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We consider a family, depending on a parameter, of multiplicative extensions of an elliptic curve with
complex multiplications. They form a 3-dimensional variety G which admits a dense set of special curves,
known as Ribet curves, which strictly contains the torsion curves. We show that an irreducible curve W in
G meets this set Zariski-densely only if W lies in a fiber of the family or is a translate of a Ribet curve by
a multiplicative section. We further deduce from this result a proof of the Zilber–Pink conjecture (over
number fields) for the mixed Shimura variety attached to the threefold G, when the parameter space is the
universal one.
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1. Introduction

1.1. Statement of the results and plan of the proofs. Let E0/Q
alg be an elliptic curve with complex

multiplications. On any extension G0 of E0 by Gm defined over Qalg, there exists a particular subgroup
00 of G0(Q

alg), whose elements are called Ribet points. We refer to Section 1.2 below for their precise
definition, but point out right now that 00 contains the torsion subgroup G tor

0 of G0(Q
alg). In fact 00=G tor

0

if the extension G0 is isosplit, while 00 has rank 1 otherwise.
Let further X/Qalg be a smooth irreducible algebraic curve and let G/X be an X -extension of E0/X

by Gm/X . Let q be the section of Ê0/X → X representing the isomorphism class of the extension G/X .
We identify q with its image in E0(X) under the standard polarization Ê0' E0, and write G 'Gq . Given
a section s of G/X , we denote by p= π ◦s ∈ E0(X) its composition with the projection π :G→ E0× X .

Let δ 6= 0 be a purely imaginary complex multiplication of E0, and let ξ ∈ X (Qalg). A first property of
Ribet points is that if s(ξ) is a Ribet point of its fiber Gξ ' Gq(ξ), then its projection p(ξ) to E0 and the
point δq(ξ) are linearly dependent over Z. Usually, this condition alone will be satisfied by infinitely
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many ξ ’s. But asking that s(ξ) be a Ribet point in the fiber of Gξ → E0 above p(ξ) brings a second
condition, unlikely to be satisfied infinitely often. And indeed, we prove in this paper:

Theorem 1. Let G ' Gq be a nonconstant (hence nonisosplit) extension of E0/X by Gm/X , and let s be a
section of G→ X , all defined over Qalg. Assume that the set

4=4s := {ξ ∈ X (Qalg) | s(ξ) is a Ribet point of its fiber Gξ ' Gq(ξ)}

is infinite. Then, the sections p and q are linearly dependent over End(E0).

Referring again to Section 1.2 for the definition of the Ribet sections of G/X (which in view of the
hypothesis on G, also form a group 0 of rank 1, containing the torsion sections), we deduce the following
(actually equivalent) version of Theorem 1:

Theorem 2. Assume that the hypotheses of Theorem 1 on the extension G, the section s and the set 4 are
satisfied. Then, there exists a nonconstant or trivial section s ′ in Gm(X) such that s− s ′ is a Ribet section
of G/X.

The conclusion of Theorem 2 is best possible. Indeed, let s ′ be such a section in Gm(X) and let s ′′ be
a Ribet section. Then, s ′′(ξ) is a Ribet point of Gξ for any ξ ∈ X , while s ′(ξ) lies in Gtor

m infinitely often.
The set 4s attached to s = s ′+ s ′′ is therefore infinite.

As a corollary to Theorem 1, we consider the case when the curve X = Ê0 ' Ext(E0,Gm) is the
parameter space of the universal extension P0 of E0 by Gm . This extension, which identifies with the
Poincaré biextension of E0 × Ê0 by Gm , is naturally endowed with the structure of a mixed Shimura
variety, for which we prove:

Theorem 3. Let W/Qalg be an irreducible algebraic curve in P0. Assume that W contains infinitely many
points lying on special curves of the mixed Shimura variety P0. Then, W is contained in a special surface
of P0.

Combined with Gao’s work on the André–Oort conjecture, this readily implies the following conclusion,
which answers a question of J. Pila.

Theorem 4. The mixed Shimura variety P0 satisfies the Zilber–Pink conjecture over number fields.

See Section 5 below for the statement of this conjecture, and for the deduction of Theorems 3 and 4
from Theorem 1.

The proof of Theorem 1 will distinguish three cases. In the first one, we establish the following weaker
version, where the conclusion is replaced by a “weakly special” one. Denote by E0(Q

alg)⊂ E0(X) the
group of constant sections of E0/X .

Theorem 1.w. Same hypotheses as in Theorem 1. Then, the sections p and q are linearly dependent over
End(E0) modulo E0(Q

alg).
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The proof of Theorem 1.w (see Section 2) follows the o-minimal strategy of Pila–Zannier and Masser–
Zannier, starting with the observation that if its conclusion does not hold, then the points ξ of 4 have
bounded height.

In the remaining cases, we suppose that p and q are linearly dependent over End(E0) modulo E0(Q
alg).

In the second one (see Section 3), we assume that they are linearly dependent over Z modulo E0(Q
alg),

but that p is not (i.e., p is not constant). Here again, we use the o-minimal strategy, but a new argument
is required to check bounded height.

In the last case (see Section 4), we reduce a weakly special relation over End(E0) to one over Z, and
therefore to a constant section p. We finally show that p must be torsion, thanks to a duality argument
which turns the problem into a special case of the Mordell–Lang theorem (recalled in Section 1.3(v)
below) for a constant semiabelian variety attached not to q , but to p.

1.2. Ribet sections and points. Let X/Qalg be a smooth irreducible variety, let A be an abelian scheme
over X , let q ∈ Â(X ) be a section of the dual abelian scheme Â/X ' ExtX (A,Gm), and let G = Gq be
the corresponding X -extension of A by Gm/X , obtained by removing its zero section from the line bundle
defined by q . We point out that Gq is an isosplit extension (i.e., isogenous to the product Gm × A) if and
only if q is a torsion section. When A/X is a constant group scheme, Gq is a constant group scheme if
and only if q is a constant section (for instance a torsion one).

Let P be the Poincaré biextension of A×X Â by Gm . For any ϕ ∈HomX ( Â, A), with transpose ϕ̂, there
is a canonical isomorphism σϕ,q : P((ϕ− ϕ̂)(q), q)' Gm/X of Gm-torsors over X (see [Chambert-Loir
1999, Proposition 6.3], whose description of σϕ,q works over an arbitrary base scheme [Bertrand and
Edixhoven 2019, Proposition 3.1]). We define the basic Ribet section associated to ϕ as the section
sϕ,q = σ ∗ϕ,q(1X ) of the semiabelian scheme G=Gq = (idA, q)∗P =P|A×q over X . We say “point” instead
of “section” if X is a point, and drop the index q when the context is clear.

The Ribet section sϕ ∈ G(X ) depends additively on ϕ, and in fact only on ϕ− ϕ̂ [Jacquinot and Ribet
1987, Proposition 4.2; Bertrand and Edixhoven 2019, Formula 3.1.2]. Its projection under π : G→ A is
the section

pϕ := π ◦ qϕ = (ϕ− ϕ̂) ◦ q ∈ A(X ).

