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In this paper we prove that for any connected reductive algebraic group G and a large enough prime l,
there are continuous homomorphisms

Gal(Q̄/Q)→ G(Q̄l)

with Zariski-dense image, in particular we produce the first such examples for SLn,Sp2n,Spinn, E sc
6

and E sc
7 . To do this, we start with a mod-l representation of Gal(Q̄/Q) related to the Weyl group of G

and use a variation of Stefan Patrikis’ generalization of a method of Ravi Ramakrishna to deform it to
characteristic zero.

1. Introduction

For a split connected reductive group G and a prime number l, it is natural to study two types of continuous
representations of 0Q = Gal (Q/Q): the mod l representations

ρ : 0Q→ G(Fl)

and the l-adic representations
ρ : 0Q→ G(Ql)

where we use the discrete topology for G(Fl) and the l-adic topology for G(Ql). Mod l representations
of 0Q are closely related to the inverse Galois problem for finite groups of Lie type, which asks for the
existence of surjective homomorphisms ρ : 0Q � G(k) for k a finite extension of Fl . It is still wide open,
even for small groups such as SL2. If we replace 0Q by 0F for some number field F , it is not hard to
show that every finite group is a Galois group over some number field, but if we insist on 0Q then the
problem becomes very difficult. On the other hand, we can ask for its analogs in the l-adic world:

Question 1. Are there continuous homomorphisms ρ : 0Q→ G(Ql) with Zariski-dense image?

We also ask a refined question which takes geometric Galois representations (in the sense of [Fontaine
and Mazur 1995]) into account:

Question 2. Are there continuous geometric Galois representations ρ : 0Q→ G(Ql) with Zariski-dense
image?
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This paper gives a complete answer to Question 1. We shall call a reductive group G an l-adic algebraic
monodromy group, or simply an l-adic monodromy group for 0Q if the homomorphisms in Question 1
exist, and a geometric l-adic monodromy group for 0Q if the homomorphisms in Question 2 exist. We
prove the following theorem which gives an almost complete answer to Question 1:

Theorem 1.1 (Main Theorem). Let G be a connected reductive algebraic group. Then there are continu-
ous homomorphisms

ρl : 0Q→ G(Ql)

with Zariski-dense image for large enough primes l.

The key cases of our main theorem are contained the following theorem:

Theorem 1.2. For a simple algebraic group G, there are infinitely many continuous homomorphisms

ρl : 0Q→ G(Ql)

with Zariski-dense image for l large enough. We impose the condition l ≡ 1(4) for G = Bsc
n ,C sc

n , and
impose l ≡ 1(3) for G = E sc

7 .

Remark 1.3. Patrikis has shown that Ead
7 , E8, F4,G2 and the L-group of an outer form of Ead

6 are
geometric l-adic monodromy groups for 0Q, so we will not discuss these cases in the proof of the above
theorem. The congruence conditions on l for G = Bsc

n ,C sc
n , E sc

7 can be removed using a theorem proved
by Fakhruddin, Khare and Patrikis [2018]. We record it in Theorem 3.21.

It is shown in [Cornut and Ray 2018] that for sufficiently large regular primes p (i.e., a prime p that
does not divide the class number of Q(µp)) and for a simple, adjoint group G, there exist a continuous
representation of 0Q into G(Qp) with image between the pro-p and the standard Iwahori subgroups of G,
which generalizes a theorem of Greenberg [2016] for GLn . In particular, the image of the Galois group is
Zariski-dense. Their construction is nongeometric and is very different from ours. It is unknown whether
or not there are infinitely many regular primes, however.

It is an interesting question whether (for instance) SLn can be a geometric monodromy group for 0Q.
The following example shows that Question 2 is more subtle than Question 1, and we should not expect
an answer as clean as Theorem 1.1.

Example 1.4. Assuming the Fontaine–Mazur and the Langlands conjectures (see [Fontaine and Mazur
1995; Buzzard and Gee 2014]), there is no homomorphism ρ : 0Q→ SL2(Ql) that is unramified almost
everywhere, potentially semistable at l, and has Zariski-dense image.

Proof. In fact, by the Fontaine–Mazur and the Langlands conjectures, if such ρ exists, then ρ = ρπ for
some cuspidal automorphic representation π on GL2(AQ). But ρ is even, i.e., det ρ(c) = 1, π∞ (the
archimedean component of π) is a principal series representation, and π is associated to a Maass form.
Therefore, by the Fontaine–Mazur conjecture, ρπ has finite image, a contradiction. �
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In contrast, Theorem 1.2 shows in particular that SL2 is an l-adic monodromy group for 0Q. On the
other hand, SL2 can be a geometric l-adic monodromy group for 0F for some finite extension F/Q.

Example 1.5. Let f be a non-CM new eigenform of weight 3, level N , with a nontrivial nebentypus
character ε. Such f exist for suitable N , see [LMFDB 2013]. We write E for the field of coefficients of f .
Then for all l and λ | l, there is a continuous representation r f,λ : 0Q→ GL2(Eλ) which is unramified
outside {v : v | Nl} and Tr(r f,λ(Frp)) = ap for p not dividing Nl, with ap the p-th Hecke eigenvalue
of f . We have det(r f,λ)= κ

2ε where κ is the l-adic cyclotomic character. By a theorem of Ribet [1985,
Theorem 2.1], for almost all l, r f,λ(0Q) contains SL2(k) for a subfield k of kλ (the residue field of Eλ).
It follows that r f,λ has Zariski dense image. If we let F be a finite extension of Q that trivializes ε, then
the image of r ′ := κ−1

· r f,λ|0F lands in SL2(Eλ) and is Zariski-dense.

The classical groups GSpn , GSOn are known as geometric l-adic monodromy groups. Recent work
of Arno Kret and Sug Woo Shin [2016] obtains GSpin2n+1 as a geometric l-adic monodromy group
and Nick Katz [2018] constructs geometric Galois representations with monodromy group GLn . On the
other hand, most of the exceptional algebraic groups are known as geometric l-adic monodromy groups,
established in the work of Dettweiler and Reiter [2010], Zhiwei Yun [2014] and Stefan Patrikis [2016].
Patrikis [2016] constructs geometric Galois representations for 0Q with full algebraic monodromy groups
for essentially all exceptional groups of adjoint type. Along the way, Patrikis has obtained an extension
to general reductive groups of Ravi Ramakrishna’s techniques for lifting odd two-dimensional Galois
representations to geometric l-adic representations in [Ramakrishna 2002].

For the rest of this section, we sketch the strategy for proving Theorem 1.2, which makes use of
Patrikis’ generalization of Ramakrishna’s techniques but is very different from his arguments in many
ways. For the rest of this section, we assume that G is a simple algebraic group defined over Zl with a
split maximal torus T . Let 8=8(G, T ) be the associated root system. Let O be the ring of integers of
an extension of Ql whose reduction modulo its maximal ideal is isomorphic to k, a finite extension of Fl .
We start with a well-chosen mod l representation and then use a variant of Ramakrishna’s method to
deform it to characteristic zero with big image. Achieving this is a balancing act between two difficulties:
the inverse Galois problem for G(k) is difficult, so we want the residual image to be relatively “small”;
on the other hand, Ramakrishna’s method works when the residual image is “big”.

Let us recall a construction used in [Patrikis 2016]. Patrikis uses the principal GL2 homomorphism to
construct the residual representation

ρ : 0Q
r
−→GL2(k)

ϕ
−→G(k)

for r a surjective homomorphism constructed from modular forms and ϕ a principal GL2 homomorphism
(for its definition, see [Serre 1996; Patrikis 2016, Section 7.1]). But the principal GL2 is defined
only when ρ∨ (the half-sum of coroots) is in the cocharacter lattice X∗(T ), which is not the case for
G=SL2n,Sp2n, E sc

7 , etc. On the other hand, the principal SL2 is always defined but it is not known whether
SL2(k) is a Galois group over Q and the surjectivity of r is crucial in applying Ramakrishna’s method.
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For this reason, we use a different construction. To simplify notation, we use G, T to denote G(k), T (k),
respectively. We consider the following exact sequence of finite groups, which we shall refer to as the
N-T sequence:

1→ T → NG(T ) π
−→W→ 1

where W = NG(T )/T is the Weyl group of G. We want to take N = NG(T ) as the image of the residual
representation ρ. It turns out that the adjoint action of N on the Lie algebra g over k decomposes into at
most three irreducible pieces (Corollary 2.2), which is very good for applying Ramakrishna’s techniques.
It has been known for a long time that W is a Galois group over Q, but what we need is to realize N as a
Galois group over Q. A natural approach would be solving the embedding problem posed by the N-T
sequence, i.e., to suppose there is a Galois extension K/Q realizing W , and then to find a finite Galois
extension K ′/Q containing K such that the natural surjective homomorphism Gal (K ′/Q)� Gal (K/Q)
realizes π : N �W .

This embedding problem is solvable when the sequence splits, by an elementary case of a famous
theorem of Igor Shafarevich, see [Serre 1992, Claim 2.2.5]. In [Adams and He 2017], the splitting of the
N-T sequence is determined completely; for instance, it does not split for G = SLn,Sp2n,Spinn, E7. We
find our way out by replacing N with a suitable subgroup N ′ for which the decomposition of the adjoint
representation remains the same, then realizing N ′ as a Galois group over Q with certain properties, see
Sections 2A3–2A6. Finally, we define our residual representation ρ to be the composite

0Q � N ′→ G = G(k)

where the first arrow comes from the realization of N ′ as a Galois group over Q and the second arrow
is the inclusion map. We write ρ(g) for the Lie algebra g/k equipped with a 0Q-action induced by the
homomorphism

0Q
ρ
−→G Ad

−→GL(g).

Now we explain how to deform ρ to characteristic zero. This is the hardest part. For a residual
representation

ρ : 0Q→ G(k)

unramified outside a finite set of places S containing the archimedean place and a global deformation
condition for ρ (which consists of a local deformation condition for each v ∈ S), a typical question in
Galois deformation theory is to find continuous l-adic lifts

ρ : 0Q→ G(O)

of ρ such that for all v, ρ|0Qv
(we fix an embedding Q→Qv) satisfies the prescribed local deformation

condition at v. If this can be done, then we can make the image of ρ Zariski-dense in G(Ql) by specifying
a certain type of local deformation condition at a suitable unramified prime.
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Ravi Ramakrishna [2002] has an ingenious method for obtaining the desired lifts, which has been
generalized and axiomatized in [Taylor 2003; Clozel et al. 2008; Patrikis 2016] and others. By the
Poitou–Tate exact sequence, if the dual Selmer group

H 1
L⊥(0Q,S, ρ(g)(1))

associated to the global deformation condition for ρ vanishes, then such lifts exist. Here L and L⊥ are the
Selmer system and dual Selmer system of tangent spaces and annihilators of the tangent spaces under the
Tate pairing of the given global deformation condition, respectively. Ramakrishna discovered that if one
imposes additional local deformation conditions of “Ramakrishna type” in place of the unramified ones
at a finite set of well-chosen places of Q disjoint from S, then the new dual Selmer group will vanish.
However, this technique is very sensitive to the image of ρ, which has to be “big” to make things work;
if ρ(g) is irreducible then all is good, but finding such a ρ can be very difficult. In practice, we would
prefer those ρ for which ρ(g) does not decompose too much. Unfortunately, the form of Ramakrishna’s
method in [Patrikis 2016] (see Theorem 3.4 and its proof for an account of this) does not work for our ρ.

Inspired by the use of Ramakrishna’s method in [Clozel et al. 2008], we surmount this by making
two observations. For our ρ, ρ(g) decomposes into ρ(t) (the Lie algebra of T over k equipped with an
irreducible action of ρ(0Q)) and a complement (see Corollary 2.2). Our first observation is that if

H 1
L(0Q,S, ρ(t))

(see Definition 3.7) vanishes, then we can kill the full dual Selmer group using Ramakrishna’s method;
moreover, we cannot find an auxiliary prime w /∈ S at which the Ramakrishna deformation condition (see
Definition 3.1) satisfies

h1
L⊥∪LRam,⊥

w
(0Q,S∪w, ρ(g)(1)) < h1

L⊥(0Q,S, ρ(g)(1))

when H 1
L(0Q,S, ρ(t)) 6= {0}. But it is hard to achieve H 1

L(0Q,S, ρ(t))= {0} in general.
Our second observation is as follows: suppose that 0 6= h1

L(0Q,S, ρ(t)) ≤ h1
L⊥(0Q,S, ρ(t)(1)) (the

inequality is easy to guarantee), and let φ be a nontrivial class in H 1
L⊥(0Q,S, ρ(t)(1)). We can then find

an auxiliary prime w /∈ S with a Ramakrishna deformation LRam
w such that φ|0Qw

/∈ LRam,⊥
w , which implies

h1
L⊥∪LRam,⊥

w
(0Q,S∪w, ρ(t)(1)) < h1

L⊥∪L⊥w
(0Q,S∪w, ρ(t)(1)),

where Lw is the intersection of LRam
w and the unramified condition at w. It turns out that (see the proof of

Proposition 3.13) the right side of the inequality equals h1
L⊥(0Q,S, ρ(t)(1)); then a double invocation of

Wiles’ formula gives

h1
L∪LRam

w
(0Q,S∪w, ρ(t)) < h1

L(0Q,S, ρ(t)).

By induction, we can enlarge L finitely many times to make H 1
L(0Q,S, ρ(t)) vanish, which in turn allows

us (see the proof of Theorem 3.16) to enlarge L even further to make H 1
L⊥(0Q,S, ρ(g)(1)) vanish, as
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remarked in the first observation. Thus we obtain an l-adic lift ρ : 0Q→ G(O) satisfying the prescribed
local deformation conditions.

The above variation of Ramakrishna’s method is devised very specifically for the residual represen-
tation we construct. We do not know how to generalize these ideas to the case of an arbitrary residual
representation.

Remark 1.6. For technical reasons, our method does not work for SL2,SL3,Spin7; see Proposition 2.9
and Remark 2.14. Nevertheless, an easy variant of Ramakrishna’s original method applies to SL2, Patrikis’
extension of Ramakrishna’s method applies to SL3 and Spin7. Patrikis’ method also applies to E sc

6 with
minor modifications, and we use it in this paper. Our method should work for E sc

6 as well, modulo an
instance of the inverse Galois theory, but we do not pursue it here.

Notation. For a field F (typically Q or Qp), we let 0F denote Gal (F/F) for some fixed choice of
algebraic closure of F of F . When F is a number field, for each place v of F we fix once and for all
embeddings F→ Fv , giving rise to inclusions 0Fv → 0F . If S is a finite set of places of F . we let 0F,S

denote Gal (FS/F), where FS is the maximal extension of F in F unramified outside of S. If v is a place
of F outside S, we write Frv for the corresponding arithmetic frobenius element in 0F,S . When F =Q,
we will sometimes write 0v for 0Fv and 0S for 0Q,S . For a representation ρ of 0F , we let F(ρ) denote
the fixed field of Ker(ρ).

Consider a group 0, a ring A, an algebraic group G over Spec(A), and a homomorphism ρ :0→G(A).
We write g for both the Lie algebra of G and the A[G]-module induced by the adjoint action. We let ρ(g)
denote the A[0]-module with underlying A-module g induced by ρ. Similarly, for a A[G]-submodule M
of g, we write ρ(M) for the A[0]-module with underlying A-module M induced by ρ.

We call an algebraic group simple if it is connected, nonabelian and has no proper normal algebraic
subgroups except for finite subgroups. It is sometimes called an almost simple group in the literature.
Consider a simple algebraic group G, we write Gsc and Gad for the simply connected form and adjoint
form of G, respectively.

Let O be the ring of integers of a finite extension of Ql . We let CNLO denote the category of complete
noetherian local O-algebras for which the structure map O→ R induces an isomorphism on residue fields.

All the Galois cohomology groups we consider will be k-vector spaces for k a finite extension of Fl .
We abbreviate dim H n(−) by hn(−).

We write κ for the l-adic cyclotomic character, and κ for its mod l reduction.

2. Constructions of residual representations

In this section, we construct residual representations

ρ : 0Q→ G(Fl)

for G a simple, simply connected algebraic group.
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2A. Constructions based on the Weyl groups. Let k be a finite extension of Fl . We consider the group
of k-points of the normalizer of a split maximal torus of G and hope to realize it as the Galois group of
some extension of Q.

2A1. Some group-theoretic results. We recall a property of the Weyl group of an irreducible root
system 8.

