

be the set of F-isomorphism classes of quasisplit groups Gq that split (and become isomorphic to
G0) over an at most m-ramified extension of F . It is easy to see that this is parametrized by the
cohomology set H 1(0F/I m

F ,Aut(R,1)). Using the Deligne isomorphism, we prove that there is a
bijection Eqs(F,G0)m → Eqs(F ′,G ′0)m , Gq → G ′q , provided F and F ′ are m-close. Moreover, with
the cocycles chosen compatibly, this will yield data (Gq , Tq , Bq) over F (where Tq is a maximal F-
torus and Bq is an F-Borel containing Tq ), and correspondingly (G ′q , T ′q , B ′q) over F ′, together with an
isomorphism X∗(Tq)→ X∗(T ′q) that is Delm-equivariant (see Lemma 3.4). It is a simple observation that
the maximal F-split subtorus Sq of Tq is a maximal F-split torus in Gq (see Lemma 4.1). We prove
that there is a simplicial isomorphism between the apartments Am :A(Sq , F)→A(S′q , F ′) if the fields
F and F ′ are m-close (see Proposition 4.4 for precise statement). Let F be a facet in A(Sq , F) and
F ′=Am(F). Then F ′ is a facet in A(S′q , F ′). We prove that the parahoric group schemes PF×OF OF/p

m
F

and PF ′ ×OF ′
OF ′/p

m
F ′ are isomorphic provided F and F ′ are l-close for l � m (see Theorem 4.5 and

Proposition 4.10 for precise statements). To prove this theorem, we prove an analogous statement for the
root subgroup schemes if the fields F and F ′ are sufficiently close, invoke the result of Chai–Yu [2001]
that the reduction of the (lft) Néron models of the corresponding tori are isomorphic if the fields are
sufficiently close, and use the Artin–Weil theorem on obtaining group schemes as solutions to birational
group laws.

To move to the general case, we recall that any connected reductive group is an inner form of a
quasisplit group, and the F-isomorphism classes of inner forms of Gq is parametrized by the cohomology



1478 Radhika Ganapathy

set H 1(Gal(Fun/F),Gad
q (Fun)) (where Fun is the maximal unramified extension of F contained in Fs).

With G ′q corresponding to Gq as above, we prove in Lemma 5.1 that

H 1(Gal(Fun/F),Gad
q (Fun))∼= H 1(Gal(F ′un/F ′),Gad

q (F
′

un))

as pointed sets if the fields F and F ′ are m-close using the work of Kottwitz [2014]. Using the work
of DeBacker and Reeder [2009] it is further possible to refine the above and obtain an isomorphism
at the level of cocycles (see Section 5.A). All the above yields data (G, S, A) where G is a connected
reductive group over F that is an inner form of Gq , a maximal Fun-split F-torus S that contains a maximal
F-split torus A of G, and similarly (G ′, S′, A′) over F ′, together with a Gal(F̂un/F)-equivariant simplicial
isomorphism Am,∗ :A(S, F̂un)→A(S′, F̂ ′un) (see Lemma 6.1). Here F̂un denotes the completion of Fun.
Let F̃∗ be a Gal(F̂un/F)-invariant facet in A(S, F̂un) and let F̃ ′

∗
= Am,∗(F̃∗). We prove that there is a

Gal(F̂un/F)-equivariant isomorphism

p̃m,∗ : PF̃∗ ×OF̂un
OF̂un

/pm
F̂un
→ PF̃ ′∗

×O
F̂ ′un

OF̂ ′un
/pm

F̂ ′un

provided F and F ′ are l-close (see Proposition 6.2). With F∗ := (F̃∗)Gal(F̂un/F) and F ′
∗
:= (F̃ ′

∗
)Gal(F̂ ′un/F ′),

the above descends to an isomorphism of group schemes

pm,∗ : PF∗ ×OF OF/p
m
F → PF ′∗ ×OF ′

OF ′/p
m
F ′ .

As a corollary, we obtain that

PF∗(OF/p
m
F )
∼= PF ′∗(OF ′/p

m
F ′)

as groups provided the fields F and F ′ are l-close.

2. Some review

Unless otherwise stated, F will denote a nonarchimedean local field, that is, a complete discretely valued
field with perfect residue field. Let OF denote its ring of integers, pF its maximal ideal, ω = ωF an
additive valuation on F normalized so that ω(F)= Z, and π = πF a uniformizer. Fix a separable closure
Fs of F and let 0F = Gal(Fs/F).

2.A. Deligne’s theory. Let m≥ 1. Let IF be the inertia group of F and I m
F be its m-th higher ramification

subgroup with upper numbering (see Chapter IV of [Serre 1979]). Let us summarize the results of Deligne
[1984] that will be used later in this article. Deligne considered the triplet Trm(F)= (OF/p

m
F , pF/p

m+1
F , ε),

where ε is the natural projection of pF/p
m+1
F on pF/p

m
F , and proved that 0F/I m

F is canonically determined
by Trm(F). Hence an isomorphism of triplets ψm : Trm(F)→ Trm(F ′) gives rise to an isomorphism

0F/I m
F

Delm−−−→0F ′/I m
F ′ (2-1)

that is unique up to inner automorphisms (see Equation 3.5.1 of [Deligne 1984]). More precisely, given
an integer f ≥ 0, let ext(F) f denote the category of finite separable extensions E/F satisfying the
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following condition: The normal closure E1 of E in Fs satisfies Gal(E1/F) f
= 1. Deligne proved that an

isomorphism ψm : Trm(F)→ Trm(F ′) induces an equivalence of categories ext(F)m→ ext(F ′)m . Here
is a partial description of the map Delm (see Section 1.3 of [Deligne 1984]). Let L be a finite totally
ramified Galois extension of F satisfying I (L/F)m = 1 (here I (L/F) is the inertia group of L/F). Then
L = F(α) where α is a root of an Eisenstein polynomial

P(x)= xn
+π

∑
ai x i

for ai ∈OF . Let a′i ∈OF ′ be such that ai mod pm
→ a′i mod p′m . So a′i is well-defined mod p′m . Then

the corresponding extension L ′/F ′ can be obtained as L ′ = F ′(α′) where α′ is a root of the polynomial

P ′(x)= xn
+π ′

∑
a′i x

i

where π mod pm
F → π ′ mod pm

F ′ . The assumption that I (L/F)m = 1 ensures that the extension L ′ does
not depend on the choice of a′i , up to a unique isomorphism.

2.B. The main theorem of Chai–Yu. Let T be a torus over F and let K/F be a Galois extension such
that T is split over K . Let 0K/F =Gal(K/F) and let 3= X∗(T ), the cocharacter group of T . Then T is
determined by the 0-module3 up to a canonical isomorphism. With F ′ denoting another nonarchimedean
local field, we will denote the analogous objects over F ′ with a superscript ′. We introduce the following
series of congruence notation:

• (OF ,OK ) ≡ψm (OF ′,OK ′) (level m): this means that ψm is an isomorphism OK /π
mOK →

OK ′/π
′mOK ′ and induces an isomorphism OF/π

mOF → OF ′/π
′mOF ′ . We denote this induced

isomorphism also by ψm . Having chosen the uniformizers, this also induces an isomorphism
Trm(F)→ Trm(F ′), which we still denote by ψm .

• (OF ,OK , 0K/F )≡ψm ,γ(OF ′,OK ′, 0K ′/F ′)(level m): this means (OF ,OK )≡ψm(OF ′,OK ′)(level m),
γ is an isomorphism 0K/F → 0K ′/F ′ , and ψm is 0K/F -equivariant relative to γ .

• (OF ,OK , 0K/F ,3) ≡ψm ,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′) (level m): this means (OF ,OK , 0K/F ) ≡α,β

(OF ′,OK ′, 0K ′/F ′) (level m) and λ is an isomorphism 3→3′ which is 0K/F -equivariant relative
to γ .

We say that “X is determined by (OF/π
mOF ,OK /π

mOK , 0K/F ,3)
′′ to mean that if

(OF ,OK , 0K/F ,3)≡ψm ,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′)(level m)

then there is a canonical 0K/F -equivariant isomorphism X→ X ′ determined by (ψm, γ, λ).
Let T NR denote the Néron–Raynaud model of T considered in [Chai and Yu 2001]. This is a smooth

model of T with connected generic fiber such that T NR(OF̂un
) is the maximal bounded subgroup of

T (F̂un), where F̂un is the completion of the maximal unramified extension Fun of F contained in Fs . This
model is of finite type over OF .
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Theorem 2.1 [Chai and Yu 2001, Theorem 8.5 ]. Let m ≥ 1. There exists l ≥ m such that the model

T NR
×OF OF/p

m
F is determined by (OF/π

lOF ,OK /π
lOK , 0K/F ,3).

The parameters that l depends on are also explicitly determined in Theorem 8.5 of [Chai and Yu 2001].
Let T denote the neutral component of T NR . This is a smooth model over OF with connected generic
and special fibers, and is of finite type over OF . Its OF̂un

-points is the Iwahori subgroup of T (F̂un).

Lemma 2.2. Let T , l ≥ m as above. Then the model

T ×OF OF/p
m
F is determined by (OF/π

lOF ,OK /π
lOK , 0K/F ,3).

Proof. This lemma follows from Lemma 8.5 of [Chai and Yu 2001] and the observation that the formation
of T commutes with any base change on Spec(OF ), that is,

(T NR
×OF OF/p

m
F )

0
= T ×OF OF/p

m
F . �

When the connected reductive group is a torus T , the model T is its Iwahori (or parahoric) group
scheme. We will study congruences of parahoric group schemes attached to facets in the Bruhat–Tits
building of a connected reductive group G over F . To this end, let us recall some results from Bruhat–Tits
theory and the construction of parahoric group schemes (using Artin–Weil theorem, following [Landvogt
1996]), that will used later in this article.