So, when ϕ varies, the basic Ribet sections form a finitely generated subgroup of G(X ), of rank rq at most
equal to the rank of the Z-module E = {ϕ− ϕ̂, ϕ ∈ HomX ( Â, A)}, and equal to it when q is sufficiently
general. On the other hand, rq = 0 if q is a torsion section. Indeed, although their dependence in q is
not linear, the Ribet sections sϕ satisfy the following “lifting property” (for (i)⇒ (ii), see [Bertrand
2011, §1], [Bertrand et al. 2016, Theorem 3(i)] in the case of points, and [Bertrand and Edixhoven 2019,
Proposition 3.3] in general).

Lemma 1. Let ϕ ∈ HomX ( Â, A), let q ∈ Â(X ) and consider the conditions:

(i) q is a torsion section.

(ii) sϕ is a torsion section.
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(iii) pϕ is a torsion section.

Then, (i)⇒ (ii)⇒ (iii), and if ϕ− ϕ̂ is an isogeny, the three conditions are equivalent.

More generally, let s be a local section of G→ X (for the étale topology). We say that s is a Ribet
section of G/X if there exists a positive integer n satisfying n.s = sϕ for some ϕ, with multiplication
by n in the sense of the group scheme G/X . The projection p of s to A satisfies np = (ϕ− ϕ̂) ◦ q. All
(local) torsion sections of G/X now appear as such Ribet sections, and Lemma 1 extends to this more
general setting. Viewed as points above the generic point η of X , with K =Qalg(Xη), the Ribet sections
form a subgroup 0 of the group Gη(K alg), of same rank rq as above.

The construction of Ribet sections commutes with any base change. For instance, given a basic Ribet
section sϕ,q of G/X , and a point ξ in X (Qalg), sϕ,q(ξ)= sϕξ ,q(ξ) is the basic Ribet point of the fiber Gξ

attached to the specialization ϕξ of ϕ at ξ . Conversely, let sξ be a Ribet point of Gξ (Q
alg). By definition,

there exist nξ ∈ Z>0 and ϕξ ∈ Hom( Âξ , Aξ ) such that nξ sξ = sϕξ ,q(ξ). Assume further that ϕξ extends
to an element ϕ ∈ Hom( Â, A) (which occurs automatically if A/X is a constant abelian scheme as in
Section 1.1). Then, sϕξ ,q(ξ)= sϕ,q(ξ), and there exists a local section s of G/X such that nξ .s = sϕ , whose
image in G contains sξ . So, the Ribet point sξ extends locally to a Ribet section of G/X .

Let us now return to the situation of Section 1.1, where A = E0×X , for a CM elliptic curve E0, and
X is either the curve X or a point ξ on X . Then, the Z-module E above identifies with

E = {ϕ−φ | ϕ ∈ End(E0)} = Zδ,

where δ = α − α 6= 0 is a purely imaginary quadratic number, which will be fixed from now on.
Consequently, for any q ∈ E0(X), the group of basic Ribet sections of G = Gq is cyclic, generated by
the section

s R
:= sα,q ∈ G(X), with pR

:= π ◦ s R
= δq ∈ E0(X).

Viewed at the generic point η of X , the Ribet sections of G/X then form the divisible hull 0 of the group
Z.s R(η) in Gη(K alg). Furthermore, for any ξ ∈ X (Qalg), the value s R(ξ)= sα,q(ξ) of s R at ξ generates
the group of basic Ribet sections of Gξ = Gq(ξ), and the Ribet points of Gξ form the divisible hull

0ξ = {sξ ∈ Gξ (Q
alg) | ∃(n,m) ∈ Z2, n 6= 0, nsξ = ms R(ξ)} ⊃ G tor

ξ

of Z.s R(ξ) in Gξ (Q
alg).

Under the assumptions of Section 1.1, the section q is not constant, hence not torsion, while δ is an
isogeny, so s R is not torsion by Lemma 1, and the rank rq of 0 is equal to 1. On the other hand, by
Lemma 1 (now at the level of points), given a point ξ ∈ X (Qalg),

q(ξ) ∈ E tor
0 ⇔ s R(ξ) ∈ G tor

ξ ⇔ 0ξ = G tor
ξ ,

and this occurs for infinitely many ξ ’s since q is not constant [Bertrand 2011, Theorem 1]. Otherwise, 0ξ
has rank 1, but for s(ξ) ∈ 0ξ , we still have s(ξ) ∈ G tor

ξ ⇔ p(ξ) ∈ E tor
0 .



Unlikely intersections in semiabelian surfaces 1459

In view of these descriptions of the groups 0 and 0ξ , our work can be interpreted as a particular case
of the study of unlikely intersections within an isogeny class [Gao 2017a], or of a relative version of the
Mordell–Lang problem (compare with Section 1.3(v) below).

1.3. The context. We here put the results of Section 1.1 in perspective with other statements of unlikely
intersections. Two sets

4tor
⊂4⊂4`d

related to the section s ∈ G(X) naturally appear in the process.

(i) Theorem 1 gives a positive answer to the “Question 2” raised in [Bertrand 2013, §5], while a positive
answer to its “Question 1” was recently obtained by Barroero [2017]. However, the applications to
Pink’s conjecture given in [Bertrand 2013] require clarification, because of their ambiguous use of
Hecke orbits. We bypass this problem for the mixed Shimura variety P0 studied in Section 5, by
describing all its possible special curves. Theorem 3 will then follow from Theorem 1, along the
method of [Bertrand 2013].

(ii) Contrary to the convention of [Bertrand et al. 2016], the torsion points are here viewed as particular
cases of Ribet points. Therefore, Theorem 2 implies the restriction to the case of our semiabelian
scheme G/X of the main theorem of [Bertrand et al. 2016], which concerns the subset

4tor
=4tor

s := {ξ ∈ X (Qalg), s(ξ) is a torsion point of its fiber Gξ }

of 4, and asserts the following statement.

Lemma 2. Let G/X and s be as in Theorem 1, and assume moreover that the subset 4tor of 4 is infinite.
Then s is a Ribet section or a torsion translate of a nonconstant section in Gm(X).

For ξ ∈4tor, p(ξ) too is torsion, so (by the Manin–Mumford theorem [Hindry 1988] for the image of
(p, s ′) in E0×Gm), the conclusion of Theorem 2 can be sharpened to the same statement.

Let 4tor
s R be the set attached to the Ribet section s R , defined similarly as 4tor

s . We pointed out at the
end of Section 1.2 that 4tor

s R is infinite. Therefore, Lemma 2 too is best possible.

(iii) In relation with the two sections s, s R of G/X , consider the set

4`d =4`ds,s R := {ξ ∈ X (Qalg) | s(ξ) and s R(ξ) are linearly dependent over Z}.