Lemma 2.1. The Weyl group W acts irreducibly on the C-vector space spanned by 8 and transitively on
roots of the same length.

Let G = G(k) and T = T (k), a maximal split torus of G. Let 8=8(G, T ) and N = NG(T ).

Corollary 2.2. For any α, β ∈ 8 of the same length, there exists w ∈ N such that Ad(w)gα = gβ . The
adjoint action Ad(N ) on g decomposes into submodules t and

g8 :=
∑
α∈8

gα

when 8 is simply laced, and is the direct sum of t,

gl :=
∑

α∈8,α is long

gα,

and

gs :=
∑

α∈8,α is short

gα

otherwise.
Moreover, as an N-module, t is irreducible, and g8, gl, gs are irreducible if l is sufficiently large.

Proof. It suffices to show that g8, gl, gs are irreducible N -modules. We will only show that g8 is
irreducible, for the other two cases are similar. Take a nonzero vector X ∈ g8, write X =

∑
1≤i≤k X i

where 0 6= X i ∈ gαi for some distinct roots α1, α2, . . . , αk ∈8. Since l is sufficiently large, we can choose
t ∈ T such that α(t), α ∈8 are all distinct. We have

ad(t j )X =
∑

i

αi (t) j X i

where 0≤ j ≤ k−1. As the X i ’s are linearly independent and the determinant of the coefficient matrix is
nonzero,

X, ad(t)X, ad(t2)X, . . . , ad(tk−1)X

are linearly independent and hence they span the same subspace as X1, . . . , Xk do. In particular, X i ∈ gαi

belongs to the N -submodule of g8 generated by X . Because N acts transitively on the set of root spaces,
it follows that X generates g8. Therefore, g8 is irreducible. �

Remark 2.3. Corollary 2.2 remains valid for a subgroup N ′ of N that maps onto a subgroup W ′ of W
acting transitively on roots of the same length.
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2A2. Some results in the inverse Galois theory. We record some elementary results (with proofs) about
inverse Galois theory, some of which are modified in order to satisfy our purposes. See Serre’s lecture
notes [1992] for details.

Theorem 2.4. For n ≥ 2, there are infinitely many polynomials with Q-coefficients that realize the
symmetric group of n letters Sn (or the alternating group of n letters An) as a Galois group over Q.
Moreover, for Sn (or for An with n ≥ 4), the polynomial can be chosen to have at least a pair of nonreal
roots.

Proof. See [Serre 1992, Sections 4.4 and 4.5]. For the last part, we consider the polynomial f (X, T )
on page 42 of [loc. cit.]. For any rational value of T , it has at most three real roots by inspection, so
it must have at least a nonreal root when n ≥ 4. For n = 2, 3, it is easy to find such polynomials. The
demonstration for An is similar, see the polynomial h(X, T ) on page 44. �

The next result is an elementary case of a theorem of Igor Shafarevich, which will be used frequently
in our constructions:

Theorem 2.5. Let G be a finite group. Suppose that there is a finite Galois extension K/Q such that
Gal(K/Q) ∼= G. Let H be a finite abelian group with exponent m. Suppose that there is a split exact
sequence of finite groups

1→ H → S→ G→ 1.

Then there is a finite Galois extension M/Q containing K such that the natural surjective homomorphism
Gal(M/Q)�Gal(K/Q) realizes the surjective homomorphism S � G. In other words, a split embedding
problem with abelian kernel always has a proper solution.

Moreover, for any prime l that is outside the ramification locus of K/Q and prime to m, we can choose
M so that l is unramified in M.

Proof. The argument is a minor modification of the proof of [Serre 1992, Claim 2.2.5]. Put L =
K (µm). H can be regarded as a m-torsion module on which Gal (L/Q) acts. So there is a finite free
(Z/mZ)[Gal (L/Q)]-module F of which H is a quotient. Suppose that r is the number of copies of
(Z/mZ)[Gal (L/Q)] in F . Let S′ be the semidirect product of Gal (L/Q) and F . To solve the embedding
problem posed by 1→ H → S→ G→ 1, it suffices to solve the embedding problem posed by

1→ F→ S′→ Gal(L/Q)→ 1.

Claim. There is a Galois extension M ′/Q that solves the above embedding problem. Moreover, for any
prime l that does not divide m and is outside the ramification locus of K/Q, we can choose M ′ so that l
is unramified in M ′.

To see this, we choose places v1, . . . , vr of Q away from l such that vi splits completely in L . Let wi

be a place of L extending vi , 1≤ i ≤ r . Any place of L extending vi can be written uniquely as σwi for
some σ ∈ Gal (L/Q). Let w0 be a place of L extending l. For 1 ≤ i ≤ r , choose θi ∈ OL such that for
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0 ≤ j ≤ r , (σw j )(θi ) = 1 if σ = 1 and i = j and 0 if not. The existence of θi follows from the weak
approximation theorem. Let

M ′ = L( m
√
σθi | σ ∈ Gal (L/Q), 1≤ i ≤ r),

which is Galois over Q, being the composite of L and the splitting field of the polynomial∏
i

∏
σ

(T m
− σθi ) ∈Q[T ].

It is easy to see that Gal (M ′/L) is isomorphic to F as Gal (L/Q)-modules. In fact, for each i there is an
isomorphism

φi : Gal(L( m
√
σθi | σ ∈ Gal (L/Q))/L)∼= (Z/mZ)[Gal(L/Q)].

For an element g on the left side and any σ ∈Gal (L/Q), g( m
√
σθi )= ζσ ·

m
√
σθi for some ζσ ∈µm ∼=Z/mZ.

We then define
φi (g)=

∑
σ

ζσ · σ ∈ (Z/mZ)[Gal (L/Q)].

It is clear that φi is an isomorphism by our choice of θi . It follows that Gal (M ′/L) ∼= F by linear
disjointness.

Therefore, we obtain an exact sequence

1→ F→ Gal(M ′/Q)→ Gal(L/Q)→ 1.

Since F ∼= IndGal (L/Q)
{1} Z/mZ, by Shapiro’s lemma, H 2(Gal (L/Q), F)= H 2({1},Z/mZ)= {0}, hence

the sequence splits. Thus, Gal(M ′/Q)∼= S′.
It remains to show that l is unramified in M ′. For any σ in Gal (L/Q) and for any i , w0 is unramified

in L( m
√
σθi ), because w0(σθi )= 0 and l does not divide m. So w0 is unramified in their composite M ′.

On the other hand, l is unramified in K by assumption and is unramified in Q(µm) since l does not
divide m, so l is unramified in L . It follows that l is unramified in M ′, proves the claim.

Finally, letting M be the fixed field of the kernel of the natural surjective homomorphism S′� S, we
obtain a solution to the original embedding problem. �

2A3. SLn . Let G = SLn(k), so W ∼= Sn . By [Adams and He 2017], the N-T sequence splits only when
n is odd. We consider the subgroup W ′ = An of W . Let T be the maximal torus of diagonal elements in
SLn(k) and let 8 be 8(G, T ).

Lemma 2.6. Suppose n ≥ 4. Then An , as a subgroup of W , acts transitively on 8.

Proof. This follows from the fact that An acts doubly transitively on {1, 2, . . . , n} if and only if n ≥ 4. �

Let N ′ = π−1(W ′), where π is the natural map from NG(T ) to W .

Lemma 2.7. The following exact sequence of finite groups splits:

1→ T → N ′→W ′→ 1.
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Proof. We think of An as a subgroup of N = NG(T ) by realizing it as the group of n×n even permutation
matrices. Then An normalizes T and N ′ is a semidirect product of them. �

Let l be large enough. Since T is abelian of exponent |k| − 1 which is prime to l, by Theorems 2.4
and 2.5, there is a surjection 0Q � N ′ which is unramified at l. Moreover, by choosing a rational
polynomial with nonreal roots that realizes An as a Galois group over Q, we can make the complex
conjugation map to an element away from the center of G. Define ρ to be the composite

0Q � N ′ i
−→ SLn(k).

Remark 2.8. It is trickier to realize N as a Galois group over Q. This can be reduced to realizing the
“Tits group” T of SLn as a Galois group. T can be identified with the group of n× n signed permutation
matrices with determinant one, which is an index two subgroup of the group of n× n signed permutation
matrices. The latter is isomorphic to the Weyl group of type Bn , hence known to be a Galois group over Q.
As the N-T sequence splits if and only if n is odd, by Theorem 2.5, T can be realized over Q for n odd.
When n is even, this problem is open except for small n, as far as the author knows.

Let g= sln(k).

Proposition 2.9. For l sufficiently large and n ≥ 4, ρ(g) decomposes into irreducible 0Q-modules ρ(t)
and ρ(g8).

Proof. This follows from Corollary 2.2 and Remark 2.3. �

There remains the case when G is SL2 or SL3. For SL3, see Section 2B. For SL2, see Section 4B3.

2A4. Sp2n . Let G = Sp2n(k), then W is isomorphic to a semidirect product of Sn and D := (Z/2Z)n .
We fix a maximal split torus T in Sp2n(k). The N-T sequence does not split by [Adams and He 2017].

Lemma 2.10. Consider the N-T sequence for Sp2n . The group Sn ⊂ W has a section to N , whereas
D⊂W does not have a section to N but there is a subgroup D̃ of N such that π(D̃)= D and D̃∼= (Z/4Z)n .
Moreover, as subgroups of N , Sn normalizes D̃ and Sn ∩ D̃ = {1}.

We let W1 be the subgroup of N generated by Sn and D̃.

Proof. Let V = k2n be the 2n-dimensional vector space over k endowed with a nondegenerate alternating
form ( · , · ). We may choose a basis

e1, . . . , en, e′1, . . . , e′n

of V such that (ei , e′j )= 1 if and only if i = j , and that (ei , e j )= 0, (e′i , e′j )= 0 for all i, j . The Weyl
group of Sp2n is isomorphic to the semidirect product of the group Sn , which acts by permuting e1, . . . , en ,
and the group D := (Z/2Z)n , which acts by ei 7→ (±1)i ei . There is an inclusion Sn→ Sp2n(k) (which
is a section to N →W) given as follows: ∀σ ∈ Sn , σ permutes e1, . . . , en and e′1, . . . , e′n by permuting
the indices, which defines an element in Sp2n(k). There is no such inclusion for D. However, we can
define a 2-group D̃ which embeds into Sp2n(k) as follows: for 1≤ i ≤ n, let di be an endomorphism of
V such that di (ei )=−e′i , di (e′i )= ei , and di fixes all other basis vectors. It is clear that di ∈ Sp2n(k). Let
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D̃ be the subgroup of Sp2n(k) generated by di for 1≤ i ≤ n. Then D̃ ∼= (Z/4Z)n . It is obvious that (as
subgroups of Sp2n(k)) Sn normalizes D̃ and Sn ∩ D̃ = {1}. �

Therefore, by Theorem 2.4 and 2.5, W1 can be realized as a Galois group over Q such that the complex
conjugation corresponds to an element away from the center of G. The group N is generated by W1

and T . We have W1 normalizes T and W1 ∩ T ∼= (Z/2Z)n . Let S be the (abstract) semidirect product of
W1 and T . By Theorem 2.5, for l large enough, S can be realized as a Galois group over Q unramified
at l. Composing the corresponding map 0Q � S with the natural surjection S � N , we obtain a surjection
0Q � N that is unramified at l and for which the complex conjugation maps to an element outside the
center of G. Define ρ to be the composite

0Q � N i
−→ Sp2n(k).

Let g= sp2n(k). The root system 8 of g is not simply laced.

Proposition 2.11. For l sufficiently large, ρ(g) decomposes into irreducible 0Q-modules ρ(t), ρ(gl)

and ρ(gs).

Proof. This follows from Corollary 2.2. �

2A5. Spin2n and Spin2n+1. For spin groups, the N-T sequence does not split by [Adams and He 2017].
For G = Spin2n , W is isomorphic to a semidirect product of Sn and D := (Z/2Z)n−1 and we let W ′ be
the subgroup generated by An and D. For G = Spin2n+1, W is isomorphic to a semidirect product of
Sn and D := (Z/2Z)n and we let W ′ be the subgroup generated by An and D. Similar to the symplectic
case, we will show that N ′ = π−1(W ′) is a Galois group over Q.

Lemma 2.12. Consider the N-T sequence for G = Spin2n(k) or Spin2n+1(k). The map π−1(An)→ An

admits a section, and there is a nilpotent subgroup D̃ of N such that π(D̃)= D. Moreover, as subgroups
of N , An normalizes D̃ and we let W1 be their product.

Proof. Let G := SO2n(k) or SO2n+1(k). We have the standard homomorphism i : GLn(k) → G,
which restricts to a homomorphism Sn → G. Let G̃Ln(k) be the pullback of i along the covering
map G → G. It is a two-fold central extension of GLn(k), which can be identified with the group
of pairs (g, z) with g ∈ GLn(k), z ∈ k×, such that det g = z2, where the multiplication is defined by
(g1, z1) · (g2, z2) = (g1g2, z1z2). A subgroup H of GLn(k) has a section in G̃Ln(k) if and only if the
restriction of det to H is the square of a character of H . In particular, taking H = An , we see that An has
a section to G̃Ln(k). It follows that π−1(An)→ An admits a section.

The map π−1(D)→ D has a section, where π is the natural map NG(T )→W; this follows from
[Adams and He 2017, Theorem 4.16], or can be seen directly from an elementary matrix calculation. Let
D̃⊂G be the preimage of D⊂G under the covering map G→G. As D is abelian, [D̃, D̃] = Z(G)∼=µ2.
In particular, D̃ is nilpotent.

Finally, because An normalizes D in G, An normalizes D̃ in G. �
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Therefore, by Theorem 2.4 and Shafarevich’s theorem (the group D̃ is nilpotent, see [Neukirch et al.
2000, IX, Section 6] for Shafarevich’s theorem), W1 can be realized as a Galois group over Q such that
the complex conjugation corresponds to an element outside the center of G. Let N ′ be the subgroup of G
generated by W1 and T (W1 normalizes T ). Let S be the (abstract) semidirect product of W1 and T . By
Theorem 2.5, for l large enough, S can be realized as a Galois group over Q unramified at l. Composing
the corresponding map 0Q � S with the natural quotient map S � N ′, we obtain a surjection

0Q � N ′

that is unramified at l and for which the complex conjugation maps to an element outside the center of G
(since the complex conjugation corresponds to an element outside the center of G in the realization of
W1 as a Galois group over Q). For G = Spin2n or Spin2n+1, define ρ to be the composite

0Q � N ′ i
−→G(k).

Let g be the Lie algebra of G(k). The corresponding root system 8 is simply laced if G = Spin2n and
is not if G = Spin2n+1.

Proposition 2.13. For l sufficiently large and n ≥ 4, ρ(g) decomposes into irreducible 0Q-modules ρ(t)
and ρ(g8) when G = Spin2n; and it decomposes into irreducible 0Q-modules ρ(t), ρ(gl) and ρ(gs) when
G = Spin2n+1.

Proof. Note that the action of W ′ on 8 is transitive if and only if n ≥ 4. Then the proposition follows
from Corollary 2.2 and Remark 2.3. �

Remark 2.14. There remains the case when G is one of Spin4, Spin5, Spin6, Spin7. But Spin4(Ql) ∼=

SL2(Ql)×SL2(Ql), Spin5(Ql)∼= Sp4(Ql), Spin6(Ql)∼= SL4(Ql) which are included in other cases. For
Spin7, the half sum of coroots ρ∨ = 3α∨1 + 5α∨2 + 3α∨3 has integer coefficients, so the principal GL2 map
is well defined, see Section 2B.

2A6. E sc
7 . Let G = E sc

7 (k). The Weyl group W is isomorphic to the direct product of [W,W] and Z/2Z.
By [Adams and He 2017], the N-T sequence does not split. We choose a subgroup W ′ of W which lifts
to N as follows. Consider the extended Dynkin diagram of type E7, there is a subroot system 8′ of 8
which is of type A7. The alternating group A8 is a subgroup of S8 ∼=W(A7)≤W =W(E7).

Lemma 2.15. The group A8 ≤W lifts to N.

Proof. This is because A8 lifts to SL8. �

Lemma 2.16. The action of A8 on 8 has an orbit of size 56 and an orbit of size 70.

