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Examples of hypergeometric twistor D-modules
Alberto Castaño Domínguez, Thomas Reichelt and Christian Sevenheck

We show that certain one-dimensional hypergeometric differential systems underlie objects of the category
of irregular mixed Hodge modules, which was recently introduced by Sabbah, and compute the irregular
Hodge filtration for them. We also provide a comparison theorem between two different types of
Fourier–Laplace transformation for algebraic integrable twistor D-modules.

1. Introduction

In a series of papers Sabbah and Yu (partly joint with Esnault) [Yu 2014; Sabbah and Yu 2015; Esnault
et al. 2017; Sabbah 2018] considered a so-called irregular Hodge filtration on certain cohomology groups
and on certain irregular D-modules. It can be seen as a generalization of the Hodge filtration on a mixed
Hodge module in the sense of M. Saito. Geometrically, such a filtration arises by considering a version of
the twisted de Rham cohomology of certain proper maps, and it plays (conjecturally) a role in Hodge
theoretic mirror symmetry (see [Katzarkov et al. 2017]). Sabbah [2018] has defined a category of irregular
mixed Hodge modules, which is (up to a technical equivalence) a certain subcategory of T. Mochizuki’s
category of (integrable) mixed twistor D-modules. He has proved that a rigid irreducible D-module on
the projective line can be uniquely upgraded to an irregular Hodge module if and only if its formal local
monodromies are unitary. Consequently, these objects come equipped with an irregular Hodge filtration
and one can define irregular Hodge numbers for them. They should be seen as interesting numerical
invariants attached to these differential systems, contrary to the case of arbitrary mixed twistor D-modules,
where there is no obvious way to define such numbers. In [Castaño Domínguez and Sevenheck 2019],
the first and the third named author have computed that filtration and its corresponding numbers for the
purely irregular hypergeometric modules, that is for systems of the form DGm/DGm P , where P is the
operator

P =
n∏

i=1

(t∂t −αi )− t
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for real numbers α1, . . . , αn . Let us consider the noncommutative ring Rint
Gm
:= C[z, t±]〈z2∂z, t z∂t 〉. A

crucial point was to show that a certain quotient of the corresponding sheaf Rint
Gm

on Gm which restricts to
the DGm,t -module DGm/DGm P on z = 1 actually underlies an object in the category IrrMHM(Gm) and
the latter can be uniquely extended to an object in IrrMHM(P1).

In this paper we discuss the case of more general hypergeometric D-module, that is, for quotients
DGm/DGm P , where now P is of the form

P =
n∏

i=1

(t∂t −αi )− t
m∏

j=1

(t∂t −β j )

for positive integers m, n and real numbers α1, . . . , αn, β1, . . . , βm such that there is no integer difference
between any αi and β j (this is the irreducibility assumption). It is worth noticing that the presence of
the factor

∏m
j=1(t∂t −β j ) rules out the usage of the geometric arguments of [Castaño Domínguez and

Sevenheck 2019]. We obtain (see Theorem 5.7) that for certain such systems, the corresponding quotient
of Rint

Gm
still underlies an object of IrrMHM(Gm). As an application, we can completely determine the

irregular Hodge filtration for all systems D/DP as above, where n is arbitrary and where m = 1.
The strategy of the proof (which is rather different from that of [Castaño Domínguez and Sevenheck

2019]) of the main theorem is to reduce these differential systems from (Fourier–Laplace transformed)
A-hypergeometric D-modules (the so-called GKZ-systems of Gelfand, Graev, Zelevinski and Kapranov,
see [Gelfand et al. 1987; Gelfand et al. 1989]), but at the level of (algebraic, integrable, mixed) twistor
D-modules. Notice that the paper [Mochizuki 2015b] also studies twistor structures on GKZ-systems, by
considering twistor D-modules associated to meromorphic functions. We use instead a central result of
[Reichelt and Sevenheck 2015], where the Hodge filtration on certain GKZ-systems has been computed
explicitly. Technically, the main point in our proof consists in showing that for an R-module underlying
an integrable mixed twistor D-module on the affine space, the algebraic Fourier–Laplace transformation
(which is defined very much the same as in the case of algebraic D-modules) coincides with the Fourier–
Laplace transformation that can be defined inside the category MTM, or even IrrMHM. Along the way, we
also obtain (see Theorem 4.7) that an R-module version of the GKZ-D-module underlies an irregular Hodge
module provided that the parameter β ∈Cd of this system satisfies a natural combinatorial condition. Notice
that for the special case β = 0, this theorem can also be deduced from [Mochizuki 2015b, Proposition 1.4].

Our results give concrete representations for objects in the categories MTM and IrrMHM, which
usually are difficult to describe explicitly. We hope that a similar approach can be used to understand the
irregular Hodge filtration for some higher dimensional analogues of the classical hypergeometric systems,
also called Horn systems, which occur in the mirror symmetry picture for toric varieties.

2. Some results on R- and mixed twistor D-modules

Let X be a complex manifold of dimension d . We denote by OX the sheaf of holomorphic functions and
DX the sheaf of differential operators with holomorphic coefficients. Recall that DX is generated by the
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tangent sheaf2X . We put X :=A1
z×X , where the subscript means that z is the canonical coordinate on A1.

Denote by pz : X→ X the projection. We denote by RX the sheaf of subalgebras of DX generated by
zp∗z2X over OX and by Rint

X the sheaf of subalgebras of DX generated by zp∗z2X and z2∂z over OX. In local
coordinates x1, . . . , xd , they are given by OX〈z∂x1, . . . , z∂xd 〉 and OX〈z2∂z, z∂x1, . . . , z∂xd 〉, respectively.
We set �1

X := z−1 p∗z�
1
X as a subsheaf of p∗z�

1
X ⊗OX(∗({0}× X)), �p

X :=
∧p

�1
X and ωX :=�

d
X.

Let f : X→ Y be a morphism of complex manifolds. We consider the transfer R-modules, given by
RX→Y := OX⊗ f −1OY

f −1RY and RY←X := ωX⊗RX→Y⊗ f −1ωY, being respectively a (RX, f −1RY)-
bimodule and a ( f −1RY,RX)-bimodule. We have the inverse image and direct image functors

f +(N ) :=RX→Y

L
⊗ f −1RY

f −1N , f+(M) := R f∗(RY←X

L
⊗RX M), (1)

between the bounded derived categories Db(RX) and Db(RY).
If f : X × Y → Y is a projection and dim X = d , then f+(M) is given by

f+(M)= R f∗DRX×Y/Y(M)[d],

where DRX×Y/Y(M) is the relative de Rham complex with differential

d(η⊗m)= dη⊗m+
d∑

i=1

(
dxi

z
∧ η

)
⊗ z∂xi m,

the (xi )1≤i≤d being local coordinates on X .
Let σ : Gm,z → Gm,z be the automorphism z 7→ −z−1. Set S := {z ∈ A1

z | |z| = 1}. If λ ∈ S then
σ(λ)=−λ. Let E (d,d)S×X/S,c(V ) be the space of C∞-sections of �d,d

S×X/S over any open subset V of S× X
with compact support and C0

c (S) the space of continuous functions on S with compact support. The space
of C∞(S)-linear maps E (n,n)S×X/S,c(V )→ C0

c (S) is denoted by DbS×X/S(V ). This gives rise to the sheaf
DbS×X/S. The abelian category R-Tri(X) consists of triples T = (M1,M2,C) where M1,M2 are RX-
modules and C :M1|S×X⊗σ

∗M2|S×X→DbS×X/S is a RX|S×X⊗σ
∗RX|S×X-linear morphism. If D⊂ X

is a hypersurface, one similarly defines a category R-Tri(X, D) using RX(∗D) :=RX⊗OX OX(∗(A
1
z×D))-

modules (see [Mochizuki 2015a, §2.1] for details).
Now let X := X0×A1

t and let 2X (log X0) be the sheaf of vector fields on X which are logarithmic
along X0. Let V0RX be the sheaf of subalgebras in RX which is generated by zp∗z2X (log X0). For z0 ∈A1

z

we denote by X(z0) a small neighborhood of {z0}×X . A coherent RX-module is called strictly specializable
along t at z0 if M

|X(z0) is equipped with an increasing and exhaustive filtration V (z0)
a (M

|X(z0))a∈R by
coherent (V0RX)|X(z0)-modules satisfying certain conditions (see [Mochizuki 2015a, §§2.1.2.1, 2.1.2.2]).
This filtration is unique if it exists. M is called strictly specializable along t if it is strictly specializable
along t for any z0.

Remark 2.1. If M is itself a coherent V0RX-module, then M is automatically specializable along t and
the corresponding filtration Va(M) exists globally and is trivial, i.e., Va(M)= Vb(M) for all a, b ∈ R.
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If M is a coherent RX(∗t)-module, we define similarly a filtration V (z0)
a (M

|X(z0)) and the notion of
strict specializability along t (see [Mochizuki 2015a, §3.1.1]). In this case we define the RX-submodules
M[∗t] and M[!t] of M, which are locally generated by V (z0)

0 M and V (z0)
<0 M, respectively.

Remark 2.2. If the coherent RX(∗t)-module M is itself V0RX coherent, then

M[!t] =M[∗t] =M(∗t)=M.

