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We study the parity of 2-Selmer ranks in the family of quadratic twists of a fixed principally polarized
abelian variety over a number field. Specifically, we determine the proportion of twists having odd
(respectively even) 2-Selmer rank. This generalizes work of Klagsbrun–Mazur–Rubin for elliptic curves
and Yu for Jacobians of hyperelliptic curves. Several differences in the statistics arise due to the possibility
that the Shafarevich–Tate group (if finite) may have order twice a square. In particular, the statistics for
parities of 2-Selmer ranks and 2-infinity Selmer ranks need no longer agree and we describe both.
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1. Introduction

In this paper we study how various invariants of principally polarized abelian varieties behave under
quadratic twist.

Our first result determines the distribution of the parities of 2-Selmer ranks in the quadratic twist family
of an arbitrary principally polarized abelian variety. Specifically, for a number field K (with absolute
Galois group G K ) and real number X > 0 set

C(K , X)= {χ ∈ Homcnt(G K , {±1}) : Norm(p) < X for all primes p at which χ ramifies}.
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Theorem 1.1. Let A/K be a principally polarized abelian variety and let

ε : Gal(K (A[2])/K )→ {±1}

be the map

σ 7→ (−1)dimF2 A[2]σ .

(i) If ε is a homomorphism then, for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimF2 Sel2(A/K )

· δ

2

where δ is a finite product of explicit local terms δv (see the statement of Theorem 10.13 for their
definition).

(ii) If ε fails to be a homomorphism then, for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(Here for χ ∈ Homcnt(Gal(K/K ), {±1}) we let Aχ/K denote the quadratic twist of A by χ .)

Theorem 1.1 is known for elliptic curves by work of Klagsbrun, Mazur and Rubin [2013, Theorem A]
and, more generally, for Jacobians of odd degree hyperelliptic curves by work of Yu [2016, Theorem 1].
These previous results both fall into case (i) of Theorem 1.1, thus the failure of ε to be a homomorphism
forcing parity in the distribution is a phenomenon new to this work. Despite this, case (ii) of Theorem 1.1
is in some sense the “generic” case since if Gal(K (A[2])/K ) is the full symplectic group Sp2g(F2) for
g = dim A ≥ 3 then the simplicity of Sp2g(F2) prevents ε from being a homomorphism. For a discussion
of when ε is or is not a homomorphism for various families of abelian varieties, see Section 10C.

In the two previously known cases above, finiteness of the 2-primary subgroup of the Shafarevich–Tate
group is known to imply that the parity of the 2-Selmer rank agrees with that of the Mordell–Weil rank, so
that Theorem 1.1 is conjecturally satisfied by Mordell–Weil ranks also. For general principally polarized
abelian varieties, however, this need not be true due to a phenomenon first observed by Poonen and Stoll
[1999]: the 2-primary subgroup of the Shafarevich–Tate group, if finite, need not have square order. Thus
to see how one expects the parity of Mordell–Weil ranks to behave in quadratic twist families we also
prove a version of Theorem 1.1 for 2∞-Selmer ranks (by definition the 2∞-Selmer rank, denoted rk2,
is equal to the sum of the Mordell–Weil rank and the (conjecturally trivial) Z2-corank of the 2-primary
subgroup of the Shafarevich–Tate group).

Theorem 1.2. Let A/K be a principally polarized abelian variety. Then, for all sufficiently large X > 0,

|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)rk2(A/K )

· κ

2

where κ is an explicit finite product of local terms κv given in Definition 10.21.
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We remark that if dim A is odd and K has a real place then κ = 0. In general however κ is often
nonzero: see [Klagsbrun et al. 2013, Example 7.11] for an example of an elliptic curve for which κ is
dense in [−1, 1] as the base field K varies, and [Yu 2016, Proposition 8.1] for an example of an abelian
surface over Q for which κ = 1.

Combining Theorems 1.1 and 1.2 we see that the distribution of parities of 2-Selmer ranks and
2∞-Selmer ranks in general behave quite differently, as the following example illustrates.

Example 1.3 (see Example 10.24). Let J/Q be the Jacobian of the genus 2 hyperelliptic curve C : y2
=

x6
+ x4
+ x+3. Then the function ε is not a homomorphism for J/Q so that half of the 2-Selmer ranks of

the quadratic twists of J are even and are half odd. On the other hand, J has κ = 3
16 and odd 2∞-Selmer

rank, so that 19
32 of the twists of J have even 2∞-Selmer rank and 13

32 have odd 2∞-Selmer rank.

In fact, in the case where ε fails to be a homomorphism we show that the parity of the 2∞-Selmer
ranks behaves in some sense independently of the parity of the 2-Selmer ranks. See Remark 10.26 for the
proof of this statement and Corollary 10.29 for a description of the joint distribution of the parities of
2-Selmer ranks and 2-infinity Selmer ranks in all cases.