Given a connected reductive group G over F , let Gder denote the derived subgroup of G, and Gad its
adjoint group. Let B(G, F) denote the reduced Bruhat–Tits building of G over F , that is, the building
of Gder over F . The building is obtained by gluing together apartments A(S, F) where S runs over
the maximal F-split tori in G. The apartment A(S, F) is an affine space under X∗(Sder)⊗Z R where
Sder
= S∩Gder. Let F be a facet in B(G, F) and let PF denote the parahoric subgroup of G(F) attached

to F . Bruhat–Tits show that there exists a smooth affine OF -group scheme PF with generic fiber G such
that PF (OF )= PF . We recall the construction of PF , following Landvogt [1996]. The parahoric group
scheme is first constructed over F̂un (note that G F̂un

is quasisplit), and the model over F is obtained using
étale descent.

2.C. Structure of quasisplit groups. Let G denote a quasisplit connected reductive group over F . Let S
be a maximal F-split torus in G and let T and N be the centralizer and normalizer of S in G, respectively.
Let B be an F-Borel subgroup of G with T ⊂ B. Note that T is a maximal F-torus in G. Further G and
T split over Fs and the Galois group 0F acts on the group of characters X∗(T ) of T , preserves the root
system 8(G, T ) of T in G, and also the base 1̃ of 8(G, T ) associated to the Borel subgroup B. Let
K ⊂ Fs denote the smallest subextension of Fs splitting T (and hence G). Let 8(G, S) denote the set of
roots of S in G.

2.C.1. Root subgroups Ua, a ∈ 8(G, S). The elements of 8(G, S) are restrictions of elements of
8(G, T ) to S, and the restrictions to S of the elements of 1̃ form a basis 1 of 8(G, S). Moreover, the
elements of 1̃ that have the same restriction to S form a single Galois orbit for the action of 0F on 1̃.
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For α ∈8(G, T ), let Ũα be the corresponding root subgroup of G K . The group 0K/F permutes Ũα and
γ (Ũα)= Ũγ (α). Let 6α be the stabilizer of Ũα and let Lα be the corresponding field of invariants. We
say that Lα is the field of definition of α. Note that Ũα is defined over Lα by Galois descent. Let {x̃α :
Ga,Lα → Ũα | α ∈8(G, T )} denote a Chevalley–Steinberg splitting of G. It has the following properties:

(a) If the restriction a of α ∈ 8(G, T ) to S is an indivisible element of 8(G, S), then x̃α is an Lα-
isomorphism of Ga to Ũα and we have x̃γ (α) = γ ◦ x̃α ◦ γ−1 for each γ ∈ Gal(K/F).

(b) If the restriction a of α∈8(G, T ) to S is divisible, then there exists two distinct roots β, β ′∈8(G, T )
of restriction a/2 to S such that α= β+β ′; we have Lβ = Lβ ′ , Lβ is a quadratic separable extension
of Lα and for each γ ∈ Gal(K/F) there exists ε = ±1 such that γ ◦ x̃α(u) ◦ γ−1

= x̃γ (α)(εu); if
γ ∈Gal(K/Lα), we have ε =−1 if and only if γ induces the unique nontrivial automorphism of Lβ .

Now we describe all possible structures for the root subgroups Ua, a ∈8(G, S). We may and do assume
that a∈1. Let 1̃a be the orbit of0K/F in 1̃. Let π :Ga

→〈Ua,U−a〉 be the universal cover of the semisim-
ple group generated by Ua and U−a . The classification of Dynkin diagrams gives two possible cases:

Case I. The group Ga
K is isomorphic to a product of the groups SL2 indexed by 1̃a and are permuted

transitively by Gal(K/F), the field of definition of the factor of index α is Lα and Ga ∼= ResLα/F SL2.
Then Ua ∼= ResLα/FŨα for α ∈ 1̃a . If x̃α : Lα → Ũα, then xa = ResLα/F x̃α is a F-isomorphism of
ResLα/F Ga to Ua; the pair (Lα, xa) is called a pinning of Ua . Via xa , we obtain an isomorphism of Lα
with Ua(F), which we also denote by xa . If (x̃β)β∈1̃ is an Chevalley–Steinberg splitting of G, then we
have for each u ∈ Lα,

xa(u)=
∏
β∈1̃a

x̃β(uβ) (2-2)

In the above, β = γ (α) for some γ ∈ 0K/F and uβ := γ (u). The subgroups U−a and the splitting x−a

are obtained using U−α and x̃−α analogously.

Case II. The group Ga
K is isomorphic to a product of the groups SL3 indexed by the set I consisting of

pairs of two elements {α, α} of 1̃a such that α+α is a root. We have Lα = Lα , Lα is a quadratic extension
of Lα+α . The simple factor G of index {α, α} is defined over Lα+α , split over Lα , and is isomorphic over
Lα+α to the special unitary group of the Hermitian form h : (x−1, x0, x1)→ τ(x−1)x1+τ(x0)x0+τ(x1)x−1

over L3. Here τ is the unique nontrivial element of Gal(Lα/Lα+α). We denote this simple factor as SU3,
and then Ga ∼= ResLα+α/F SU3.

Let H0(Lα, Lα+α) := {(u, v) ∈ Lα × Lα | v+ τ(v)= uτ(u)} denote the Lα+α-group with group law
(u, v) · (ũ, ṽ) = (u + ũ, v+ ṽ+ τ(u)ũ). Then ζ : (u, v)→ x̃α(u)x̃α+α(−v)x̃α(τ (u)) is an Lα+α-group
isomorphism of H0(Lα, Lα+α) with the subgroup U = ŨαŨα+αŨα of G. Then Ua = ResLα+α/F U and
xa = ResLα+α/K ζ is an F-isomorphism of groups H(Lα, Lα+α) = ResLα+α/F H0(Lα, Lα+α) with Ua .
Further, for (u, v) ∈ Lα × Lα,

xa(u, v)=
∏

x̃β(uβ)x̃β+β(−vβ)x̃β(τ (uβ))
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In the above, for each β, we choose γ ∈Gal(K/F) such that β = γ (α); then β = γ (α), x̃β = γ ◦ x̃α ◦γ−1,
x̃β = γ ◦ x̃α ◦ γ−1, x̃β+β = γ ◦ x̃α+α ◦ γ−1, uβ = γ (u), vβ = γ (v).

Note that the root subgroup U2a(K ) associated to the root 2a consists of elements xa(0, v) where v is
an element of L0

α := {v ∈ Lα | v+τ(v)= 0}, and the map v→ xa(0, v) is an F-vector space isomorphism
of L0

α.

2.C.2. On the splitting extension of the root. Let a ∈8red(G, S) with 2a is not a root. We fix a pinning
(Lα, xa) of Ua where α ∈ 1̃a as in Case I above. The subset of endomorphisms of the F-vector space
Ua of the form µxa (t) : xa(u)→ xa(tu) for t ∈ Lα does not depend on the choice of (Lα, xa) (see
Section 4.1.8 of [Bruhat and Tits 1984]). This is denoted by La and is called the field attached of the root
a. It is isomorphic to Lα via the map t→ µxa (t). Its inverse gives an embedding of La ↪→ K . A similar
definition is obtained when 2a is a root in Section 4.1.14 of [Bruhat and Tits 1984].

2.C.3. Valuations. Let ω : F→ R× be as in Section 2.A, and we denote its extension to K also as ω.
The notion of valuation of root datum was defined in [Bruhat and Tits 1972]. For α ∈8(G, T ), put

φα(x̃α(u))= ω(u), u ∈ K×.

Then φ̃ = (φα)α∈8(G,T ) defines a valuation of the root datum (TK , (Ũα)α∈8(G,T )) in the group G(K )
(recall that G K is split). It is shown in [Bruhat and Tits 1984] that φ̃ descends to (T, (Ũa)a∈8(G,S)) and
defines a valuation on it. We explicitly define φa :Ua(F)\{1}→ R from φ̃. For a ∈8(G, S), let A (resp.
B) be the set of α ∈8(G, T ) whose restriction to S is a (resp. 2a). For u ∈Ua(F), there exist unique ũα
such that u =

∏
α∈A∪B ũα for an arbitrary ordering of A∪ B and we put

φa(u)= inf
(

inf
α∈A

φ̃α(ũα), inf
α∈B

1
2 φ̃α(ũα)

)
.

This number is independent of the choice of ordering of A∪B. Then φ= (φa)a∈8(G,S) defines a valuation
of root datum on (T, (Ua)a∈8(G,S)) (see Section 4.2.2 of [Bruhat and Tits 1984]).

2.D. Parahoric group schemes: quasisplit descent. In this section, we assume that F is also strictly
Henselian, that is its residue field is separably closed.

2.D.1. Affine root system and the associated Weyl groups. The apartment A(S, F) can also be thought
of as the set of valuations that are equipollent to φ = (φa)a∈8(G,S), where φ as above. This is an affine
space under X∗(Sder)⊗Z R and N (F) acts on it by affine transformations (see Section 6.2.2 of [Bruhat
and Tits 1972]). Let us denote the point of A(S, F) corresponding to φ as x0. For a ∈ 8(G, S), let
0a = φa(Ua(F)\{1}) and

0̃a = {φa(u) | u ∈Ua(F)\{1}, φa(u)= supφa(uU2a(F))}.