Given an RX(∗t)-triple T = (M1,M2,C) which is strictly specializable along t we can define

T [!t] := (M1[∗t],M2[!t],C[!t]), T [∗t] := (M1[!t],M2[∗t],C[∗t])

(see [Mochizuki 2015a, Proposition 3.2.1] for details).
The category of filtered RX-triples (i.e., RX-triples equipped with a finite increasing filtration W )

underlies the category MTM(X) of mixed twistor D-modules (see [Mochizuki 2015a, Definition 7.2.1]).
The full subcategory of objects T ∈MTM(X) satisfying T = T [∗D] for some hypersurface D ⊂ X is
denoted by MTM(X, [∗D]).

If X is a smooth, algebraic variety, we denote by X an the corresponding complex manifold. Let X
be a smooth, complete, algebraic variety such that X ↪→ X is an open immersion and D := X \ X is a
hypersurface. We can define the category of (integrable) algebraic, mixed twistor D-modules as

MTM(int)
alg (X) :=MTM(int)(X an, [∗D]). (2)

We remark that this definition is independent of the completion up to an equivalence of categories
[Mochizuki 2015a, Lemma 14.1.3].

Let f : X → Y be a quasiprojective morphism of smooth, algebraic varieties. We take completions
X ⊂ X and Y ⊂ Y as above, such that DX := X \ X and DY := Y \Y and we have a projective morphism
f : X→ Y which restricts to f . For T ∈MTMalg(X), corresponding to T ∈MTM(X , [∗DX ]), we define

f i
∗
T :=Hi f ∗T ,

where f ∗ is the direct image functor for mixed twistor D-modules arising from the one for R-modules
depicted in (1).

If X is an algebraic variety, we denote by DX the sheaf of algebraic differential operators and by RX

the sheaf of z-differential operators, where here X := A1
z × X . We define the inverse and direct image

functor in the category of algebraic RX-modules as in (1). Analogously to the construction of RX, we can
consider the projection p : P1

× X→ X , and construct the sheaf of subalgebras of DP1×X (∗({∞}× X))
generated by z2∂z and zp∗2X over OP1×X (see [Mochizuki 2015a, §14.4.1.1]), which will be denoted by
Rint

P1×X (∗∞). In that sense, an algebraic integrable RX-module gives rise to a unique Rint
P1×X (∗∞)-module

(see [ibid., Theorem 14.4.8]).
The following lemma, which will be needed later, is due to T. Mochizuki.

Lemma 2.3. Given two good Rint
P1×X (∗∞)-modules P1,P2 and an analytic isomorphism f : Pan

1 → Pan
2 ,

then f is induced by a unique algebraic isomorphism between P1 and P2.
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Proof. Take a coherent OP1×X -submodule N1 ⊂ P1 such that Rint
P1×X (∗∞)⊗N1→ P1 is surjective and a

coherent OP1×X -module N2⊂P2 such that both Rint
P1×X (∗∞)⊗N2→P2 is surjective and f (N an

1 )⊂N an
2 .

According to GAGA we have a morphism g :N1→N2 which after analytification is equal to the morphism
N an

1 →N an
2 induced by f . Denote by K1 the kernel of Rint

P1×X (∗∞)⊗N1→ P1. This gives a morphism
K1→P2 which one obtains as the composition K1→Rint

P1×X (∗∞)⊗N1
ϕ
−→Rint

P1×
(∗∞)⊗N2→P2, where

ϕ is induced by g. Because the induced morphism (Rint
P1×X (∗∞)⊗N1)

an
→ Pan

2 factors through Pan
1 ,

the induced morphism Kan
1 → Pan

2 is 0. Hence, we obtain that K1 → P2 is 0, which means that
Rint

P1×X (∗∞)⊗N1→ P2 factors through P1. This shows the existence. The uniqueness follows from
[Serre 1955–1956, Proposition 10]. �

Since an algebraic, integrable, mixed twistor D-module on X gives rise to an analytic Rint
P1×X (∗∞)-

module which underlies an algebraic Rint
P1×X (∗∞)-module by [Mochizuki 2015a, Theorem 14.4.8], the

lemma above shows that we can define functors (up to canonical isomorphism)

Fori :MTMint
alg(X)→Mod(Rint

X )

(M1,M2,C) 7→Mi for i = 1, 2,

which become faithful if we impose goodness.

3. Fourier transformation of twistor D-modules

In this section we define the Fourier–Laplace transformation in the categories of integrable R-modules
and integrable, algebraic, mixed twistor D-modules, and we prove that these two transformations are
compatible.

Consider the diagram

AN
× ÂN j

//

p

zz

q

$$

PN
× P̂N

q
��

AN ÂN ĵ
// P̂N

,

where p and q are the projections to the first and second factor respectively. Consider the function
ϕ =

∑N
i=1wi · λi on AN

× ÂN .
Let Aϕ/zaff be the R

A1×AN×ÂN -module O
A1×AN×ÂN equipped with the z-connection zd+dϕ, and consider

the reduced divisor D := (PN
× P̂N ) \ (AN

× ÂN ). Then Aϕ/z∗ := j∗A
ϕ/z
aff carries a natural structure of an

R
A1×PN×P̂N (∗D)-module.
We denote by Eϕ/z∗ the analytification of Aϕ/z∗ , which is an R

A1×PN×P̂N (∗D)-module.

Lemma 3.1. Eϕ/z∗ is strictly specializable along D and

Eϕ/z := Eϕ/z
∗
[∗D] = Eϕ/z

∗
.
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Proof. We denote the coordinates on PN
×P̂N by ((w0 :w1 : · · · :wN ), (λ0 : λ1 : · · · : λN )), where the chart

AN
×ÂN is embedded via the map j : (w1, . . . , wN , λ1, . . . , λN ) 7→ ((1 :w1, . . . , wN ), (1 : λ1 : · · · : λN )).

By symmetry it is enough to prove the claim in the charts {w1 6= 0, λ0 6= 0}, {w1 6= 0, λ1 6= 0} and
{w1 6= 0, λ2 6= 0}. We will assume N ≥ 2 and consider the chart X := {w1 6= 0, λ2 6= 0}; the arguments with
the other charts and when N = 1 go similarly. The chart X is embedded as (x1, . . . , xN , µ1, . . . , µN ) 7→

((x1 : 1 : x2 · · · : xN ), (µ1 : µ2 : 1 : µ3 : · · · : µN )), so that the map ϕ is given on X by

1
x1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
.

Set DX := A1
× (D ∩ X) = A1

× {x1 ·µ1 = 0}. The module (Eϕ/z∗ )|X is a cyclic RA1×X (∗DX )-module
RA1×X (∗DX )/I, where the left ideal I is generated by

z∂x1 +
1

x2
1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
x1µ1

, z∂x j −
µ j

x1µ1
,

z∂µ1 +
1

x1µ
2
1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
x1µ1

, zµ j −
x j

x1µ1
,

where j ≥ 3. Consider the map ig : X→ A1
t × X given by

(x1, . . . , xN , µ1, . . . , µN ) 7→ (x1 ·µ1, x1, . . . , xN , µ1, . . . , µN ).

The direct image ig,+(RX(∗DX )/I) is a cyclic RA1
t ×X(∗(A

1
t ×DX ))-module RA1

t ×X(∗(A
1
t ×DX ))/J

′

where J′ is generated by

z∂x1 +µ1z∂t +
1

x2
1µ1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
x1µ1

, z∂x j −
µ j

x1µ1
,

z∂µ1 + x1z∂t +
1

x1µ
2
1

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
x1µ1

, z∂µ j −
x j

x1µ1
, t − x1µ1,

where j ≥ 3. Define the cyclic RA1
t ×X(∗t)-module RA1

t ×X(∗t)/J where J is generated by

z∂x1 +µ1z∂t +
µ1

t2

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂x2 −

1
t
, z∂x j −

µ j

t
,

z∂µ1 + x1z∂t +
x1

t2

(
µ2+ x2+

∑
i≥3

µi xi

)
, z∂µ2 −

1
t
, z∂µ j −

x j

t
, t − x1µ1,

where j ≥ 3. Then we have the following RA1
t ×X-linear isomorphism

RA1
t ×X(∗(A

1
t ×DX ))/J

′
→RA1

t ×X(∗t)/J

P ·
1

(x1µ1)k
7→ P ·

1
tk .
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Consider the V -filtration along t = 0. The relations 1/tk
= (z∂µ2)

k ,

z∂t =−
1
t

(
z∂x1 x1+

1
t

(
µ2+ x2+

∑
i≥3

µi xi

))
=−z∂x1 x1z∂µ2 −

(
µ2+ x2+

∑
i≥3

µi xi

)
(z∂µ2)

2

and a straightforward induction over k for (z∂t)
k show that ig,+(RX(∗DX )/J) is a cyclic, hence also

coherent, V0RA1
s×X-module. It follows from Remark 2.1 that ig,+(RX(∗DX )/J)= ig,+(RX(∗DX )/J)[∗t],

and as a consequence, we are done by applying [Mochizuki 2015a, §3.3.1.1] and Remark 2.2. �

It follows from [Sabbah and Yu 2015, Proposition 3.3] that Eϕ/z underlies an object T ϕ/z∈MTMint
alg(A

N
×

ÂN ). Let us notice that the preceding lemma, as well as the similar Lemma 3.6 below, are related to a
more general statement in [Mochizuki 2015b, Corollary 3.12] on mixed twistor D-modules associated to
nondegenerate functions. However, in order to keep the paper self-contained, we prefer to give direct
proofs here.

We will now define a Fourier–Laplace transformation for algebraic Rint
A1×AN -modules.