A key step in passing between Theorem 1.1 and Theorem 1.2 is the study of how the “nonsquare order
Shafarevich–Tate group” phenomenon behaves under quadratic twist. Our main result here is:

Theorem 1.4. Let A/K be an abelian variety equipped with a principal polarization λ defined over K
and let χ ∈ Homcnt(G K , {±1}) correspond to a quadratic extension L/K .

Then dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] ≡ 0 (mod 2) if and only if∑
v nonsplit in L/K

invv g(A/Kv, λ, χv)= 0 in Q/Z

where the local terms g(A/Kv, λ, χv) ∈ Br(Kv)[2] are given in Definition 5.15. (Here χv denotes the
restriction of χ to the completion Kv and Xnd(A/K ) denotes the quotient of the Shafarevich–Tate group
of A/K by its maximal divisible subgroup.)

In particular, Theorem 1.4 shows that the sum

dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] (mod 2)

is controlled by purely local behavior. In the case where A/K is the Jacobian of a curve, it is a result of
Poonen and Stoll [1999, Corollary 12] that this is in fact true for the parity of dimF2 Xnd(A/K )[2] itself,
but whether or not this holds for an arbitrary principally polarized abelian variety remains open.

In general, the definition of the local terms g(A/Kv, λ, χv) appearing in Theorem 1.4 is somewhat
involved but if the principal polarization λ on A/Kv is induced by a Kv-rational symmetric line bundle
Lv then they take a simple form. Specifically, associated to Lv is a Gal(Kv/Kv)-invariant quadratic
refinement q of the Weil pairing on A[2] (we review this classical construction in Section 4B). As a
consequence, Gal(Kv/Kv) acts on A[2] through the orthogonal group O(q). In particular we obtain a
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quadratic character ψv of Kv as the composition

ψv : Gal(Kv/Kv)→ O(q)/SO(q)∼= {±1}.

We then have
g(A/Kv, λ, χv)= χv ∪ψv ∈ Br(Kv).

This allows the explicit evaluation of g(A/Kv, λ, χv) for archimedean places and for nonarchimedean
places v -2 at which A has good reduction (Proposition 5.16). The implications for arithmetic of the
difference in characteristic 2 between quadratic forms and symmetric bilinear pairings will be a recurring
theme throughout this paper.

Theorem 1.4 may also be used to prove the analogue of Theorem 1.1 for the parity of the dimension of
the 2-torsion of the Shafarevich–Tate group in the family of quadratic twists of a principally polarized
abelian variety. This quantifies the failure of the Shafarevich–Tate group to have square order in the
family of quadratic twists. See Theorem 10.27 for the precise statement.

To explain the remaining results of the paper we briefly indicate how we prove Theorem 1.1. As
in [Klagsbrun et al. 2013], which proves the elliptic curve case, we deduce Theorem 1.1 from a more
general theorem that determines the distribution of parities of ranks of certain Selmer groups Sel(T, χ)
associated to a finite dimensional Fp-vector space T equipped with a Gal(K/K )-action, an alternating
pairing, and abstract “twisting data”. The general result is Theorem 7.4, the case dim T = 2 of which
combines Theorem 7.6 and Theorem 8.2 of [loc. cit.]. Taking T = A[2] along with the Weil pairing and
the twisting data detailed in Section 10 recovers Theorem 1.1.

On the other hand, taking p>2 and T = A[p] for a principally polarized abelian variety A/K , along with
the twisting data described in Section 11, enables us to prove an analogue of Theorem 1.1 which applies
to Selmer groups of certain p-cyclic twists of Ap−1 (again, the case where A is an elliptic curve is shown
by Klagsbrun, Mazur and Rubin [2013]). To state the result, let C(K ) and C(K , X) for p> 2 be defined in
the identical way to p = 2, replacing Homcnt(Gal(K/K ), {±1}) (the group of quadratic characters) with
the group Homcnt(Gal(K/K ),µp) (of p-cyclic characters). For χ ∈ C(K ) nontrivial, let L = K ker(χ) and
denote by Aχ/K the p− 1-dimensional abelian variety defined as the kernel of the norm homomorphism
ResL/K A→ A (here ResL/K denotes the restriction of scalars from L to K ). There is a natural inclusion of
Z[µp] into EndK (Aχ ) and, in this way, any generator π of the unique prime of Z[µp] lying over p yields
a self-isogeny of Aχ . Denote by Selπ (Aχ/K ) the associated π -Selmer group which may be shown to be
independent of the choice of π (see Section 11 for more details of the above constructions). We then have:

Theorem 1.5. Let p be an odd prime, K a number field, A/K a principally polarized abelian variety,
and 6 the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing p. Define ε : Gal(K (A[p])/K )→ {±1} by σ 7→ (−1)dimFp A[p]σ .

(i) Suppose ε is trivial when restricted to Gal(K (A[p])/K (µp)). Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Selp(A/K )

· δ

2
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where δ is an explicit finite product of local terms δv (see the statement of Corollary 11.6 for their
definition). Moreover (unlike the case p = 2) δ is always nonzero.