Proof. We first consider the action of S8 ∼=W(A7) on 8. By Lemma 2.1, S8 acts transitively on 8′,
which has 56 roots. A straightforward calculation using Plate E7 in [Bourbaki 1968] shows that for some
α ∈8−8′, S8 · α has exactly 70 roots (in the extended Dynkin diagram, take α to be the simple root
that is not in 8′, then we let the group generated by the simple reflections in 8′ act on α and count
the number of roots in the orbit). So the stabilizer of α in S8 is isomorphic to S4 × S4 ⊂ S8. Since
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56+ 70= 126 is the number of roots in 8, the lemma is true for S8. Now we consider the alternating
group A8. Lemma 2.6 implies that A8 still acts transitively on 8′. As (S4× S4)∩ A8 (the stabilizer of α
in A8) has order 1

2 |S4× S4| = 288, the orbit A8 ·α has exactly |A8|/288= 70 roots. �

It is clear that A8, considered as a subgroup of N , normalizes T and A8 ∩ T = {1}. Let N ′ be the
subgroup of G = E sc

7 (k) generated by A8 and T . By Theorems 2.4 and 2.5, for l large enough, we can
find a continuous surjection

0Q � N ′

that is unramified at l and for which the complex conjugation maps to an element away from the center
of G. Define ρ to be the composite

0Q � N ′ i
−→ E sc

7 (k).

Let ga and gb be the direct sums of the root spaces corresponding to the orbit of size 56 and size 70,
respectively, in Lemma 2.16.

Proposition 2.17. For l sufficiently large, ρ(g) decomposes into irreducible 0Q-modules ρ(t), ρ(ga)

and ρ(gb).

Proof. The proof is very similar to the proof of Corollary 2.2. �

2B. The principal GL2 construction. We record some facts on the principal SL2 and GL2. For more
details, see [Serre 1996, Section 1]. Let G/k be a simple algebraic group with a Borel B containing a
split maximal torus T with unipotent radical U . Let 8=8(G, T ) be the root system of G with the set
of simple roots 1 corresponding to B. We fix a pinning {xα : Ga→Uα} where Uα is the root subgroup
in B corresponding to α. Let Xα = dxα(1) for all α ∈1 and let

X =
∑
α∈1

Xα,

which can be extended to an sl2-triple (X, H, Y ) where

H =
∑
α>0

Hα

with Hα the coroot vector corresponding to α.
When p is large enough relative to G, there is an exponential map

exp : Lie(U )→U

which is an isomorphism.
A principal SL2 homomorphism is a homomorphism

ϕ : SL2→ G



1366 Shiang Tang

such that

ϕ

((
1 t
0 1

))
= exp(t X), ϕ

((
t 0
0 t−1

))
= 2ρ∨(t)

where ρ∨ is the half-sum of the coroots. ρ∨ is always defined when G is adjoint. Suppose that ρ∨ :
Gm→ Gad lifts to G and we fix a lift which is again denoted ρ∨. A principal GL2 homomorphism is a
homomorphism

ϕ : GL2→ G

that extends a principal SL2 such that such that

ϕ

((
1 t
0 1

))
= exp(t X), ϕ

((
t 0
0 1

))
= ρ∨(t).

By definition, a principal GL2 factors through PGL2.
By examining the list in [Bourbaki 1968], we get:

Lemma 2.18. For G a simple algebraic group, ρ∨ : Gm→ Gad lifts to Gsc if and only if G is one of the
following types: A2n, B4n, B4n+3, D4n, D4n+1, E6, E8, F4,G2.

The operator ad(H) preserves gX (the centralizer of X in g) and

gX
=

∑
m>0

V2m,

where V2m is the eigenspace of H corresponding to the eigenvalue 2m. The following proposition is due
to Kostant [1959].

Proposition 2.19. The dimension of gX is equal to the rank of g. V2m is nonzero if and only if m is an
exponent of g. Letting GL2 act on g via ϕ, there is an isomorphism of GL2-representations

g∼=
⊕
m>0

Sym2m(k2)⊗ det−m
⊗V2m .

Suppose that ρ∨ : Gm → Gad lifts to G. We take f to be as in Example 1.5. By [Ribet 1985,
Theorem 2.1], the projective image of r f,λ is either PGL2(k) or PSL2(k) for a subfield k of kλ. We then
define

ρ : 0Q
r f,λ
−→GL2(k) ϕ

−→G(k).

This construction works for all exceptional groups but E sc
7 as ρ∨ : Gm → Ead

7 does not lift to E sc
7 . We

will only use this construction for G of type E6, A2 and B3.

3. Ramakrishna’s method and its variants

Given ρ : 0Q→ G(k) defined in the previous section, we want to obtain an l-adic lift ρ : 0Q→ G(O)
with O the ring of integers of a finite extension of Ql whose residue field is k satisfying a given global
deformation condition. Just as in [Patrikis 2016], we use Ramakrishna’s method to annihilate the associated
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dual Selmer group. The new feature is a double use of Patrikis’ extension of Ramakrishna’s method when
the original form fails to work, see Section 3B.

3A. Ramakrishna’s method.

3A1. Ramakrishna deformations. We list the key points and results of Patrikis’ extension of Ramakr-
ishna’s method. For proofs, see [Patrikis 2016, Section 4.2]. For an overview on the deformation theory
of (G-valued) Galois representations, see [loc. cit., Section 3].

We begin by defining a type of local deformation condition called Ramakrishna’s condition, which will
be imposed at the auxiliary primes of ramification in Ramakrishna’s global argument. Let F be a finite
extension of Qp for p 6= l, and let ρ : 0F → G(k) be an unramified homomorphism such that ρ(FrF )

is a regular semisimple element. Let T be the connected component of the centralizer of ρ(FrF ); this
is a maximal k-torus of G, but we can lift it to an O-torus uniquely up to isomorphism, which we also
denote by T , and then we can lift the embedding over k to an embedding over O which is unique up to
Ĝ(O)-conjugation. By passing to an étale extension of O, we may assume that T is split.

The following definition is from [loc. cit.].

Definition 3.1. Let ρ, T be as above. For α ∈8(G, T ), ρ is said to be of Ramakrishna type α if

α(ρ(FrF ))= κ(FrF ).

Let Hα = T · Uα be the subgroup generated by T and the root subgroup Uα corresponding to α.
Ramakrishna deformation is a functor

LiftRam
ρ : CNLO→ Sets

such that for a complete local noetherian O-algebra R, LiftRam
ρ (R) consists of all lifts

ρ : 0F → G(R)

of ρ such that ρ is Ĝ(R)-conjugate to a homomorphism 0F
ρ′
−→ Hα(R) with the resulting composite

0F
ρ′
−→ Hα(R) Ad

−→GL(gα ⊗ R)= R×

equal to κ .
We shall call such a ρ to be of Ramakrishna type α as well. We denote by DefRam

ρ the corresponding
deformation functor.

The following lemma is [loc. cit., Lemma 4.10].

Lemma 3.2. LiftRam
ρ is well defined and smooth.

Consider the subtorus Tα = Ker(α)0 of T , and denote by tα its Lie algebra. There is a canonical
decomposition tα ⊕ lα = t with lα the one-dimensional torus generated by the coroot α∨.

The next lemma [loc. cit., Lemma 4.11] is crucial in the global deformation theory.
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Lemma 3.3. Assume ρ is of Ramakrishna type α. Let W = tα ⊕ gα , and let W⊥ be the annihilator of W
under the Killing form on g. Let LRam

ρ and LRam,⊥
ρ be the tangent space of DefRam

ρ and the annihilator of
LRam
ρ under the local duality pairing, respectively. Then:

(1) LRam
ρ
∼= H 1(0F , ρ(W )).

(2) dim LRam
ρ = h0(0F , ρ(g)).

(3) LRam,⊥
ρ

∼= H 1(0F , ρ(W⊥)(1)).

(4) Let LRam,�
ρ and LRam,⊥,�

ρ be the preimages in Z1(0F , ρ(g)) of LRam
ρ and LRam,⊥

ρ , respectively. Under
the canonical decomposition

g=
⊕
γ

gγ ⊕ tα ⊕ lα,

all cocycles in LRam,�
ρ and LRam,⊥,�

ρ have lα and g−α components equal to zero, respectively.

3A2. The global argument. In this section, we assume G is semisimple. Let ρ : 0Q,S → G(k) be a
continuous homomorphism for which h0(0Q, ρ(g))= h0(0Q, ρ(g)(1))= 0. In particular, the deformation
functor is representable. The following theorem is proved in [Patrikis 2016, Proposition 5.2]. For a review
on global deformation theory and systems of Selmer groups, see [Patrikis 2016, Sections 3.2–3.3].

Theorem 3.4. Suppose that there is a global deformation condition L= {Lv}v∈S consisting of smooth
local deformation conditions for each place v ∈ S. Let K =Q(ρ(g), µl). We assume the following:

(1)
∑
v∈S

(dim Lv)≥
∑
v∈S

h0(0Qv
, ρ(g)).

(2) H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) vanish.

(3) Assume item (2) holds. For any pair of nonzero Selmer classes φ ∈ H 1
L⊥(0Q,S, ρ(g)(1)) and

ψ ∈ H 1
L(0Q,S, ρ(g)), we can restrict them to 0K where they become homomorphisms, which are

nonzero by item (2). Letting Kφ/K and Kψ/K be their fixed fields, we assume that Kφ and Kψ are
linearly disjoint over K .

(4) Consider any φ and ψ as in the hypothesis of item (3). There exists an element σ ∈ 0Q such that
ρ(σ) is a regular semisimple element of G, the connected component of whose centralizer we denote
T , and such that there exists a root α ∈8(G, T ) satisfying

(a) α(ρ(σ ))= κ(σ ),
(b) k[ψ(0K )] has an element with nonzero lα component, and
(c) k[φ(0K )] has an element with nonzero g−α component.

Then there exists a finite set of primes Q disjoint from S, and a lift ρ : 0Q,S∪Q→ G(O) of ρ such that ρ is
of type Lv at all v ∈ S and of Ramakrishna type at all v ∈ Q.

Proof. We sketch the proof for the reader’s convenience. By the arguments in [Taylor 2003, Lemma 1.1]
(which carry without modification to other groups) it suffices to enlarge L to make the dual Selmer group
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H 1
L⊥(0Q,S, ρ(g)(1)) vanish. We may assume the dual Selmer group is nontrivial and take a nonzero class

φ in it. Item (1) implies by Wiles’ formula (Proposition 4.10) that H 1
L(0Q,S, ρ(g)) is nontrivial. So we

can take a nonzero class ψ in it. Item (3), (4) and Chebotarev’s density theorem all together imply there
exists infinitely many w /∈ S such that ψ |w /∈ LRam

ρ |w and φ |w /∈ LRam,⊥
ρ |w . In particular, we have

ψ /∈ H 1
L∪LRam

ρ |w

(0Q,S∪w, ρ(g)), (1)

and
φ /∈ H 1

L⊥∪LRam,⊥
ρ |w

(0Q,S∪w, ρ(g)(1)). (2)

If we can show
H 1

L⊥∪LRam,⊥
ρ |w

(0Q,S∪w, ρ(g)(1))⊂ H 1
L⊥(0Q,S, ρ(g)(1)), (3)

then (2) will imply that (3) is a strict inclusion. The key point now is that if we let Lunr
w denote the

unramified cohomology at w, then Lw = Lunr
w ∩ LRam

ρ |w is codimension one in Lunr
w , which, together with a

double invocation of Wiles’ formula and (1), implies

H 1
L⊥(0Q,S, ρ(g)(1))= H 1

L⊥∪L⊥w
(0Q,S∪w, ρ(g)(1)),

from which (3) follows. A variation of this argument can be found in the proof of Proposition 3.13. Now
for the new Selmer system, item 1 still holds (Lemma 3.3(2)). So we can apply the above argument
finitely many times until the dual Selmer group of the enlarged Selmer system vanishes. �

3B. A variant of the global argument. In this section, we let G be a simple algebraic group and let
ρ : 0Q→ G(k) be as in Section 2A. Recall that ρ(0Q) is a subgroup of NG(T )k . For l = char(k) large
enough, ρ(g) decomposes into the sum of ρ(t) and another one or two summands depending on whether
or not 8(G, T ) is simply laced; see Propositions 2.9, 2.11, 2.13 and 2.17. We fix a Selmer system L.

Proposition 3.5. Assume that l is large enough. Then items (2) and (3) in Theorem 3.4 are satisfied.

Proof. For item (2), note that |Gal (K/Q)| divides (l−1)|ρ(0Q)|, which is prime to l by the construction
of ρ. Since the coefficients field k of H 1 has characteristic l, this implies the vanishing of H 1.

For item (3), since ψ :Gal (Kψ/K )∼=ψ(0K ) and φ :Gal (Kφ/K )∼=φ(0K ) are Gal (K/Q)-equivariant
isomorphisms, it is enough to check that the irreducible summands in g and g(1) are nonisomorphic. We
check this case by case. If G is of type An or Dn , by the construction of ρ, the alternating group An+1

or An , respectively, may be identified with a subgroup of ρ(0Q). We take an element σ ∈ 0Q such that
ρ(σ) ∈ An has order 2. Since Q(ρ) (the fixed field of ρ) is unramified at l, Q(ρ) and Q(µl) are linearly
disjoint over Q, so we may modify σ if necessary to make κ(σ ) 6= 1. Consider the eigenvalues of σ on t

and t(1) (here we recall that t is the Lie algebra of the maximal split torus T of G in the construction
of ρ); the eigenvalues on t are ±1, whereas none of the eigenvalues on t(1) can be 1 or −1. Thus t is
not isomorphic to t(1) as Galois modules. On the other hand, since T := T (k) ⊂ ρ(0Q), we can find
τ ∈ 0Q such that ρ(τ) is a regular semisimple element for which α(ρ(τ))= a for α ∈1, where a is a
generator of (Z/ lZ)× and 1 is a fixed set of simple roots in 8. Again since Q(ρ) and Q(µl) are linearly
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disjoint over Q, we may modify τ if necessary to make κ(τ)= a. Consider the eigenvalues of τ on g8

and g8(1), those on g8 are {α(ρ(τ)) : α ∈8}, whereas those on g8(1) are {a · α(ρ(τ)) : α ∈8}. Note
that α(ρ(τ))= aht(α) and the order of a is l− 1, it is clear that these two sets are different when l is large
enough. Thus, g8 and g8(1) are nonisomorphic as Galois modules.

If G is of type Bn , by the construction of ρ, the alternating group An may be identified with a
subgroup of ρ(0Q). Using the argument in the previous paragraph, we see that t is not isomorphic to
t(1) as Galois modules. On the other hand, we need to show that ρ(gl), ρ(gs), ρ(gl)(1), ρ(gs)(1) are
pairwise nonisomorphic as Galois modules. Just like before we can find τ ∈0Q such that ρ(τ) is a regular
semisimple element for which α(ρ(τ))= a for α ∈1 and κ(τ)= a, where a is a generator of (Z/ lZ)× and
1 is a fixed set of simple roots in8. Since l is large enough, the sets {α(ρ(τ)) :α∈8l}, {α(ρ(τ)) :α∈8s},
{a · α(ρ(τ)) : α ∈ 8l} and {a · α(ρ(τ)) : α ∈ 8s} must be distinct. So τ has different eigenvalues on
ρ(gl), ρ(gs), ρ(gl)(1), ρ(gs)(1) and hence they are pairwise nonisomorphic Galois modules.

The demonstrations are the same for type Cn and E7. �

Let M be a finite dimensional k-vector space with a continuous 0Q-action. Define its Tate dual to be
the space M∨ = Hom(M, µ∞) equipped with the following 0Q-action:

(σ f )(m) := σ( f (σ−1m)).

Proposition 3.6. For any continuous homomorphism ρ : 0Q → G(k), ρ(g)∨ ∼= ρ(g)(1). For ρ as in
Section 2A, ρ(t)∨ ∼= ρ(t)(1).

Proof. As l is sufficiently large, the killing form is a nondegenerate G-invariant symmetric bilinear form
on g, which identifies the contragredient representation g∗ with g, and hence identifies ρ(g)∨ with ρ(g)(1)
as Galois modules. If ρ is as in Section 2A, then the Galois action on t factors through W . It is easy to
see that the standard bilinear form on t is nondegenerate and W -invariant. Just as above, we deduce that
ρ(t)∨ ∼= ρ(t)(1) as Galois modules. �

Definition 3.7. Let L= {Lv}v∈S be the Selmer system corresponding to a global deformation condition
for ρ that is unramified outside a finite set of places S, and let L⊥ = {L⊥v }v∈S be the associated dual
Selmer system. Define the M-Selmer group as follows:

H 1
L(0S,M)= Ker

(
H 1(0S,M)→

⊕
v∈S

H 1(0v,M)/(Lv ∩ H 1(0v,M))
)
,

and define the M-dual Selmer group as follows:

H 1
L⊥(0S,M∨)= Ker

(
H 1(0S,M∨)→

⊕
v∈S

H 1(0v,M∨)/(L⊥v ∩ H 1(0v,M∨))
)
.