Definition 3.2. The Fourier–Laplace transformation functor from the category of algebraic Rint
A1×AN -

modules to the category of algebraic Rint
A1×ÂN -modules is defined as

M̂ := FL(M) :=H0q+((p+M)⊗Aϕ/zaff ),

for any M in Mod(Rint
A1×AN ).

Remark 3.3. Let M := 0(A1
×AN ,M) be the Rint

A1×AN -module of global sections of M. The Rint
A1×ÂN -

module M̂ := 0(A1
× ÂN ,M̂) is isomorphic to M as a C[z]-module and the full Rint

A1×ÂN -structure is
given by

λi ·m := −z∂wi ·m, z∂λi ·m := wi ·m and z2∂z ·m :=
(

z2∂z −

N∑
i=1

z∂wiwi

)
·m.

On the other hand, there is a similar definition of a Fourier–Laplace transformation in the category of
algebraic DAN -modules (see e.g., [Reichelt 2014, Definition 1.2]) which we also denote by FL.

The Fourier–Laplace transformation for algebraic, integrable, mixed twistor D-modules is defined in
the following way.

Definition 3.4. The Fourier–Laplace transformation in the category of algebraic, integrable mixed twistor
D-modules on AN is defined by

FLMTM(M) :=H0q∗((p∗M)⊗ T ϕ/z),

where M ∈MTMint
alg(A

N ).

Recall that for M=(M1,M2,C)∈MTMint
alg(X)we denote by Fori the forgetful functors Fori (M)=Mi

for i = 1, 2.
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Proposition 3.5. Let M ∈MTMint
alg(A

N ). Then

For1(FLMTM(M))= FL(For1(M)) and For2(FLMTM(M))= z−N FL(For2(M)).

Proof. By [Mochizuki 2015a, §14.3.3.3] it is clear that Fori almost commutes with p∗, more precisely we
have

For1(p∗(M))= zN p+(For1(M)) and For2(p∗(M))= p+(For2(M)).

Then it is enough to prove for N ∈MTMint
alg(A

N
× ÂN ) that q+(Fori (N )⊗Aϕ/zaff )

∼= Fori (q∗(N ⊗ T ϕ/z)).
We have

ĵ+q+(Fori (N )⊗Aϕ/zaff )
∼= q+ j+(Fori (N )⊗Aϕ/zaff )

∼= q+ j∗(Fori (N )⊗Aϕ/zaff )

∼= Rq∗DR
PN×P̂N j∗(Fori (N )⊗Aϕ/zaff ).

Since N , T ϕ/z ∈ MTMint
alg(A

N
× ÂN ), there exist mixed twistor D-modules N , T ϕ/z ∈ MTMint(PN

×

P̂N , [∗D]) whose underlying R-modules are (after stupid localization along D) analytifications of the
j∗ Fori (N ) and j∗A

ϕ/z
aff . Hence

( j∗(Fori (N )⊗Aϕ/zaff ))
an ∼= Fori (N ⊗ T ϕ/z)(∗D)∼= Fori (N ⊗ T ϕ/z),

where the last equation follows from Lemma 3.1. We therefore get

( ĵ+ p+(Fori (N )⊗Aϕ/zaff ))
an ∼= Rq∗DRan

PN×P̂N ( j∗(Fori (N )⊗Aϕ/zaff ))
an

∼= Rq∗DRan
PN×P̂N Fori (N ⊗ T ϕ/z)

∼= Fori (q∗(N ⊗ T ϕ/z)).

The claim follows now from Lemma 2.3, noting that the goodness is a consequence of Lemma 3.1 and
[Mochizuki 2015a, Lemma 14.4.15]. �

We have the following variant, which will be used in the next section. Consider the diagram

AN
×Gm

j
//

p

zz

q

$$

PN
×P1

q
��

AN Gm
ĵ

// P1

and let ψ := w1 · t +w2+ · · ·+wN .
As above we define the RA1×AN×Gm -module Aψ/zaff , being OA1×AN×Gm endowed with the z-connection

zd + dψ . As in the other case, we can consider the divisor H := (PN
×P1) \ (AN

×Gm) and obtain
the RA1×PN×P1(∗H)-module Aψ/z∗ := j∗A

ψ/z
aff . In the same vein as before, we will denote by Eψ/z∗ the

RA1×PN×P1(∗H)-module being the analytification of Aψ/z∗ . The following lemma is similar to Lemma 3.1.

Lemma 3.6. Eψ/z∗ is strictly specializable along H and

Eψ/z := Eψ/z
∗
[∗H ] = Eψ/z

∗
.
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Proof. We denote the coordinates on PN
×P1 by ((w0 :w1 : · · · :wN ), (u : t)), where the chart AN

×Gm

is embedded via the map j : (w1, . . . , wN , t) 7→ ((1 : w1 : · · · : wN ), (1 : t)). We will assume N ≥ 3 and
consider the chart X := {w2 6= 0, u 6= 0}; the other charts behave similarly, as do the cases N = 1, 2. The
chart X is embedded as (x1, . . . , xN , u) 7→ ((x1 : x2 : 1 : x3 : · · · : xN ), (u : 1)). On this chart the map ψ is
given by 1

x1

( x2
u +1+ x3+· · ·+ xN

)
. Set HX := A1

× (H ∩ X)= A1
×{x1 ·u = 0}. The module (Eψ/z∗ )|X

is a cyclic RX(∗HX )-module RX(∗HX )/I, where the left ideal I is generated by

z∂x1 +
1
x2

1

(
x2

u
+ 1+ x3+ · · ·+ xN

)
, z∂x2 −

1
x1u

, z∂x j −
1
x1
, z∂u +

x2

x1u2 ,

with j ≥ 3. Consider the map ig : X→ A1
s × X given by

(x1, . . . , xN , u) 7→ (x1 · u, x1, . . . , xN , u).

Analogous to Lemma 3.1, the direct image ig,+(RX(∗HX )/J) is a cyclic RA1
s×X(∗(A

1
s ×HX ))-module

RA1
s×X(∗(A

1
s ×HX ))/J

′ where J′ is the left ideal generated by

z∂x1+uz∂s+
1
x2

1

(
x2

u
+1+x3+· · ·+xN

)
, z∂x2−

1
x1u

, z∂x j −
1
x1
, z∂u+x1z∂s+

x2

x1u2 , s−x1u,

and j ≥ 3. Define the cyclic RA1
s×X(∗s)-module RA1

s×X(∗s)/J where J is generated by

z∂x1+uz∂s+
1
s2 (x2u+u2

+x3u2
+· · ·+xN u2), z∂x2−

1
s
, z∂x j−

u
s
, z∂u+x1z∂s+

x1x2

s2 , s−x1u,

and where j ≥ 3. We have the following RA1
s×X-linear isomorphism

RA1
s×X(∗(A

1
s ×HX ))/J

′
→RA1

s×X(∗s)/J

P 1
(x1u)k

7→ P 1
sk .

Consider the V -filtration along s = 0. The relations 1/sk
= (z∂x2)

k ,

z∂s =−
1
s

(
z+ uz∂u +

x2

s

)
=−z · z∂x2 − uz∂uz∂x2 − x2(z∂x2)

2

and a straightforward induction over k for (z∂s)
k show that ig,+(RX(∗DX )/J) is a coherent V0RA1

s×X-
module. As in the previous lemma, this shows the claim. �

It follows again from [Sabbah and Yu 2015, Proposition 3.3] that Eψ/z underlies an object T ψ/z ∈
MTMint

alg(A
n
×Gm).

Definition 3.7. (1) The Fourier–Laplace transformation with respect to the kernel ψ in the category of
algebraic RA1×AN -modules is defined as

FLψ(M) :=H0q+((p+M)⊗Aψ/zaff ),

for any M ∈Mod(RAN ).
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(2) Analogously, the Fourier–Laplace transformation with respect to the kernel ψ in the category of
algebraic, integrable twistor D-modules on AN is defined by

FLψMTM(M) :=H0q∗((p∗M)⊗ T ψ/z),

for any M ∈MTMint
alg(A

N ).

We get the following result for the kernel ψ .

Proposition 3.8. Let M ∈MTMint
alg(A

N ). Then

For1(FLψMTM(M))= z1−N FLψ(For1(M)) and For2(FLψMTM(M))= z−N FLψ(For2(M)).

Proof. We have, by [Mochizuki 2015a, §14.3.3.3],

For1(p∗(M))= zp+(For1(M)) and For2(p∗(M))= p+(For2(M)).

The rest of the proof carries over almost word for word from Proposition 3.5, using Lemma 3.6. �

4. GKZ systems and irregular Hodge modules

Let A = (aki ) be a d × N integer matrix with columns (a1, . . . , aN ). We define

NA :=
N∑

i=1

Nai ⊂ Zd

and similarly for ZA and R≥0 A. Throughout this section we assume

ZA = Zd and NA = Zd
∩R≥0 A.

Set AN
:= Spec(C[w1, . . . , wN ]) and ÂN

:= Spec(C[λ1, . . . , λN ]) and

LA :=

{
`= (`1, . . . , `N ) ∈ ZN

:

N∑
i=1

`i ai

}
.

Definition 4.1. The GKZ-hypergeometric system Mβ

A is the cyclic D
ÂN -module D

ÂN /I, where I is the
left ideal generated by

Ek :=

N∑
i=1

akiλi∂λi −βk, for k = 1, . . . , d,

and

�` :=

∏
`i>0

∂
`i
λi
−

∏
`i<0

∂
−`i
λi
, for l ∈ LA.
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The GKZ-hypergeometric system Mβ

A is the Fourier–Laplace transform of the cyclic DAN -module
M̌β

A := DAN /J , where J is the left ideal generated by

Ěk :=

N∑
i=1

aki∂wiwi +βk, for k = 1, . . . , d,

and
�̌` :=

∏
`i>0

w
`i
i −

∏
`i<0

w
−`i
i , for l ∈ LA.