Here we have used the convention that U2a = 1 if 2a is not a root. Let

8af(G, S)= {ψ :A(S, F)→ R | ψ(·)= a(· − x0)+ l, a ∈8(G, S), l ∈ 0̃a}
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denote the set of affine roots of S in G. Choosing x0 allows us to identify A(S, F) with X∗(Sder)⊗Z R.
With this identification, the vanishing hyperplanes coming from 8(G, S)af makes A(S, F) into a
(poly)simplicial complex. The group generated by reflections through the hyperplanes coming from
8(G, S)af is the affine Weyl group denoted by W af. The extended affine Weyl group is defined as
W e
:= N (F)/T (F)1 where T (F)1 is the kernel of the Kottwitz homomorphism κT : T (F)→ X∗(T̂ IF )=

X∗(T )IF (see [Haines and Rapoport 2008]). With W :=W (G, S), the group W e hence fits into an exact
sequence

1→ X∗(T )IF →W e
→W → 1.

2.D.2. The associated root subgroup schemes. Let us recall the filtrations on root subgroups and the
associated root subgroup schemes from Section 4.3 of [Bruhat and Tits 1984]. For a ∈ 8(G, S), let
φa :Ua(F)→R∪{∞} be as above. For k ∈R, Let Ua,k = {u ∈Ua(F) | φa(u)≥ k}. Next, let us describe
the associated root subgroup schemes.

Case I. Let a ∈8red(G, S) such that 2a /∈8(G, S). For k ∈ 0̃a , let La,k = {u ∈ La |ω(u)≥ k}. Then La,k

is a free OF -module of finite type. Let La,k be the canonical smooth OF -group scheme associated to this
module. (More precisely, given a free OF -module M of finite type, the functor taking any OF -algebra R
to the additive group R⊗M is representable by a smooth OF -group scheme M whose affine algebra is
identified with the symmetric algebra of the dual of M .) Let Ua,k be the image under xa of La,k and let
Ua,k be the OF -group scheme obtained by transport of structure using xa . Then Ua,k has generic fiber Ua

and Ua,k(OF )=Ua,k . The definition is extended to k ∈ R\{0} in Section 4.3.2 of [Bruhat and Tits 1984].

Case II. Let a ∈ 8red(G, S) with 2a ∈ 8(G, S). The root subgroup Ua ∼= ResL2a
F H0(La, L2a) via xa .

In order to describe the root subgroup schemes of the filtration Ua,k , we use an alternate description of
H0(La, L2a). Recall that L0

a is the set of trace 0 elements of La . Let L1
a denote the set of trace 1 elements

in La and let

(La)
1
max := {λ ∈ L1

a | ω(λ)= sup{ω(x) | x ∈ L1
a}}.

Note that (La)
1
max 6= ∅ and when the residue field of La is of characteristic 6= 2, 1/2 ∈ (La)

1
max. Let

λ ∈ (La)
1
max and let Hλ

0 := La × L0
a equipped with the action

(u, v) · (ũ, ṽ)= (u+ ũ, v+ ṽ− λuτ(ũ)+ τ(λ)τ(u)ũ). (2-3)

Then Hλ
0 is an algebraic L2a-group and jλ : (u, v)→ (u, v− λτ(u)u) is an L2a-group isomorphism of

H0(La, L2a) onto Hλ
0 . Let Hλ

= ResL2a
F Hλ

0 .
Let γ =− 1

2ω(λ). For k ∈ 0̃a , let l = 2k+ 1
ea

, and

La,k+γ := {u ∈ La | ω(u)≥ k+ γ } and L0
a,l := {u ∈ L0

a | ω(u)≥ l}.

Up to isomorphism, there exists a unique smooth affine OF -group scheme Hλ
k of finite type with generic

fiber Hλ and such that Hλ
k (OF )= La,k+γ × L0

a,l and a group law, which induces the group law (2-3) on
the generic fiber (See Section 4.3.5 of [Bruhat and Tits 1984]). In more detail, let La,k+γ and L0

a,l be the
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canonical OL2a -group schemes associated to La,k+γ and L0
a,l . Let Hλ

0,k = La,k+γ ×L0
a,l . The map

La × La→ L0
a, (u, u′)→ λuτ(ũ)− τ(λ)τ(u)ũ

can be extended uniquely to a morphism La,k+γ ×La,k+γ → L0
a,l . Hence the group law can be extended

to Hλ
0,k . Let Hλ

k :=Res
OL2a
F Hλ

0,k . By transport of structure using xa ◦ResL2a
F j−1

λ , we obtain the OF -group
scheme Ua,k . These definitions are extended to k, l ∈ R\{0} in Section 4.3.8 of [Bruhat and Tits 1984].

Using the isomorphism v→ xa(0, v) from L0
a→U2a , we obtain from the scheme L0

k (for k ∈ω(L0
a)\0),

an OF -scheme whose generic fiber is U2a and denote it as U2a,k (see Section 4.3.7 of [Bruhat and Tits
1984] for further details).

2.D.3. Construction of parahoric group schemes over F. In this section, we recall the construction of para-
horic group schemes, following [Landvogt 1996]. Given x ∈A(S, F), let fx :8(G, S)→R be the function
fx(a) = −a(x − x0), where x0 is the unique point arising from quasisplit descent as in Section 2.D.1.
Let Ua,x := Ua, fx (a). Let Ua,x be the smooth affine group scheme over OF with generic fiber Ua and
with Ua,x(OF )=Ua,x (as in Section 2.D.2). For 9 =8+(G, S) and 9 =8−(G, S), Proposition 3.3.2
of [Bruhat and Tits 1984] gives a unique smooth affine OF -group scheme U9,x of finite type with generic
fiber U9 and the property that for every good ordering of 9red (See Section 3.1.2 of [Bruhat and Tits
1984]), the F-isomorphism

∏
a∈9 Ua→U9 can be extended to an OF -isomorphism

∏
a∈9 Ua,x→ U9,x .

The parahoric subgroup Px is generated by T (OF ) and the Ua,x for a ∈ 8(G, S) (with T is as
in Section 2.B). One of the main results of [Bruhat and Tits 1984] is that there is a unique smooth
affine OF -group scheme Px with generic fiber G and with Px(OF ) = Px . We recall the construction
of Px from [Landvogt 1996]. The idea is to put an OF -birational group law on U8+,x × T × U8−,x
and invoke Artin–Weil theorem (see Chapters 5 and 6 of [Bosch et al. 1990]) to construct Px . Let
us first introduce some notation. Let U±x = U8±(G,S),x and let Xx = U−x T U+x . Since its generic
fiber Xx ×OF F = U−T U+ is an open neighborhood of the 1-section of G, there exists a unique
F-birational group law on the generic fiber of Xx . We want to extend this to Xx . Since U−T U+

and U+T U− are both open neighborhoods of the 1-section of G, there exist f ∈ F[U−T U+] and
f ′ ∈ F[U+T U−] such that F[U−T U+] f = F[U+T U−] f ′ . Without loss of generality, we may assume
that f ∈ OF [U−T U+]\πOF [U−T U+] and f ′ ∈ OF [U+T U−]\πOF [U+T U−]. Proposition 5.16
of [Landvogt 1996] shows that inside F[U−T U+] f = F[U+T U−] f ′ , we have OF [U−x T U+x ] f =
OF [U+x T U−x ] f ′ . So we will identify (U−x T U+x ) f = (U+x T U−x ) f ′ in the following. By Proposition 5.8 of
[Landvogt 1996], we can identify T U+x and U+x T and hence also T U+x U−x and U+x T U−x . In Xx ×Xx =

U−x × (T ×U+x ×U−x )× T U+x , we consider the open subscheme

U−x × (U+x × T ×U−x ) f × T U+x = U−x × (U−x × T ×U+x ) f ′ × T U+x
⊂ U−x ×U−x × T ×U+x × T U+x
= (U−x ×U−x )× (T × T )× (U+x ×U+x )

mult3
−−−→U−x × T ×U+x
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So we obtain a morphism U−x × (U+x × T ×U−x ) f × T U+x → Xx . Since Xx has irreducible fibers over
OF and since f /∈ πOF [U−x T U+x ], we see that (U−x T U+x ) f is OF -dense in Xx (that is, each of its fibers
is Zariski dense in the corresponding fiber of Xx — see Section 2.5 of [Bosch et al. 1990]), and hence
U−x ×(U+x ×T ×U−x ) f ×T U+x is OF -dense in U−x ×(T ×U+x ×U−x )×T U+x =Xx×Xx . Hence we obtain
an OF -rational map m : Xx ×Xx → Xx . By Proposition 5.16 of [Landvogt 1996], m is an OF -birational
group law on Xx . Glue together the schemes G and Xx along Xx ×OF F and denote it as Yx . As in
Proposition 5.17 of [Landvogt 1996], the parahoric group scheme Px with group law m, together with an
open immersion Yx → Px such that the restriction of m to Yx is m, is obtained by applying Theorem 5.1
of [Bosch et al. 1990] to the scheme Yx . The generic fiber of Px is G. Let F be a facet in A(S, F). Then
for x, y ∈F , Px = Py . So we write PF for the parahoric subgroup attached to the facet F and denote the
underlying group scheme as PF .