(ii) If ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

When A is an elliptic curve and p > 2, ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) if
and only if p divides [K (A[p]) : K ] (see [Klagsbrun et al. 2013, Lemma 4.3]), so now both cases of
Theorem 1.5 can occur. In particular, we see that allowing the dimension of A to be arbitrary uncovers a
more uniform picture between p = 2 and p > 2 than was visible for elliptic curves. See Remark 11.8 for
a discussion on conditions on the Gal(K/K )-action on A[p] which result in case (i) and (ii), respectively,
of Theorem 1.5. We simply note here that if the Galois action on A[p] is as large as possible, so that
Gal(K (A[p])/K ) is isomorphic to the general symplectic group GSp2g(Fp) for g = dim A, then case (ii)
applies.

Finally, we remark that a key step in proving Theorem 7.4 (the version of Theorems 1.1 and 1.5 for
general T ) is, for a character χ , to describe the quantity

dimFp Sel(T, χ)− dimFp Sel(T,1) (mod 2)

as a sum of local terms (see Theorem 6.12). Upon taking T = A[2] for a principally polarized abelian
variety A/K one obtains (Theorem 10.12) a local formula for the difference between the parity of the
2-Selmer rank of A/K and the 2-Selmer rank of the quadratic twist Aχ/K . This generalizes a theorem
of Kramer [1981, Theorem 1] for elliptic curves, and Yu [2016, Theorem 5.11] for Jacobians of odd
degree hyperelliptic curves. Combining this with Theorem 1.4, one obtains (Theorem 10.20) a purely
local formula for the parity of the 2∞-Selmer rank of A over the quadratic extension cut out by χ . Such
local formulae for (the parity of) 2∞-Selmer ranks have applications to the 2-parity conjecture and we
plan to examine this in future work.

Layout of the paper. In Section 2 we review some standard results in group cohomology which will be
used in the sequel. In Section 3 we review and study quadratic forms on finite dimensional F2-vector
spaces. The main result is Proposition 3.9 which forms a key technical step in the proof of Theorem 1.4.
Section 4 recalls the constructions of certain quadratic forms associated to abelian varieties and examines
how these behave under quadratic twist. Of particular importance is Lemma 4.20 which plays a crucial
role in associating twisting data to the group of 2-torsion points of a principally polarized abelian variety.
Theorem 1.4 is proven in Section 4. The analogue of Theorems 1.1 and 1.5 for general T is proven in
Sections 6–9 which broadly follow the layout and strategy of [Klagsbrun et al. 2013, §3–4 and §6–8].
Specifically, in Section 6 we recall the notions of metabolic structure and twisting data from [loc. cit.]
and generalize them to arbitrary (finite) dimensional Fp-vector spaces, as well as defining the associated
Selmer groups. Section 7 states the main result, Theorem 7.4, and proves the analogue of case (i) of
Theorems 1.1 and 1.5 in this setting. Section 8 uses class field theory to produce certain global characters
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with specified local behavior and is a more or less direct generalization of [Klagsbrun et al. 2013, §6],
albeit with different proofs. The results of Section 8 are then applied in Section 9 to prove the remaining
cases of Theorem 7.4. Section 10 associates a metabolic structure and twisting data to the 2-torsion in a
principally polarized abelian variety and deduces Theorems 1.1 and 1.2. Finally, Section 11 associates a
metabolic structure and twisting data to the p-torsion in a principally polarized abelian variety for p odd
and deduces Theorem 1.5.

Notation. For a group G acting on an abelian group M , for σ ∈ G we write

Mσ
:= {m ∈ M : σ(m)= m}.

For a field F we denote its separable closure by F , its absolute Galois group by G F and, for p different
from the characteristic of F , we denote by µp the G F -module of p-th roots of unity in F . We denote by
Br(F) the Brauer group of F .

For an abelian variety A/F we write A∨/F for the dual of A. A principally polarized abelian variety
over F is a pair (A/F, λ) consisting of an abelian variety A/F and a principal polarization λ : A→ A∨

defined over F . For a quadratic character χ ∈ Homcnt(G F , {±1}) the quadratic twist of A by χ is the
pair (Aχ , ψ) consisting of an abelian variety Aχ/F and an F-isomorphism ψ : A → Aχ such that
ψ−1ψσ = [χ(σ)] for all σ ∈ G F .

For a number field K we denote by MK the set of places of K and write Kv for the completion of
K at v ∈ MK . We denote by invv : Br(Kv)→Q/Z the local invariant map and, if v is nonarchimedean,
denote by K ur

v the maximal unramified extension of Kv. We implicitly fix embeddings K ↪→ Kv for
each v ∈ MK and view G Kv

as a subgroup of G K for each v. In particular, for a (finite) Galois extension
L/K of number fields and a nonarchimedean place v ∈ MK unramified in L/K we have a well defined
Frobenius element Frobv in Gal(L/K ).

For a G K -module M , the injections G Kv
↪→G K induce restriction maps on cohomology H i (K ,M)→

H i (Kv,M) for each i ≥ 0 and v ∈ MK . For a cocycle ξ we write ξv for its restriction to Kv (see Section 2
for our notation and conventions concerning group cohomology). We define, for v a nonarchimedean
place of K ,

H i
ur(Kv,M) := ker(H i (Kv,M) res

−→ H i (K ur
v ,M)).