The semigroup ring C[NA] ⊂ C[t±1 , . . . , t±d ] is naturally a C[w1, . . . , wN ]-module under the isomor-
phism

C[w1, . . . , wN ]/((�̌`)`∈LA)→ C[NA]

wi 7→ tai ,

where we are using the multiindex notation tai :=
∏d

k=1 taki
k . We set SA := C[NA]. Notice that the rings

C[w1, . . . , wN ] and SA carry a natural Zd-grading given by deg(wi )= ai . This is compatible with the
grading on the Weyl algebra DAN := 0(AN ,DAN ) given by deg(wi )= ai and deg(∂wi )=−ai .

Definition 4.2 [Matusevich et al. 2005, Definition 5.2]. Let P be a finitely generated Zd-graded
C[w1, . . . , wN ]-module. An element α ∈ Zd is called a true degree of P if the graded part Pα is
nonzero. A vector α ∈ Cd is called a quasidegree of P if α lies in the complex Zariski closure qdeg(P)
of the true degrees of P via the natural embedding Zd ↪→ Cd .

Consider the set of strongly resonant parameters of A:

sRes(A) :=
N⋃

j=1

sRes j (A),

where
sRes j (A) := {β ∈ Cd

| β ∈ −(N+ 1)a j + qdeg(SA/(ta j ))}.

Consider as well the torus Gd
m := Spec(C[t±1 , . . . , t±d ]), together with the torus embedding

h : Gd
m→ AN

(t1, . . . , td) 7→ (ta1, . . . , taN ).

The following proposition is a slight generalization of the results of Schulze and Walther [2009, Theo-
rem 3.6, Corollary 3.8].

Proposition 4.3 [Reichelt and Sevenheck 2015, Proposition 3.11]. Let A be a d × N integer matrix
satisfying ZA = Zd and NA = Zd

∩R≥0 A. Assume that β 6∈ sRes(A). Then

H0(h+O
β

Gd
m
)∼= M̌β

A,

where Oβ

Gd
m

∼= DGd
m
/DGd

m
· (∂t1 t1+β1, . . . , ∂td td +βd).
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For β ∈ Rd , the D-module Oβ

Gd
m

underlies the complex mixed Hodge module pC
H,β
Gd

m
. Hence for

β ∈ Rd
\ sRes(A) the D-module M̌β

A underlies the complex mixed Hodge module H0h∗ pC
H,β
Gd

m
. The

Hodge filtration on M̌β

A can be explicitly computed, provided that β belongs to a certain set AA of so-called
admissible parameters β. We recall its definition from [Reichelt and Sevenheck 2015, Formula (14) right
before Lemma 4.4]: let c := a1+ · · ·+ aN and define for all facets F of R≥0 A the uniquely determined
primitive, inward-pointing, normal vector nF of F , such that 〈nF , F〉 = 0 and 〈nF ,NA〉 ⊂ Z≥0. Set
eF := 〈nF , c〉 ∈ Z>0. The set of admissible parameters of A is then defined by

AA :=
⋂

F facet

{
R · F −

[
0, 1

eF

)
· c
}
.

Theorem 4.4 [Reichelt and Sevenheck 2015, Theorem 4.17]. For β ∈ AA the Hodge filtration on M̌β

A is
equal to the order filtration shifted by N − d , i.e.,

F H
p+N−dM̌

β

A = Ford
p M̌β

A.

Let us define the cyclic RA1×AN -module Ň β

A :=RA1×AN /Jz , where Jz is the left ideal generated by

Ě z
k =

N∑
i=1

aki z∂wiwi + zβk, for k = 1, . . . , d,

and

�̌` =

∏
`i>0

w
`i
i −

∏
`i<0

w
−`i
i , for l ∈ LA.

We will denote by M̌β

A := 0(A
N ,M̌β

A) and Ňβ

A := 0(A
1
×AN , Ň β

A ) the modules of global sections of
M̌β

A and Ň β

A , respectively.
We will also consider the Rees module of M̌β

A with respect to the order filtration Ford
•

, which is given
by RFord

M̌β

A :=
∑

k≥0 zk Ford
k M̌β

A. An easy computation shows RFord
M̌β

A = Ňβ

A , hence

RF H
M̌β

A = zN−d Ňβ

A . (3)

Definition 4.5. The R-GKZ-hypergeometric system N β

A is the cyclic Rint
A1×ÂN -module Rint

A1×ÂN /I, where
the left ideal I is generated by

E z
0 := z2∂z +

N∑
i=1

λi z∂λi ,

E z
k :=

N∑
i=1

akiλi z∂λi − zβk, for k = 1, . . . , d,

and

�z
` :=

∏
`i>0

(z∂λi )
`i −

∏
`i<0

(z∂λi )
−`i , for ` ∈ LA.
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Remark 4.6. Note that, considering Ň β

A as an Rint
A1×ÂN -module with the trivial action of z2∂z , N β

A is its

Fourier–Laplace transform as Rint
A1×ÂN -modules, according to Remark 3.3.

Theorem 4.7. Let A be a d×N-matrix and β ∈AA an admissible parameter. The R-GKZ-hypergeometric
system z−dN β

A underlies an algebraic, integrable, mixed twistor D-module TMβ

A.

Proof. By the remark above, we know that N β

A = FL(Ň β

A ), which in turn, thanks to the choice of β,
Theorem 4.4 and formula (3), is equal to FL(zd−NRF HM̌β

A). Since RF HM̌β

A is the Rees module of a
mixed Hodge module on AN , it gives rise to an algebraic, integrable mixed twistor D-module on AN ,
say TM̌β

A. Then we can apply Proposition 3.5 and get

N β

A = zd−N FL(For2(
TM̌β

A))= zd For2(FLMTM(
TM̌β

A)).

The result follows from writing TMβ

A := FLMTM(
TM̌β

A). �

Corollary 4.8. The analytification of TMβ

A gives rise to an irregular mixed Hodge module on AN which
has a natural extension to an Rint

A1×PN -module underlying an object of IrrMHM(PN ).

Proof. This follows from applying [Sabbah 2018, Corollary 0.5] to the operations performed to get TMβ

A. �

5. Application to confluent hypergeometric systems

In this section we are going to use the results achieved so far for the special case of the matrix

A =

(
1m 0m×(n−1) Idm

1n−1 − Idn−1 0(n−1)×m

)
.

For the sake of simplicity, we will write N = n+m in what follows. Before going on, let us introduce
the main object of study of this section and state some of its basic properties, extending what we mentioned
in the introduction.

Definition 5.1. Let (n,m) 6= (0, 0) be a pair of nonnegative integers, and let α1, . . . , αn and β1, . . . , βm

be elements of C. The hypergeometric D-module of type (n,m) associated with the αi and the β j is
defined as the quotient of DGm by the left ideal generated by the so-called hypergeometric operator

n∏
i=1

(t∂t −αi )− t
m∏

j=1

(t∂t −β j ).

We will denote it by H(αi ;β j ).

Proposition 5.2. Let H := H(αi ;β j ) be a hypergeometric D-module of type (n,m), and let η be any
complex number. Then we have the following:

(1) If we denote the Kummer D-module DGm/(t∂t − η) by Kη, then H⊗OGm
Kη ∼=H(αi + η;β j + η). In

particular, an overall integer shift of the parameters gives us an isomorphic D-module.

(2) H is irreducible if and only if for any pair (i, j) of indices, αi −β j is not an integer.
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(3) If H is irreducible, its isomorphism class depends only on the classes modulo Z of the αi and the β j ,
so we can choose such parameters on a fundamental domain of C/Z.

Proof. A simple calculation shows (1). (2) follows from [Katz 1990, Propositions 2.11.9 and 3.2], whereas
(3) is part of [ibid., Proposition 3.2]. �

As we mentioned in the introduction, we can express any one-dimensional hypergeometric D-module
as the inverse image of a GKZ hypergeometric D-module (see [Castaño Domínguez and Sevenheck
2019, Corollary 2.9]). Notice that there is a similar statement at the level of R-modules (see [ibid.,
Lemma 2.12]), yielding a description of the Rint

A1
z×Gm,t

-module Ĥ from Theorem 5.7 below as an inverse
image of a GKZ-hypergeometric R-module (as defined in [ibid., Definition 2.10]).

Proposition 5.3. Let H(αi ;β j ) be a hypergeometric DGm -module of type (n,m) with α1 = 0, let A ∈
M((N − 1)× N ,Z) as above, and let γ = (β1, . . . , βm, α2, . . . , αn)

t. Let ι : Gm → AN be given by
t 7→ (t, 1 . . . , 1). Then

H(αi ;β j )∼= ι
+Mγ

A.

Since the restriction map ι is not smooth we do not know a priori whether taking inverse image by
it preserves irregular mixed Hodge modules. In order to show that H(αi ;β j ) can be upgraded to an
element of IrrMHM(Gm) we use Proposition 3.8, where the reduction procedure is built in by the use of
the Fourier kernel ψ = w1 · t +w2+ · · ·+wN .