2.E. Parahoric group schemes: étale descent. Let F be a nonarchimedean local field and F̂un be the
completion of the maximal unramified extension Fun(⊂ Fs) of F . Let G be a connected reductive group
over F . By a theorem of Steinberg (recalled as Theorem 5.2), we know that G Fun is quasisplit. Let A be
a maximal F-split torus in G. By Section 5 of [Bruhat and Tits 1984], there is an F-torus S that contains
A and is maximal Fun-split. Note that X∗(A)= X∗(S)Gal(F̂un/F). Let A(A, F) denote the apartment of
G with respect to A. Let F∗ be a facet in A(A, F). We fix an algebraic closure κF of the residue field
κF and identify the Galois groups Gal(F̂un/F) with Gal(κF/κF ). Let σ denote the Frobenius element of
Gal(Fun/F) under this identification. Then we know that there is a σ -stable facet F̃∗ in A(S, Fun) such
that F̃σ

∗
= F∗ (see Chapter 5 of [Bruhat and Tits 1984]). Since F̃∗ is stable under the action of σ , the

parahoric group scheme PF̃∗ is also stable under the action of σ . In this case, the OF̂un
-group scheme

PF̃∗ admits a unique descent to an OF -group scheme with generic fiber G (see Example B, Section 6.2,
[Bosch et al. 1990]). The affine ring of this group scheme is (OF̂un

[PF̃∗])
Gal(F̂un/F). This is the parahoric

group scheme attached to the facet F∗ of A(A, F).

3. Quasisplit forms over close local fields

Let G0 be a split connected reductive group defined over Z with root datum (R,1). For an extension
K/F , let G0,K := G0×Z K .

Let E(F,G0) be the of F-isomorphism classes of connected reductive F-algebraic groups G with G Fs

isomorphic to G0,Fs . This is in natural bijection with the Galois cohomology set H 1(0F ,Aut(G0,Fs )).
We denote this map

E(F,G0)→ H 1(0F ,Aut(G0,Fs )), [G] → sG . (3-1)

Lemma 3.1. Let IF be the inertia group of F and I m
F denote the m-th higher ramification subgroup

with upper numbering. Let E(F,G0)m denote the set of F-isomorphism classes of F-forms G of
G0,F such that there exists an at most m-ramified finite extension L ⊂ Fs (i.e., Gal(L/F)m = 1) with
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G×F L ∼= G0×Z L. The bijection (3-1) induces a bijection between E(F,G0)m and the cohomology set
H 1(0F/I m

F , (AutFs (G0,Fs ))
I m

F ).

Proof. Let� := (Fs)
I m

F . Then for every finite extension F ⊂ L ⊂ Fs , L ↪→� if and only if Gal(L/F)m = 1
(see Section 3.5 of [Deligne 1984]). Further we know that H 1(Aut(�/F),Aut�(G0,�)) classifies isomor-
phism classes of F-forms [G] with G×F �∼= G0,F ×F �. Now simply note that Aut(�/F)∼= 0F/I m

F

and Aut�(G0,�)= (AutFs (G0,Fs ))
I m

F . �

3.A. Quasisplit forms. Let (G0, T0, B0, {uα}α∈1̃) be a pinned, split, connected, reductive Z-group with
based root datum (R, 1̃) where {uα}α∈1̃ is a splitting as in Section 3.2.2 of [Bruhat and Tits 1984]. Then
Out(G0) can be identified with the constant Z-group scheme associated to the group Aut(R, 1̃). Consider
the exact sequence

1→ Inn(G0(Fs))→ Aut(G0,Fs )→ Aut(R, 1̃)→ 1.

Let H = H(G0, T0, B0, {uα}α∈1̃) be the subgroup of Aut(G0,Fs ) consisting of all a such that a(B0)= B0,
a(T0)= T0 and {a ◦uα | α ∈ 1̃} = {uα | α ∈ 1̃}. Then H ↪→Aut(G0,Fs )→Aut(R, 1̃) is an isomorphism
and Aut(G0,Fs )

∼= H n Inn(G0(Fs)). Hence the natural map H 1(0F ,Aut(G0,Fs ))→ H 1(0F ,Aut(R, 1̃))
has a section given by

q : H 1(0F ,Aut(R, 1̃))−→∼ H 1(0F , H)→ H 1(0F ,Aut(G0,Fs )).

We now recall the following well-known theorem (see [Conrad 2011], Section 7.2).

Theorem 3.2. Let [G] ∈ E(F,G0). Then sG lies in the image of

q : H 1(0F ,Aut(R, 1̃))→ H 1(0F ,Aut(G0,Fs ))

if and only if G is quasisplit over F , that is, it has a Borel subgroup defined over F.

Let Eqs(F,G0) := {[G] ∈ E(F,G0) | sG ∈ I m(q)} and Eqs(F,G0)m = Eqs(F,G0) ∩ E(F,G0)m .
Since G0 is F-split, the action of 0F on (G0, B0, T0) is trivial. Hence

Z1(0F ,Aut(R, 1̃))= Hom(0F ,Aut(R, 1̃)).

Lemma 3.3. We have the following:

(a) The class [G] ∈ Eqs(F,G0)m if and only if sG lies in the image of

q : H 1(0F/I m
F ,Aut(R, 1̃)I m

F )→ H 1(0F/I m
F ,Aut(G0,Fs )

I m
F ).

(b) The isomorphism ψm : Trm(F)−→∼ Trm(F ′) induces an isomorphism

Qm : H 1(0F/I m
F ,Aut(R, 1̃))−→∼ H 1(0F ′/I m

F ′,Aut(R, 1̃))

and
Qc

m : Z
1(0F/I m

F ,Aut(R, 1̃))−→∼ Z1(0F ′/I m
F ′,Aut(R, 1̃)).

(c) The isomorphism ψm induces a bijection Eqs(F,G0)m→ Eqs(F ′,G0)m, [G] → [G ′], where sG ′ =

q ′ ◦Qm(sG).
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Proof. This is clear from Lemma 3.1 and Theorem 3.2. �

As noted in Lemma 3.3, Z1(Gal(�/F),Aut(R, 1̃))= Hom(Gal(�/F),Aut(R, 1̃)) since G0 is split.
Let us fix s ∈ Z1(Gal(�/F),Aut(R, 1̃)) ∼= Z1(Gal(�/F), H). Let (G, φ) be a pair of be a quasisplit
connected reductive group over F and φ : G0×Z�→ G×F � an �-isomorphism such that the Galois
action on G(Fs) is given by s. We may and do assume that there is a finite Galois at most m-ramified
extension K of F over which φ is defined, that is, that s ∈ Z1(Gal(K/F),Aut(R, 1̃)).

More precisely, with ∗F denoting the Galois action on G(K ), we have

γ ∗F φ(x)= φ(s(γ )(γ · x))

for γ ∈Gal(K/F) and x ∈G0(K ). Then φ(T0)=T is a maximal torus of G defined over F and φ(B0)= B
is a Borel subgroup of G containing T and defined over F . Let s ′ ∈ Z1(Gal(K ′/F ′),Aut(R, 1̃)) as in
Lemma 3.3. Here K ′/F ′ is determined by K/F via Delm . Let (G ′, φ′) be a pair of quasisplit connected
reductive group over F ′ and φ′ :G0×Z K ′→G ′×F ′ K ′ such that γ ′∗F ′ φ

′(x ′)= φ(s ′(γ ′)(γ ′ · x ′)), where
γ ′=Delm(γ ). Then φ′(T0)=T ′ and φ′(B0)= B ′ are defined over F ′. Note that X∗(T )∼= X∗(T0)∼= X∗(T ′)
and X∗(T )∼= X∗(T0)∼= X∗(T ′) via φ and φ′.

Recall the notation of Chai–Yu: (OF ,OK , 0K/F )≡ψm ,γ (OF ′,OK ′, 0K ′/F ′) (level m) from Section 2.B.
We write

(OF ,OK , 0K/F , H)≡ψm ,γ,Qc
m
(OF ′,O

′

K ′, 0K ′/F ′, H ′)(level m)

to mean (OF ,OK , 0K/F ) ≡α,β (OF ′,O
′

K ′, 0K ′/F ′) (level m), H and H ′ arise from the same Z-pinned
group (G0, B0, T0, {uα}α∈1̃), and the F-quasisplit data (G, B, T ) with cocycle s corresponds to the
F ′-quasisplit data (G ′, B ′, T ′) with cocycle s ′ via Qc

m as in Lemma 3.3 (b) (but applied to K and K ′

respectively). To abbreviate notation we will write congruence data Dm to mean

Dm : (O,OK , 0K/F , H)≡ψm ,γ,Qc
m
(OF ′,O

′

K ′, 0K ′/F ′, H ′)(level m).

Lemma 3.4. The congruence data Dm induces isomorphisms:

X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′), X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′),

X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′), X∗(T )Gal(�/F) ∼= X∗(T ′)Gal(�′/F ′).

Proof. We know that γ ∗F (φ(x)) = φ(s(γ )(γ · x)) where s(γ ) = φ−1
◦ γ (φ) takes values in H =

H(G0, T0, B0, {uα}α∈1̃). We similarly have ∗F ′ . This action induces the action on X∗(T ) as follows:

γ ∗F (φ ◦ λ)= φ ◦ (s(γ )(λ))

where γ ∈ Gal(�/F) and λ ∈ X∗(T0), where we now view s(γ ) as an element of Aut(R, 1̃)). By
definition s(γ )(λ) = s ′(γ ′)(λ) where γ ′ = Delm(γ ). Hence γ ′ ∗F ′ (φ

′
◦ λ) = φ′ ◦ s ′(γ ′)(λ). Now,

X∗(T )Gal(�/F)
= {φ ◦ λ | s(γ )(λ)= λ}. The lemma is now clear. �
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4. Congruences of parahoric group schemes: quasisplit descent

4.A. Apartment over close local fields. In this section, we additionally assume that F is strictly Henselian.
We begin with the following lemma.