2. Group cohomology and group extensions

In the following sections we will make several computations involving group cohomology. Here we set
up the relevant notation and review some basic results. All material in this section is standard; see e.g.,
[Atiyah and Wall 1967].

2A. Group cohomology. Let G be a finite group and M a G-module. For i ≥ 0 we write C i (G,M) for
the group of i-cochains with values in M and d : C i (G,M)→ C i+1(G,M) for the usual differential.
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When i = 0 we have (dm)(g)= gm−m for m ∈ M = C0(G,M) and g ∈ G, and when i = 1 we have

(d f )(g, h)= f (g)+ g f (h)− f (gh)

for f ∈ C1(G,M) and g, h ∈ G. We write Z i (G,M) and Bi (G,M) for the group of i-cocycles and
i-coboundaries, respectively, with values in M . We will always think of the i-th-cohomology group
H i (G,M) as the quotient Z i (G,M)/Bi (G,M). When making computations involving group cohomol-
ogy, we’ll make the convention that fraktur letters such as a, b etc. denote cohomology classes and that the
corresponding lower case Roman letters a, b etc., denote cocycles representing these cohomology classes.
More generally, if G is a profinite group we consider continuous cochains, cocycles and coboundaries,
using the same notation and conventions to talk about them.

2B. Cup product on cochains. Let G be a finite (or profinite) group and let M and N be G-modules.
Then for i, j ≥ 0 the cup-product map

∪ : C i (G,M)×C j (G, N )→ C i+ j (G,M ⊗ N )

is defined by

(a ∪ b)(g1, . . . , gi+ j )= a(g1, . . . , gi )⊗ g1 · · · gi b(gi+1, . . . , gi+ j ).

For a ∈ C i (G,M) and b ∈ C j (G, N ) we have the equality

d(a ∪ b)= da ∪ b+ (−1)i a ∪ db (2.1)

inside C i+ j+1(G,M ⊗ N ).
For i, j ≥ 0 the cup product map above induces a cup product map on cohomology

∪ : H i (G,M)× H j (G, N )→ H i+ j (G,M ⊗ N )

which satisfies a∪ b= (−1)i jb∪ a.

2C. Group extensions. Let G be a finite group and M an abelian group with trivial G-action. In what
follows we write the group law on G multiplicatively and the group law on M additively. Let a∈H 2(G,M)
and a be a 2-cocycle representing a. Define a group structure on the set G×M by the rule

(g,m) · (g′,m′)= (gg′,m+m′+ a(g, g′))

and let Ea denote the resulting group. The maps α : M → Ea and β : Ea → G defined by m 7→
(1,m− a(1, 1)) and (g,m) 7→ g respectively give rise to the short exact sequence

0→ M α
−→ Ea

β
−→G→ 0

realizing Ea as a central extension of G by M . The isomorphism class of this extension is independent
of the choice of cocycle representing a and the sequence splits if and only if a is the trivial class
in H 2(G,M). More specifically, let s : G → Ea denote the set section g 7→ (g, 0) to β. Then if
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φ : Ea→ M is a homomorphism splitting the exact sequence (i.e., giving a section to α) then the function
f = φ ◦ s ∈ C1(G,M) is a 1-cochain satisfying d f = a.

Remark 2.2. The above correspondence in fact gives rise to a bijection between elements of H 2(G,M)
and the set of isomorphism classes of central extensions of G by M , and one can generalize this
correspondence to include the case where the action of G on M is nontrivial (though now the relevant
extensions are, in general, no longer central). See [Atiyah and Wall 1967, §2] for more details.

3. Quadratic forms on finite dimensional F2-vector spaces

The aim of this section is to prove Propositions 3.9 and 3.10 which are needed for the proof of Theorem 1.4.
In Sections 3A, 3B and 3C we review the theory of quadratic forms on finite dimensional F2-vector spaces.
The material in Sections 3A, and 3B is standard, see e.g., [Scharlau 1985, Section 9.4]. In Section 3C we
review a construction due to Pollatsek [1971] (given in the discussion preceding Theorem 1.11 of that
work) which we use in the proof of Proposition 3.9.

For the rest of this section fix a finite dimensional F2-vector space V equipped with a nondegenerate
alternating pairing

〈 · , · 〉 : V × V → F2

(so in particular dim V is even). We denote by Sp(V ) the symplectic group of linear automorphisms of V
preserving the pairing.

3A. Quadratic refinements and the class c ∈ H1(Sp(V ), V ).

Definition 3.1 (quadratic refinement). A function q : V → F2 is called a quadratic refinement of 〈 · , · 〉 if
we have

q(v+ v′)+ q(v)+ q(v′)= 〈v, v′〉

for all v, v′ ∈ V .