Let A ∈M((N −1)× N ,Z) as above and γ = (γ1, . . . , γN−1)
t
∈AA. The DAN -module M̌γ

A underlies
a mixed Hodge module on AN , so that the Rees module RF H

(M̌γ

A) then gives rise to an algebraic,
integrable mixed twistor D-module on AN that we denote by TM̌γ

A. Then we have the following concrete
description of its Fourier–Laplace transform FLψMTM(

TM̌γ

A)= q∗(p∗(TM̌
γ

A)⊗ T ψ/z).

Proposition 5.4. Let A and γ be as before. Then the Rint
A1×Gm

-module For2(FLψMTM(
TM̌γ

A)) can be
expressed as Rint

A1×Gm
/(P, H), where

P = z2∂z + (n−m)t z∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i )− t
m∏

j=1

z(t∂t − γ j ),

with ε =
∑m

j=1 γ j −
∑N−1

i=m+1 γi + N − 1.

Proof. As said after Theorem 4.4, for any γ inside the domain AA of admissible parameters, the Hodge
filtration of M̌γ

A is the order filtration shifted by N − (N − 1)= 1. Therefore, for such values of γ we
can give an explicit expression of the Rees module of the filtered module (M̌γ

A, F H
•
). Namely, we have

the isomorphism of Rint
A1×AN -modules

RF H
(M̌γ

A)
∼= zŇ γ

A :=Rint
A1×AN /(Ě z

i , Ě z
j , �̌, z2∂z − z),
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where

Ě z
i = z∂w1w1− z∂wiwi + γm+i−1z, for i = 2, . . . , n,

Ě z
j = z∂w1w1+ z∂wn+ jwn+ j + γ j z, for j = 1, . . . ,m,

�̌=
n∏

i=1

wi −

m∏
j=1

wn+ j .

First we compute FLψ(zŇ γ

A ), which involves performing three operations with zŇ γ

A : inverse image
by p : Gm × AN

→ AN , tensor product with the Rint
A1×Gm×AN -module Aψ/zaff and direct image by q :

Gm ×AN
→ Gm . The first one is pretty easy. Namely

p+zŇ γ

A
∼=Rint

A1×Gm×AN /(Ě z
i , Ě z

j , �̌, z2∂z − z, z∂t).

Let us tensor now p+zŇ γ

A with Aψ/zaff . This Rint-module can be presented as Rint
A1×Gm×AN · eψ/z =

Rint
A1×Gm×AN /Iψ , where Iψ is the left ideal generated by

z2∂z +w1t +w2+ · · ·+wN , z∂t −w1, z∂w1 − t, z∂wi − 1, i = 2, . . . , N .

For n ∈ p+zŇ γ

A , we will call nψ the tensor n⊗ eψ/z . Then we can obtain the formulas

(z∂w1w1n⊗ eψ/z)= z∂w1(w1n⊗ eψ/z)− t (n⊗w1eψ/z)= (z∂w1w1− t z∂t) · nψ ,

(z∂wkwkn⊗ eψ/z)= z∂wk (wkn⊗ eψ/z)− (n⊗wkeψ/z)= (z∂wkwk −wk) · nψ , for k = 2, . . . , N ,

(z2∂zn⊗ eψ/z)= z2∂z · nψ − (n⊗ (−ψ)eψ/z)= (z2∂z +w1t +w2+ · · ·+wN ) · nψ ,

(z∂t n⊗ eψ/z)= z∂t · nψ − (n⊗w1eψ/z)= (z∂t −w1) · nψ .

Hence p+zŇ γ

A ⊗Aψ/zaff is the cyclic Rint
A1×Gm×AN -module Rint

A1×Gm×AN /J ψ , with J ψ being the left
ideal generated by

n∏
i=1

wi −

m∏
j=1

wn+ j , z2∂z − z+w1t +w2+ · · ·+wN , z∂t −w1,

z∂w1w1− t z∂t − z∂wiwi +wi + γm+i−1z, for i = 2, . . . , n,

z∂w1w1− t z∂t + z∂wn+ jwn+ j −wn+ j + γ j z, for j = 1, . . . ,m.

We now consider the zeroth cohomology H0q+(p+zŇ γ

A⊗Aψ/zaff ), which is in turn the N -th cohomology
of the de Rham complex q∗DRA1×Gm×AN /A1×Gm (p

+zŇ γ

A ⊗Aψ/zaff ). This is given by the cyclic Rint
A1×Gm

-
module Rint

A1×Gm
/(P ′, H ′), where the operators P ′ and H ′ are given by

P ′ := z2∂z + (n−m)t z∂t + ε
′z, H ′ := zt∂t

n−1∏
i=1

(zt∂t − γm+i z)− (−1)m t
m∏

j=1

(zt∂t − γ j z)
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and ε′ :=
∑m

j=1 γ j−
∑N−1

i=m+1 γi−1. Replacing t by (−1)m t we obtain that FLψ(zŇ γ

A )
∼=Rint

A1×Gm
/(P ′, H),

with

H := zt∂t

n−1∏
i=1

(zt∂t − γm+i z)− t
m∏

j=1

(zt∂t − γ j z).

Now it follows from Proposition 3.8 that

For2(FLψMTM(
TM̌γ

A))
∼= z−N FLψ(zŇ γ

A )
∼=Rint

A1×Gm
/(P, H)

with

P = z2∂z + (n−m)t z∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i )− t
m∏

j=1

z(t∂t − γ j ),

and ε =
∑m

j=1 γ j −
∑N−1

i=m+1 γi + N − 1. �

Remark 5.5. As a matter of fact, we do not have to restrict ourselves to the region AA to find our
admissible parameters. If we have γ ∈ AA and add to it an integer vector k ∈ ZN−1 with no negative
entries, then γ + k /∈ sRes(A) by definition (see the proof of [Reichelt and Sevenheck 2015, Lemma 4.5]).
Therefore, since Oγ

Gd
m

∼=Oγ+k
Gd

m
for any integer vector k, we have M̌γ

A
∼= M̌γ+k

A by Proposition 4.3 and the
statement of the proposition holds true after changing AA by AA+NN−1.

We will also make use of the following result, which calculates the admissible domain AA for the
matrix A in our particular context.

Lemma 5.6. Let A ∈M((N − 1)× N ,Z) be the matrix defined at the beginning of the section. Consider
a point p = (p1, . . . , pm, q1, . . . , qn−1) ∈ [0, 1)N−1. Let us define

p− :=min(({p1, . . . , pm} \ {0})∪ {1}) and p+ :=max{p1, . . . , pm},

that is, the minimum of the pi that do not vanish (taking p− = 1 if all of them are zero) and the maximum
of them all.

Then, p belongs to (AA+NN−1)⊂ RN−1 if and only if , for all i = 1, . . . , n− 1

• qi ∈ [0, p−) if some pi vanishes, or

• qi ∈ [0, p−)∪ [p+, 1), otherwise.

Proof. We will first find the expression for the admissible region AA. For this purpose, we must find a
set of hyperplanes containing the facets of the cone C := R≥0 A ⊂ RN−1. Denote by {u1, . . . , uN−1} the
canonical basis of RN−1 and write x1, . . . , xN−1 for the corresponding coordinates.

Since any face of a cone is generated by a subset of its generators, and for our given matrix A, any
(N − 1)× (N − 1)-minor is nonzero (so that any subset of N − 1 columns generates a full-dimensional
cone), we see that any facet can contain at most N − 2 columns. On the other hand, such facet must
be (N−2)-dimensional, so it cannot be generated by fewer columns. Therefore, we can conclude that it
contains exactly N − 2 columns.
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Any linear functional h defining a facet of C must satisfy that h(C)≥ 0. Denote by Hk,l the hyperplane
not containing ak and a`. There are five classes of these hyperplanes: H1,i , H1,n+ j , Hi1,i2 , Hi,n+ j ,
Hn+ j1,n+ j2 with i, i1, i2 ∈ {2, . . . , n} and j, j1, j2 ∈ {1, . . . ,m}. The linear functionals defining them are,
respectively,

h1,i := xm+i−1,

h1,n+ j := x j ,

hi1,i2 := xm+i1−1− xm+i2−1,

hi,n+ j := x j − xm+i−1,

hn+ j1,n+ j2 := x j1 − x j2 .

All of the linear forms h1,i , hi1,i2 and hn+ j1,n+ j2 (for the corresponding values of i, i1, i2, j1, j2) take both
negative and positive values on some columns of A, so the associated hyperplanes do not contain any
facet.

We conclude that each facet of C is contained in one of the following hyperplanes:

H1,n+ j : x j = 0 for j = 1, . . . ,m,

Hi,n+ j : x j − xm+i−1 = 0 for i = 2, . . . , n, j = 1, . . . ,m.
(4)

These hyperplanes are different from each other and the respective functionals satisfy h1,n+ j (C)≥ 0 and
hi,n+ j (C)≥ 0. Hence each of them contains a different facet of the cone C .