To apply Theorem 3.4, we need to make sure that items (1)–(4) in it are satisfied. By choosing an
appropriate L, we can make item (1) hold. Items (2) and (3) are satisfied by Proposition 3.5. It is
tricky to deal with item (4): the images of φ and ψ , which are 0Q-submodules of ρ(g), must satisfy the
group-theoretic properties in (b) and (c); if we can find an element σ as in item (4) such that all summands
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of ρ(g) satisfies these properties, then item (4) will be satisfied. So achieving item (4) crucially depends
on the group-theoretic properties of submodules of ρ(g). We need to find a regular semisimple element
6 in ρ(0Q), the connected component of whose centralizer we denote T ′, for which there exists a root
α′ ∈8′ :=8(G, T ′) such that:

(1) α′(6) ∈ (Z/ lZ)×,

(2) Every irreducible summand of ρ(g) has an element with nonzero lα′ component.

(3) Every irreducible summand of ρ(g) has an element with nonzero g−α′ component.

Unfortunately, for our residual representation, there is no such element which meets all three conditions.
The rest of this section will show how item (4) of Theorem 3.4 can be met by controlling ψ(0K ) for a
given class ψ in the Selmer group.

If we take a regular semisimple element 6 in T (which is the fixed split maximal torus of G(k) we use
when constructing the residual representation), then there is no α ∈8 fulfilling both (2) and (3). Instead,
we look for 6 ∈ N = NG(T ) for which π(6) is a nontrivial element in W , where π : NG(T )�W is the
canonical quotient map.

Lemma 3.8. Assume the characteristic of k is large enough for G. Then for any w ∈ W that fixes a
noncentral element of Lie(T ), there exist a regular semisimple element n ∈ N (regular with respect to G)
such that π(n)= w. If G is of type A1, A2, B2,C2, then for any w ∈W , there exist a regular semisimple
element n ∈ N (regular with respect to G) such that π(n)= w.

Proof. The second part follows from a straightforward calculation. We will prove the first part. We
first make the following observation: if M is a Levi subgroup of G, then (by looking at the action
of simple roots outside M on elements of ZG(M)0) for every M-regular semisimple element t ∈ M ,
there is a G-regular semisimple element of t ZG(M)0. If w fixes a noncentral element of Lie(T ), then
we take M to be ZG(Lie(T )w), which is a proper Levi subgroup of G since the characteristic of k is
large enough for G. By induction on the semisimple rank, there is a M-regular semisimple element n′

such that π(n′)= w, so there is a G-regular semisimple element n = n′z with z ∈ ZG(M)0, and hence
π(n)= π(n′z)= π(n′)π(z)= π(n′)= w. �

Remark 3.9. The above lemma should be true without assuming w fixes a noncentral element of Lie(T ),
but the author does not know how to remove this assumption. For GLn , one can show that (by matrix
calculations) the property holds for all w ∈ Sn as long as the characteristic of k is large enough.

Let t ′ be a regular semisimple element in G and t ∈ T be an element that is conjugate to t ′. Then t
and t ′ determine a unique bijection between 8 =8(G, T ) and 8′ =8(G, T ′) with T ′ = ZG(t ′)0: for
any α ∈8, define α′ ∈8′ such that

α′(h)= α(g−1hg)

for any h ∈ T ′, where g is an element in G such that g−1t ′g = t . Since t is regular semisimple, α′ is
independent of g.
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Recall that for α ∈8, sα is the simple reflection in the Weyl group of 8 associated to α.

Lemma 3.10. Assume the characteristic of k is not 2. For a long root α ∈8, let6 be a regular semisimple
element in N such that π(6)= sα (which exists by Lemma 3.8). We fix an element t ∈ T that is conjugate
to 6 and let T ′ = ZG(6)

0. The elements 6 and t determine a bijection between 8 and 8′ as above.

• If 8 is of type An (n ≥ 1) or Dn (n ≥ 4), then the root α′ ∈8′ corresponding to α fulfills (1) and (3).
For (2), g8 (recall that g8 :=

∑
α∈8 gα) has an element with nonzero lα′ component, but t does not.

• If 8 is of type Bn , Cn (n ≥ 2) or E7, then α′ fulfills (1) and t has a vector with nonzero g−α′

component.

Moreover, t′ ∩ t= t′α′ ∩ t=W ∩ t, where W = t′α′ ⊕ gα′ .

Proof. It is clear that α′(6)=−1, so (1) is satisfied. We need to show:

• The space lα has nonzero g−α′ component.

• The space gα has nonzero lα′ and g−α′ component.

• t′ ∩ t= t′α′ ∩ t=W ∩ t.

This is essentially a GL2-calculation. We may perform the calculation in the subalgebra of g generated
by gα, whose root lattice is isomorphic to {x1e1+ x2e2 | xi ∈ Z, x1+ x2 = 0}. We take α = e1− e2 with
the corresponding root vector

Xα :=
(

0 1
0 0

)
.

We have6=
( 0

1
1
0

)
, P =

( 1
1

1
−1

)
. Then P−16P = diag(1,−1). The first bullet follows from the identity

P−1
· diag(h1, h2) · P =− 1

2

(
−h1− h2 −h1+ h2

−h1+ h2 −h1− h2

)
.

The second bullet follows from the identity

P−1
(

0 1
0 0

)
P =− 1

2

(
−1 1
−1 1

)
.

To show the third bullet, note that elements in t′ are of the form
( h

k
k
h

)
, elements in t′α′ are of the form( h

0
0
h

)
, and elements in gα′ are of the form

( x
x
−x
−x

)
. It follows that all three intersections in the third bullet

are the one dimensional k-vector space spanned by
( 1

0
0
1

)
. �

Lemma 3.11. Suppose the characteristic of k is not 2 or 3. Assume that 8 is of type Bn,Cn (n ≥ 2)
or E7, so ρ(g) = ρ(t)⊕ ρ(gl)⊕ ρ(gs) for Bn and Cn , and ρ(g) = ρ(t)⊕ ρ(ga)⊕ ρ(gb) for E7 (see
Section 2A4-2A6).

(1) (Type Bn and Cn) For a pair of nonperpendicular β, γ ∈ 8 with β long and γ short, let 6 be a
regular semisimple element in N such that π(6) = sβ · sγ (which exists by Lemma 3.8). We fix
an element t ∈ T that is conjugate to 6 and let T ′ = ZG(6)

0. The elements 6 and t determine a
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bijection between 8 and 8′ =8(G, T ′). Then for all long root α′ in the span of β ′ and γ ′ (which
is a subsystem of 8′ of type C2), (3) is satisfied. For (2), gl and gs have elements with nonzero lα′

component, but t does not. The element α′(6) has order 4 in k×, hence (1) is satisfied only for
l ≡ 1(4).

(2) (Type E7) For a pair of nonperpendicular β, γ ∈ 8 with gβ ⊂ ga and gγ ⊂ gb, let 6 be a regular
semisimple element in N such that π(6) = sβ · sγ . We fix an element t ∈ T that is conjugate to 6
and let T ′ = ZG(6)

0. The elements 6 and t determine a bijection between 8 and 8′ =8(G, T ′).
Then for all roots α′ in the span of β ′ and γ ′ (which is a subsystem of 8′ of type A2), (3) is satisfied.
For (2), ga and gb have elements with nonzero lα′ component, but t does not. The elements α′(6) has
order 3 in k×, hence (1) is satisfied only for l ≡ 1(3).

Moreover, W ∩ t⊂ t′, where W = t′α′ ⊕ gα′ .

Proof. We first prove (2). Let α′ be any root in the span of β ′ and γ ′. We need to show:

• lβ ⊕ lγ has nonzero g−α′ component.

• gβ and gγ have nonzero lα′ component and nonzero g−α′ component.

• W ∩ t⊂ t′.

We may perform the calculation in the subalgebra of g generated by gβ and gγ , whose root lattice is
isomorphic to {x1e1+ x2e2+ x3e3 | xi ∈ Z, x1+ x2+ x3 = 0}. We take β = e1− e2, γ = e2− e3 with the
corresponding root vectors

Xβ :=

0 1 0
0 0 0
0 0 0

 , Xγ :=

0 0 0
0 0 1
0 0 0

 .
We have

6 =

0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0

=
0 0 1

1 0 0
0 1 0

 .
Let r be a (fixed) primitive 3-rd root of unity in k, and let

P =

1 1 1
1 r2 r
1 r r2

 ,
then

P−16P = diag(1, r, r2),

which implies α′(6) has order 3 in k×. We have P−1 diag(a, b, c)P is a nonzero scalar multiple ofar + br + cr ar + b+ cr2 ar + br2
+ c

ar + br2
+ c ar + br + cr ar + b+ cr2

ar + b+ cr2 ar + br2
+ c ar + br + cr

 ,
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from which the first bullet follows. On the other hand, we have P−1 Xβ P is a nonzero scalar multiple ofr 1 r2

r 1 r2

r 1 r2

 ,
from which it follows that gβ has nonzero lα′ component and nonzero g−α′ component for any α′. Similarly,
gγ has nonzero lα′ component and nonzero g−α′ component for any α′. The second bullet follows. We
now show the third bullet for α′ = β ′, the calculation is similar for other roots. We have

P

a x 0
0 a 0
0 0 b

 P−1

is a nonzero constant multiple of 2ar + br + xr −a+ b+ xr2
−ar2

+ br2
+ x

−ar2
+ br2

+ xr br + xr2
−a+ b+ x

−a+ b+ xr −ar2
+ br2

+ xr2 2ar + br + x

 .
A simple calculation shows demanding the off-diagonal entries in the above matrix to be zero will force
all of a, b, x to be zero. Thus W ∩ t is trivial in the subalgebra of g generated by gβ and gγ . It follows
that W ∩ t is contained in t′.

The proof of (1) is very similar to that of (2). The computation may be performed in the subalgebra of
g generated by gβ and gγ , which is of type C2. Let α′ be a long root in the span of β ′ and γ ′. We will
show the three bullets above are true. The roots are {±(e1 − e2),±(e1 + e2),±2e1,±2e2}. We fix an
alternating form x1 y4+ x2 y3− x3 y2− x4 y1 on k2 and let β = e1− e2 and γ = 2e1 with corresponding
root vectors

Xβ :=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Xγ :=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .
We have

6 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 0 0 1
0 1 0 0
0 0 1 0
−1 0 0 0

=


0 1 0 0
0 0 0 1
−1 0 0 0
0 0 1 0

 .
Let r be a (fixed) primitive eighth root of unity in k, and let

P =


1 1 1 1
r r3 r5 r7

r3 r r7 r5

r2 r6 r2 r6

 ,
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then
P−16P = diag(r, r3, r5, r7),

which implies α′(6) has order 4 in k×. We have P−1 diag(a, b,−b,−a)P is a nonzero scalar multiple of
0 a− br6 0 a− br2

a− br6 0 a+ br2 0
0 a+ br6 0 a+ br2

a− br6 0 a− br2 0

 .
Let α′ ∈8′ be any long root, then α′ satisfies the first bullet. On the other hand, P−1 Xβ P is a nonzero
scalar multiple of 

r − r7 0 r5
− r7 r7

− r3

0 r3
+ r 2r5 r7

+ r
r + r7 2r3 r5

+ r7 0
r − r5 r3

− r 0 r7
− r

 ,
and P−1 Xγ P is a nonzero scalar multiple of

r2 r6 r2 r6

r2 r6 r2 r6

r2 r6 r2 r6

r2 r6 r2 r6

 ,
from which the second bullet follows. We check the third bullet for α′ corresponding to 2e2, the calculation
is similar for other long roots in 8′. We have

P


a 0 0 0
0 0 x 0
0 0 0 0
0 0 0 −a

 P−1

is a nonzero scalar multiple of
x a(r5

− r3)+ xr3 a(r5
− r3)− xr5 a(r6

− r2)+ xr6

a(r − r7)+ xr3 r6x 2ar6
− x a(r5

− r3)+ xr
a(r3
− r5)+ xr 2ar2

− x −r6x a(r3
− r5)+ xr7

−2ar6
+ xr6 a(r3

− r5)+ xr a(r7
− r)− xr3

−x

 .
It is easy to see that for the matrix to be diagonal, both of a and x have to be zero. Thus W ∩ t is trivial
in the subalgebra of g generated by gβ and gγ . It follows that W ∩ t is contained in t′. �

Let6,α′ be as in Lemma 3.10, (1) for8 of type An or Dn , and Lemma 3.11 for8 of type Bn,Cn or E7.
We have α(6) ∈ (Z/ lZ)× for primes l satisfying an appropriate congruence condition if necessary. We
need to modify the element6 to make it land in ρ(0Q). When8 is of type An or Dn , π(ρ(0Q))=[W,W]
(see 2.1.3 and 2.1.5). For any α ∈8, we write slα2 for the Lie subalgebra of g generated by gα and g−α.
We replace sα by sαsβ for some root β orthogonal to α such that [slα2 , sl

β

2 ] is trivial (such β exists because
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n ≥ 4) and replace 6 with a regular semisimple element in NG(T ) that maps to sαsβ when modulo T (k).
Note that sαsβ ∈ [W,W]: The Weyl group W acts transitively on the irreducible root system 8, so there
exists w ∈W such that wα= β, and hence wsαw−1

= sβ ; it follows that sαsβ = [sα, w]. We again denote
this new element by 6, which now lands in ρ(0Q). Lemma 3.10(1) still holds. When 8 is of type Bn ,
we again have π(ρ(0Q)) = [W,W] (see 2.1.5). As sβsγ ∈ [W,W], 6 ∈ ρ(0Q), so no modification is
needed. When 8 is of type Cn , π(ρ(0Q))=W (see 2.1.4), so we automatically have 6 ∈ ρ(0Q). When
8 is of type E7, the corresponding element 6 is in ρ(0Q) as well (see 2.1.6). Since ρ is unramified at l
and Q(µl) is totally ramified at l, Q(ρ) and Q(µl) are linearly disjoint over Q. So there exists an element
σ ∈ 0Q such that ρ(σ)=6 and κ(σ )= α′(6). It follows that α′(ρ(σ ))= κ(σ ).

Lemma 3.12. Suppose there is a Selmer system L= {Lv}v∈S for which the t-Selmer group H 1
L(0S, ρ(t))

is trivial. We take a pair of nonzero Selmer classes φ ∈ H 1
L⊥(0Q,S, ρ(g)(1)) and ψ ∈ H 1

L(0Q,S, ρ(g)).
Then item (4) of Theorem 3.4 is satisfied.

Proof. We need to check Theorem 3.4(4)(b) and (c). First, Proposition 3.5 and the inflation-restriction
sequence imply that ψ(0K ) and φ(0K ) are nontrivial. By Lemmas 3.10 and 3.11, every irreducible
summand of ρ(g) has an element with nonzero g−α′ component. In particular, (c) holds. As H 1

L(0S, ρ(t))

is trivial, ψ(0K )* t, which implies that k[ψ(0K )] contains g8 when 8 is of type An or Dn , k[ψ(0K )]

contains one of gl and gs when 8 is of type Bn or Cn , and k[ψ(0K )] contains one of ga and gb when 8
is of type E7. It then follows from Lemmas 3.10 and 3.11 that k[ψ(0K )] has an element with nonzero lα′

component. So (b) holds as well. �

The next proposition achieves the vanishing assumption of the t-Selmer in Lemma 3.12 by using of a
variant of the cohomological arguments in Ramakrishna’s method.

Proposition 3.13. Suppose that

h1
L(0S, ρ(t))≤ h1

L⊥(0S, ρ(t)(1)).

Then there is a finite set of places Q disjoint from S and a Ramakrishna deformation condition for each
w ∈ Q with tangent space LRam

w such that

H 1
L∪{LRam

w }w∈Q
(0S∪Q, ρ(t))= 0.

We may assume that H 1
L(0S, ρ(t)) is nontrivial, for otherwise we are done. The inequality in

Proposition 3.13 then implies that H 1
L⊥(0S, ρ(t)(1)) is nontrivial. Let 0 6= φ ∈ H 1

L⊥(0S, ρ(t)(1)).