Lemma 4.1. Let T as above and let S be the maximal split subtorus of T . Then S is maximal F-split and
ZG(S)= T .

Proof. Let S ⊂ S̃ with S̃ maximal F-split. Since G is quasisplit over F , T̃ = ZG(S̃) is a maximal torus in
G and we can assume that T̃ ⊂ B̃, with B̃ defined over F . Then B and B̃ are G(F)-conjugate, which
implies that T and T̃ are G(F)-conjugate. But conjugation by an element of G(F) will preserve the split
and anisotropic components of T , which implies that S and S̃ are G(F)-conjugate, which forces S = S̃ to
be maximal F-split. It is now clear that ZG(S)= T . �

Remark 4.2. The torus Sder
:= S∩Gder is a maximal F-split torus of Gder contained in T der

:= T ∩Gder.

4.A.1. Compatibility of Chevalley–Steinberg systems. Recall that we have fixed a Z-pinning {uα}α∈1
of G0. This, via the Galois action given by the cocycles s and s ′, gives rise to a Steinberg splitting {xα}α∈1
of G and a Steinberg splitting {x ′α′}α′∈1′ of G ′ respectively. Let 8m :8(G, T )−→∼ 8(G ′, T ′) (since both
are isomorphic to 8(G0, T0)). This isomorphism is Delm-equivariant. Note that with γ ∈ Gal(�/F)
and γ ′ = Delm(γ ), we have that xγ (α) = γ ◦ xα ◦ γ−1 and x ′γ ′(α′) = γ

′
◦ x ′α′ ◦ γ

′−1 where α′ = 8m(α).
The {xα}α∈1 and {x ′α′}α′∈1′ each extend to Chevalley–Steinberg systems on G and G ′ respectively and
continue to have the compatibility with Delm in the sense described above.

We define

eF :=

{
eF/Q2 = ωF (2) if char(F)= 0 and residue char(F)= 2,
∞ otherwise.

We prove the following refinement of Lemma 4.3.3 of [Bruhat and Tits 1984] when the residue character-
istic of F is 2, using the additional hypothesis that the extension K/F splitting G is at most m-ramified.

Lemma 4.3. Let m ≥ 1 and let F be of residue characteristic 2 with eF ≥m. Let G, B, T as above, where
G splits over K with Gal(K/F)m = 1. Assume that a, 2a ∈8(G, S). Consider the separable quadratic
extension La/L2a inside K . Let ea = eLa/F , e2a = eL2a/F . There exists t ∈ La with La = L2a[t] and the
coefficients A, B ∈ L2a of the equation t2

+ At + B = 0 satisfied by t have the following properties:

(a) ω(B)= 0 or B is a uniformizer of L2a .

(b) ω(B)≤ ω(A) < m
2 +

1
ea

.

In particular A 6= 0.

Proof. By Lemma 4.3.3(ii) of [Bruhat and Tits 1984], (a) holds, and A = 0 or ω(B)≤ ω(A) < ω(2) or
0< ω(B)≤ ω(A)= ω(2). Since Gal(K/F)m = Gal(K/F)ψK/F (m) = 1 where ψK/F denotes the inverse
of the Herbrand function (See Chapter 4 of [Serre 1979]), we have

Gal(K/L2a)
ψL2a/F (m) = Gal(K/L2a)ψK/F (m) = Gal(K/L2a)∩Gal(K/F)ψK/F (m) = 1.
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This implies that Gal(La/L2a)
ψL2a/F (m) = 1. Using the equivalence of (ii) and (iv) of Lemma A.6.1 of

[Deligne 1984], we see that

ω(τ(t)− t) <
ψL2a/F (m)+ 1

2e2a
=
ψL2a/F (m)+ 1

ea
. (4-1)

It is easy to see from the definition that ψL2a/F (m)≤ m · e2a . Hence

ω(τ(t)− t) < m
2 +

1
ea
.

Now, ω(A) = ω(τ(t)+ t) ≥ min(ω(τ(t)− t), ω(2t)), and ω(2t) = ω(2)+ ω(t) = eF +
1
ea

. Since
eF ≥ m > m/2, we see that

ω(A)=min(ω(τ(t)− t), ω(2t))= ω(τ(t)− t) < m
2 +

1
ea

(4-2)

and in particular, A 6= 0.
Note that when the characteristic of F is 2, the claim that A 6= 0 simply follows from the fact that the

extension La/L2a is separable. �

Proposition 4.4. Let G, T and B as in the preceding paragraph. Let m ≥ 1 and let F, F ′ be such that
eF , eF ′ ≥ m. The congruence data Dm induces a simplicial isomorphism Am : A(S, F)→ A(S′, F ′),
where (G ′, B ′, T ′) corresponds to the triple (G, B, T ) as above and S (resp. S′) is the maximal split
subtorus of T (resp. T ′) which is maximal F-split (resp. F ′-split) by Lemma 4.1. Furthermore, with W e

as in Section 2.D.1, we also have a group isomorphism W e ∼=W e′ .

Proof. The reduced apartment A(S, F) is an affine space under X∗(Sder)⊗Z R. Using Lemma 3.4, we
see that Dm induces a unique bijection Am :A(S, F)→A(S′, F ′) such that x0→ x ′0 (where x0, x ′0 are
as in Section 2.D.1 arising from Chevalley–Steinberg systems chosen compatibly as in Section 4.A.1).

It remains to observe that Am is a simplicial isomorphism. Recall that the elements of 8(G, S) are
restrictions to S of the elements of 8(G, T ) and two elements of 8(G, T ) restrict to the same element
of 8(G, S) if and only if they lie in the same Gal(K/F)-orbit. Further, with 1̃ denoting a base of
8(G, T ), the elements α|S, α ∈ 1̃ form a base 1 of 8(G, S). Let 8m :8(G, T )−→∼ 8(G ′, T ′) (since
both are isomorphic to 8(G0, T0)). This isomorphism is Delm-equivariant. Hence the obvious map
8(G, S)→8(G ′, S′), α|S→8m(α)|S′ , which we also denote as 8m , is an isomorphism of the relative
root systems. (In more detail, since S and S′ have the same rank, we have a isomorphism of R-vector
spaces X∗(S)⊗Z R→ X∗(S′)⊗Z R. Further, we have a bijection between 1→ 1′; this is because if
8m(α)|S′ = 8m(β)|S′ , then there is η′ ∈ Gal(�′/F ′) with η′ ·8m(α) = 8m(β). Then η · α = β where
η′ = Delm(η). Finally note that 〈8m(α)|S′,8m(β)|S′〉 = 〈8m(α),8m(β)〉 = 〈α, β〉 = 〈α|S, β|S〉).

The vanishing hyperplanes with respect to the affine roots 8af(G, S) gives the simplicial structure on
A(S, F). Recall that

8af(G, F)= {ψ :A(S, F)→ R | ψ(·)= a(· − x0)+ l, a ∈8(G, S), l ∈ 0̃a}.
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For any a ∈ 8(G, S), let a′ = 8m(a). Let La′ ⊂ K ′ denote splitting extension of the root a′ obtained
by Delm . Since F is strictly Henselian, the extensions La/F and La′/F ′ are totally ramified. To prove
that the bijection 8m extends to a bijection 8af

m : 8
af(G, F)→ 8af(G ′, F ′) making Am a simplicial

isomorphism, we simply have to observe that for each a ∈8(G, S), 0̃a = 0̃a′ . By Section 4.3.4 of [Bruhat
and Tits 1984], we have the following:

Case I. Suppose a ∈8red(G, S), 2a /∈8(G, S). Then 0a = 0̃a =
1
ea

Z.

Case II. Suppose a, 2a ∈8(G, S).

(a) Suppose La/L2a is ramified and the residue characteristic of F is not 2. Then

0̃a =
1
ea

Z and 0̃2a =
1
ea
+

1
e2a

Z.

(b) Suppose La/L2a is ramified and the residue characteristic of F is 2. By Lemma 4.3, A 6= 0. Then

0̃a =
1

2ea
+

1
ea

Z and 0̃2a =
1

e2a
Z.

Since ea = ea′, e2a = e2a′ , and the valuations ω and ω′ are normalized so that ω(F) = ω′(F ′) = Z, we
have 0̃a = 0̃a′ for all a ∈8(G, S). �

4.B. Congruences of parahoric group schemes: strictly Henselian case. In this section, we additionally
assume that F is strictly Henselian.

Theorem 4.5. Let m ≥ 1 and let F and F ′ be such that eF , eF ′ ≥ 2m. Let l be as in Lemma 2.2 and let Dl

and G, S, T, B as in the beginning of this section. Let F ∈A(S, F) and F ′=Am(F) as in Proposition 4.4.
Let PF be the parahoric group scheme over OF attached to F by Bruhat–Tits, and let PF ′ be the group
scheme attached to F ′ over OF ′ . Then the congruence data Dl induces an isomorphism of group schemes

p̃m : PF ×OF OF/p
m
F → PF ′ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular, PF (OF/p
m
F )
∼= PF ′(OF ′/p

m
F ′) as groups.

To prove this theorem, we will study the reduction of root subgroup schemes mod pm
F and prove

that they are determined by congruence data, use the result of Chai–Yu that the reduction of the Néron
model of the torus in determined by congruence data, study the reduction of OF -birational group laws in
Section 2.D.3, and invoke the Artin–Weil theorem to obtain the corresponding result for parahoric group
schemes in Section 4.B.1.