The primitive, inward-pointing normal vectors of the hyperplanes H1,n+ j and Hi,n+ j are n1,n+ j := u j

and ni,n+ j := u j − um+i−1, respectively. Denote by c the sum of all columns of A. We have c =
2(u1+ · · ·+ um) and ek,l := 〈nk,l, c〉 = 2, where k and l take the admissible values corresponding to the
hyperplanes we consider in (4) (i.e., we have either (k, l)= (1, n+ j) or (k, l)= (i, n+ j) for i = 2, . . . , n
and j = 1, . . . ,m). Define

Ak,l := Hk,l −
[
0, 1

ek,l

)
· c

= Hk,l − [0, 1) · (u1+ · · ·+ um)

=

{
H1,n+ j − [0, 1) · u j for j = 1, . . . ,m,
Hi,n+ j − [0, 1) · u j for i = 2, . . . , n, j = 1, . . . ,m,

since for (k, l)= (1, n+ j) and (k, l)= (i, n+ j), the vectors u1, . . . , u j−1, u j+1, . . . , um are contained
in H1,n+ j and Hi,n+ j , respectively. Then we have

A1,n+ j = H1,n+ j − [0, 1) · u j = {(x1, . . . , xN−1) ∈ RN−1
| −1< x j ≤ 0}

for all j = 1, . . . ,m and

Ai,n+ j = Hi,n+ j − [0, 1) · u j = {(x1, . . . , xN−1) ∈ RN−1
| −1< x j − xm+i−1 ≤ 0}
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for all i = 2, . . . , n, j = 1, . . . ,m. According to the construction given before Theorem 4.4, we can
conclude that

AA =
⋂

F facet

{
R · F −

[
0, 1

eF

)
· c
}
=

⋂
k,l from (4)

Ak,l,

so we can describe the admissible region AA as

AA :

{
−1< x j ≤ 0 for j = 1, . . . ,m,
−1< x j − xm+i−1 ≤ 0 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Now let us pick a point p ∈ [0, 1)N−1
∩ (AA +NN−1), and take k = (k1, . . . , kN−1) ∈ NN−1 such that

p ∈ [0, 1)N−1
∩ (AA+ k). The shifted domain is given by

AA+ k :
{
−1+ k j < x j ≤ k j for j = 1, . . . ,m,
−1+ k j − km+i−1 < x j − xm+i−1 ≤ k j − km+i−1 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Assume first there is a vanishing coordinate p j0 . Then we must have k j0 = 0. For such an index and any
i = 1, . . . , n− 1, we can consider the n− 1 inequalities

−1− km+i <−qi ≤−km+i ,

from where we deduce that every qi belongs to [km+i , km+i + 1)∩ [0, 1), for i = 1, . . . , n− 1. In order
for those intersections to be nonempty, we must have km+i +1> 0 and km+i < 1, so necessarily km+i = 0
for all i (and hence qi must lie within [0, 1), which is no new information).

Now, for any nonvanishing p j , it is clear that k j = 1. Then, if we look at the remaining inequalities,
we see that

0< p j − qi ≤ 1,

for every i = 1, . . . , n − 1, and any j ∈ {1, . . . ,m} such that p j 6= 0. Therefore, every qi belongs to
[0, 1)∩

⋂
p j 6=0[p j − 1, p j ) = [0, p−). Obviously, if p j = 0 for all j = 1, . . . ,m, we obtain that the qi

belong all to [0, 1)= [0, p−).
Assume now that no p j vanishes. Then k1 = . . .= km = 1. It follows that we can express the shifted

region AA+ k as

AA+ k :
{

0< x j ≤ 1 for j = 1, . . . ,m,
−km+i−1 < x j − xm+i−1 ≤ 1− km+i−1 for i = 2, . . . , n, j = 1, . . . ,m

⊂ RN−1.

Then, for any j = 1, . . . ,m, we have qi ∈ [0, 1)∩ [p j + km+i − 1, p j + km+i ), for i = 1, . . . , n− 1. As
before, this implies that p j + km+i > 0 and p j + km+i − 1 < 1, for each j = 1, . . . ,m. Since each p j

lives in (0, 1), the km+i−1 can only be either 0 or 1.
Pick an i ∈ {1, . . . , n− 1} such that km+i = 0. Then, as before,

qi ∈

m⋂
j=1

[p j − 1, p j )∩ [0, 1)= [0, p−).
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If our index i is such that km+i = 1, then

qi ∈

m⋂
j=1

[p j , p j + 1)∩ [0, 1)= [p+, 1),

and one direction of the statement is done.
To show the other implication of the lemma, suppose now that every qi lies within [0, p−)∪ [p+, 1)

for i = 1, . . . , n− 1, and no p j vanishes. We can rewrite this as a disjunction: either qi ∈
⋂m

j=1[0, p j )=

[0, 1) ∩
⋂m

j=1[p j − 1, p j ) or qi ∈
⋂m

j=1[p j , 1) = [0, 1) ∩
⋂m

j=1[p j , p j + 1). If qi ∈ [0, p−), define
km+i := 0. Otherwise, we take km+i := 1. Summing up, it is clear that

p ∈ (AA+ (1, (m). . ., 1, km+1, . . . , kN−1))∩ [0, 1)N−1.

If some p j vanishes, and every qi belongs to [0, p−), we can do the same as above to see that

p ∈ (AA+ (k1, . . . , km, 0, . . . , 0))∩ [0, 1)N−1,

where k j vanishes if so does p j and is equal to 1 if p j 6= 0. �

As a consequence of the above calculation of the set of admissible parameters, let us prove a result
extending [Castaño Domínguez and Sevenheck 2019, Theorem 2.13].

Theorem 5.7. Let α1, . . . , αn and β1, . . . , βm be real numbers, lying on the interval [0, 1) and increas-
ingly ordered. Assume moreover that:

• No difference αi −β j is zero, for any i = 1, . . . , n and j = 1, . . . ,m.

• After applying the bijection [0, 1)→ S1 given by x 7→ e2π i x , all the images of the αi are at one arc
of the unit circle, while those of the β j find themselves at the complementary arc. (In other words
and going back to the interval [0, 1), either no αi belongs to any interval (β j , β j+1) or vice versa.)

Consider the operators P and H given by

P = z2∂z + (n−m)t z∂t + εz and H =
n∏

i=1

z(t∂t −αi )− t
m∏

j=1

z(t∂t −β j ),

with ε =
∑m

j=1 β j −
∑n

i=1 αi + N − 1. Let Ĥ(αi ;β j ) be the Rint
A1

z×Gm
-module

Ĥ(αi ;β j ) :=OA1
z×Gm 〈z

2∂z, zt∂t 〉/(P, H).

Then, Ĥ(αi ;β j ) underlies a unique object of IrrMHM(Gm) with associated DGm -module H(αi ;β j ). It
can be uniquely extended to an irreducible Rint

A1
z×P1-module underlying an object of IrrMHM(P1).

Proof. Let us assume first that α1 = 0. Then, by the first assumption on the αi and the β j , we have β j 6= 0
for every j . By the second assumption we can deduce that no αi is between any two β j , but all of the β j

must be between two certain αi . Thanks to Lemma 5.6, this means that γ := (β1, . . . , βm, α2, . . . , αn)
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belongs to AA +NN−1, where A is the matrix of the beginning of the section. As a consequence, by
Proposition 5.4 and Remark 5.5 we have that

For2(FLψMTM(
TM̌γ

A))
∼= Ĥ(αi ;β j )

(recall that TM̌γ

A is the algebraic integrable mixed twistor D-module with underlying Rint
AN -module

RF HM̌γ

A, i.e., such that For2(M̌
γ

A) = RF HM̌γ

A). We have moreover that TM̌γ

A ∈ IrrMHM(AN ) and
thanks to [Sabbah 2018, Corollary 0.5], we know that the functors entering in the definition of FLψMTM

preserve the category of irregular mixed Hodge modules, so we conclude that Ĥ(αi ;β j ) underlies an
element of IrrMHM(Gm).

Assume now that α1 > 0. For any real number η, denote by K̂η the Kummer RA1×Gm -module
Rint

A1×Gm
/(z2∂z, t z∂t − zη).

The tensor product of Rint
A1×Gm

-modules Ĥ(αi ;β j )⊗O
A1×Gm

K̂−α1 gives rise to the corresponding tensor
product of twistor D-modules on Gm . This product can be presented as Ĥ(α′i ;β

′

j ), where α′i = αi −α1

for every i and β ′j = β j −α1 for every j . The assumptions on the parameters imply that α′1 = 0 and the
vector (β ′1, . . . , β

′
m, α

′

2, . . . , α
′
n) lives in AA+NN−1. Then, arguing as before, such tensor product is an

irregular mixed Hodge module of exponential-Hodge origin. Since K̂α1 is the faithful image of a mixed
Hodge module on Gm , the tensor product with it preserves the condition of being in IrrMHM(Gm) due to
[Sabbah 2018, Corollary 0.5], and so is the case of our original Rint

A1
z×Gm

-module

Ĥ(αi ;β j )∼= Ĥ(α′i ;β
′

j )⊗O
A1×Gm

K̂α1 .

This ends the statement on the existence. Let us prove now the claims on the unicity, as in [Castaño
Domínguez and Sevenheck 2019, Theorem 2.13], noting that the condition on the differences αi −β j is
equivalent to H being irreducible, and thus rigid (see [ibid., Proposition 2.5], noting that all the parameters
belong to [0, 1)).

Consider now any twistor D-module Ĥ′ on Gm,t whose underlying DGm,t -module is H. Since the
functor 4DR is faithful by [Mochizuki 2015a, Remark 7.2.9], we have an injection of Hom groups

HomMTM(Gm,t )(Ĥ, Ĥ
′) ↪→ HomDGm,t

(H,H).

But H is irreducible, so its only endomorphism is the identity and then the twistor D-module underlying
H is unique.