For ξ in this set, either s(ξ) lies in the divisible hull 0ξ of Z.s R(ξ), or s R(ξ) is a torsion point. So 4`d

is the (not necessarily disjoint) union of 4 and 4tor
s R and in particular, is always infinite. More generally,

given two sections s, s ′ in G(X), the similarly defined set 4`ds,s′ will be infinite as soon as the group
generated by s and s ′ in G(X) contains a nontorsion Ribet section. So, in contrast with the case of
abelian schemes (see [Masser and Zannier 2015; Barroero and Capuano 2018]), the subgroup schemes of
G×X G do not suffice to control the finiteness of 4`ds,s′ ; as in [Bertrand and Edixhoven 2019], the special
subvarieties of the corresponding mixed Shimura variety should also be taken into account.
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(iv) Consider the curve W = s(X) in G and define a Ribet curve as the image in G of a Ribet section.
Theorem 2 then says that W is the translate of a Ribet curve by a section in Gm(X). Since any curve
W in G dominating X can be viewed as the image of a section after a base extension, while any
Ribet point of a fiber Gξ locally extends to a Ribet section, this justifies the last but one sentence of
the abstract.

(v) Assume that contrary to the hypothesis of Theorem 1, G = G0× X for some constant semiabelian
surface G0/Q

alg, and that s is not constant. Then, the projection W0 of W = s(X) to G0 is a curve,
which contains infinitely many points of the group 00 of Ribet points of G0. Since 00 has finite
rank (at most 1), the solution by Vojta and McQuillan [McQuillan 1995] of the Mordell–Lang
conjecture for semiabelian varieties implies that s factors through a translate by a Ribet point of a
strict connected algebraic subgroup of G0. If the section q, here constant, is not torsion, the only
such one is Gm . So the conclusions of Theorems 1 and 2 still hold true in this case.

(vi) Same as in (v), but assume furthermore that q is a torsion section, say the trivial one, so G0'Gm×E0.
Then, s = (s ′, p) for some section s ′ ∈ Gm(X), while the group 00 of Ribet points of G0 coincides
with G tor

0 . By Manin–Mumford, 4=4tor is then infinite if and only if s ′ is a torsion section, or p is
a torsion section.

(vii) In this paper, we do not touch on the question of replacing Qalg by C, or of applying Theorem 2 to
generalized Pell equations as in [Masser and Zannier 2015; Barroero and Capuano 2018]. Nor do
we study how effective our results can be made. Note that Lemma 2 above is made effective in the
ongoing work [Jones and Schmidt ≥ 2019]. Due to the use of Pfaffian methods, in particular [Jones
and Thomas 2018; Jones and Schmidt 2017], the bounds for the counting problem in [Jones and
Schmidt ≥ 2019] are uniform and effective.

We take opportunity of these comments to show the following equivalence:

Theorem 1⇔ Theorem 2. Theorem 2 clearly implies Theorem 1. Indeed, the sections s and s ′′ = s− s ′

have the same projection p to E0. Since s ′′ is a Ribet section, p and δq are linearly dependent over Z, so
p and q are linearly dependent over End(E0).

Conversely, assume that the hypotheses and the conclusion of Theorem 1 hold true, and let np−ρq = 0
be a nontrivial relation with n ∈ Z, ρ ∈ End(E0) not both 0 (equivalently, n 6= 0 since q is not a torsion
section). Without loss of generality, we can assume that 4tor is finite, otherwise Lemma 2 readily implies
the conclusion of Theorem 2. For any ξ ∈4, δq(ξ) and the projection p(ξ) of the Ribet point s(ξ) are
linearly dependent over Z, so there exist nξ ,mξ ∈ Z, not both zero, such that nξ p(ξ)−mξδq(ξ) = 0,
while the generic relation implies np(ξ)− ρq(ξ) = 0. If these two relations are linearly independent
over End(E0), then q(ξ), hence s R(ξ), hence s(ξ), are torsion points and ξ lies in 4tor. So, for infinitely
many, hence at least one, ξ , these two relations must be linearly dependent over End(E0), and in fact over
Z, since n does not vanish. This implies that ρ is a rational multiple of δ, and by their very construction,
this in turn implies the existence of a Ribet section s ′′ projecting to p. So, s ′ = s− s ′′ factors through Gm .
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Finally, if s ′ is a constant section, it must be a torsion one since s ′(ξ) is a Ribet point of Gξ projecting
to 0 for one (any) ξ ∈4. In this case, s itself is a Ribet section, and otherwise s ′ is not constant, so the
conclusion of Theorem 2 holds in all cases. �

2. Proof of Theorem 1.w

Recall the hypotheses of Theorem 1.w, as well as the notation s R, 0ξ , . . . of Section 1.2. So, q ∈ E0(X)
is not constant, s is a section of G = Gq → X projecting to the section π ◦ s = p ∈ E0(X), and the set
4= {ξ ∈ X (Qalg), s(ξ) ∈ 0ξ }, concretely described as

4= {ξ ∈ X (Qalg) | ∃(n,m) ∈ Z2, n 6= 0, ns(ξ)−ms R(ξ)= 0}

is infinite. We assume that the sections p and q are linearly independent over End(E0) modulo E0(Q
alg),

and search for a contradiction.
We fix a number field k over which X and G, hence the sections q and s R , as well as the section s,

hence p, and the isogeny δ, are defined. We recall that the basic Ribet section s R projects to E0 on the
section pR

= δq .

2.1. The o-minimal strategy. The proof of Theorem 1.w will be done in 5 steps. The third one is
developed in Section 2.2. By a “constant” c, γ , we mean a positive real number which depends only on
the data X, E0, q, s and the number field k. The constants C may depend on further data introduced in
the proof.

We point out that any finite set of points can without loss of generality be withdrawn from the
curve X . To ease a technical point in the third step, we will for instance require that the sections p, q
and p+ q ∈ E0(X) never vanish on X . The complement is a finite set since q is not constant, p can be
assumed to be so (constant p’s are treated by a direct method in Section 4.2), and if p+q is constant, we
can make it nonconstant by replacing s by 2s, so p by 2p, without modifying the content of the theorems.

2.1.1. Bounded heights of points. Let h denote a height on X (Qalg) attached to a divisor of degree 1 on
the completed curve. Consider the set

4Z`d
p,δq = {ξ ∈ X (Qalg) | p(ξ) and δq(ξ) are linearly dependent over Z}.

Since the projection p(ξ)= π ◦ s(ξ) of a Ribet point s(ξ) lies in the divisible hull of the group Z.δq(ξ)
in E0(Q

alg), this set contains 4.

Lemma 3. Let p, q ∈ E0(X) be linearly independent over End(E0) modulo E0(Q
alg). There exists a

constant c0 such that h(ξ)≤ c0 for any ξ ∈4Z`d
p,δq , and in particular, for any ξ ∈4.

Proof. In view of the hypothesis on p, q, bounded height on 4Z`d
p,δq follows directly from [Viada 2003,

Theorem 4] (and one can even replace Z by End(E0) in the definition of 4Z`d
p,δq). Alternatively, one can

appeal to Silverman’s specialization theorem [1983]. �
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To get the desired contradiction, it remains to show that the degrees

dξ = [k(ξ) :Q]

too are bounded from above on the set 4.

2.1.2. Heights of relations bounded by degrees.

Lemma 4. There exist two constants c, γ such that for any point ξ ∈4, there exist two integers n 6= 0,m
with |n|, |m| ≤ cdγξ such that ns(ξ)−ms R(ξ)= 0.