The following lemma is easy.

Lemma 4.6. Let M be a free OF -module of finite type and let A= SymOF
(M∨) be the symmetric algebra

of M∨, where M∨ := HomOF (M,OF ). Then

A⊗OF OF/p
m
F
∼= SymOF/p

m
F
(M∨⊗OF OF/p

m
F )
∼= SymOF/p

m
F
(HomOF/p

m
F
(M ⊗OF OF/p

m
F ,OF/p

m
F )).

Lemma 4.7. Let m ≥ 1, let F and F ′ be such that eF , eF ′ ≥ 2m and let Dm as before. Let a ∈8(G, S)
and k ∈ R. Let Ua,k be the OF -group scheme in Section 2.D.2. Let a′ =8m(a) ∈8(G ′, S′) and let U ′a′,k
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be the OF ′-group scheme in Section 2.D.2. Then the congruence data Dm induces an isomorphism of
group schemes

Ua,k ×OF OF/p
m
F
∼= Ua′,k ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular,
Ua,k(OF/p

m
F )
∼= Ua′,k(OF ′/p

m
F ′).

Proof. We will stick to the notation in Section 2.D.2.

Case I. Suppose a ∈ 8red(G, S), 2a /∈ 8(G, S). The affine ring representing Ua,k is isomorphic to
SymOF

L∨a,k . Note that La,k = p
dk/ee
La

. Since pLa is a free OF -module of rank equal to [La : F], it is clear
that the data Dm induces an isomorphism of La,k ⊗OF OF/p

m
F and La′,k ⊗OF ′

OF ′/p
m
F ′ and we are done

by the previous lemma.

Case II. Suppose a, 2a ∈8(G, S). Since F is strictly Henselian, the extension La/L2a is totally ramified.
Let La = L2a(t), where t2

+ At + B = 0 with A, B satisfying Lemma 4.3.3 of [Bruhat and Tits 1984].
When:

• The residue characteristic of F is not 2, we take λ= 1
2 (See Lemma 4.3.3(ii) of [loc. cit.]).

• The residue characteristic of F is 2, we take λ = t A−1 (using Lemma 4.3.3(ii) of [loc. cit.] and
Lemma 4.3).

Then the affine ring representing the scheme Hλ
0 is

SymOL2a
L∨a,k+γ ⊗OL2a

SymOL2a
(L0

a,l)
∨ ∼= SymOL2a

((La,k+γ × L0
a,l)
∨),

where l = 2k+ 1
ea

. We describe L0
a,l .

(a) If the residue characteristic of F is not 2, then using that ω(2)= 0 in Lemma 4.3.3 of [loc. cit.], we
see that A = 0. Then L0

a = {x ∈ La | τ(x)+ x = 0} = {yt | y ∈ L2a} and

L0
a,l = {yt | y ∈ L2a, ω(yt)≥ l} = {yt | y ∈ L2a, ω(y)≥ 2k}.

(b) If the residue characteristic of F is 2, then:

(i) If char(F)= 2, then L0
a = L2a and L0

a,l = {y ∈ L2a | ω(y)≥ l}.
(ii) If char(F)= 0, then L0

a = {y(1− 2t A−1) | y ∈ L2a}. By Lemma 4.3, we have

ω(2t A−1)= eF +
1
ea
−ω(A) > eF −

m
2 ≥ m

since eF ≥ 2m. Hence 1− 2t A−1
∈ 1+ pmea

La
, and L0

a,l = {y(1− 2t A−1) | y ∈ L2a, ω(y)≥ l}.

Let La′ ⊂ �
′ be obtained from La via the Deligne isomorphism Delm . Then La′ is the splitting

extension of the root a′ (and similarly we obtain L2a′). We may and do assume that La′ = L2a′(t ′), where
t ′2+ A′t ′+ B ′ = 0, with A′, B ′ satisfying:

• ω(A)= ω′(A′) and A mod pme2a
L2a

ψm−→ A′ mod pme2a
L ′2a′

.

• ω(B)= ω′(B ′) and B mod pme2a
L2a

ψm−→ B ′ mod pme2a
L ′2a′

.
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Then t mod pmea
La

ψm−→ t ′ mod pmea
L ′a′

. It is now easy to check that the map ψm induces isomorphisms

La,k+γ ⊗OL2a
OL2a/p

me2a
L2a
∼= L0

a′,k+γ ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′

L0
a,l ⊗OL2a

OL2a/p
me2a
L2a
∼= L0

a′,l ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′
.

In the above, we have used that when the residue characteristic of F is 2, 1− 2t A−1
≡ 1 mod pmea

La
.

Consequently, Dm induces an isomorphism of the reduction of the respective affine rings mod pme2a
L2a

. To
see that this is an isomorphism of group schemes, we observe that reducing the map

j : La,k × L0
a,l × La,k × L0

a,l→ La,k × L0
a,l

((x, y), (x ′, y′))→ (x + x ′, y+ y′− λxτ(x ′)+ λx ′τ(x))

mod pme2a
L2a

is ψm-equivariant. Finally Hλ
= Res

OL2a
OF

Hλ
0 and the result now follows from [Bosch et al.

1990, page 192].
The lemma for U2a,k follows using that

L0
a,k ⊗OL2a

OL2a/p
me2a
L2a
∼= L0

a′,k ⊗OL′
2a′

OL ′2a′
/pme2a

L ′2a′

and [Bosch et al. 1990, page 192]. �

The following corollary is an obvious consequence of the previous lemma.

Corollary 4.8. With assumptions of Lemma 4.7, and with F ′ =Am(F) where F is a facet in A(S, F),
let Ua,F (resp. Ua′,F ′) be the smooth root subgroup scheme over OF (resp. OF ′) as in Section 2.D.3. The
congruence data Dm induces an isomorphism

Ua,F ×OF OF/p
m
F
∼= Ua,F ′ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular, Ua,F (OF/p
m
F )
∼= Ua′,F ′(OF ′/p

m
F ′) as groups.

4.B.1. Proof of Theorem 4.5. For a scheme X defined over a local ring R with maximal ideal m, we will
denote X (m)

:= X×R R/mm . Let l be as in Lemma 2.2. We want to prove that Dl induces an isomorphism
of OF/p

m
F -group schemes P (m)

F
∼= P (m)

F ′ ×ψ−1
m

OF/p
m
F . Let XF ,XF ′ be as in Section 2.D.3. Let m(m) be

the OF/p
m
F -birational group law on X (m)

F and similarly n(m) on X (m)
F ′ . Note that via Dl , we also have that

(OF ,OK , 0K/F ,3)≡ψe,γ,λ (OF ′,OK ′, 0K ′/F ′,3
′) (level l)

as in the notation of Chai–Yu of Section 2.B, where 3= X∗(T ),3′= X∗(T ′); so the result of Lemma 2.2
holds. We know by Lemmas 2.2 and 4.8 that

X (m)
F
∼= X (m)

F ′ ×ψ−1
m

OF/p
m
F (4-3)

as OF/p
m
F -schemes. Further, by these lemmas, we also have that the OF/p

m
F -birational group laws

n(m)×ψ−1
m

OF/p
m
F and m(m) on X (m)

F are equivalent. Since YF is the OF -scheme obtained by gluing G
and XF along XF ×OF F , we have that Y (m)F is isomorphic to X (m)

F as OF/p
m
F -schemes. Now, P (m)

F with
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group law m(m), and P (m)
F ′ ×ψ−1

m
OF/p

m
F with group law n(m)×ψ−1

m
OF/p

m
F , are both smooth, separated

OF/p
m
F - group schemes that are faithfully flat and of finite type. Recall that the restriction of m to YF

is m, and similarly for n. Hence the group laws m(m) and n(m)×ψ−1
m

OF/p
m
F have the same restriction

to Y (m)F . Following the proof of uniqueness of Artin–Weil theorem (see Proposition 3, Section 5.1 of
[Bosch et al. 1990]), we obtain that the group schemes P (m)

F and P (m)
F ′ ×ψ−1

m
OF/p

m
F are isomorphic. �

4.C. Congruences of parahoric group schemes: descending from G F̂un
to G F . In this section, F de-

notes a nonarchimedean local field and F̂un denotes the completion of the maximal unramified extension
Fun of F . Let A be a maximal F-split torus in G, S maximal Fun-split F-torus that contains A. Let
T = ZG(S). Note that X∗(S)= X∗(T )Gal(�/Fun) and X∗(A)= X∗(T )Gal(�/F).

Lemma 4.9. The simplicial isomorphism

Am :A(S, F̂un)→A(S′, F̂ ′un)

of Proposition 4.4 is Delm-equivariant.

Proof. This is clear from the proof of Proposition 4.4, Section 4.A.1, and Lemma 3.4. �

Let σ ∈Gal(F̂un/F) be as in Section 2.E. Let F be a facet in X∗(A). Then F corresponds to a σ -stable
facet F̃ in X∗(S). Note that Delm induces isomorphisms

Gal(F̂un/F)∼= Gal(Fs/F)/IF ∼= Gal(F ′s/F ′)/IF ′ ∼= Gal(F̂ ′un/F ′).

Let σ ′ = Delm(σ ) under this isomorphism. Let F̃ ′ =Am(F̃) and F ′ = F̃ ′σ
′

.

Proposition 4.10. The isomorphism

p̃m : PF̃ ×OF̂un
OF̂un

/pm
F̂un
→ PF̃ ′ ×O

F̂ ′un
OF̂ ′un

/pm
F̂ ′un

has the property that σ ′ ◦ p̃m = p̃m ◦ σ .