On the other hand, let j : Gm,t ↪→ P1 be the canonical inclusion and consider the DP1-module
Hpr := j†+H. It is an irreducible holonomic DP1-module, because so is H by the assumption on the αi

and the β j . Then it gives rise to a unique pure integrable twistor D-module Ĥpr on P1 by [Mochizuki
2011, Theorem 1.4.4; Sabbah 2018, Remark 1.39]. In addition, its underlying DP1-module Hpr is rigid,
as H was. As a consequence, we can invoke [ibid., Theorem 0.7] and claim that such twistor D-module
on P1 is in fact an object of IrrMHM(P1). Take now Ĥ′ := j+Ĥpr , which is an irregular mixed Hodge
module whose underlying DGm,t -module is H, by [Mochizuki 2015a, Proposition 14.1.24]. Then we must
have, as was just shown, Ĥ′ ∼= Ĥ, so that the extension Ĥpr of Ĥ is unique, and we are done. �
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Remark 5.8. Let us consider the last theorem for the case m=n, that is, the case of regular hypergeometric
systems. Consider Ĥ as a RA1

z×Gm -module only, as such it is isomorphic to RA1
z×Gm/(H), where now

H =
m∏

i=1

z(t∂t −αi )− t
m∏

j=1

z(t∂t −β j ).

RA1
z×Gm is graded by degree in z (where z has degree 1), and since H is homogenous (which is not

the case if n 6= m), we see that Ĥ is a graded RA1
z×Gm -module. It is obviously strict, i.e., it has no

z-torsion, and then by [Sabbah and Schnell 2018, A.7(5)], we see that Ĥ is the Rees module of a filtered
DGm -module, namely, the (regular) hypergeometric module H(αi ;β j ) together with the filtration by order
of differential operators. Notice also that if n = m, we have P = z2∂z + εz, which implies that Ĥ has an
action by z∂z and that if we write Ĥ=⊕kĤk (grading with respect to z), then for any m ∈ Ĥk , we have
(z∂z)(m)= (k− ε)m.

Now suppose that we have n = m and that additionally the hypotheses of the last theorem are
satisfied, then since Ĥ(αi ;β j ) is the unique object in IrrMHM(Gm) (lying actually in the essential image
of MHM(Gm)) with underlying DGm -module H(αi ;β j ), it is the Rees module of the filtered module
(H(αi ;β j ), F H

•
), where F H

•
denotes the Hodge filtration of the complex variation of Hodge structures

on H(αi ;β j ). Hence F H
•
H(αi ;β j )= Ford

•
H(αi ;β j ) in this case. Moreover, if we put

Rk :=

k∏
i=1

(t∂t −αi )

for k = 0, . . . , n − 1 (where R0 := 1), then (Rk)k=0,...,n−1 is an OGm -basis of H(αi , β j ) and yields a
splitting of the Hodge filtration F H

•
. In particular, we obtain that the Hodge numbers h p(H(αi ;β j ))=

dim(F H
k /F H

k−1) are all equal to one. This is consistent with [Fedorov 2018, Theorem 1] (up to an
overall shift, as noticed in that theorem) in the version of [Castaño Domínguez and Sevenheck 2019,
Proposition 2.6], since under the assumption of Theorem 5.7, the function #{ j : β j < αk} is constant.

We will finish this section with a calculation of an irregular Hodge filtration, similar to the last section
of [Castaño Domínguez and Sevenheck 2019]. In that reference, the authors computed such a filtration
in the case where the hypergeometric D-module had a purely irregular singularity at infinity, that is,
it was of type (n, 0). It is immediate to see that for modules of type (n, 1), the second assumption of
Theorem 5.7 holds true, so that we obtain an explicit description of the Rint

A1
z×Gm

-module underlying the
irregular Hodge module with associated DGm -module H(α1, . . . , αn;β). In the sequel, we are going to
compute the irregular Hodge filtration of such modules of type (n, 1).

Let us recall the conventions and notations used in [Castaño Domínguez and Sevenheck 2019, §4]
(compare [Sabbah 2018, Notation 2.1]). We will deal with the classical hypergeometric D-module
H = H(αi ;β), where the αi and β are n + 1 real numbers belonging to the interval [0, 1). We will
denote by Ĥ both its associated algebraic, integrable twistor D-module on Gm and its underlying Rint

A1
z×Gm

-
module (as in the statement of Theorem 5.7). From now on, we will write X , θX and τX meaning
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the products A1
z ×Gm,t , X ×Gm,θ , and X × A1

τ , respectively, where θ = 1/τ . Finally, we will write
τX0 = X ×{τ = 0} ⊂ τX .

Theorem 5.9. Let real numbers α1, . . . , αn, β ∈ [0, 1) be given. Suppose that α1 ≤ · · · ≤ αn and that
moreover αi − β /∈ Z for all i = 1, . . . , n. For each k = 1, . . . , n, set ρ(k) = −(n − 1)αk + k. Then
the jumping numbers of the irregular Hodge filtration of H =H(αi ;β) are, up to an overall real shift,
the numbers ρ(k). The irregular Hodge numbers are the multiplicities of those jumping numbers, or
equivalently, the nonzero values of |ρ−1(x)|, for x real.

Moreover, for r = 0, . . . , n− 1, let να(r)= d−α+ r − ε− (n− 1)αr+1e (recall from Theorem 5.7 that
ε = β −

∑n
i=1 αi + n). Let us consider the operators

Qr = (−(n− 1))r
r∏

i=1

(t∂t −αi )

for r = 0, . . . , n− 2 (where the empty product equals one) and

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

(t∂t −αi )+
(−(n− 1))n−1t (β −α1)

1+α1−αn
Q0.

Then, the irregular Hodge filtration F irr
•
H is given by

F irr
α+ jH=

⊕
k: j≥να(k)

OX Qk .

Remark 5.10. In general, the procedure given below can be of use to find an explicit expression for the
irregular Hodge filtration, not only the numbers, of any hypergeometric of type (n,m), provided both
assumptions from Theorem 5.7 are fulfilled. However, the calculations become soon too cumbersome to
be included here.

Proof. We will mimic the arguments of [Castaño Domínguez and Sevenheck 2019, §4], providing almost
no proof of the claims which are similar to some therein.

We must first consider the rescaling of Ĥ: this is the inverse image θĤ := µ∗H (as OθX -module),
endowed with a natural action of Rint

θX as depicted in [Sabbah 2018, (2.4)] (note that θ = τ−1), where µ is
the morphism given in [ibid., Notation 2.1] by

µ : θX → X

(z, t, θ) 7→ (zθ, t).

In this sense, we can apply the same argument of [Castaño Domínguez and Sevenheck 2019, Proposi-
tion 4.1] to get that the Rint

θX -module θĤ associated with Ĥ can be presented as Rint
θX /(P,

θR, θH), where
P = z2∂z + (n−m)t z∂t + εz as in Theorem 5.7, θR = z2∂z − zθ∂θ and

θH =
n∏

i=1

zθ(t∂t −αi )− t zθ(t∂t −β).
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Now we have to invert θ to obtain an Rint
τX (∗

τX0)-module τĤ, to work in the setting given by [Sabbah
2018, §2.3]. In this sense, we will denote by τĤ the Rint

τX (∗
τX0)-module (idX ×( j ◦ inv))∗θĤ, where

inv :Gm,θ→Gm,τ is the inversion operator θ 7→ τ−1 and j :Gm,τ ↪→A1
τ is the canonical inclusion. Then

it is easy to see that τĤ=Rint
τX (∗

τX0)/(P, τR, τH), with P as always, τR = z2∂z + zτ∂τ and

τH =
n∏

i=1

z
τ
(t∂t −αi )− t

z
τ
(t∂t −β).

The next step is forming the basis of τĤ as a OτX (∗
τX0)-module. Let it be given by

Qk = (−(n− 1))k
k∏

i=1

z
τ
(t∂t −αi )

for k = 0, . . . , n− 2 and

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z
τ
(t∂t −αi )+

(−(n− 1))n−1t (β −α1)

1+α1−αn
Q0.

It is indeed a basis: we can use the expressions of τR and P to replace the classes of zτ∂τ and z2∂z ,
respectively, in terms of zt∂t . Now τĤ is generated as a OτX (∗

τX0)-module by the powers of zt∂t , and we
can get rid of those of exponent greater than n− 1 using τH . The remaining n powers can be expressed
as a linear combination of the Qi , forming a triangular matrix (almost diagonal in fact), so the latter
conform a basis as well.

One could wonder about the odd expression of the Qi . In the case with no betas of [Castaño Domínguez
and Sevenheck 2019], the basis considered there was formed just by the successive products

∏k
i=1

z
τ
(t∂t−

αi ), up to some constant. In this case, such a basis does not provide a connection matrix solving the
Birkhoff problem with a diagonal matrix as a coefficient of the pole at infinity in z, which would give
us a way to read the spectrum from that matrix (see [de Gregorio et al. 2009, Proposition 4.8]). As
a consequence, we have to adapt such initial basis, and that is how we get the Qi . Let us write the
connection matrix explicitly.

Let c = (β −α1)/(1+α1+αn), in such a way that

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z
τ
(t∂t −αi )+ (−(n− 1))n−1ct Q0.

A similar (but longer) calculation to the proof of [Castaño Domínguez and Sevenheck 2019, Lemma 4.3]
shows that the integrable connection arising from the Rint

τX (∗
τX0)-module structure associated with τĤ

has the following matrix form:

∇Q = Q
(
(τ A0+ z A∞)

dz
z2 + (−τ A0+ z A′

∞
)

dt
(n− 1)zt

− (τ A0+ z A∞)
dτ
zτ

)
.
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There, if n > 2, A0, A′
∞

and A∞ are the matrices

A0 =


0 · · · −(−(n− 1))n−1ct 0
1
. . . (−(n− 1))n−1(c+ 1)t
. . . 0

...