Lemma 3.14. There exists τ ∈ 0Q with the following properties:

(1) ρ(τ) is a regular semisimple element of G(k), the connected component of whose centralizer we
denote T ′.

(2) There exists α′ ∈8(G, T ′), such that α′(ρ(τ ))= κ(τ).

(3) k[φ(0K )] has an element with nonzero g−α′-component.
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Proof. We have seen that the groups H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) are both
trivial. In particular, the groups H 1(Gal (K/Q), ρ(t)) and H 1(Gal (K/Q), ρ(t)(1)) are both trivial.
The restriction-inflation sequence then implies that φ(0K ) is nontrivial. Now we let 6, α′ be as in
Lemma 3.10(1) for 8 of type An or Dn , and Lemma 3.10(2) for 8 of type Bn , Cn or E7. If necessary,
we can modify 6 to make it land in ρ(0Q), as explained in the paragraph preceding Lemma 3.12. We
have α(6) ∈ (Z/ lZ)×. Since ρ is unramified at l and Q(µl) is totally ramified at l, Q(ρ) and Q(µl) are
linearly disjoint over Q. So there exists an element τ ∈ 0Q such that ρ(τ) = 6 and κ(τ) = α′(6). It
follows that α′(ρ(τ ))= κ(τ), proves (2). Statement (3) follows from Lemma 3.10. �

Corollary 3.15. There exist infinitely many places w /∈ S such that ρ|0w is of Ramakrishna type α′ and
φ|0w /∈ LRam,⊥

w .

Proof. This follows from Lemmas 3.3, 3.14 and Chebotarev’s density theorem. See the proof of [Patrikis
2016, Lemma 5.3]. �

Proof of Proposition 3.13. Let w be chosen as in Corollary 3.15. We will show that

h1
L⊥∪LRam,⊥

w
(0S∪w, ρ(t)(1)) < h1

L⊥(0S, ρ(t)(1)) (4)

and

h1
L∪LRam

w
(0S∪w, ρ(t))− h1

L⊥∪LRam,⊥
w

(0S∪w, ρ(t)(1))= h1
L(0S, ρ(t))− h1

L⊥(0S, ρ(t)(1)) (5)

which imply that

h1
L∪LRam

w
(0S∪w, ρ(t)) < h1

L(0S, ρ(t)),

from which Proposition 3.13 follows by induction.
We first show (5). By a double invocation of Wiles’ formula (see Proposition 4.10), the difference

between the two sides equals dim(LRam
w ∩H 1(0w, ρ(t)))−h0(0w, ρ(t))=h1(0w, ρ(W∩t))−h0(0w, ρ(t)).

As H 0(0w, ρ(g))= t′, we have H 0(0w, ρ(t))= t∩ t′; on the other hand, the action of ρ(0w) on W ∩ t
is a sum of the trivial representation and the cyclotomic character. By an elementary calculation in
Galois cohomology, h1(0w, k)= h1(0w, k(1))= 1. It follows that h1(0w, ρ(W ∩ t))= dim W ∩ t and so
h1(0w, ρ(W ∩ t))− h0(0w, ρ(t))= dim(W ∩ t)− dim(t′ ∩ t), which is zero by Lemma 3.10.

It remains to prove (4). Let Lw = Lunr
w ∩ LRam

w , so L⊥w = Lunr,⊥
w + LRam,⊥

w . We have the following
obvious inclusions

H 1
L∪Lw(0S∪w, ρ(t))⊂ H 1

L∪LRam
w
(0S∪w, ρ(t)), (6)

H 1
L⊥∪LRam,⊥

w
(0S∪w, ρ(t)(1))⊂ H 1

L⊥∪L⊥w
(0S∪w, ρ(t)(1)), (7)

H 1
L∪Lw(0S∪w, ρ(t))⊂ H 1

L∪Lunr
w
(0S∪w, ρ(t))= H 1

L(0S, ρ(t)), (8)

H 1
L⊥(0S, ρ(t)(1))= H 1

L⊥∪Lunr,⊥
w

(0S∪w, ρ(t)(1))⊂ H 1
L⊥∪L⊥w

(0S∪w, ρ(t)(1)). (9)
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As φ|0w /∈ LRam,⊥
w , (7) is a strict inclusion. We claim that (9) is an isomorphism, which will imply (4).

To prove our claim, we consider (8) first. There is an exact sequence

0→ H 1
L∪Lw(0S∪w, ρ(t))→ H 1

L(0S, ρ(t))→ (Lunr
w ∩ H 1(0w, ρ(t)))/(Lw ∩ H 1(0w, ρ(t))).

As
Lunr
w = H 1(0w/Iw, ρ(g))

f 7→ f (Frw)
−−−−−→ g/(ρ(Frw)− 1)g∼= t′,

the top of its last term is isomorphic to H 1(0w, ρ(t
′
∩ t)), which has dimension dim(t′∩ t); the bottom of

its last term is isomorphic to H 1(0w, t
′
α ∩ t), which has dimension dim(t′α ∩ t). By Lemma 3.10, these

dimensions are equal. So the last term is zero, and hence (8) is an isomorphism. A double invocation of
Wiles’ formula (Proposition 4.10) shows h1

L⊥∪L⊥w
(0S∪w, ρ(t)(1))− h1

L⊥(0S, ρ(t)(1)) equals

h1
L∪Lw(0S∪w, ρ(t))− h1

L(0S, ρ(t))+ h0(0w, ρ(t))− dim(Lw ∩ H 1(0w, ρ(t))).

Because (8) is an isomorphism and dim(Lw∩H 1(0w, ρ(t)))=h1(0w, ρ(W∩t′∩t))=dim(W∩t′∩t)=
dim(t′ ∩ t)= h0(0w, ρ(t)) (Lemma 3.10), the right hand side of the above identity is zero. Therefore, (9)
is an isomorphism, which completes the proof of the proposition. �

Theorem 3.16. Let L= {Lv}v∈S be a family of smooth local deformation conditions for ρ (the residual
representation defined in Section 2A) unramified outside a finite set of places S containing the real place
and all places where ρ is ramified. Suppose that∑

v∈S

dim Lv ≥
∑
v∈S

h0(0v, ρ(g)) and
∑
v∈S

dim(Lv ∩ H 1(0v, ρ(t)))≤
∑
v∈S

h0(0v, ρ(t)).

Assume l is large enough; in addition, if 8 is of type E7, assume l ≡ 1(3), and if 8 is doubly laced,
assume l ≡ 1(4).

Then there is a finite set of places Q disjoint from S and a continuous lift

ρ : 0S∪Q→ G(O)

of ρ such that ρ is of type Lv for v ∈ S and of Ramakrishna type for v ∈ Q.

Proof. The second inequality and Wiles’ formula (Proposition 4.10) imply that

h1
L(0S, ρ(t))≤ h1

L⊥(0S, ρ(t)(1)).

By Proposition 3.13, we can enlarge L by adding finitely many Ramakrishna deformation conditions to
get a new Selmer system L′ = {Lv}v∈S′ with S′ ⊃ S such that H 1

L′(0S′, ρ(t))= {0}. By Lemma 3.3(2),
replacing L by L′ preserves the first inequality.

We choose σ ∈ 0Q and α′ ∈8(G, T ′) as in the paragraph preceding Lemma 3.12 (this is where the
congruence conditions for8 of type Bn,Cn, E7 come in). Chebotarev’s density theorem implies that there
are infinitely many places w /∈ S′ such that ρ|w is of Ramakrishna type α′. We have for such a prime w,

H 1
L′∪LRam

w
(0S′∪w, ρ(t))= 0.
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In other words, adding a Ramakrishna local deformation conditions does not make the t-Selmer group
jump back to a nontrivial group. Indeed, LRam

w ∩H 1(0w, ρ(t))= H 1(0w, ρ(W∩t))⊂ H 1(0w, ρ(t
′
∩t))=

H 1(0w/Iw, ρ(t)), where the middle inclusion follows from Lemma 3.10 and 3.11. So

H 1
L′∪LRam

w
(0S′∪w, ρ(t))⊂ H 1

L′(0S′, ρ(t))= {0}.

Let us check the assumptions of Theorem 3.4. By Proposition 4.10 and the first inequality in the
assumption, item (1) holds. Item (2) and (3) are satisfied by Proposition 3.5. As H 1

L′(0S′, ρ(t)) = {0},
Item (4) is satisfied by Lemma 3.12. Therefore, by the proof of Theorem 3.4, there is a strict inclusion

H 1
L′⊥∪LRam,⊥

w
(0Q,S′∪w, ρ(g)(1))⊂ H 1

L′⊥(0Q,S′, ρ(g)(1)).

As the t-Selmer group is still trivial for the enlarged Selmer system, item (4) remains valid by Lemma 3.12.
So we can find a primew′ /∈ S′∪w and enlarge the Selmer system L′∪LRam

w in the same way so that the dual
Selmer group shrinks even further. Applying this argument finitely many times, we can kill the dual Selmer
group. Therefore, by the first two lines of the proof of Theorem 3.4, we obtain desired l-adic lifts. �

3C. Deforming principal GL2. We use the notation in Section 2B. Recall that ρ is the composite
0Q→ GL2(k)

ϕ
−→G(k) where the first map is constructed from modular forms and the second map is

the principal GL2-map.
Patrikis has shown that all simple algebraic groups of exceptional types are geometric monodromy

groups for 0Q except for Ead
6 , E sc

6 , E sc
7 [Patrikis 2016]. In this section, we follow Patrikis’ work and use

the principal GL2 to construct full-image Galois representations into Ead
6 , E sc

6 ,SL3,Spin7.
The proof of the following theorem is identical to that of [Patrikis 2016, Theorem 7.4].

Theorem 3.17. Let L= {Lv}v∈S be a family of smooth local deformation conditions for ρ (the residual
representation defined in Section 2B) unramified outside a finite set of places S containing the real place
and all places where ρ is ramified. Suppose that∑

v∈S

dim Lv ≥
∑
v∈S

h0(0v, ρ(g)).

Assume l is large enough.
Then there is a finite set of places Q disjoint from S and a continuous lift

ρ : 0S∪Q→ G(O)

of ρ such that ρ is of type Lv for v ∈ S and of Ramakrishna type for v ∈ Q.

In [Patrikis 2016, Lemma 7.6], the following fact is verified using Magma.

Lemma 3.18. Assume l is large enough for g. For g of exceptional type, there is a root α ∈8 such that
every irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero
g−α component.

For our purpose, we only need to establish its analogs for g of type An and Bn .
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Lemma 3.19. Assume l is large enough for g. For g of type An , there is a root α ∈ 8 such that every
irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero g−α

component.

Proof. Let g= sln+1 and let αi, j = ei − e j , i 6= j be the roots of g. Let Ei, j be the n+ 1 by n+ 1 matrix
that has 1 at the (i, j)-entry and zeros elsewhere. The sl2-triple associated to αi, j is {X i, j := Ei, j , Hi, j =

Ei,i − E j, j , Yi, j := E j,i }. Let

X = X1,2+ X2,3+ · · ·+ Xn,n+1,

H =
∑
i< j

Hi, j = k1 H1,2+ k2 H2,3+ · · ·+ kn Hn,n+1,

Y = k1Y1,2+ k2Y2,3+ · · ·+ knYn,n+1,

where ki := i(n− i + 1). The triple {X, H, Y } is an sl2-triple containing the regular unipotent element X .
A straightforward calculation gives for i < j

[Y, X i, j ] = ki X i+1, j − k j−1 X i, j−1.

Put h = j − i and apply the above identity recursively, we obtain

(adY )h X i, j = (−1)hki, j

(
Hi,i+1−

(h−1
1

)
Hi+1,i+2+

(h−1
2

)
Hi+2,i+3+ · · ·+ (−1)h−1

(h−1
h−1

)
H j−1

)
,

where ki, j = ki ki+1 · · · k j−1. By Proposition 2.19,

gX
=

n∑
h=1

〈v2h〉

where v2h =
∑

j−i=h X i, j . Then we have

(adY )hv2h = h1 H1,2+ · · ·+ hn Hn,n+1

with h1 = (−1)hk1,h+1, h2 = (−1)h−1
(h−1

1

)
k1,h+1 + (−1)hk2,h+2 and hi = (−1)h−1hn−i+1. Since

(adYi,i+1)Hi−1,i = Yi,i+1, (adYi,i+1)Hi,i+1 =−2Yi,i+1 and (adYi,i+1)Hi+1,i+2 = Yi,i+1,

(adY )h+1v2h = (adY )(h1 H1,2+ · · ·+ hn Hn,n+1)

= k1(−2h1+ h2)Y1,2+ k2(h1− 2h2+ h3)Y2,3+ · · ·+ kn(hn−1− 2hn)Yn,n+1.

One computes

h2− 2h1 = (−1)h−1(h+ 1)!h(n− 1)(n− 2) · · · (n− h+ 1) 6= 0.

So if we let α = α1,2 and suppose l is large enough for g, then the submodule of ρ(g) generated by v2h

has a vector with nonzero g−α component, that is, the vector (adY )h+1v2h; the vector (adY )hv2h has
nonzero lα component, as α(h1 H1,2+ · · ·+ hn Hn,n+1)= 2h1− h2 which is nonzero. �



Algebraic monodromy groups of l-adic representations of Gal(Q/Q) 1381

Corollary 3.20. Assume l is large enough for g. For g of type Bn , there is a root α ∈8 such that every
irreducible submodule of ρ(g) has a vector with nonzero lα component and a vector with nonzero g−α

component.

Proof. Let g= so2n+1. Let V = k2n+1 be a vector space equipped with a bilinear form x1 y2n+1+ x2 y2n+

· · ·+ x2n+1 y1 with matrix J . Then g can be identified with

{X ∈ M2n+1(k) | X J + J X t
= 0}.

The roots of g are ei − e j , ei + e j , −ei − e j , ±ei for 1 ≤ i 6= j ≤ n. We choose a set of simple
roots 1 = {e1− e2, e2− e3, · · · en−1− en, en}. The sl2-triple associated to ei − ei+1 is {X i := X i,i+1−

X2n−i+1,2n−i+2, Hi :=Hi,i+1+H2n−i+1,2n−i+2, Yi :=Yi,i+1−Y2n−i+1,2n−i+2}, and the sl2-triple associated
to en is {Xn := Xn,n+1− Xn+1,n+2, Hn := 2Hn,n+1+ 2Hn+1,n+2, Yn := 2Yn,n+1− 2Yn+1,n+2}. Let

X =
∑

i

X i ,

H =
∑

1≤i≤n−1

i(2n− i + 1)Hi +
1
2 n(n+ 1)Hn,

Y =
∑

1≤i≤n−1

i(2n− i + 1)Yi +
1
2 n(n+ 1)Yn.

A straightforward calculation shows that X, H, Y form an sl2-triple containing the regular unipotent
element X ∈ g.

Corresponding to the exponents 1, 3, · · · , 2n− 1 of g, we put

v2·1 = X1,2+ · · ·+ Xn,n+1− Xn+1,n+2− · · ·− X2n,2n+1 ∈ so2n+1,

v2·3 = X1,4+ · · ·+ Xn−1,n+2− Xn,n+3− · · ·− X2n−2,2n+1 ∈ so2n+1, . . . , . . . ,

v2·(2n−1) = X1,2n − X2,2n+1 ∈ so2n+1.

Then gX
=
∑

i=1,3,··· ,2n−1 < v2i >. Let α = e1− e2, the same calculation as in the proof of Lemma 3.19
gives (adY )iv2i has a nonzero lα component and (adY )i+1v2i has a nonzero g−α component for any
exponent i . �

3D. Removing the congruence conditions on l. In this section, we use a result in [Fakhruddin et al.
2018] to remove the congruence condition we have imposed for G of type Bn,Cn, E7 in Theorem 3.16.
The following theorem is a simplified version of [Fakhruddin et al. 2018, Theorem 1.3]: as we are not
considering geometric lifts, we relax the condition at l and only require the right hand side of Wiles’
formula (Proposition 4.10) to be nonnegative. It applies to the residual representations we construct
and allows us to deform it to an l-adic representation with Zariski-dense image for almost all primes l.
However, their argument is very different and much more complicated than ours, so we only use it to
remove the congruence conditions.
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Theorem 3.21. Suppose that there is a global deformation condition L= {Lv}v∈S consisting of smooth
local deformation conditions for each place v ∈ S. Let K =Q(ρ(g), µl). We assume the following:

(1)
∑
v∈S

(dim Lv)≥
∑
v∈S

h0(0Qv
, ρ(g)).