Let Q denote the set of all quadratic refinements of 〈 · , · 〉. It is a principal homogeneous space for V
where, for v ∈ V , we define q + v ∈Q by setting

(q + v)(v′)= q(v′)+〈v, v′〉

for v′ ∈ V . The symplectic group Sp(V ) acts on the set of quadratic refinements via q 7→ q ◦ σ−1 (for
σ ∈ Sp(V )). This action is compatible with addition by elements of V and so associated to Q is a class

c ∈ H 1(Sp(V ), V ).

Explicitly, picking a quadratic refinement q and defining λ : V → V ∗ := Hom(V, F2) to be the map
v 7→ 〈v,−〉, the function cq : Sp(V )→ V given by setting

cq(σ )= λ
−1(q ◦ σ−1

− q)

is a 1-cocycle representing c.
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Remark 3.2. Let Alt denote the group of (possibly degenerate) alternating pairings on V under addition.
It has an action of Sp(V ) given by σ · 〈〈 · , · 〉〉 = 〈〈σ−1(·), σ−1(·)〉〉. Similarly, let Quad denote the group
of quadratic forms on V under addition which also carries an action of Sp(V ) via σ · q = q ◦ σ−1. Then
we have a short exact sequence of Sp(V )-modules

0→ V ∗→ Quad → Alt → 0 (3.3)

where the map V ∗→Quad is inclusion and the map Quad →Alt sends a quadratic form to its associated
pairing. The associated long exact sequence for cohomology gives a map

δ : H 0(Sp(V ),Alt )→ H 1(Sp(V ), V ∗).

Our pairing 〈 · , · 〉 is an element of H 0(Sp(V ),Alt ) and the class c ∈ H 1(Sp(V ), V ) constructed above is
the image of 〈 · , · 〉 under δ, once we use the map λ above to identify H 1(Sp(V ), V ) with H 1(Sp(V ), V ∗).

Remark 3.4. It is shown in [Pollatsek 1971, Theorems 4.1 and 4.4] that if dim(V )≥4 then H 1(Sp(V ),V )∼=
Z/2Z, generated by c.

3B. Orthogonal groups, special orthogonal groups and the Dickson homomorphism. For a given qua-
dratic refinement q, denote by O(q) the corresponding orthogonal group of linear automorphisms
preserving q rather than just the pairing. The orthogonal group O(q) has an index 2 subgroup SO(q)
which is by definition the kernel of the Dickson homomorphism, whose definition we now recall. Let C(q)
denote the Clifford algebra associated to q (see [Scharlau 1985, Definition 9.2.1]), C0(q) its even graded
subalgebra and Z(q) the center of C0(q). Then Z(q) is a rank 2 étale algebra over F2 (see Theorem 9.4.8
of [loc. cit.]). Since O(q) acts naturally on C(q) and preserves the grading, it acts on Z(q) by F2-algebra
homomorphisms. Noting that the automorphism group of any rank 2 étale algebra over F2 (or indeed any
field) is canonically isomorphic to Z/2Z, we obtain a homomorphism dq : O(q)→ Z/2Z, the Dickson
homomorphism.

We will also need the following alternative characterization of the Dickson homomorphism.

Proposition 3.5. Let q be a quadratic refinement of 〈 · , · 〉 and σ ∈ O(q). Then

dq(σ )= dim V σ (mod 2).

Proof. This is [Dye 1977, Theorem 3]. �

3C. An extension of the Dickson homomorphism to the full symplectic group. The following is a
version of a construction due to Pollatsek [1971] which gives an extension of the Dickson homomorphism to
the whole of Sp(V ). We caution however that the resulting function Sp(V )→Z/2Z is not a homomorphism
(we cannot ask for this since for dim V ≥ 6 the group Sp(V ) is simple).

Construction 3.6 (Pollatsek). Fix a quadratic refinement q of 〈 · , · 〉. Set U = F2
2 equipped with its unique

nondegenerate alternating form 〈 · , · 〉U . Further, let qU denote the unique quadratic refinement of 〈 · , · 〉U
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with Arf invariant 1. Thus for (λ, λ′) ∈U we have

qU ((λ, λ
′))= λ+ λ′+ λλ′.

Let x = (1, 0) and y = (0, 1) so that qU (x)= 1= qU (y) and 〈x, y〉U = 1. Now let W := V ⊕U be the
orthogonal direct sum of V and U , so that W comes equipped with the quadratic form qW := q + qU ,
whose associated (nondegenerate, alternating) pairing is 〈 · , · 〉W := 〈 · , · 〉 + 〈 · , · 〉U .

Now given g = (σ, α) ∈ Sp(V )× F2, define the linear automorphism φq(g) of W by setting

φq(g)(x)= x and φq(g)(y)= αx + cq(σ )+ y,

and for v ∈ V ,

φq(g)(v)= σ(v)+〈cq(σ ), σ (v)〉x

and extending linearly.