1 0

 ,
A′
∞
= diag((n− 1)α1, . . . , (n− 1)αn), and

A∞ = diag(0, 1, . . . , n− 1)− ε In − A′
∞
.

(5)

If n = 2, we have

A0 =

(
ct c(c+ 1)t2

1 (c+ 1)t

)
, A′

∞
=

(
α1 0
0 α2

)
and A∞ = diag(0, 1)− ε I2− A′

∞
. (6)

Finally, the irregular Hodge filtration is obtained from a suitable V -filtration along the divisor τ = 0
defined on τĤ, which is called τV -filtration (the new symbol τV is to make clear the variety over which we
are working; note the same convention from Remarks 2.20 on in [Sabbah 2018]). We are actually defining
a filtration on τĤ, and then prove that it equals the τV -filtration, following [Mochizuki 2015a, §2.1.2].

Let us consider

τUα
τĤ :=

{ n−1∑
k=0

fkτ
νk Qk : fk ∈OτX ,max(k− (n− 1)αk+1− ε− νk)≤ α

}
,

τU<α
τĤ :=

{ n−1∑
k=0

fkτ
νk Qk : fk ∈OτX ,max(k− (n− 1)αk+1− ε− νk) < α

}
,

(7)

for any α ∈ R.
The τUα

τĤ form an increasing filtration, indexed by the real numbers but with a discrete set of jumping
numbers, such that τ τUα

τĤ = τUα−1
τĤ for any α (those are conditions i and ii’ in [Mochizuki 2015a,

§2.1.2]). As usual, the graded piece associated with α is Gr
τU
α

τĤ= τUα
τĤ/τU<α

τĤ.
In (7), all the exponents νk of the powers of τ accompanying the fk Qk satisfy that νk ≥ −α+ k −

(n− 1)αk+1− ε. Then we can define the steps of the filtration in the same alternative way as in [Castaño
Domínguez and Sevenheck 2019, Remark 4.5] as the free OτX -modules of finite rank

τUα
τĤ=

n−1⊕
k=0

OτX · τ
να(k)Qk, (8)

where να(k)=d−α+k−ε−(n−1)αk+1e. With that expression, it is clear that the graded pieces Gr
τU
α

τĤ are

Gr
τU
α

τĤ=
n−1⊕
k=0

OX · τ
να(k)Qk,

which are strict RX -modules (condition iv in [Mochizuki 2015a, §2.1.2]).
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The next step in the proof is proving that τĤ is strictly R-specializable along τX0 and its τV -filtration is
actually given by the τUα

τĤ. Although the proof is similar to that of [Castaño Domínguez and Sevenheck
2019, Proposition 4.6], we have to adapt it a bit to our case here.

After what we already showed, it remains to show conditions iii’ and v of [Mochizuki 2015a, §2.1.2]
and prove that the τUα

τĤ are coherent V0RX -modules. Let us start by the second condition. Consider
then the mappings p, e given by

(p, e) : R×C→ R×C

(β, ω) 7→ (β + 2<(zω),−βz+ω−ωz2).

We must check that the operator zτ∂τ − e(β, ω) is nilpotent on the graded pieces Gr
τU
α

τĤ only for a finite
amount of (β, ω) ∈K := {β+2<(z0ω)= α}, for any value z0 of z. Moreover, those (β, ω) should belong
in fact to R×{0} (see [Sabbah 2018, §1.3.a]), if we want to obtain the R-specializability.

Take then (β, ω)∈K and f τ νQk ∈
τUα

τĤ, with f ∈OτX . We must have that k−(n−1)αk+1−ε−ν≤α.
Assume that n > 2 and k < n− 2. Thanks to the matrix form (5) we know that

(zτ∂τ − e(β, ω)) f τ νQk = (zτ∂τ + (ν+ (n− 1)αk+1+ ε− k+β)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1.

Recall that the αi are increasingly ordered, lying within the interval [0, 1). Thus f τ ν+1 Qk+1 lives in
τUα

τĤ, for

k+ 1− (n− 1)αk+2− ε− ν− 1≤ ((k+ 1)− (n− 1)αk+2− ε)− (k− (n− 1)αk+1− ε)− 1+α ≤ α.

Now we should look at what happens to the class of f τ ν+1 Qk+1 in the α-graded piece of τĤ.
Note that [ f τ νQk] 6= 0 if and only if ν+ (n− 1)αk+1+ ε− k+α = 0, so

(zτ∂τ − e(β, ω)) f τ νQk = (zτ∂τ + (β −α)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1

= (zτ∂τ − 2<(z0ω)z−ω+ωz2)( f )τ νQk − f τ ν+1 Qk+1.

Now notice that τ divides τ∂τ ( f ), so in fact zτ∂τ ( f )τ νQk ∈
τUα−1

τĤ and then we can further reduce
our expression to

(zτ∂τ − e(β, ω)) f τ νQk = (−ω− 2<(z0ω)z+ωz2) f τ νQk − f τ ν+1 Qk+1.

On the other hand, τ ν+1 Qk+1 does not vanish either in Gr
τU
α

τĤ if and only if αk+2 = αk+1. Indeed, we
know that ν+ (n−1)αk+1+ε−k+α= 0, so doing the same as before, k+1− (n−1)αk+2−ε−ν−1=
α+ (n− 1)(αk+2−αk+1) and the claim follows. Furthermore, in order to (zτ∂τ − e(β, ω)) to vanish, we
should impose that ω = 0, just by looking at the coefficients of the powers of z in the expression for f .

If k = n− 2, we obtain from (5) that

(zτ∂τ − e(β, ω)) f τ νQn−2

= (zτ∂τ + (ν+ (n− 1)αn−1+ ε− (n− 2)+β)z−ω+ωz2)( f )τ νQn−2

− f τ ν+1 Qn−1+ f τ ν+1(−(n− 1))n−1ct Q0.
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Since −(n− 1)α1− ε− ν − 1 ≤ −(n− 1)(α1− αn−1+ 1)+ α < α because αn−1 < α1+ 1, the last
summand above belongs to τU<α

τĤ, and then the argument can follow as with k < n− 2.
Now if k = n− 1, then everything would be the same again as before except we get the additional

summand − f τ ν+1 Qk+1, which becomes − f τ ν+1(−(n− 1))n−1(c+ 1)t Q1, whose class vanishes in the
graded piece under consideration, too. Indeed,

1− (n− 1)α2− ε− ν− 1≤−(n− 1)(α2−αn + 1)+α < α,

for αn < α2+ 1.
In conclusion, (zτ∂τ − e(β, ω))l f τ νQk can only vanish in Gr

τU
α

τĤ if α = β (and then ω = 0), and
does not do so until we get to an index k + l such that αk+l is strictly bigger than αk . Since there is a
finite set of indexes, (zτ∂τ − e(β, ω)) is nilpotent, of nilpotency index n at most.

When n = 2, we notice from (6) that we have two possibilities. If k = 0, everything is the same as
with k = n− 2 for n > 2, and if k = 1,

(zτ∂τ − e(β, ω)) f τ νQ1

= (zτ∂τ + (ν+α2+ ε− 1+β)z−ω+ωz2)( f )τ νQ1+ f τ ν+1(c+ 1)t Q1+ f τ ν+1c(c+ 1)t2 Q0.

Here the argument runs similarly as in the general case.
Condition iii’ can be rephrased as zτ∂τ τUα

τĤ⊆ τUα
τĤ, using that τUα

τĤ= τ τUα+1
τĤ, and that follows

essentially from the same argument used to prove condition v above. Last, since V0RX =OτX 〈z∂t , zτ∂τ 〉,
it is clear from the computations above and the alternative expression (8) for the filtration steps that they
are cyclic V0RX -modules, and then coherent. Summing up and noting that all the calculations performed
were in fact independent of z0, τĤ is strictly R-specializable along τX0 and the τU•τĤ form its τV -filtration.

We can finally show the expression for the irregular Hodge filtration and then the irregular Hodge
numbers like in [Castaño Domínguez and Sevenheck 2019, Theorem 4.7]. Since we know that Ĥ underlies
an object in IrrMHM(Gm,t) by Theorem 5.7, we deduce by [Sabbah 2018, Definition 2.52] that Ĥ is
well-rescalable (see [ibid., Definition 2.19]) and so we can apply [ibid., Definition 2.22]. After formula (8),
we clearly have

i∗τ=z
τVατĤ= τVατĤ/(τ − z)τVατĤ=

⊕
k

OX zνα(k)Qk,

which is free z-graded of finite rank. Denote by π the projection X → Gm,t . Then, the z-adic filtration
on π∗H[z−1

] induces a filtration on i∗τ=z
τVατĤ, given by

Fr i∗τ=z
τVατĤ :=

⊕
s≤r

( ⊕
k:να(k)≤s

OGm,t Qk

)
zs .

Then, GrF (i∗τ=z
τUα

τĤ) is the Rees module associated to a new good filtration F irr
α+•H on H, which is the

irregular Hodge filtration. More concretely, F irr
•
H is given by

F irr
α+ jH=

⊕
k:να(k)≤ j

OGm,t Qk .
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Therefore, its jumping numbers are −ε+ i −1− (n−1)αi for i = 1, . . . , n. Since the irregular Hodge
filtration is defined up to an overall real shift, we can normalize the jumping numbers to i − (n− 1)αi

and the irregular Hodge numbers will be their multiplicities. �
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