Proof. Recall that the cocycle sG has been chosen to take values in Aut(H) and sG→ sG ′ via Lemma 3.3.
Further, T is defined over OF and TOF̂un

= T ×OF OF̂un
. From this it is clear that σ ′ ◦ p̃m = p̃m ◦ σ on

T ×OF̂un
OF̂un

/pm
F̂un

. In addition, using the fact that Chevalley–Steinberg systems on G and G ′ have been
chosen compatibly (see Section 4.A.1), it is easy to see that σ ′ ◦ p̃m = p̃m ◦ σ on UF̃ ×OF̂un

OF̂un
/pm

F̂un
.

This completes the proof of the proposition. �

5. Inner forms of quasisplit groups over close local fields

Let F be a nonarchimedean local field and let G be a connected reductive group over F . Then there
is a quasisplit group Gq defined over F such that G is an inner form of Gq . In particular, the F-
isomorphism class of G is determined by an element in H 1(0F ,Gad

q (Fs)). Moreover if [G] ∈ E(F,G0)m

then [Gq ] ∈ E(F,G0)m and [G] is determined by an element of H 1(Aut(�/F),Gad
q (�)) (Recall that

�= (Fs)
I m

F ). Let sGq be the element of H 1(0F/I m
F ,Aut(R,1)I m

F ) that determines (Gq , Bq , Tq), up to



1494 Radhika Ganapathy

F-isomorphisms. Let Gder
q be the derived subgroup of Gq and let Gad

q ,Gsc
q denote the corresponding

adjoint and simply connected groups. Then the groups Gder
q , Gad

q ,Gsc
q are quasisplit (if Sq is a maximal

F-split torus in Gq whose centralizer Tq is a maximal torus, then Sq ∩Gder
q is a maximal F-split torus

of Gder
q and ZGder

q
(Sq ∩Gder

q )= Tq ∩Gder
q is a maximal torus of Gder

q , similarly for Gad
q and Gsc

q ) and are
in fact forms of Gder

0 , Gad
0 and Gsc

0 respectively (to see this note that Gder
q ×F � ∼= (Gq ×F �)

der and
Z(Gq)×F �∼= Z(Gq ×F �)). Using Proposition 13.1(1) of [Kottwitz 2014] and the fact that Gad

q has
trivial center, we have a canonical bijection

κGq : H
1(Aut(�/F),Gad

q (�))→ (X∗(T ad
q )/X∗(T sc

q ))Aut(�/F).

Let Ei (F,Gq)m denote the F-isomorphism classes of inner forms of Gq that split over an at most
m-ramified extension of F . Let (G ′q , B ′q , T ′q) correspond to the cocycle q ′ ◦Qm(sGq ) and let Ei (F ′,G ′q)m
be the corresponding object over F ′.

Lemma 5.1. The congruence data Dm induces an isomorphism

Im : (X∗(T ad
q )/X∗(T sc

q ))Aut(�/F) −→
∼ (X∗(T ′

ad
q )/X∗(T ′

sc
q ))Aut(�′/F ′).

In particular, Dm induces a bijection Ei (F,Gq)m → Ei (F ′,G ′q)m , [G] → [G ′] where sG ′ = κ
−1
G ′q
◦

Im ◦ κGq (sG).

Proof. Note that X∗(Tq)∼= X∗(T0)∼= X∗(T ′q) as Z-modules and the Galois action on X∗(Tq) is determined
by the cocycle sGq (and similarly for X∗(T ad

q ), X∗(T sc
q )). Now the lemma is obvious by Lemma 3.3. �

To proceed, we need to prove a version of Lemma 5.1 at the level of cocycles. To do this, we will use
some results from Section 2 of [DeBacker and Reeder 2009].

Steinberg’s vanishing theorem. Let G be a connected, reductive F-group. Steinberg’s vanishing theorem
asserts that

Theorem 5.2 [Steinberg 1965, Theorem 56]. H 1(Gal(Fs/Fun),G(Fs))= 1.

As a corollary of this theorem, we obtain that the natural surjection from Gal(Fs/F)→ Gal(Fun/F)
induces an isomorphism

H 1(Gal(Fun/F),G(Fun))∼= H 1(Gal(Fs/F),G(Fs)).

5.A. Congruence data for inner forms: a comparison of cocycles. Let Aq be a maximal F-split torus
in Gq and let Sq be a maximal Fun-split F-torus in Gq that contains Aq . Let Tq = ZGq (Sq). Then Tq is a
maximal torus in Gq,Fun with maximal Fun-split torus Sq . Let Cq be an σ -stable alcove in A(Sq , Fun).

Let PCq be the Iwahori subgroup of Gad
q (Fun) attached to Cq . Let�ad

Cq
⊂ W̃ ad

:= X∗(T ad
q )IF oW consist

of elements which preserve the alcove Cq . Here IF is the inertia subgroup of F and W =W (Gq,Fun, Sq,Fun).
Then

�ad
Cq
∼= (X∗(T ad

q )/X∗(T sc
q ))IF (5-1)
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by Lemma 15 of [Haines and Rapoport 2008]. Let P∗Cq
be the normalizer in Gad

q of PCq . Let N ad
Cq
=

NGad
q
(Sad

q )(Fun)∩ P∗Cq
. Then �ad

Cq
is the image of N ad

Cq
in W̃ ad and �ad

Cq
∼= P∗Cq

/PCq .
The following lemma is proved in Sections 2.3 and 2.4 of [DeBacker and Reeder 2009]. Although

the authors assume that Gq,Fun is split in the beginning of Section 2.3 of [DeBacker and Reeder 2009],
this assumption is not needed in their proof of the following lemma. They use that when Gq,Fun is split,
�ad

Cq
∼= X∗(T ad

q )/X∗(T sc
q ) in Corollary 2.4.2 and Corollary 2.4.3; one should instead use (5-1) when Gq,Fun

is not necessarily split.

Lemma 5.3 [DeBacker and Reeder 2009, Corollary 2.4.3]. We have isomorphisms

H 1(Gal(Fun/F),�ad
Cq
)∼= H 1(Gal(Fun/F), N ad

Cq
)∼= H 1(Gal(Fun/F),Gad

q (Fun)).

Let c be a cocycle in Z1(Gal(Fun/F),�ad
Cq
). By Lemma 2.1.2 of [DeBacker and Reeder 2009], since

�ad
Cq

is finite, we have
Z1(Gal(Fun/F),�ad

Cq
)=�ad

Cq
.

Let G be the inner form of Gq determined by c. Let c(σ )= wσ . Write wσ = (λ,w) with λ ∈ X∗(T ad)IF

and w ∈ W . Let K ⊂ Fs denote the finite at most m-ramified extension of Fun over which Gq,Fun

splits. Let t = Nm(λ̃(πK )) where Nm : T ad
q (K )→ T ad

q (Fun) and λ̃→ λ under the usual surjection
X∗(T ad

q )→ X∗(T ad
q )I . Let w̃ ∈ NGq (Sq)(Fun) be the representative of w chosen using the Chevalley–

Steinberg system we fixed in Section 4.A.1.
Let mσ = tw̃. Since wσ stabilizes Cq , it follows that mσ PCq m−1

σ = PCq . Hence mσ ∈ P∗Cq
. Therefore

c̃(σ )= mσ ∈ Z1(Gal(Fun/F), N ad
Cq
). Denoting

G(Fun)→ Gq(Fun), g∗→ g,

the new action of σ on an element g∗ ∈ G(Fun), which we denote by σ∗, is given by

σ∗ · g∗ = (c̃(σ )(σ · g))∗

(Here σ · g denotes the action of σ on g ∈ Gq(Fun)). Note that c(σ ) ∈ Gad
q (Fun) = Inn(Gq)(Fun). The

maximal Fun-split torus Sq of Gq gives a maximal Fun-split, Fun-torus S in G. Let X∗(S)→ X∗(Sq),
τ∗ → τ . For τ∗ ∈ X∗(S), σ∗ · τ∗ = (wσ (σ · τ))∗. Since Sq is defined over F , σ · τ ∈ X∗(Sq). Since
wσ ∈�

ad
Cq

, we see that X∗(S) is stable under the action of σ , and hence S is defined over F .

Lemma 5.4. Let A be the F-split torus of G determined by the Z-module X∗(S)σ∗ . Then A is a maximal
F-split torus in G.

Proof. Consider the reduced apartment A(Sq , F̂un). We view this as an apartment in the reduced building
of G(F̂un) and denote it as A(S, F̂un). The action σ∗ on x∗ ∈A(S, F̂un) given by σ∗ ·x∗= (wσ (σ ·x))∗. Let
C∗ denote the alcove in A(S, F̂un) corresponding to Cq . Then σ∗ ·C∗ = (wσ (σ ·Cq))∗. Since σ ·Cq =Cq

and sincewσ ∈�ad
Cq

, we see that C∗ is a σ∗-stable alcove in A(S, F̂un). In particular, A(S, F̂un) is σ∗-stable.
By Proposition 5.1.14 of [Bruhat and Tits 1984], Cσ∗

∗ is an alcove in the affine space A(A, F). Since
A(A, F) contains a facet of maximal possible dimension, we see that A is maximal F-split in G. �
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Let (G ′q , T ′q , B ′q , S′q) correspond to (Gq , Tq , Bq , Sq) via congruence data Dm as in Section 4. By
Lemma 3.4, we have

�ad
Cq
∼=�

ad
C ′q
.