Proof. By [Bertrand et al. 2016], Corollary of Section 3.1, there exists a constant c′ such that if s(ξ)
is a torsion point of Gξ , its order n is bounded from above by c′d4

ξ , so (n, 0) satisfies the required
condition. We can therefore assume that the Ribet point s(ξ), hence q(ξ) by Lemma 1, is not a torsion
point. For ξ ∈4, there exist a, b ∈ Z, not both 0, such that ap(ξ)− bδq(ξ)= 0, and since q(ξ) /∈ E tor

0 ,
any such relation will automatically imply a 6= 0. The points p(ξ), δq(ξ) are defined over k(ξ), and have
heights ≤ c0. By works of Masser and David (see for instance Lemma 6.1 of [Barroero 2017]), there then
exists such a relation with max(|a|, |b|)≤ c1dγ1

ξ for some constants c1, γ1.
By our running hypothesis that q(ξ) is not torsion, the set of such relations (trivial one included) is a

free Z module of rank 1, and its generator (a0, b0) satisfies the above bound.
Consider now the nontorsion Ribet point s(ξ) (so, s R(ξ) too is nontorsion), and let (n0 6= 0,m0) ∈ Z2

be a generator of the group of relations ns(ξ)−ms R(ξ)= 0, which is again free of rank 1. Projecting
to E0, we then have n0 p(ξ)−m0δq(ξ)= 0. So, there exists d ∈ N such that (n0,m0)= d.(a0, b0), and
a0s(ξ)− bs R

0 (ξ) is a torsion point of Gq(ξ), of exact order d since (n0,m0) is minimal. Since it projects
to 0 on E0, it is actually a d-th root of unity ζd . Now, both s(ξ) and s R(ξ) are defined over k(ξ) (since
s and s R are global sections of G→ X ), so ζd too lies in k(ξ). Since ζd has order d, this implies that
d ≤ c2dγ2

ξ , say with γ2 = 2.
In conclusion, for any ξ ∈4, there is a linear relation ns(ξ)−ms R(ξ)= 0, with (n,m) ∈ Z2, n 6= 0

and max(|n|, |m|)≤ cdγξ for some constants c and γ = γ1+ γ2. �

2.1.3. Counting relations of bounded height. In this step and the next one, we extend the scalars from
Qalg to C, but still write X, K = C(X), etc, instead of XC, K ⊗C, . . .. We sometimes indicate by the
exponent an the analytic object attached to an algebraic one over C.

We now follow the usual procedure of studying the lifts to a universal covering of the relations
considered in Lemma 4, and bounding their number via (generalizations of) the Pila–Wilkie theorem for
a relevant o-minimal structure. There are several ways to implement this method. For instance, we can

(A) choose a fundamental domain F for the uniformization map unif : G̃'Co(C× X̃)→Gan, and count
the relations in G̃ when the transcendence degree over C of the field of definition of (unif|F )−1

◦ s is
large enough. Here, F is unbounded, but by work of Peterzil and Starchenko, a convenient choice
allows to work in the o-minimal structure Ran,exp; or
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(B) fix a simply connected domain D⊂ X an, consider the exponential morphism expG , restricted over D,
and count the relations in (Lie G)/D ' (CoC)× D when the transcendence degree over C(X) of
the field of definition of exp−1

G (s|D) is sufficiently large. Here, D can be compact, and it suffices to
work in the o-minimal structure Ran.

An advantage of (A) is its impact on effectivity, as alluded to in Comment (vii) of Section 1.3 (see also
Remark 3 of Section 4.3). But as in [Bertrand et al. 2016, §3.3], we here follow the more elementary ap-
proach (B), taking advantage of the computation of transcendence degrees already established in this paper.

So, let (D, ξ0) be a pointed set in X an, homeomorphic to a closed disk. The group scheme G/X defines
an analytic family Gan of Lie groups over the Riemann surface X an. Similarly, its relative Lie algebra
(Lie G)/X defines an analytic vector bundle Lie Gan over X an, of rank 2. We denote by5G the Z-local sys-
tem of periods of Gan/X an; it is the kernel of the exponential exact sequence of analytic sheaves over X an:

0→5G→ Lie Gan expG−−−→Gan
→ 0.

For any U0 in Lie(Gξ0(C)) such that expGξ0
(U0)= s(ξ0) ∈ Gξ0(C), there exists a unique analytic section

U of Lie(Gan)/D (meaning over a neighborhood of D), such that

U (ξ0)=U0 and ∀ξ ∈ D, expGan
ξ
(U (ξ))= s(ξ).

Since D is fixed, we will just write U = logG(s), although only its class modulo 5G is well defined.
Similarly, let U R

= logG(s
R) for the Ribet section s R . By the same process for E0/X (and the tacit

assumption that the logarithms at ξ0 are chosen in a compatible way), the projection p = π ◦ s ∈ E0(X)
admits as logarithm logE0

(p) := u = dπ(U ); we also set v = logE0
(q), so dπ(U R) := u R

= δv.
We will use the explicit expressions given in [Bertrand et al. 2016] for U,U R and 5G . These hold on

any simply connected domain of X an where u, v and u+ v do not assume period values. This is ensured
by the hypothesis, made at the beginning of Section 2.1, that p, q and p+ q vanish nowhere on X .

Let K = C(X) be the field of rational functions of X . Since Lie G is a vector bundle over X , it makes
sense to speak of the field of definition K (U ) of U over K . Similarly, let FG = K (5G) be the field of
definition of 5G . Notice that the field FG(U ) now depends only on the section s. Moreover, for the Ribet
section s R , we have:

Lemma 5. The field of definition F R
= K (U R) of any logarithm U R of s R coincides with the field of

periods FG of G.

Proof. The explicit expressions of5G and U R given in [Bertrand et al. 2016, §A.1], show that both fields co-
incide with the field K (v, ζ(v)), where ζ denotes the Weierstrass zeta function of the elliptic curve E0. �

For any real number T ≥ 1, set Z[T ] = {n ∈ Z, |n| ≤ T }, and consider the subset

4[T ] := {ξ ∈ X (Qalg) | ∃(n,m) ∈ (Z[T ])2, n 6= 0, ns(ξ)−ms R(ξ)= 0}

of 4=4s . We then have:
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Proposition 1. Let D be a closed disk in X an. For any ε > 0, there exists a real number Cε , depending
only on X, E0, q, s, D and ε, such that

(a) either, for any T ≥ 1, there are at most CεT ε points in D ∩4[T ]; or

(b) the field FG(U ) has transcendence degree at most 1 over the field FG .

The proof of Proposition 1 is given in Section 2.2 below, as a corollary of Habegger and Pila’s
“semirational” count [2016, Corollary 7.2].