A key property of this construction, as shown in the discussion preceding [Pollatsek 1971, The-
orem 1.11], is that for each g ∈ Sp(V )× F2 we have φq(g) ∈ O(qW ). Moreover, Pollatsek shows in
[loc. cit.] that for each σ ∈Sp(V ), there is a unique α(σ)∈ F2 such that φq((σ, α(σ )))∈SO(qW ). One has
α(σ)= dq(σ ) for all σ ∈ O(q), so the map σ 7→ α(σ) gives an extension of the Dickson homomorphism
to the full symplectic group Sp(V ).

3D. Triviality of c∪ c. The pairing 〈 · , · 〉 induces a cup-product map

∪ : H 1(Sp(V ), V )× H 1(Sp(V ), V )→ H 2(Sp(V ), F2).

We now use the construction of the previous subsection to analyze the element c∪ c ∈ H 2(Sp(V ), F2).

Notation 3.7. Given a quadratic refinement q ∈Q, let Eq denote the central extension of Sp(V ) by F2

corresponding to the 2-cocycle cq ∪ cq , so that as a set Eq = Sp(V )× F2, and is equipped with the group
structure

(σ, α) · (σ ′, α′)= (σσ ′, α+α′+ (cq ∪ cq)(σ, σ
′)).

We then have:

Lemma 3.8. The function φq of Construction 3.6 is a homomorphism Eq → O(qW ).

Proof. As above, φq gives a map from Eq into O(qW ). An easy computation shows additionally that it is
a homomorphism. �

We may now prove the main result of the section.

Proposition 3.9. For each quadratic refinement q ∈Q there is a unique function fq : Sp(V )→ F2 such
that d fq = cq ∪ cq ∈ Z2(Sp(V ), F2) and such that the restriction of fq to the orthogonal group O(q) is
the Dickson homomorphism. In particular, we have

c∪ c= 0 ∈ H 2(Sp(V ), F2).
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Proof. We first show uniqueness. If f ′q is another function with d f ′q = cq ∪ cq then the difference fq − f ′q
is a homomorphism from Sp(V ) to F2. If dim V ≥ 6 then Sp(V ) is simple and hence fq = f ′q . If dim V
(which is necessarily even) is 2 or 4 then Sp(V ) has a unique index 2 subgroup and hence a unique
nontrivial homomorphism to F2. In each case this homomorphism is nontrivial when restricted to O(q)
for each quadratic refinement q , whence the result.

In the notation of Construction 3.6, associated to qW is the Dickson homomorphism

dqW : O(qW )→ F2.

We claim that dqW ◦φq : Eq → F2 gives a section to the map F2→ Eq sending α to (1, α), thus splitting
the extension Eq . Indeed, let α ∈ F2. Then φq((1, α)) = idV ⊕mα where mα ∈ O(qU ) is defined by
mα(x)= x , mα(y)= αx + y. One sees (either using the definition in terms of Clifford algebras, or by
applying Proposition 3.5) that idV ⊕mα is in SO(qW ) if and only if α = 0, whence dqW ((1, α))= α as
desired.

It now follows that the function fq : Sp(V )→ F2 defined by fq(σ ) = (dqW ◦ φq)((σ, 0)) satisfies
d fq = cq ∪ cq (see Section 2C and note that (cq ∪ cq)(1, 1)= 0).

It remains to show that the restriction of fq to O(q) is the Dickson homomorphism dq . To see this
note that for any σ ∈ O(q) we have cq(σ )= 0 and so

φq((σ, 0))= σ ⊕ idU .

Since this is in SO(qW ) if and only if σ is in SO(q) (again by looking at Clifford algebras or using
Proposition 3.5), we have the claim. �

We now describe how fq changes upon changing the quadratic refinement q .

Proposition 3.10. Let q and q ′ be two quadratic refinements of 〈 · , · 〉 and let v∈V be such that q ′=q+v,
so that cq ′ = cq + dv. Then we have

fq ′ = fq + cq ∪ v+ v ∪ cq + v ∪ dv

as cochains in C1(Sp(V ), F2).

Proof. One readily computes

d( fq + cq ∪ v+ v ∪ cq + v ∪ dv)= cq ′ ∪ cq ′,

so it remains to show that the restriction of fq + cq ∪ v + v ∪ cq + v ∪ dv to O(q ′) is the Dickson
homomorphism dq ′ . To do this we’ll use the characterization of the Dickson homomorphism given in
Proposition 3.5.

Fix σ ∈ O(q ′). Then cq(σ )= (dv)(σ ). In the notation of Construction 3.6, given w ∈W and writing
w = z+ ε1x + ε2 y with z ∈ V and ε1, ε2 ∈ F2, one sees that w is fixed by φq((σ, 0)) if and only if

σ(z)− z = ε2(dv)(σ ) (3.11)
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and
〈(dv)(σ ), σ (z)〉 = 0. (3.12)

Now (3.11) is equivalent to z = z′+ ε2v for some z′ ∈ V σ . If z has this form, then using invariance of z′

under σ one computes
〈(dv)(σ ), σ (z)〉 = ε2〈σ(v), v〉.