Let wσ ′ ∈�ad
C ′q

be the image of wσ under this isomorphism. This isomorphism gives rise to a bijection of
pointed sets

Im : Z1(Gal(Fun/F),�ad
Cq
)→ Z1(Gal(F ′un/F ′),�ad

C ′q
),

c→ c′
(5-2)

where c′(σ ′) = wσ ′ . Let mσ ′ = t ′w̃′ where wσ ′ = (λ′, w′) ∈ X∗(T ad
q )IF ′

o W ′. Here t ′ = Nm(λ̃′(π ′K ′))
where Nm : T ad′

q (K ′)→ T ad′
q (F ′un) and λ̃′→ λ′ under the usual surjection X∗(T ad′

q )→ X∗(T ad′
q )IF ′

, and
λ̃→ λ̃′ under the isomorphism X∗(T ad

q )∼= X∗(T ad′
q ). Also w̃′ is the representative of w chosen using the

Chevalley–Steinberg system fixed in Section 4.A.1. Let c̃′ ∈ Z1(Gal(F ′un/F ′), N ad′
C ′q
) be the cocycle with

c̃′(σ ′)= mσ ′ .
Let G ′ be the inner form of G ′q determined by c′ (or c̃′). Let S′ be the maximal F ′un-split, Fun-torus of

G ′ corresponding to S′q but with the action of σ ′ given by the cocycle c̃′. More precisely, for g′
∗
∈G ′(F ′un),

σ ′
∗
· g′
∗
= (c̃′(σ ′) · (σ ′ · g′))∗

where σ ′ = Delm(σ ) as before, and σ ′ · g′ denotes the action of σ ′ on G ′q(F
′
un).

As in Lemma 5.4, we see that S′ is an F ′-torus that is maximal F ′un-split and whose split component
A′ is a maximal F ′-split torus in G ′.

Corollary 5.5. With G→ G ′ as above, the F-rank of G is equal to the F ′-rank of G ′.

Proof. This is because rank(S)= rank(S′) and the isomorphism X∗(S)→ X∗(S′) is σ∗-equivariant. Hence
rank(A)= rank(A′) by Lemma 5.4. �

6. Congruences of parahoric group schemes: étale descent

The following lemma is easy.

Lemma 6.1. The σ -equivariant isomorphism Ãm :A(Sq , F̂un)→A(S′q , F̂ ′un) induces a σ∗-equivariant
isomorphism Ãm,∗ :A(S, F̂un)→A(S′, F̂ ′un).

Now let F̃∗ be σ∗-invariant facet in A(S, F̂un) and let F̃ ′
∗
= Ãm,∗(F̃∗). Let F∗ = F̃σ∗

∗ and F ′
∗
= F̃ ′σ ′∗ .

Proposition 6.2. Let m≥ 1, F, F ′ nonarchimedean local fields with eF , eF ′ ≥ 2m. Let l as in Theorem 4.5,
let Dl be the congruence data of level l, and let (G ′q , T ′q , B ′q , S′q) correspond to (Gq , Tq , Bq , Sq) via Dl .
Let p̃m :PF̃×OF̂un

OF̂un
/pm

F̂un
→PF̃ ′×O

F̂ ′un
OF̂ ′un

/pm
F̂ ′un

denote the σ -equivariant isomorphism of Theorem 4.5
and Proposition 4.10. Let c→ c′ via Im (see (5-2)). The isomorphism p̃m induces a σ∗-equivariant
isomorphism p̃m,∗ : PF̃∗ ×OF̂un

OF̂un
/pm

F̂un
→ PF̃ ′∗

×O
F̂ ′un

OF̂ ′un
/pm

F̂ ′un
.
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Proof. We begin by understanding the action of σ∗ on an element of PF̃∗ more explicitly. Recall that

PF̃ = 〈U
+

F̃
(OF̂un

), T (OF̂un
),U−

F̃
(OF̂un

)〉

Let g ∈ PF̃ . Then σ∗ · g∗ = (mσ (σ · g)m−1
σ )∗. Let b0 ∈ 8

red(Gq , Sq) such that 2b0 is not a root. Let
y ∈Ub0,F̃ . Fix β0|Sq = b0, fix the pinning (Lβ0, xb0) and write y = xb0(u0) for u0 ∈ Lβ0 (As explained in
Section 2.C.2, Lb0

∼= Lβ0 ↪→ K ). Let σ̃ denote a lift of σ to 0F and let β = σ̃ ·β0, b = σ · b0. Then we
obtain a pinning (Lβ, xb) from the pinning (Lβ0, xb0) via σ̃ and we have σ · xb0(u0) = xb(σ̃ · u0); this
follows using properties of Chevalley–Steinberg system recalled in Section 2.C.1 (a), (b). Let u = σ̃ · u0.
Then u ∈ Lβ . We need to compute w̃xb(u)w̃−1. We will first compute s̃axb(u)s̃−1

a for a ∈1. Note that

s̃a =
∏
α∈1̃a

s̃α (6-1)

and that Lsa ·b = Lb. Now for α1, β1 ∈8(Gq , Tq), we have s̃α1 xβ1(z)s̃
−1
α1
= xsα1 (β1)(dα1,β1 z) for all z ∈ K ,

with dα1,β1 =±1. Using the properties of Chevalley–Steinberg system recalled in Section 2.C.1 (a), (b),
we have

dα1,β1 = dγ (α1),γ (β1) ∀γ ∈ Gal(K/F̂un). (6-2)

With β as above, note that β|Sq = b. Let

da,b :=
∏
α∈1̃a

dα,β

This notation is justified since (6-2) implies that the definition of da,b does not depend on the choice of β.
Using the definition of xb in (2-2), a simple calculation yields that s̃axb(u)s̃−1

a = xsa(b)(da,bu). Since we
chose our Chevalley–Steinberg systems compatibly (see Section 4.A.1), we evidently have da,b = da′,b′ for
all a ∈1, b ∈8(Gq , Sq). Iterating this process, we see that w̃xb(u)w̃−1

= xw·b(dw,bu) where dw,b =±1
and dw,b = dw′,b′ .

Suppose b0 ∈8(Gq , Sq) such that 2b0 is a root. Let β0, β0|Sq = b0. Fix the pinning (Lβ0, Lβ0+β0
, xb0)

and write y = xb0(u0, v0), with u0, v0 ∈ Lβ0 (Recall that Lb0
∼= Lβ0 ⊂ K ). Let β = σ̃ ·β0, β = σ̃ ·β0 and

b= σ ·b0. We then obtain a pinning (Lβ, Lβ+β, xb) via σ̃ and σ · xb0(u0, v0)= xσ ·b0(σ̃ ·u0, σ̃ ·v0) where
σ̃ as before. Let u = σ̃ · u0, v = σ̃ · v0. Then u, v ∈ Lβ . We need to compute s̃axb(u, v)s̃−1

a where sa is
as in (6-1). Let

da,b :=
∏
α∈1̃a

dα,β, da,2b :=
∏
α∈1̃a

dα,β+β

Again, the definitions of da,b and da,2b do not depend on the choice of β by (6-2).
Then a simple calculation yields

s̃axb(u, v)s̃−1
a = xsa(b)(da,bu, da,2bv).

Proceeding as in the previous case, we have w̃xb(u, v)w̃−1
= xw·b(dw,bu, dw,2bv)) where dw,b, dw,2b =

±1 and dw,b = dw′,b′ and dw,2b = dw′,2b′ .
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Recall that t = Nm(λ̃(πK ))∈ T ad
q (Fun). Then for each γ ∈Gal(K/Fun), γ · t = t . Let c ∈8red(Gq , Sq)

with 2c not a root. Let χ ∈8(Gq .Tq) with χ |Sq = c. Note that χ factors through T ad
q . Fixing the pinning

(Lχ , xc) we have that χ : T → Gm is defined over Lχ and χ(t) ∈ L×χ . A simple calculation yields
t xc(u)t−1

= xc(χ(t)u) for each u ∈ Lχ . If c, 2c are roots, then with χ, χ such that χ |Sq = χ |Sq = c and
fixing the pinning (Lχ , Lχ+χ , xc), it follows that t xc(u, v)t−1

= xc(χ(t)u, (χ +χ)(t)v). Hence, if 2b0

is not a root then

σ∗ · (xb0(u0))∗ = (xw·b(dw,bχ(t)u))∗

where χ |Sq = w · b. If 2b0 is a root, then

σ∗ · (xb0(u0, v0))∗ = (xw·b(dw,bχ(t)u, dw,2b(χ +χ)(t)v))∗

where χ, χ ′ ∈8(Gq , Tq) are such that χ, χ |Sq =w · b. It is easy to calculate σ∗ · (x2b0(0, v0))∗ using the
observations above. For x ∈ Tq(OF̂un

),

σ∗ · x∗ = (w(σ · x)w−1)∗.

Combining these observations with the fact that p̃m is σ -equivariant (see Proposition 4.10), it follows that
the map p̃m,∗ has the property that p̃m,∗ ◦σ∗ = σ

′
∗
◦ p̃m,∗ (in this verification, we choose σ̃ ′ to correspond

to σ̃ via Delm). �

Corollary 6.3. The isomorphism p̃m,∗ induces an isomorphism of group schemes

pm,∗ : PF∗ ×OF OF/p
m
F → PF ′∗ ×OF ′

OF ′/p
m
F ′ ×ψ−1

m
OF/p

m
F .

In particular PF∗(OF/p
m
F ) and PF ′∗(OF ′/p

m
F ′) are isomorphic as groups.

Proof. This follows from Proposition 6.2 and étale descent [Bosch et al. 1990, Example B, Section 6.2]. �
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