2.1.4. Logarithmic Ax. Assume that conclusion (b) of Proposition 1 holds. Since u = dπ(U ), the field
FG(U ) has transcendence degree at most 1 over FG(u), and

(b1) either u is algebraic over FG = K (v, ζ(v)), in which case we know by the Ax–Schanuel theorem on
the universal vectorial extension of the elliptic curve E0 (see for instance [Bertrand et al. 2016, §6,
Case (SC3)]) that p and q are linearly dependent over End(E0) modulo constants; or

(b2) U = logG(s) is algebraic over FG(u), hence over K (u, ζ(u), v, ζ(v)), in which case we know by
[Bertrand et al. 2016, Lemma 5.1], that s is a translate of a Ribet section by a constant one, i.e., one
in Gm(C) since G is not isosplit. Then, p = π ◦ s and q are linearly dependent over End(E0).

In both cases, we get a contradiction to our hypothesis that p and q are linearly independent over
End(E0) modulo E0(Q

alg). So, conclusion (a) must hold.

2.1.5. Conclusion. It follows from Lemma 3 and a compactness argument (see [Masser and Zannier
2015, Lemma 8.2 and the paragraph after (9.2)]) that there exists a finite set of closed disks Di in X an and
a constant c′ such that the following holds: for any ξ ∈4, a positive proportion 1

c′ dξ of the conjugates of
ξ over k lie in one of the Di ’s, say D1. Now, all these conjugates are still in 4, since σ(s R(ξ))= s R(σξ)

is a Ribet point of Gq(σξ) for σ ∈ Gal(Qalg/k). Actually, by Lemma 4, all the conjugates of ξ over k lie
in 4[T ] with T = cdγξ . Choosing ε = 1

2γ , we deduce from conclusion (a) that D1∩4 has at most c′′d1/2
ξ

(and at least 1
c′ dξ ) elements. Therefore, dξ is bounded from above on 4, and this concludes the proof of

Theorem 1.w.

2.2. The semirational count. The proof of Proposition 1 uses Betti coordinates and maps, defined as
follows. We recall that D ⊂ X an is homeomorphic to a closed complex disk.

The sections of the local system 5G over D form a Z-module 5G(D)⊂ Lie Gan(D) of rank 3, with a
basis {$0,$1,$2} such that $0 generates 5Gm (D), and $1,$2 project to a basis ω1, ω2 of 5E0(D).
Then, any logarithm U := logG(s) of a section s of G/X over the disk D can uniquely be written as

U = b0$0+ b1$1+ b2$2,

where b0, b1, b2 are real analytic functions on D, with values in C for b0, and in R for b1 and b2. We call
(b0, b1, b2) the Betti coordinates of U , and define the Betti map attached to U as

UB = (b0; b1, b2) : D→ C×R2,
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Similarly, we write U R
B = (b

R
0 ; b

R
1 , bR

2 ) for the Betti map attached to U R
= logG(s

R), and denote by S
the image of the disk D under the map

UB := (UB,U R
B ) : D � S ⊂ R4

×R4
= R8.

We will work in the o-minimal structure Ran of globally subanalytic sets.

Lemma 6. S = UB(D) is a compact 2-dimensional set, definable in the structure Ran.

Proof. By definition (or by inspection of the formulae in [Bertrand et al. 2016]), the maps UB and U R
B

extend to real analytic maps on a neighborhood of the compact disk D. Therefore, S = UB(D) is a
compact definable set. Furthermore, the Betti map π ◦U R

B := u R
B = (b

R
1 , bR

2 ) attached to u R
= logE0

(pR)

is an immersion (since pR
= δq ∈ E0(X) is not a constant section), so S is indeed a real surface. �

With this notation in mind, a point ξ of D lies in D ∩4 if and only if

∃(ν 6= 0, µ) ∈ Z2
| ∃(β0, β1, β2) ∈ Z3, νU (ξ)−µU R(ξ)= β0$0(ξ)+β1$1(ξ)+β2$2(ξ),

or alternatively, in terms of the Betti maps,

∃(ν 6= 0, µ) ∈ Z2
| ∃(β0, β1, β2) ∈ Z3, νUB(ξ)−µU R

B (ξ)= (β0;β1, β2) ∈ Z×Z2
⊂ C×R2.

Remark that:

• If |ν|, |µ| are bounded by some number T , then |β0|, |β1|, |β2| ≤ C1T for some constant C1, since
D is compact.

• Given any real numbers ν 6= 0, µ, β0, β1, β2, there are only finitely many ξ ’s in D such that νUB(ξ)−

µU R
B (ξ)= (β0;β1, β2). Otherwise, νu−µδv would be constant on D, contradicting the Ax–Schanuel

theorem invoked in Section 2.1.4(b1).

We can now describe the definable set Z to which Habegger and Pila’s semirational count [2016] will be
applied. On the one hand, we have the affine space R5 with real coordinates (ν, µ, β0, β1, β2); we will
indicate by the index ∗ the complement of the hyperplane ν = 0. On the other hand, we have the affine
space C×R2

= R4 and its square R8, which is the target space of the map UB . We consider the incidence
variety Z in R5

×R8, with projections π1 to R5
∗
⊂ R5 and π2 to S = UB(D)⊂ R8:

Z = {((ν, µ, β0, β1, β2); (w := (w0;w1, w2), w
R
:= (wR

0 ;w
R
1 , w

R
2 ))) ∈ R5

×S ⊂ R5
×R8,

such that ν 6= 0 and ν.w−µ.wR
= (β0;β1, β2) ∈ R×R2

⊂ C×R2
= R4
}

By Lemma 6, Z is a definable subset of R13. Furthermore, UB(D ∩4)= π2(π
−1
1 (Z5

∗
)).

Let ε ∈R>0. Given T ≥ 1, let Z[T ] be the subset π−1
1 ((Z[T ])5

∗
) formed by those elements of Z whose

projection to R5
∗

have integer coordinates of height ≤ T . By [Habegger and Pila 2016, Corollary 7.2],
(with no R`), there is a constant C ′ε such that one of the following holds:
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(a’) π2(Z[T ])⊂ UB(D ∩4[T ])⊂ S has less than C ′εT
ε elements. Recalling the two remarks above, we

then deduce from an o-minimal uniformity argument (or from a zero estimate as in [Bertrand et al.
2016, Proposition 3.3]) that for some constant Cε , there are at most CεT ε points ξ ∈ D∩4 for which
νU (ξ)−µU R(ξ) ∈5Gξ

for some (ν 6= 0, µ) ∈ (Z[T ])2. This is conclusion (a) of Proposition 3.