Thus if 〈σ(v), v〉 = 0 then the second condition (3.12) is redundant, whilst if 〈σ(v), v〉 = 1 then it may
be replaced with the condition ε2 = 0. We conclude that

dim W φq ((σ,0)) ≡ dim V σ
+〈σ(v), v〉 (mod 2)

and hence (using Proposition 3.5)

fq(σ )= dq ′(σ )+〈σ(v), v〉 = dq ′(σ )+ (v ∪ dv)(σ ).

Thus the restriction of fq to O(q ′) is equal to dq ′ + v∪dv. Noting also that the restriction of cq to O(q ′)
is equal to dv the result follows easily. �

Remark 3.13. Let Ṽ denote the group whose underlying set is V × F2, endowed with the group law

(v, α) · (v′, α′)= (v+ v′, α+α′+〈v, v′〉).

Then Ṽ sits in a short exact sequence

0→ F2→ Ṽ → V → 0, (3.14)

the map F2→ Ṽ sending α to (0, α) and the map Ṽ → V being projection onto the first factor. Making
Sp(V ) act trivially on F2 and diagonally on Ṽ this sequence becomes an exact sequence of Sp(V )-
modules. Using the relation d fq = cq ∪ cq one can show that for each quadratic refinement q the function
c̃q : Sp(V )→ Ṽ defined by

c̃q(σ )= (cq(σ ), fq(σ ))

is a 1-cocycle. One may then use the relationship between fq and f ′q given in Proposition 3.10 to show
that the class c̃ of c̃q in H 1(Sp(V ), Ṽ ) does not depend on q so that the results of this section prove that
c ∈ H 1(Sp(V ), V ) admits a canonical lift to H 1(Sp(V ), Ṽ ). (It is shown in [Poonen and Rains 2011,
Corollary 2.8(b)] that the connecting homomorphism H 1(Sp(V ), V )→ H 2(Sp(V ), F2) arising from
(3.14) sends a ∈ H 1(Sp(V ), V ) to a∪ a, so that the triviality of c∪ c is equivalent to the existence of
some lift of c to H 1(Sp(V ), Ṽ ).)

4. Quadratic forms associated to abelian varieties

In this section we study the behavior under quadratic twist of certain quadratic forms associated to
abelian varieties. Though several results in this section will be used in what follows, the most important is
Lemma 4.20 which provides the technical input required to generalize [Yu 2016, Theorem 5.10] to the case
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of arbitrary principally polarized abelian varieties (this is done in Lemma 10.6). Sections 4A–4C review
some standard results in the theory of abelian varieties as can be found, for example, in [Mumford 1966].

For the rest of this section, fix a field F of characteristic 0 (which for applications will be either a
number field or the completion of one). Let A/F be an abelian variety. For x ∈ A(F) denote by τx the
translation-by-x map τx : A→ A.

4A. Line bundles and self-dual homomorphisms. Let L be a line bundle on A/F . We denote by φL
the homomorphism A→ A∨ sending x ∈ A(F) to the element of A∨(F) corresponding to the line bundle
τ ∗x L⊗L−1. We write K (L) for the kernel of φL. If L is ample then K (L) is a finite subgroup of A.

We have a short exact sequence of G F -modules

0→ A∨(F)→ Pic AF → Homself-dual(AF , A∨F )→ 0, (4.1)

the map A∨(F) → Pic AF being the natural inclusion and the map Pic AF → Homself-dual(AF , A∨
F
)

sending a line bundle L to φL. As in [Poonen and Rains 2011, §3.2], (4.1) induces a short exact sequence
of G F -modules

0→ A∨[2] → Picsym AF → Homself-dual(AF , A∨F )→ 0, (4.2)

where here Picsym AF denotes the group of symmetric line bundles on A (i.e., those satisfying [−1]∗L∼=L).

4B. Quadratic refinements of the Weil pairing on A[2]. Let ( · , · )e2 : A[2] × A∨[2] → µ2 denote the
Weil pairing. It is bilinear, nondegenerate and G F -equivariant. If λ : A→ A∨ is a self-dual homomorphism
then it induces an alternating pairing

( · , · )λ : A[2]× A[2] → µ2

defined by (a, b)λ = (a, λ(b))e2 for a, b ∈ A[2]. If λ is defined over F then ( · , · )λ is G F -invariant. In
general, for a line bundle L on A set ( · , · )L := ( · , · )φL .

Definition 4.3. Let L be a symmetric line bundle on A. Define the map qL : A[2] → µ2 as follows.
Given x ∈ A[2], we have x∗[−1]∗L= x∗L. In particular, the restriction of the normalized1 isomorphism
τ : L−→∼ [−1]∗L to x is multiplication by an element ηx ∈ F× on x∗L. One in fact has ηx ∈ µ2 and we
set qL(x) := ηx .

Remark 4.4. The map qL defined above is denoted eL
∗

in [Mumford 1966, fourth definition in §2].

The following well known lemma summarizes the properties of qL.

Lemma 4.5. Let L be a symmetric line bundle on A. Then we have:

(i) If L∼= L′ then qL = qL′ .