(2) The field K does not contain µl2 .

(3) The groups H 1(Gal (K/Q), ρ(g)) and H 1(Gal (K/Q), ρ(g)(1)) vanish.

(4) The spaces ρ(g) and ρ(g)(1) are semisimple Fl[0Q]-modules (equivalently, k[0Q]-modules) having
no common Fl[0Q]-subquotient, and that neither contains the trivial representation.

(5) The space ρ(g) is multiplicity-free as a Fl[0Q]-module.

Then there exists a finite set of primes Q disjoint from S, and a lift ρ : 0Q,S∪Q→ G(O) of ρ such that ρ is
of type Lv at all v ∈ S.

Lemma 3.22. Let k = Fl and let ρ : 0Q→ G(k) be as in Sections 2A4–2A6. Then Theorem 3.21(2)–(5)
hold.

Proof. By the decomposition of ρ(g) and the proof of Proposition 3.5(3)–(5) hold. It remains to show (2).
Since by construction ρ is unramified at l, Q(ρ(g)) and Q(µl) are linearly disjoint over Q. It follows that

Gal (K/Q)∼= (Im(ρ)/Z)× (Z/ lZ)×

where Z denotes the center of G(k). Assume K contains µl2 , then there would be a surjection

Gal (K/Q)ab � (Z/ l2Z)×.

On the other hand, we have by the construction of ρ that Im(ρ)′= Im(ρ) for G of type Bn and E7, Im(ρ)′

is of index two in Im(ρ) for G of type Cn . It follows that the order of (Im(ρ)/Z)ab is at most two, and
hence the order of Gal (K/Q)ab is at most 2(l − 1). But this is impossible since (Z/ l2Z)× has order
l(l − 1) and l 6= 2. �

4. Simple, simply connected groups as monodromy groups

In this section, we prove Theorem 1.2 for G a simple, simply connected algebraic group. Recall that
there are two different constructions for the residual representation ρ : 0Q→ G(k): one has image a
large index subgroup of NG(T )k with the properties that ρ is unramified at l and ad ρ(c) is nontrivial; the
other factors through a principal GL2 such that ρ(c)= ρ∨(−1).

4A. Local deformation conditions. We need to define several local deformation conditions for deforming
the mod p representations.
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4A1. The archimedean place. Recall that in Sections 2A3–2A5, we construct the residual representations
by first realizing Sn or An as a Galois group over Q and then repeatedly applying Theorem 2.5 to build
the Galois extension realizing N or a subgroup of it over Q. We write c for the nontrivial element in 0R,
the complex conjugation.

Proposition 4.1. Let G be of classical type and ρ : 0Q→ G(k) be as in Sections 2A2-2A5. In particular,
ad ρ(c) is nontrivial. Then:

(1) For G of type An−1, h0(0R, ρ(g))≤ n2
− 2n+ 1.

(2) For G of type Bn , h0(0R, ρ(g))≤ 2n2
− 3n+ 2.

(3) For G of type Cn , h0(0R, ρ(g))≤ 2n2
− 3n+ 4.

(4) For G of type Dn , h0(0R, ρ(g))≤ 2n2
− 5n+ 4.

Proof. Let f be the number of root vectors that are fixed by ρ(c). Let us recall that ad ρ(c) is nontrivial
by Theorem 2.4.

If G is of type An−1, we have G(k)∼= SL(V ) with V = kn . Let d := dim V ρ(c). Then

f = 2
((d

2

)
+

(n−d
2

))
.

If G is of type Bn , G(k)/µ2 ∼= SO(V ) with V = k2n+1 a k-vector space equipped with the nondegen-
erate symmetric bilinear form x1 y2n+1 + x2 y2n + · · · + x2n+1 y1. We may assume ρ(c) is conjugate to
diag(ε1, . . . , εn, 1, εn, . . . , ε1) in SO(V ) and let d be the number of ones among ε1, . . . , εn . Then

f = 4
((d

2

)
+

(n−d
2

))
+ 2d.

If G is of type Cn , G(k) ∼= Sp(V ) with V = k2n a k-vector space equipped with the nondegenerate
alternating bilinear form x1 y2n + · · · xn yn+1− xn+1 yn − · · ·− x2n y1. We may assume ρ(c) is conjugate
to diag(ε1, . . . , εn, εn, . . . , ε1) and let d be the number of 1’s among ε1, . . . , εn . Then

f = 4
((d

2

)
+

(n−d
2

))
+ 2n.

If G is of type Dn , a quotient of G(k) is isomorphic to SO(V ) with V = k2n a k-vector space equipped
with the nondegenerate symmetric bilinear form x1 y2n + x2 y2n−1+ · · · + x2n y1. We may assume ρ(c)
is conjugate to diag(ε1, . . . , εn, εn, . . . , ε1) in SO(V ) and let d be the number of 1’s among ε1, . . . , εn .
Then

f = 4
((d

2

)
+

(n−d
2

))
.

By the construction of ρ (see the paragraph before Remark 2.8 in Section 2A3 for type An; for other
types, see Sections 2A4, 2A5 and 2A6), ad ρ(c) is nontrivial, which implies 0< d < n. So f attains its
maximum when d = n− 1. Since

h0(0R, ρ(g))= rk(g)+ f,
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the upper bounds can then be computed easily. �

Proposition 4.2. Let G be of type E7 and ρ : 0Q→ G(k) be as in Section 2A6. In particular, ad ρ(c) is
nontrivial. Then h0(0R, ρ(g))≤ 7+ 126− 14= 119.

Proof. Suppose that ρ(c)∈ T (k) for a maximal torus T split over k. Let8=8(G, T ), and g8=
∑

α∈8 gα

be the k-subspace of ρ(g) generated by all root vectors. The Lie algebra t of T (k), which has k-dimension 7,
is clearly fixed by ad ρ(c). Thus, it suffices to show that the−1-eigenspace of ad ρ(c) | g8 has k-dimension
at least 14. We consider ad ρ(c) | g8′ where 8′ ⊂ 8 is of type A7. This action is nontrivial. By the
An-calculation in the proof of Proposition 4.1 (letting n = 7), the −1-eigenspace of ad ρ(c) | g8′ has
dimension at least twice the rank of 8′, proves the proposition. �

The following lemma is clear.

Lemma 4.3. The dimension
dimk(Sym2n(k2)⊗ det−n)diag(1,−1)

equals n when n is odd, and n+ 1 when n is even.

Corollary 4.4. Let ρ : 0Q→ G(k) be as in Section 2B. Then

h0(0R, ρ(g))= 4 for G = SL3,

h0(0R, ρ(g))= 9 for G = Spin7,

h0(0R, ρ(g))= 38 for G = E sc
6 .

Proof. This follows from Lemma 4.3 and Proposition 2.19. Note that the complex conjugation maps to
diag(1,−1) in GL2 because the representation r f,λ in the last paragraph of Section 2 is odd. �

4A2. The place l. As we are not looking for geometric l-adic Galois representations in this paper, we
impose no condition at the place l. So the tangent space is H 1(0l, ρ(g)). By the local Euler characteristic
formula,

h1(0l, ρ(g))= h0(0l, ρ(g))+ h2(0l, ρ(g))+ dimk g.

Lemma 4.5. Let ρ be as in Section 2A or 2B. Then h2(0l, ρ(g))= 0 for large enough primes l.

Proof. By local duality, it suffices to show that h0(0l, ρ(g)(1)) = 0. For the representation ρ in
Section 2A, ρ(IQl ) is trivial by construction but κ(IQl ) is nontrivial, so ρ(g)(1)IQv is trivial. In particular,
h0(0l, ρ(g)(1))= 0. For the representation ρ in Section 2B, Proposition 2.19 and the lemma below imply
h0(0l, ρ(g)(1))= 0. �

Lemma 4.6. We have h0(0l,Sym2m(r f )⊗ det(r f )
−m
⊗ κ) = 0 for m ≥ 1 and large enough primes l

(relative to m).

Proof. The argument is similar to the proof of [Weston 2004, Proposition 4.4]. Let K be a finite extension
of Ql with ring of integers O and residue field k. Let v : K×→Q be the valuation on K , normalized so that
v(l)= 1. We briefly recall the setting in Section 4.1 of [Weston 2004]. For a < b, let MFa,b(O) denote
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the category of filtered Dieudonné O-modules D equipped with a decreasing filtration of O-modules
{Di }i∈Z and a family of O-linear maps { fi : Di

→ D} satisfying Da
= D and Db

= 0; see [Weston 2004,
Definition 4.1]. Let Ga,b(O) denote the category of finite type O-module subquotients of crystalline
K -representations V with Da

crys(V )= Dcrys(V ) and Db
crys(V )= 0. Fontaine–Laffaille define a functor

U :MFa,a+l(O)→ Ga,a+l(O)

satisfying a list of properties including U that is stable under formation of subobjects and quotients, and
compatible with tensor products for l large enough. In particular, U is compatible with symmetric powers
for large enough l. Let ε : 0l → O× be an unramified character of finite order and let O(ε) denote a
free O-module of rank 1 with 0l-action via ε. Then O(ε) ∈ G0,1(O), so that there is Dε ∈MF0,1(O)
such that U(Dε)=O(ε). This Dε is a free O-module of rank one with Dε = D0

ε and f0 : D0
ε → Dε the

multiplication by ε−1(l) := ε−1(Frl) where the Frobenius element is arithmetic.
Let f be a newform of weight 3, level N , and character ε. Let K ⊃ Eλ and let r f := r f,λ :0Q→GL2(K )

be the Galois representation associated to f of weight k (see Example 1.5). We fix an embedding 0l→0Q,
and let V f be a two dimensional K -vector space on which 0l acts via r f |0l , and fix a 0l-stable O-lattice
T f ⊂ V f . If l does not divide N , then V f is crystalline and T f ∈ G0,3(O). Thus for l > k there exists
D f ∈MF0,3(O) with U(D f )∼= T f . The filtration on D f satisfies rkO(Di

f )= 2 if i ≤ 0, rkO(Di
f )= 1 if

1≤ i ≤ 2, and rkO(Di
f )= 0 if i ≥ 3. Choose an O-basis x, y of D f with x an O-generator of D1

f . Let
a, b, c, d ∈ O be such that f0x = ax + by, f0 y = cx + dy. Then a+ d = al and ad − bc = l2ε(l). We
have v(a), v(b)≥ 2.

Let r f : 0l→ GL2(k) be the Galois representation T f /λT f . Since det r f = κ
2ε, we have

Sym2m(T f )⊗ det(T f )
−m
⊗ κ = (Sym2m(T f )⊗O(ε−m))(1− 2m).

When l is large enough relative to m, by [Fontaine and Messing 1987, Proposition 1.7] we can take

D = (Sym2m(D f )⊗ Dε−m )(2m− 1).

Further, since (Sym2m(T f )⊗det(T f )
−m
⊗κ)/λ is a realization of Sym2m(r f )⊗det(r f )

−m
⊗κ , we have

H 0(0l,Sym2m(r f )⊗ det(r f )
−m
⊗ κ)= ker(1− f0 : D0/λD0

→ D/λD).

By the definition of Tate twists and tensor products of filtered Dieudonné O-modules, we have

D0
= (Sym2m(D f )⊗Dε−m )2m−1

=

∑
i1+···+i2m+ j=2m−1

Di1
f · · · D

i2m
f ·D

j
ε−m =

∑
i1+···+i2m=2m−1

Di1
f · · · D

i2m
f ·D

0
ε−m .

To make the sum nonzero, there must be at least m indices that are greater than or equal to 1, so at least
m indices must be two since x ∈ D2

f as well as D1
f . It follows that {x i y2m−i−1w | i ≥m} is an O-basis of

D0, where w is an O-generator of Dε−m . We compute

f0(x i y2m−i−1w)=
εm(l)
l2m−1 (ax + by)i (cx + dy)2m−i−1.
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Since v(a), v(b) ≥ 2 and i ≥ m, all the coefficients of x and y have positive valuations. There-
fore, f0(x i y2m−i−1w) ≡ 0 modulo λ, which implies f0 : D0/λD0

→ D/λD is zero. It follows that
H 0(0l,Sym2m(r f )⊗ det(r f )

−m
⊗ κ) is trivial. �

Corollary 4.7. h1(0l, ρ(g))= h0(0l, ρ(g))+ dimk g.

4A3. A zero-dimensional deformation. In order to maximize the Zariski-closure of the image of the
l-adic lift of the residual representation, we need to impose a simple local deformation condition at some
unramified place.

Suppose that p 6= l, F is a finite extension of Qp, and ρ : 0F → G(k) is an unramified representation.
Let g ∈ G(O) be a lift of ρ(Frp).

Definition 4.8. Define
Liftg

ρ : CNLO→ Sets

such that for a complete local noetherian O-algebra R, Liftg
ρ(R) consists of all lifts

ρ : 0F → G(R)

of ρ such that ρ is unramified and ρ(Frp) is Ĝ(R)-conjugate to g.

So the tangent space is zero-dimensional and when Liftg
ρ is a local deformation condition, it is clearly

smooth. But for a given g, Liftg
ρ may not be representable. But at least we have

Proposition 4.9. Suppose that G is simply connected. Let g and g be regular semisimple elements of
G(Fl) and G(Ql), respectively. Then Liftg

ρ is representable.

Proof. By Schlessinger’s criterion, it suffices to show the following: for any A � B in CLNO with kernel
I for which I ·mA = 0, the induced map

ZG(g)(A)→ ZG(g)(B)

is surjective. The group ZG(g) is a scheme over O, we denote the structure map by

f : ZG(g)→ SpecO.

We need to show that ZG(g) is a smooth O-scheme. It suffices to show that:

• The map f is flat over O.

• The generic fiber and the special fiber of f are smooth of the same dimension.

Because G is simply connected and g and g are regular semisimple, ZG(g)(O/λ) and ZG(g)(FracO)
are connected maximal tori of G(O/λ) and G(FracO), respectively, with dimension the rank of G. The
second bullet follows.

To show the first bullet, note that f has a section, that is, ZG(g) has an O-point (for example, the
element g ∈ G(O) itself). Moreover, by the previous paragraph, the generic fiber and the special fiber of
f are both irreducible, reduced and have the same dimension. It follows from Proposition 6.1 of [Gan
and Yu 2003] that f is flat. �
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4A4. Steinberg deformations. In [Patrikis 2016, Section 4.3], a local deformation condition of “Steinberg
type” is taken at a place in order to obtain a regular unipotent element in the image of the l-adic lift.
We will only need this in deforming those ρ constructed from the principal GL2. We refer the reader to
[Patrikis 2016, Section 4.3] for the definition and properties of the Steinberg deformation condition. The
dimension of the tangent space equals h0(0v, ρ(g)).

4A5. Minimal prime to l deformations. This deformation condition is well known; see [Patrikis 2016,
Section 4.4] for its definition. We will use this deformation condition at places v 6= l for which ρ(IQv

) is
nontrivial and ρ(0Qv

) has order prime to l. The tangent space is H 1(0v/Iv, ρ(g)Iv ), whose dimension is
h0(0v, ρ(g)).

4B. Deforming mod p Galois representations. In this section, we specify the global deformation con-
dition and compute the Wiles formula, then use the results in Section 3 to prove Theorem 1.2. Let us
recall Wiles’ formula, for a proof; see [Patrikis 2016, Proposition 9.2].

Proposition 4.10. Let M be a finite-dimensional k-vector space with a continuous 0Q action unramified
outside a finite set of places S. Let L= {Lv}v∈S and L⊥ = {L⊥v }v∈S be a Selmer system and dual Selmer
system, respectively, for M. Then

h1
L(0S,M)− h1

L⊥(0S,M∨)= h0(0S,M)− h0(0S,M∨)+
∑
v∈S

(dimk Lv − h0(0v,M)).

We will compute the right-hand side of the identity for M = ρ(g) or ρ(t) and for a global deformation
condition to be specified below. For ρ(g) from either Section 2A or 2B, note that h0(0S, ρ(g)) =

h0(0S, ρ(g)(1))= 0.