(b’) There is a definable connected curve C ⊂ Z such that π1(C)⊂ R5
∗

is semialgebraic and π2(C)⊂ S
has (real) dimension 1. Let T ⊂ D⊂ X (C) be the inverse image of π2(C) under the map UB . We can
view C as parametrized by the curve T . The coordinates µ, ν, β0, β1, β2;w0, w1, w2, w

R
0 , w

R
1 , w

R
2

on R5
× R8, restricted to C, then become functions of the (real) variable γ ∈ T . Since π1(C)

is semialgebraic, the functions µ(γ ), ν(γ ), β0(γ ), β1(γ ), β2(γ ) generate a field of transcendence
degree 1 (or 0, if constant) over C. In view of the incidence relations, whose ν-component does not
vanish by definition, the restrictions to T of the functions w0 = b0, w1 = b1, w2 = b2 generate a
field of transcendence degree ≤ 1 over the field generated by the restrictions to T of the functions
wR

0 = bR
0 , w

R
1 = bR

1 , w2 = bR
2 . Recalling that U = b0$0+b1$1+b2$2, and similarly with U R , we

deduce that U|T generate a field of transcendence degree ≤ 1 over the field generated by U R
|T and the

$i |T ’s. By complex analyticity, the corresponding algebraic relation extends to D, so U generates a
field of transcendence degree ≤ 1 over the field F R.FG generated over C(X) by U R and the $i ’s.
In view of Lemma 5, this is Conclusion (b), and the proof of Proposition 1 is completed. �

3. The weakly special case over Z

From now on, we assume that the sections p and q are linearly dependent over End(E0) modulo the
subgroup E0(Q

alg) of constant sections of E0(X), and look for a proof of Theorem 1. Since its statement
is invariant under multiplication of s by a positive integer, and since q is not constant, we can assume
without loss of generality that the generic relation they satisfy takes the form

p = ρq + p0, with ρ ∈ End(E0), p0 ∈ E0(Q
alg), p0 /∈ E tor

0 (Q
alg)

(if p0 is torsion, the conclusion of Theorem 1 is trivially satisfied). In such a case, the initial Step 2.1.1 of
the previous proof simply does not hold; contrary to the situation of Lemma 5, the set

4Z`d
p,δq = {ξ ∈ X (Qalg) | p(ξ) and δq(ξ) are linearly dependent over Z}

may well have unbounded height.
In this section, we show that if

ρ = r ∈ Z, r 6= 0,

upper bounds for the height on 4Z`d
p,δq , hence on its subset 4, can still be recovered, thanks to Silverman’s

theorem and basic orthogonality properties of Néron–Tate pairings. Theorem 1 then follows by reproducing
most of the previous proof.
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3.1. Bounded height. Let again h denote the height on X (Qalg) attached to a divisor of degree 1.

Proposition 2. Let p, q ∈ E0(X), p0 ∈ E0(Q
alg), q not constant, and assume that there exists a nonzero

integer r such that p = rq + p0. Then, there exists a constant c′0 such that h(ξ)≤ c′0 for any ξ ∈4Z`d
p,δq ,

hence for any ξ ∈4.

Proof. This follows from an elementary computation, using the fact that for any ρ ∈ End(E0), the
Néron–Tate height of ρq(ξ) is ρρ times that of q(ξ). The following argument is based solely on
orthogonality properties. Assume for a contradiction that there exists a sequence ξn, n ∈ N, of points
of 4Z`d

p,δq whose heights h(ξn) tend to infinity. Denote by 〈 · , · 〉geo the (geometric) Néron–Tate pairing
on E0(K alg)× E0(K alg), where K = Qalg(X), and by 〈 · , · 〉ari the (arithmetic) Néron–Tate pairing on
E0(Q

alg)× E0(Q
alg).

Recall that for both pairings, the adjoint of ρ ∈ End(E0) is its complex conjugate. In particular,
δq(ξ) = −δq(ξ) is orthogonal to q(ξ), so 〈p(ξn), q(ξn)〉ari = 0 for all n. By Silverman [1983] (or see
[Lang 1983, p. 306]), we deduce that

〈p, q〉geo = lim
n→∞

〈p(ξn), q(ξn)〉ari

h(ξn)
= 0.

Now, p = rq + p0, and the constant part E0(Q
alg) is orthogonal to the full space E0(K alg) for the

geometric pairing. So

〈p, q〉geo = 〈rq, q〉geo+〈p0, q〉geo = r〈q, q〉geo with r 6= 0.

Therefore, the section q has vanishing Néron–Tate height, hence must be constant, contrary to our
hypothesis. �

3.2. Algebraic (in)dependence. Assuming that p = rq + p0 as above, we now follow the proof of
Section 2.1. All its steps go through, except that conclusion (b) of Proposition 1 is now automatically
satisfied. Indeed, we have u = rv + u0, where u0 ∈ Lie E0(C) is a conveniently chosen elliptic loga-
rithm of p0, so K (u) lies in the field K (v) ⊂ FG , and automatically, U = logG(s) generates a field of
transcendence degree at most 1 over FG .

To overcome this difficulty, we will now deduce from the generic relation p=rq+p0 that Conclusion (b)
can here be replaced by the more precise statement that

(b]) the field FG(U ) is algebraic over the field FG(u)= FG

(which is actually conclusion (b2) of Section 2.1.4).
To check this, we use the same incidence variety Z as in Section 2.2, and follow Alternative (b’) of

the discussion. Notice that any relation νU (ξ)−µU R(ξ)= β0$0(ξ)+β1$1(ξ)+β2$2(ξ), projected
to Lie E0, yields νu(ξ)−µu R(ξ)= β1ω1+β2ω1 hence since u R

= δv:

(νr −µδ)v(ξ)= β1ω1+β2ω2− νu0.
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Restricting this relation to the real curve T ⊂ D, and recalling that ν 6= 0, r 6= 0 and δ /∈ R, we deduce
that if Alternative (b’) holds, then the field generated over C by the restriction of the function v to T lies
in the field generated over C by the restriction to T of the real functions µ, ν and the βi ’s, i = 1, 2. Since
the latter field has transcendence degree at most 1 over C, while v is not constant, the two fields have the
same algebraic closure, in which u lies. The full incidence relation then implies that U is algebraic over
the field F R.FG(u) = FG . This is conclusion (b]).

So, logG(s) is algebraic over FG . As explained in case (b2) of Section 2.1.4, Lemma 5.1 of [Bertrand
et al. 2016] then implies that p and q are linearly dependent over End(E0) and Theorem 1 is established
in this “ρ = r ∈ Z, r 6= 0-weakly special” case. �

4. End of proof of Theorem 1

4.1. From weakly special to constant. In this subsection, we assume that the projection p ∈ E0(X) of
s ∈ G(X) and the section q ∈ E0(X) are linked by a generic relation of arbitrary shape:

p = ρq + p0, with ρ ∈ End(E0), p0 ∈ E0(Q
alg).

We will deduce from the previous section that either p and q are linearly dependent over End(E0) (as
predicted by Theorem 1), or we may assume that ρ = 0, i.e., p itself is a constant section.

Replacing s by 2s if necessary, we can write ρ = r + r ′δ ∈ Z⊕Zδ ⊂ End(E0), and consider the basic
Ribet section sr ′α = r ′s R of G =Gq over X . Its projection to E0(X) is the section r ′ pR

= r ′δq . Therefore,
the section s ′ := s− sr ′α of G/X projects to

π(s ′) := p′ = p− r ′δq = rq + p0.

Moreover, for any ξ ∈ X (Qalg), sr ′α(ξ)= sr ′α,q(ξ) is by definition a Ribet point of Gq(ξ). Consequently,
the set 4 := 4s of points of X (Qalg) where s(ξ) is a Ribet point coincides with the set 4s′ similarly
attached to s ′, which is therefore infinite. Since r ∈ Z, we deduce from the result of Section 3 that either
p′ and q , hence p and q , are linearly dependent over End(E0), or that r = 0.

Assume now that r = 0, so the generic relation reads: p = r ′δq + p0, and consider again the section
s ′ = s− r ′s R , which projects to p′ = p0. The corresponding set 4s′ is still infinite. Therefore, we have
reduced the proof of Theorem 1 to the case where ρ = 0, i.e., where the projection p of s is a constant
section p0. We must then show that p0 is necessarily a torsion point.

4.2. The constant case. The word constant here refers not to the semiabelian scheme G/X , which
we still assume to be nonconstant (q /∈ E0(Q

alg)), but to the section π ◦ s := p = p0 ∈ E0(Q
alg).

However, the duality properties of the Poincaré biextension P0 of E0× Ê0 by Gm enable us to permute
the roles of q and p, thereby translating the problem into one on the constant semiabelian variety
G ′p0
= P0|p0×Ê0

∈ Ext(Ê0,Gm) parametrized by the point p0 of (the bidual of) E0. We must then prove
that p0 is torsion, i.e., that G ′p0

is isosplit.
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Assume for a contradiction that p0 is not torsion. Then for each ξ in the set 4, there is a relation
np0 −mδq(ξ) = 0 with nm 6= 0, so q(ξ) lies in the divisible hull of Z.δp0, and is not torsion either.
Consider the constant semiabelian surface G ′p0

∈ Ext(Ê0,Gm). By duality, we can view s as a section
š ∈ G ′p0

(X), and s(ξ) as a point š(ξ) on G ′p0
projecting to q(ξ) in Ê0. Furthermore, š(ξ) is a nontorsion

Ribet point of G ′p0
if and only if s(ξ) is a nontorsion Ribet point of Gq(ξ): in the setting of Section 1.2,

this is clear when ϕ− ϕ̂ is an isomorphism, and it remains true in general via an isogeny. (In fact, it is
proven in [Bertrand and Edixhoven 2019, Remark 5.4.1], that the 1-motive attached to sϕ,q is isogenous
to its Cartier dual as soon as ϕ− ϕ̂ is an isogeny.)

Therefore, the image š(X) of š is an irreducible curve in G ′p0
which contains infinitely many points

of the group 0′0 formed by all the Ribet points of G ′p0
. Since this group has finite rank (at most 1),

McQuillan’s Mordell–Lang theorem [1995], as recalled in Section 1.3(v), can be applied to G ′p0
. We

derive that š factors through a translate by a Ribet point of a strict connected algebraic subgroup of G ′p0
.

Since p0 is not torsion, the only such one is Gm , so q(X) reduces to a point of Ê0. This contradicts our
assumption that q is not constant, and concludes the proof of Theorem 1. �

4.3. Further comments. We here list properties of Ribet points and sections which although not used in
the proof, may be relevant to further studies of unlikely intersections.

Remark 1 (in relation with Proposition 2). Attached to the divisor at infinity Dξ of the standard compact-
ification of Gq(ξ), there is a canonical “relative height” ĥDξ

, which vanishes on the Ribet points of Gq(ξ);
see [Bertrand 1995, §3]. Is there a Zimmer-like comparison of ĥDξ

with a Weil height hDξ
, of the type

ĥDξ
− hDξ

= O((ĥ(q(ξ)))1/2), or even just o(ĥ(q(ξ))), where ĥ is the Néron–Tate height on Ê0(Q
alg)?

Bounded height on 4 would then follow in all cases, “weakly special” or not. See [Chambert-Loir 1999,
Theorem 5.5] for an Arakelov approach to this problem.

Remark 2 (on the Betti maps). Let ξ ∈ 4. By [Bertrand 1995, Theorem 4], the Ribet point s(ξ) lies
in the maximal compact subgroup of its fiber Gan

ξ . So its logarithm U (ξ) lies in 5Gξ
⊗R, and its Betti

coordinate b0(ξ) is a real number. Similarly, the Betti coordinate bR
0 of the Betti map U R

B attached
to U R

= logG(s
R) is actually real-valued. But a priori, not the Betti coordinate b0 of U . It would be

interesting to characterize the sections s ∈ G(X) whose images meet the union of the maximal compact
subgroups of all the fibers infinitely often.

Remark 3 (about effectivity). As suggested in Section 2.1.3(A) (see also Section 1.3(vii)), making the
“constants” of the text effective in terms of the initial datas X, E0, q, s, requires a global version of
Proposition 1. One should here start with the uniformization map Unif : P̃0 ' Co (C×C)→ Pan

0 of the
Poincaré biextension itself, thereby reflecting the symmetric roles played by p and q in the construction
of Ribet sections. As far as the dependence in s is concerned, a first aim would be to show that these
constants are uniformly bounded in terms of the degree of the curve W = s(X) in a projective embedding
of G. We point out that this aim has indeed been reached in various versions of the Mordell–Lang problem
itself; see [Hrushovski and Pillay 2000] for a differential algebraic approach (inspired by work of Buium,
and recently sharpened in [Binyamini 2017]) and [Rémond 2011, Thorem 2.4], for the general case.



1470 Daniel Bertrand and Harry Schmidt

5. The Zilber–Pink conjecture for P0

Pink’s generalization of the conjectures on unlikely intersections proposed by Bombieri, Masser, Zannier
and by Zilber asserts:

Conjecture [Pink 2005, Conjecture 1.3]. Let S/C be a mixed Shimura variety, and let W be an irreducible
algebraic subvariety of S, of dimension d. Assume that the intersection of W with the union of all the
special subvarieties of S of codimension > d is Zariski dense in W . Then, W is contained in a special
subvariety of S of positive codimension.

As in the text, let again E0/Q
alg be an elliptic curve with complex multiplications, with dual Ê0 '

Ext(E0,Gm), and let P0/Q
alg be the Poincaré biextension of E0× Ê0 by Gm . This is a Gm-torsor over

E0× Ê0, which admits two families of group laws. Namely, for any q ∈ Ê0, the restriction of P0 above
E0×{q} is the semiabelian variety attached to q , viewed as a point in Ext(E0,Gm), while for any p ∈ E0,
the restriction of P0 above {p}× Ê0 is the semiabelian variety attached to p, viewed by biduality as a
point in Ext(Ê0,Gm)' E0. The important point in this section is that P0 admits a canonical structure of
a mixed Shimura variety, which is described in detail in [Bertrand and Edixhoven 2019]. However, only a
minimal knowledge of MSV theory will be needed to prove Theorem 3 of the introduction.

Before proving this theorem, we note (as pointed out by J. Pila) that it completely establishes Theorem 4,
i.e., Pink’s conjecture for the MSV S = P0 when the variety W is defined over Qalg. Indeed, if the
dimension d of W is 0 or 3, there is nothing to prove. If d = 2, then the special subvarieties of P0 of
codimension > d are its special points, and the statement reduces to the André–Oort conjecture, which
follows in this case from [Gao 2017b, Theorem 13.6]. So, only the case d = 1, i.e., Theorem 3, needs to
be treated.