4B1. Weyl group case. For G a simple, simply connected group of classical type or type E7, let ρ :
0Q→ G(k) be as in Section 2A. Here we exclude the A1, A2, B3 cases. We impose no condition at v = l
which is liftable by Lemma 4.5, and impose the minimal prime to l condition at v ∈ S− {∞, l} (note
that ρ(0Q) has order prime to l by our construction). Moreover, we will find a prime p /∈ S for which
ρ(Frp) is regular semisimple, together with a regular semisimple lift g ∈ G(O) of ρ(Frp). Then we take
the deformation condition Liftg

ρ|0p
at p.

Lemma 4.11.
∑
v∈S

dimk Lv ≥
∑
v∈S

h0(0v, ρ(g)).

Proof. This follows directly the local computations in Section 4A, for example Proposition 4.1 and
Corollary 4.7, etc. We record here a lower bound for

∑
v∈S dimk Lv −

∑
v∈S h0(0v, ρ(g)). For G = SLn ,

it is n− 1; for G = Spin2n+1, it is 3n− 2; for G = Sp2n , it is 3n− 4; for G = Spin2n , it is 3n− 4; and for
G = E7, it is 7. �

Lemma 4.12.
∑
v∈S

dimk(Lv ∩ H 1(0v, ρ(t)))≤
∑
v∈S

h0(0v, ρ(t)).
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Proof. For v /∈ {∞, l, p}, Lv corresponds to the minimal prime to l deformation condition and we have

dimk(Lv ∩ H 1(0v, ρ(t)))= dimk H 1(0v/Iv, ρ(t)Iv )= h0(0v, ρ(t)).

So it suffices to compare both sides for v ∈ {∞, l, p}. The left-hand side subtracting the right-hand side
equals

(0− h0(0R, ρ(t)))+ (h1(0l, ρ(t))− h0(0l, ρ(t)))+ (0− h0(0p, ρ(t))).

By local duality and Lemma 4.5,

h1(0l, ρ(t))− h0(0l, ρ(t))= dimk t.

Combining this with the identity
h0(0p, ρ(t))= dimk t,

we see that the difference is −h0(0R, ρ(t))≤ 0. �

Let us make the following observation which is from [Patrikis 2016, Lemma 7.7]. It will be used
frequently in the proof of Propositions 4.14, 4.18, and 4.20; suppose that ρ : 0Q→ G(k) is a continuous
representation with a continuous lift ρ : 0Q→ G(O). Let Gρ be the Zariski closure of G(O) in G(Ql).
Then Lie(Gρ), Lie(Gρ)∩ gO, and (Lie(Gρ)∩ gO)⊗O k are 0Q-modules. Moreover, the last one is a
submodule of ρ(g) and thus is a direct sum of some irreducible summands of ρ(g). If Lie(Gρ)= g(Ql)

(which is equivalent to (Lie(Gρ)∩ gO)⊗O k = g), then Gρ = G(Ql) (since G is connected).

Lemma 4.13. Let G be a semisimple algebraic group defined over O and let C be a proper subvariety of
G. Let g ∈ G(O) and H = gĜ(O) be the corresponding Ĝ(O)-coset of G(O). Then there is a regular
semisimple element in H −C(Ql).

Proof. Let V be the union of C(Ql) and the set of elements of G(Ql) that are not regular semisimple. Then
V is a proper Zariski-closed subset of G(Ql) as the set of regular semisimple elements is Zariski-open
(see for example [Humphreys 1995, Theorem 2.5]). On the other hand, H is Zariski-dense in G(Ql). If
there were no regular semisimple element in H −C(Ql), then H ⊂ V and H could not be Zariski-dense,
a contradiction. �

Proposition 4.14. Let G be a simple, simply connected group of classical type (excluding type A1, A2

and B3) or type E7. Then for almost all primes l when 8 is of type An or Dn , for almost all primes
l ≡ 1(4) when 8 is of type Bn or Cn , and for almost all primes l ≡ 1(3) when 8 is of type E7, there are
l-adic lifts

ρ : 0Q→ G(O)

of ρ : 0Q→ G(k) defined in Section 2A with Zariski-dense image in G(Ql).

Proof. By Lemmas 4.11 and 4.12, we can apply Theorem 3.16 to obtain a lift ρ : 0Q→ G(O) satisfying
the prescribed local conditions. The condition at p implies that Gρ has infinitely many elements and so
Lie(Gρ) is nontrivial.
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If G is of type An or Dn , by Propositions 2.9 and 2.13, (Lie(Gρ)∩ gO)⊗O k (as a Lie subalgebra of
g) is then either t or g. By the previous lemma, there exist a regular semisimple element g ∈ G(O) such
that g = ρ(Frp) and g /∈ NG(T )(Ql). Imposing Liftg

ρ | p at p, we obtain Gρ * NG(T )(Ql), which implies
(Lie(Gρ)∩ gO)⊗O k cannot be t.

If G is of type Bn , by Proposition 2.13, (Lie(Gρ)∩gO)⊗O k (as a Lie subalgebra of g) is t, t⊕gl ∼= so2n

or g. Let H be an algebraic subgroup of G containing T such that (Lie(H)∩gO)⊗O k = t⊕gl (there are
finitely many of them). Let C be the union of NG(T ) and all such H , which is a proper subvariety of G.
By the previous lemma, there exist a regular semisimple element g ∈ G(O) such that g = ρ(Frp) and
g /∈ C(Ql). Imposing Liftg

ρ | p at p, we obtain Gρ * C(Ql), which implies (Lie(Gρ)∩ gO)⊗O k cannot
be t or t⊕ gl .

If G is of type Cn , by Proposition 2.11, (Lie(Gρ)∩gO)⊗Ok (as a Lie subalgebra of g) is t, t⊕gl∼= (sl2)
n

or g. The same argument as for type Bn enables us to impose a suitable condition Liftg
ρ | p at p in order to

force (Lie(Gρ)∩ gO)⊗O k = g.
Finally, suppose that G = E sc

7 . By Proposition 2.17, (Lie(Gρ)∩ gO)⊗O k (as a Lie subalgebra of g)
is either t, t⊕ ga ∼= sl7 or g. We can force (Lie(Gρ)∩ gO)⊗O k to be g in the same way as above. �

Remark 4.15. As we have flexibilities in choosing g ∈ G(O) lifting ρ(Frp), it is easy to see that there
are infinitely many lifts ρ that are nonconjugate in Gad.

4B2. Principal GL2 case. For G a simply connected group of one of the following types: A2, B3, E6,
let ρ : 0Q→ G(k) be as in Section 2B.

We begin with the following proposition due to Tom Weston [2004, Proposition 5.3].

Proposition 4.16. Let π = π f be a cuspidal automorphic representation corresponding to a holomorphic
eigenform f of weight at least 2. Assume that for some prime p, πp is isomorphic to a twist of the
Steinberg representation of GL2(Qp). Then for almost all λ, the local Galois representation r f,λ|0p (in
the notation of Example 1.5) has the form

r f,λ|0p ∼

(
χκ ∗

0 χ

)
where the extension * in H 1(0p, kλ(κ)) is nonzero.

Let f be a non-CM weight 3 cuspidal eigenform that is a newform of level 01(p)∩00(q) for some
primes p and q; the nebentypus of f is a character ε : (Z/pqZ)×→ (Z/pZ)×→ C×. Such a form f
exists, see for example, [LMFDB 2013, 15.3.7.a and 15.3.11.a]. Note that the automorphic representation
π f associated to f is Steinberg at p. Proposition 4.16 together with the definition of principal GL2 then
imply ρ|0p is Steinberg in the sense of [Patrikis 2016, Definition 4.13]. At p we take the Steinberg
deformation condition. As π f is a principal series at q, ρ(Iq) has order prime to l. We then use the
minimal prime to l deformation condition at q. At l we impose no condition. Moreover, choose an
element σ ∈0Q such that ρ(σ) is regular semisimple in T (k) together with a lift g ∈ T (O) such that α(g),
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α ∈1 are distinct. By Chebotarev’s density theorem, there is a prime r /∈ {∞, l, p, q} such that Frr = σ .
We then take Liftg

ρ|0r
at r . Let L be the Selmer system associated to the above local deformations.

Lemma 4.17. The right-hand side of Wiles’ formula is 2 for A2, 9 for B3, and 34 for E6.

Proof. This follows from Corollaries 4.4, 4.7 and Proposition 4.10. �

Proposition 4.18. For G = SL3,Spin7 or E sc
6 and for almost all primes l, there are l-adic lifts

ρ : 0Q→ G(O)

of ρ : 0Q→ G(k) defined as in Section 2B with Zariski-dense image in G(Ql).

Proof. The proof is very similar to the proof of [Patrikis 2016, Theorem 7.4], so we skip a few details here.
We first show that Theorem 3.4 applies to ρ. Item (1) is satisfied by Lemma 4.17; items (2) and (3) are

satisfied by the proof of [Patrikis 2016, Theorem 7.4]; for item (4), take σ ∈ 0Q such that ρ(σ)= 2ρ∨(a)
is regular with 1 6= a ∈ (Z/ lZ)× and κ(σ )= a2 (which is possible, again, see the proof of [Patrikis 2016,
Theorem 7.4]. It follows that item (a) is satisfied for any simple root α. Item (b) and (c) are also satisfied
by Lemmas 3.18, 3.19 and Corollary 3.20.

Therefore, we can deform ρ to a continuous representation ρ : 0Q→ G(O) satisfying the prescribed
local conditions on S and the Ramakrishna condition on a set of auxiliary primes disjoint from S. We
write Gρ for the Zariski closure of the image of ρ in G(Ql). By [Patrikis 2016, Lemma 7.7] Gρ is
reductive. By Proposition 4.16, the Steinberg condition at p ensures that Gρ contains a regular unipotent
element (see the proof of [Patrikis 2016, Theorem 8.4]). By a theorem of Dynkin [Saxl and Seitz 1997,
Theorem A], Gρ is then of type A1 or A2 for G = SL3, type A1,G2 or B3 for G = Spin7, and type A1, F4,
or E6 for G = E sc

6 . But α(ρ(Frr )), α ∈1 are distinct, so Gρ = G(Ql) in all three cases (see the proof
of [Patrikis 2016, Lemma 7.8]). �

Remark 4.19. As we have flexibilities in choosing g ∈ G(O) lifting ρ(Frr ), it is easy to see that there
are infinitely many lifts ρ that are nonconjugate in Gad.

4B3. SL2. The alternating group An admits a unique nontrivial central extension Ãn by Z/2Z for n 6= 6, 7.
By a result of N. Vila and J.-F. Mestre (which was proven independently, see [Serre 1992]), Ãn can be
realized as a Galois group over Q. In particular, we get a surjection r : 0Q � Ã5. On the other hand,
Ã5 can be described as follows: the symmetries of an icosahedron induce a 3-dimensional irreducible
faithful representation of A5, i.e., there is an injective homomorphism A5→ SO(3). The pullback of
A5 along the two-fold covering map SU(2)� SO(3) is a nontrivial central extension of A5 by Z/2Z,
hence is isomorphic to Ã5. In particular, we get an embedding Ã5→ SL2(C). As the matrix entries of
the image lie in a finite extension of Q, we can choose a finite extension k of Fl for which there is an
embedding Ã5→ SL2(k). Precomposing it with r , we obtain a representation 0Q→ SL2(k) which we
denote by ρ. It is easy to see that the adjoint module ρ(sl2(k)) is irreducible.

Let S be a finite set of places containing the archimedean place and all places where ρ is ramified.
We impose no condition at l, and take the minimal prime to l deformation condition at all other places
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in S, which is legitimate since the residual image has order prime to l for l > 120. Let 6 ∈ Ã5 be an
element of order 4, whose image in SL2(k) is conjugate to diag(

√
−1,−

√
−1). As Ã5 has trivial abelian

quotient, Q(µl) and Q(ρ) are linearly disjoint over Q. So there is an element σ ∈ 0Q such that ρ(σ)=6
and κ(σ )=−1. By Chebotarev’s density theorem, there is a prime p /∈ S for which Frp = σ . Therefore,
ρ|0p is of Steinberg type and we take the Steinberg deformation condition at p.

Proposition 4.20. For ρ :0Q→ SL2(k) defined as above and for almost all primes l, there is an l-adic lift

ρ : 0Q→ SL2(O)

of ρ with Zariski-dense image in SL2(Ql).

Proof. We first show that Theorem 3.4 applies to ρ. Item (1) is satisfied: the left hand side of the inequality
equals the right hand side. Item (2) is satisfied since |Gal (K/Q)| has order prime to l by the definition of
ρ. Item (3) is satisfied since ρ(g) and ρ(g)(1) are nonisomorphic. For item (4), we take σ to be as above,
the connected component of whose centralizer is denoted T , and take α to be a root of 8(G, T ). So (a)
is satisfied. As ρ(g) is irreducible, (b) and (c) are satisfied.

Therefore, we can deform ρ to a continuous representation ρ : 0Q→ SL2(O) satisfying the prescribed
local conditions on S and the Ramakrishna condition on a set of auxiliary primes disjoint from S. We
write Gρ for the Zariski closure of the image of ρ in SL2(Ql). As ρ(g) is irreducible, Lie(Gρ) is either
trivial or gQl

. If the former were true, then Gρ would be finite. But ρ|0p is Steinberg, so in particular the
image of ρ is infinite, a contradiction. Thus Lie(Gρ)= gQl

. �

Now we finish the proof of Theorem 1.2 with the congruence conditions removed. For G a simple but
not simply connected group, suppose there is a homomorphism ρl : 0Q→ Gsc(Ql) with Zariski-dense
image. We compose ρl with the covering projection Gsc(Ql)� G(Ql), the resulting map has Zariski-
dense image in G(Ql). Propositions 4.14, 4.18 and 4.20 prove the cases of a simple, simply connected
classical group, E6 and E7. On the other hand, the remaining cases G2, F4, and E8 have already been
established in [Patrikis 2016] in a way similar to the proof of Proposition 4.18. So Theorem 1.2 is proved.

In order to remove the congruence conditions for G of type Bn,Cn and E7, we impose the same local
deformation conditions as specified in the paragraph preceding Lemma 4.11, but then use Theorem 3.21
instead of Theorem 3.16. By Lemmas 4.11 and 3.22, the assumptions in Theorem 3.21 are all met.
Therefore, we obtain a characteristic zero lift of ρ satisfying the prescribed local conditions for all large
enough primes l. Then the proof of Proposition 4.14 shows that the lift has full monodromy group for all
large enough primes.

5. Connected reductive groups as monodromy groups

Following [Milne 2007], a connected algebraic group G is said to be an almost-direct product of its
algebraic subgroups G1, . . . ,Gn if the map

G1× · · ·×Gn→ G : (g1, . . . , gn) 7→ g1 · · · gn
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is a surjective homomorphism with finite kernel; in particular, this means that the Gi ’s commute with
each other and each Gi is normal in G.

The following proposition is [Milne 2007, Corollary 4.4].

Proposition 5.1. An algebraic group is semisimple if and only if it is an almost direct product of simple
algebraic groups. (Here a simple algebraic group is called almost simple in [Milne 2007]).

Proposition 5.2 (Goursat’s lemma). Let G1,G2 be groups, let H be a subgroup of G1×G2 such that the
two projections p1 : H → G1, p2 : H → G2 are surjective. Let N1 and N2 be the kernels of p2 and p1,
respectively. Then the image of H in G1/N1×G2/N2 is the graph of an isomorphism G1/N1 ∼= G2/N2.

Proposition 5.3. Let G be a connected semisimple group, then there are continuous homomorphisms

0Q→ G(Ql)

with Zariski-dense image for large enough l.