Through the first family of group laws above, the projection $ : P0→ Ê0 turns P0 into the universal
extension G of E0 by Gm , over the moduli space Ê0. For any integer n, we will denote by [n]G the
morphism of multiplication by n of the group scheme G/Ê0. Its Ribet sections are well defined, and
we call their images Ribet curves of P0, in the sense of G/Ê0. Similarly, the projection $ ′ : P0→ E0

turns P0 into a group scheme G′/E0, with morphisms [n]G′ and Ribet curves of P0, in the sense of G′/E0.
Furthermore, [n]G and [n]G′ induce the same morphism [n] on the fiber Gm of ($,$ ′) above (0, 0). With
these definitions in mind, we have the following explicit necessary conditions for an irreducible curve to
be special in P0. It follows from [Bertrand and Edixhoven 2019, §5], (see also [Bertrand 2011, §2]) that
they are also sufficient, but we will not need this sharper result.

Proposition 3. Let C be a special curve of the MSV P0. Then:

(i) If $ : C→ Ê0 is dominant, C is a Ribet curve in the sense of G/Ê0.

(ii) If $ ′ : C→ E0 is dominant, C is a Ribet curve in the sense of G′/E0.

(iii) If ($ ′,$)(C) is a point (p0, q0) of E0× Ê0, this point is a torsion point, and C is the fiber of P0

above (p0, q0).
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Notice that most special curves C satisfy both (i) and (ii), and are therefore Ribet curves in both senses.
This reflects the self-duality of nontorsion Ribet sections, already encountered in Section 4.2. As for (iii),
it occurs if neither (i) nor (ii) are satisfied.

Proof. We will use the following facts, for which we refer to [Pink 2005; Gao 2017a]:

(F1) A point P of P0 is special (if and) only if (p, q) = ($ ′,$)(P) is torsion in E0 × Ê0 and P is
torsion in the (isosplit) extension Gq (equivalently, in the isosplit G′p).

(F2) A special curve of P0 contains a Zariski-dense set of special points, hence by F1 a Zariski-dense set
of torsion points of the various fibers of G/Ê0 (or of G′/E0).

(F3) The image of a special subvariety under a Shimura morphism (such as $ ′,$, [n]G, [n]G′) is a
special subvariety.

Let then C ⊂ P0 = G be a special curve, dominating Ê0 as in (i). By base extension along the finite
cover $ : X := C → Ê0, we can view the diagonal map X → CX as a section s of the group scheme
G = GX := G ×Ê0

X over X . We can now apply Lemma 2 of Section 1.3 (relative Manin–Mumford)
to s ∈ G(X): by Facts F1 and F2, the set 4tor

s is infinite and we infer that s is a Ribet section of
G/X , or factors through a torsion translate of Gm/X = Gm × X . In the first case, the image C ⊂ G of
s(X)⊂ CX ⊂ GX is a Ribet curve of P0 in the sense of G/Ê0, as was to be shown.

In the second case, a multiple C ′ := [n]G(C) of C lies in the fiber Gm × Ê0 of P0 above p = 0, and
is still a special curve of P0 by F3. So, by F2, C ′ contains infinitely many special points of P0 lying
in Gm × Ê0. But by F1, these special points are contained in (in fact, fill up) the torsion of the group
Gm × Ê0. We can now apply the standard Manin–Mumford theorem [Hindry 1988] to C ′ ∩ (Gm × Ê0)

tor,
and deduce that C ′ is a torsion translate of Gm ×{0} or of {1}× Ê0. The first conclusion cannot occur
since C ′ too dominates Ê0. So, a multiple [m]C ′ = [mn]G(C) of C is the image of the unit section of
G/Ê0. Therefore, C is in all cases a Ribet curve of P0 in the sense of G/Ê0.

The same proof applies to (ii), while (iii) easily follows from F1 (or from F3, in view of [Gao 2017a]).
This concludes the proof of Proposition 3. �

We can now turn to the proof of Theorem 3. We will need the following complement to Fact F3:

(F4) Under a Shimura morphism, the irreducible components of the inverse image of a special subvariety
are special subvarieties.

Proof of Theorem 3. Let W/Qalg be an irreducible algebraic curve in P0, which contains infinitely many
points lying on special curves of P0. We must show that W is contained in a special surface of P0. We
deduce from Proposition 3 that

(a) W contains infinitely many points lying on Ribet curves in the sense of G/Ê0, and if not,

(b) W contains infinitely many points lying on Ribet curves in the sense of G′/E0, and if not,

(c) W contains infinitely many points lying in the fibers of P0 above the torsion points of E0× Ê0.
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Assume first that $ :W → Ê0 is dominant, and that we are in case (a). Base changing along $ : X =
W → Ê0 as above, we may view the diagonal map X→WX ⊂ GX = G as a section s ∈ G(X), to which
Theorem 1 (or the relative Mordell–Lang Theorem 2) of Section 1.1 applies. By (a), the set 4s is infinite,
and we infer that the sections p and q attached to s are linearly dependent over End(E0). So, ($ ′,$)(W )

lies in a torsion translate of an elliptic curve B ⊂ E0× Ê0 passing through 0. By [Gao 2017a], these are
special curves of the MSV E0× Ê0. Therefore, by F4, W lies in a special surface of P0. Vice versa, the
same conclusion holds if $ ′ :W → E0 is dominant and we are in case (b).

Secondly, assume that W still dominates Ê0, but that we are in case (b). As just pointed out, we can
then assume that W does not dominate E0, and so, projects to a point p ∈ E0 under $ ′. If p is not torsion,
W lies in the nonisosplit extension G′p =$ ′−1(p) (which is then not a special surface of P0). Now, the
Ribet curves in the sense of G′/E0 meet G′p at Ribet points of G′p, so by (b), W contains infinitely many
Ribet points of G′p. We deduce from the standard Mordell–Lang theorem [McQuillan 1995] that W lies
in a translate of Gm by a Ribet point. But then, W cannot dominate Ê0. So, p is a torsion point, and
W lies in $ ′−1(p), which is a special surface of P0 by F4. Vice versa, the same conclusion holds if
$ ′ :W → E0 is dominant and we are in case (a).

Thirdly, assume that W dominates Ê0 or E0, and that we are in case (c). Then, the projection W ′ of W
in E0× Ê0 is a curve which contains infinitely many torsion points of E0× Ê0. By Manin–Mumford, we
deduce that W ′ lies in a torsion translate of an elliptic curve B ⊂ E0× Ê0 passing through 0. So, W lies
in a special surface of P0.

It remains to study the case when W projects to a point (p, q) of E0× Ê0 under ($ ′,$). Then, the
only special curve of type (c) which meets W is the closure of W itself, so in case (c), (p, q) is a torsion
point, and W lies in (many) a special surface of P0. Assume finally that we are in case (a), or in case (b).
Then, W contains a Ribet point of Gq , or of G′p, projecting to p ∈ E0, or to q ∈ Ê0. In both cases, we
deduce that the points p and q are linearly dependent over End(E0). So, the projection to E0× Ê0 of W
lies in a torsion translate of an elliptic curve B passing through 0, and W lies in a special surface of P0.
This concludes the proof of Theorem 3. �
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