Proof. This will follow from Goursat’s lemma, Theorem 1.2 and Remark 1.3. By Proposition 5.1, it suffices
to prove the case when G is the direct product of simply connected simple algebraic groups. We may
decompose G into “isotypic factors”: G=G1×· · ·×Gn , where Gi is the direct product of copies of some
simple algebraic group, and Gi , G j have different types for i 6= j . Suppose we are given ρi :0Q→Gi (Ql)

with Zariski-dense image for each i and let ρ := (ρ1, . . . , ρn) : 0Q→ G(Ql), whose Zariski-closure is
denoted by H . Then H is an algebraic subgroup of G(Ql) for which pri (H) = Gi (Ql). Since Gi (Ql)

and G j (Ql) share no common nontrivial quotients for i 6= j , Proposition 5.2 implies that H = G(Ql).
It remains to prove the case when G is a direct product of copies of some simply connected simple

algebraic group. Write G = K n with K simple. We first assume K 6= SL2. By Section 4B1 and 4B2
(especially Remarks 4.15 and 4.19), there exists a prime p and a homomorphism ρi : 0Q → K (Ql)

for 1 ≤ i ≤ n such that ρi has Zariski-dense image and is unramified at p with ρi (Frp) a regular
semisimple element in K (Ql), and for i 6= j , the images of ρi (Frp) and ρ j (Frp) in K ad(Ql) are not
conjugate by an automorphism of K ad. Now we use Proposition 5.2 and induction on n to show that
ρ :=

∏
i ρi :0Q→G(Ql) has Zariski-dense image. This is clear when n= 1. Suppose this is true for n−1,

so that
∏

i<n ρi :0Q→ K n−1(Ql) has Zariski-dense image. Let H be the Zariski-closure of the image of ρ
and apply Proposition 5.2 to p1 : H→G1= K n−1, p2 : H→G2= K , which are surjective by assumption,
we see that the image of H in G1/N1×G2/N2 is the graph of an isomorphism G1/N1 ∼= G2/N2. But
since G2 = K is a simple, simply connected algebraic group, N2 = K or N2 ⊂ Z(K ). Also note that
N1 is either K n−1 or isogenous to the product of n− 2 factors in K n−1. If N2 = K and N1 = K n−1, H
must be G; otherwise, N2 ⊂ Z(K ) and N1 is isogenous to the product of n− 2 factors in K n−1, so the
isomorphism G1/N1×G2/N2 induces an isomorphism between two factors in Gad

= (K ad)n . But this
is impossible, as for any i 6= j , the images of ρi (Frp) and ρ j (Frp) in K ad(Ql) are not conjugate by an
automorphism of K ad. Therefore, H = G.

Now let K = SL2. By the argument in the previous paragraph, it suffices to show that for any n, we can
construct homomorphisms ρi : 0Q→ SL2(Ql), 1≤ i ≤ n such that ρi has Zariski-dense image and for



Algebraic monodromy groups of l-adic representations of Gal(Q/Q) 1393

i 6= j , ρad
i and ρad

j are not conjugated by an automorphism of PGL2. By the construction in [Serre 1992,
9.3] there are infinitely many homomorphisms r :0Q � Ã5 such that the composites 0Q

r
−→ Ã5→ A5 are

ramified at different sets of finite primes. By Section 4B3 we then obtain infinitely many homomorphisms
ρ : 0Q → SL2(k) such that the corresponding homomorphisms ρad

: 0Q → PGL2(k) are ramified at
different sets of finite primes. By Proposition 4.20, we can deform ρ to characteristic zero with Zariski-
dense image. We take n of them, denoted by ρ1, . . . , ρn : 0Q→ SL2(Ql). Suppose for some i, j with
1≤ i 6= j ≤ n, ρad

i and ρad
j were conjugate by an automorphism of PGL2, then their mod l reductions ρad

i

and ρad
j would be conjugate as well. But since there exists a prime p for which ρad

i is ramified at p and
ρad

j is unramified at p, ρad
i and ρad

j cannot be conjugate, a contradiction. �

Lemma 5.4. Let n be a positive integer and T = (Gm)
n . Then there is a continuous map ι : Zl→ T (Ql)

with Zariski-dense image.

Proof. The group T has only countably many connected proper Zariski-closed subgroups, so one can pick
a line L in Lie(T )Ql avoiding the tangent spaces to all such proper subgroups (since Ql is uncountable). A
small compact neighborhood of 0 in L exponentiates to a compact subgroup C of T (Ql) whose Zariski clo-
sure has identity component that cannot be a proper algebraic subgroup of T , so C is Zariski-dense in T . �

Now we can prove Theorem 1.1: Let G be a connected reductive group, then G is a quotient of the
product of Gder (a semisimple group) and Z(G)0 (a torus). Proposition 5.3 and Lemma 5.4 then allow us
to build a homomorphism from 0Q to G(Ql) with Zariski-dense image for large enough l.

Acknowledgement

I am extremely grateful for the patience, generosity, and support of my advisor Stefan Patrikis, without
whom this work would be impossible. I would also like to thank Gordan Savin for his patience and
generous support on a few projects I worked on earlier in my graduate career. I thank Jeffrey Adams for
answering my questions on his recent joint work with Xuhua He. The University of Utah mathematics
department was a supportive and intellectually enriching environment, and I am grateful to all of the faculty
members, postdocs, and graduate students who made it so. I would also like to thank the anonymous
referees for correcting the mistakes and making many useful comments on an earlier draft of this paper.

References

[Adams and He 2017] J. Adams and X. He, “Lifting of elements of Weyl groups”, J. Algebra 485 (2017), 142–165. MR Zbl

[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV–VI, Actualités Scientifiques et Industrielles 1337,
Hermann, Paris, 1968. Translated as Lie groups and Lie algebras, chapters 4–6, Springer, 2002. MR Zbl

[Buzzard and Gee 2014] K. Buzzard and T. Gee, “The conjectural connections between automorphic representations and Galois
representations”, pp. 135–187 in Automorphic forms and Galois representations, I (Durham, 2011), edited by F. Diamond et al.,
London Math. Soc. Lecture Note Ser. 414, Cambridge Univ. Press, 2014. MR Zbl

[Clozel et al. 2008] L. Clozel, M. Harris, and R. Taylor, “Automorphy for some l-adic lifts of automorphic mod l Galois
representations”, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. MR Zbl

[Cornut and Ray 2018] C. Cornut and J. Ray, “Generators of the pro-p Iwahori and Galois representations”, Int. J. Number
Theory 14:1 (2018), 37–53. MR Zbl

http://dx.doi.org/10.1016/j.jalgebra.2017.04.018
http://msp.org/idx/mr/3659328
http://msp.org/idx/zbl/1395.20024
http://dx.doi.org/10.1007/978-3-540-34491-9
http://msp.org/idx/mr/0240238
http://msp.org/idx/zbl/0186.33001
http://dx.doi.org/10.1017/CBO9781107446335.006
http://dx.doi.org/10.1017/CBO9781107446335.006
http://msp.org/idx/mr/3444225
http://msp.org/idx/zbl/1377.11067
http://dx.doi.org/10.1007/s10240-008-0016-1
http://dx.doi.org/10.1007/s10240-008-0016-1
http://msp.org/idx/mr/2470687
http://msp.org/idx/zbl/1169.11020
http://dx.doi.org/10.1142/S1793042118500045
http://msp.org/idx/mr/3726241
http://msp.org/idx/zbl/06813340


1394 Shiang Tang

[Dettweiler and Reiter 2010] M. Dettweiler and S. Reiter, “Rigid local systems and motives of type G2”, Compos. Math. 146:4
(2010), 929–963. MR Zbl

[Fakhruddin et al. 2018] N. Fakhruddin, C. Khare, and S. Patrikis, “Lifting irreducible Galois representations”, preprint, 2018.
arXiv

[Fontaine and Mazur 1995] J.-M. Fontaine and B. Mazur, “Geometric Galois representations”, pp. 41–78 in Elliptic curves,
modular forms, & Fermat’s last theorem (Hong Kong, 1993), edited by J. Coates and S.-T. Yau, Ser. Number Theory 1, Int.
Press, Cambridge, MA, 1995. MR Zbl

[Fontaine and Messing 1987] J.-M. Fontaine and W. Messing, “p-adic periods and p-adic étale cohomology”, pp. 179–207 in
Current trends in arithmetical algebraic geometry (Arcata, CA, 1985), edited by K. A. Ribet, Contemp. Math. 67, Amer. Math.
Soc., Providence, RI, 1987. MR Zbl

[Gan and Yu 2003] W. T. Gan and J.-K. Yu, “Schémas en groupes et immeubles des groupes exceptionnels sur un corps local, I:
Le groupe G2”, Bull. Soc. Math. France 131:3 (2003), 307–358. MR Zbl

[Greenberg 2016] R. Greenberg, “Galois representations with open image”, Ann. Math. Qué. 40:1 (2016), 83–119. MR Zbl

[Humphreys 1995] J. E. Humphreys, Conjugacy classes in semisimple algebraic groups, Math. Surveys and Monographs 43,
Amer. Math. Sci., Providence, RI, 1995. MR Zbl

[Katz 2018] N. M. Katz, “A note on Galois representations with big image”, preprint, 2018, Available at https://tinyurl.com/
katzbig.

[Kostant 1959] B. Kostant, “The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group”,
Amer. J. Math. 81 (1959), 973–1032. MR Zbl

[Kret and Shin 2016] A. Kret and S. W. Shin, “Galois representations for general symplectic groups”, preprint, 2016. arXiv

[LMFDB 2013] LMFDB Collaboration, “The L-functions and modular forms database”, 2013, Available at http://www.lmfdb.org.

[Milne 2007] J. S. Milne, “Semisimple algebraic groups in characteristic zero”, preprint, 2007. arXiv

[Neukirch et al. 2000] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der Math.
Wissenschaften 323, Springer, 2000. MR Zbl

[Patrikis 2016] S. Patrikis, “Deformations of Galois representations and exceptional monodromy”, Invent. Math. 205:2 (2016),
269–336. MR Zbl

[Ramakrishna 2002] R. Ramakrishna, “Deforming Galois representations and the conjectures of Serre and Fontaine–Mazur”,
Ann. of Math. (2) 156:1 (2002), 115–154. MR Zbl

[Ribet 1985] K. A. Ribet, “On l-adic representations attached to modular forms, II”, Glasgow Math. J. 27 (1985), 185–194. MR
Zbl

[Saxl and Seitz 1997] J. Saxl and G. M. Seitz, “Subgroups of algebraic groups containing regular unipotent elements”, J. London
Math. Soc. (2) 55:2 (1997), 370–386. MR Zbl

[Serre 1992] J.-P. Serre, Topics in Galois theory, Res. Notes in Math. 1, Jones and Bartlett, Boston, MA, 1992. MR Zbl

[Serre 1996] J.-P. Serre, “Exemples de plongements des groupes PSL2(Fp) dans des groupes de Lie simples”, Invent. Math.
124:1-3 (1996), 525–562. MR Zbl

[Taylor 2003] R. Taylor, “On icosahedral Artin representations, II”, Amer. J. Math. 125:3 (2003), 549–566. MR Zbl

[Weston 2004] T. Weston, “Unobstructed modular deformation problems”, Amer. J. Math. 126:6 (2004), 1237–1252. MR Zbl

[Yun 2014] Z. Yun, “Motives with exceptional Galois groups and the inverse Galois problem”, Invent. Math. 196:2 (2014),
267–337. MR Zbl

Communicated by Michael Rapoport
Received 2018-06-15 Revised 2018-10-18 Accepted 2018-11-20

tang@math.utah.edu Department of Mathematics, University of Utah, Salt Lake City, UT,
United States

mathematical sciences publishers msp

http://dx.doi.org/10.1112/S0010437X10004641
http://msp.org/idx/mr/2660679
http://msp.org/idx/zbl/1194.14036
http://msp.org/idx/arx/1810.05803
http://msp.org/idx/mr/1363495
http://msp.org/idx/zbl/0839.14011
http://dx.doi.org/10.1090/conm/067/902593
http://msp.org/idx/mr/902593
http://msp.org/idx/zbl/0632.14016
http://dx.doi.org/10.24033/bsmf.2445
http://dx.doi.org/10.24033/bsmf.2445
http://msp.org/idx/mr/2017142
http://msp.org/idx/zbl/1060.14063
http://dx.doi.org/10.1007/s40316-015-0050-6
http://msp.org/idx/mr/3512524
http://msp.org/idx/zbl/06676665
http://msp.org/idx/mr/1343976
http://msp.org/idx/zbl/0834.20048
https://tinyurl.com/katzbig
http://dx.doi.org/10.2307/2372999
http://msp.org/idx/mr/0114875
http://msp.org/idx/zbl/0099.25603
http://msp.org/idx/arx/1609.04223
http://www.lmfdb.org
http://msp.org/idx/arx/0705.1348
http://msp.org/idx/mr/1737196
http://msp.org/idx/zbl/0948.11001
http://dx.doi.org/10.1007/s00222-015-0635-3
http://msp.org/idx/mr/3529115
http://msp.org/idx/zbl/1358.11064
http://dx.doi.org/10.2307/3597186
http://msp.org/idx/mr/1935843
http://msp.org/idx/zbl/1076.11035
http://dx.doi.org/10.1017/S0017089500006170
http://msp.org/idx/mr/819838
http://msp.org/idx/zbl/0596.10027
http://dx.doi.org/10.1112/S0024610797004808
http://msp.org/idx/mr/1438641
http://msp.org/idx/zbl/0955.20033
http://msp.org/idx/mr/1162313
http://msp.org/idx/zbl/0746.12001
http://dx.doi.org/10.1007/s002220050062
http://msp.org/idx/mr/1369427
http://msp.org/idx/zbl/0877.20033
http://dx.doi.org/10.1353/ajm.2003.0021
http://msp.org/idx/mr/1981033
http://msp.org/idx/zbl/1031.11031
http://dx.doi.org/10.1353/ajm.2004.0052
http://msp.org/idx/mr/2102394
http://msp.org/idx/zbl/1071.11027
http://dx.doi.org/10.1007/s00222-013-0469-9
http://msp.org/idx/mr/3193750
http://msp.org/idx/zbl/1374.14013
mailto:tang@math.utah.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Akshay Venkatesh Institute for Advanced Study, USA

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Melanie Matchett Wood University of Wisconsin, Madison, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US $385/year for the electronic version, and $590/year (+$60, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 13 No. 6 2019

1243Positivity functions for curves on algebraic varieties
BRIAN LEHMANN and JIAN XIAO

1281The congruence topology, Grothendieck duality and thin groups
ALEXANDER LUBOTZKY and TYAKAL NANJUNDIAH VENKATARAMANA

1299On the ramified class field theory of relative curves
QUENTIN GUIGNARD

1327Blow-ups and class field theory for curves
DAICHI TAKEUCHI

1353Algebraic monodromy groups of l-adic representations of Gal(Q/Q)

SHIANG TANG

1395Weyl bound for p-power twist of GL(2) L-functions
RITABRATA MUNSHI and SAURABH KUMAR SINGH

1415Examples of hypergeometric twistor D-modules
ALBERTO CASTAÑO DOMÍNGUEZ, THOMAS REICHELT and CHRISTIAN SEVENHECK

1443Ulrich bundles on K3 surfaces
DANIELE FAENZI

1455Unlikely intersections in semiabelian surfaces
DANIEL BERTRAND and HARRY SCHMIDT

1475Congruences of parahoric group schemes
RADHIKA GANAPATHY

1501An improved bound for the lengths of matrix algebras
YAROSLAV SHITOV

A
lgebra

&
N

um
ber

Theory
2019

Vol.13,
N

o.6

http://dx.doi.org/10.2140/ant.2019.13.1243
http://dx.doi.org/10.2140/ant.2019.13.1281
http://dx.doi.org/10.2140/ant.2019.13.1299
http://dx.doi.org/10.2140/ant.2019.13.1327
http://dx.doi.org/10.2140/ant.2019.13.1353
http://dx.doi.org/10.2140/ant.2019.13.1395
http://dx.doi.org/10.2140/ant.2019.13.1415
http://dx.doi.org/10.2140/ant.2019.13.1443
http://dx.doi.org/10.2140/ant.2019.13.1455
http://dx.doi.org/10.2140/ant.2019.13.1475
http://dx.doi.org/10.2140/ant.2019.13.1501

	1. Introduction
	2. Constructions of residual representations
	2A. Constructions based on the Weyl groups
	2A1. Some group-theoretic results
	2A2. Some results in the inverse Galois theory
	2A3. SLn
	2A4. Sp2n
	2A5. Spin2n and Spin2n+1
	2A6. E7sc

	2B. The principal GL2 construction

	3. Ramakrishna's method and its variants
	3A. Ramakrishna's method
	3A1. Ramakrishna deformations
	3A2. The global argument

	3B. A variant of the global argument
	3C. Deforming principal GL2
	3D. Removing the congruence conditions on l

	4. Simple, simply connected groups as monodromy groups
	4A. Local deformation conditions
	4A1. The archimedean place
	4A2. The place l
	4A3. A zero-dimensional deformation
	4A4. Steinberg deformations
	4A5. Minimal prime to l deformations

	4B. Deforming 6mu mod4mup Galois representations
	4B1. Weyl group case
	4B2. Principal GL2 case
	4B3. SL2


	5. Connected reductive groups as monodromy groups
	Acknowledgement
	References
	
	