1Writing e ∈ A(F) for the identity section, an isomorphism τ : L−−→∼ [−1]∗L is called normalized if

e∗(τ ) : e∗L−−→∼ e∗[−1]∗L= e∗L

is the identity. There is a unique such τ for each symmetric line bundle (see [Mumford 1966, §2]).
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(ii) The function qL is a quadratic form on A[2] (valued in µ2) whose associated bilinear pairing is
( · , · )L.

(iii) If M is another symmetric line bundle then qL⊗M = qL · qM.

Proof. Part (i) is immediate. For parts (ii) and (iii) see e.g., [Mumford 1966, §2; Poonen and Rains 2011,
Proposition 3.2]. �

For a principal polarization λ : A→ A∨ defined over F , we can use Lemma 4.5 to give a geometric
interpretation of the principal homogeneous space for A[2] associated to the set of quadratic refinements
of the Weil pairing ( · , · )λ on A[2].

Definition 4.6. Let λ : A → A∨ be a self-dual homomorphism defined over F . We define cλ ∈

H 1(F, A∨[2]) to be the image of λ under the connecting homomorphism in the long exact for Galois
cohomology associated to (4.2). If λ is a principal polarization we will also, by an abuse of notation,
write cλ for the element λ−1(cλ) ∈ H 1(F, A[2]).

Lemma 4.7. Let λ : A→ A∨ be a principal polarization defined over F , so that ( · , · )λ is a nondegenerate,
G F -equivariant, alternating pairing on A[2]. Then G F acts on A[2] through the symplectic group
Sp(A[2]) associated to the pairing ( · , · )λ. Let c ∈ H 1(F, A[2]) be the cohomology class associated to
the set of quadratic refinements of ( · , · )λ as in Section 3A.

Then we have the equality c= cλ inside H 1(F, A[2]).

Proof. We remark that this is implicit in [Poonen and Rains 2011, §3]. First note that by Lemma 4.5(ii), for
any symmetric line bundle L for which λ= φL, the function qL is a quadratic refinement of ( · , · )λ. The
result now follows either by an explicit computation using the association L 7→ qL or, more conceptually,
from the long exact sequences for cohomology associated to the commutative diagram (16) of [Poonen
and Rains 2011, §3.4], the top row of which is our sequence (4.2) and the bottom row of which is the
exact sequence (3.3) of Remark 3.2. �

4C. Theta groups. In this subsection we suppose that L is an ample line bundle on A so that K (L) is
finite. We recall the definition of the Theta group associated to L (see [Mumford 1966] for more details
of what follows).

Definition 4.8. The Theta group G(L) associated to L is the set of pairs (x, ϕ) where x ∈ K (L) and ϕ is
an isomorphism ϕ : L−→∼ τ ∗x L (over F). The group operation is given by

(x, ϕ) · (x ′, ϕ′)= (x + x ′, τ ∗x ′(ϕ) ◦ϕ
′).

Remark 4.9. If L∼=L′ then fixing an isomorphism α :L−→∼ L′ we obtain an isomorphism G(L)−→∼ G(L′)
given by

(x, ϕ) 7→ (x, τ ∗x (α) ◦ϕ ◦α
−1)

which is independent of α (since any two choices differ by a scalar). As such, G(L) is canonically
isomorphic to G(L′).
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Remark 4.10. The group G(L) sits in a short exact sequence

0→ F×→ G(L)→ K (L)→ 0, (4.11)

the map G(L)→ K (L) being projection onto the first factor and the map F×→ G(L) sending η ∈ F× to
the pair (0, multiplication by η).

Lemma 4.12. We have the following functorial properties of G:

(i) Let A/F and B/F be abelian varieties, let L be an ample line bundle on B and let f : A→ B be an
isomorphism. Then the map f̃ : G( f ∗L)−→∼ G(L) given by

(x, ϕ) 7→ ( f (x), ( f −1)∗(ϕ))

is an isomorphism making the diagram

0 // F× // G( f ∗L)

f̃
��

// K ( f ∗L)

f
��

// 0

0 // F× // G(L) // K (L) // 0

commute.

(ii) Gven abelian varieties A/F, B/F and C/F , isomorphisms f1 : A→ B and f2 : B → C and an
ample line bundle L on C , we have

f̃2 ◦ f1 = f̃2 ◦ f̃1 : G( f ∗1 f ∗2 L)−→∼ G(L).

Proof. In both cases this is a simple computation. We remark that we crucially require that f is an
isomorphism in (i), the situation for a general homomorphism being more subtle. See, for example,
[Mumford 1966, Proposition 2] and the surrounding discussion. �

4D. Theta groups in the main case of interest. Suppose that A is equipped with a fixed principal
polarization λ : A→ A∨ defined over F and take L= (1, λ)∗P where P is the Poincaré line bundle on
A× A∨ (here, for a homomorphism µ : A→ A∨ we denote by (1, µ) : A→ A× A∨ the composition
of the diagonal morphism 1 : A→ A× A with the morphism 1×µ : A× A→ A× A∨). Then L is
an F-rational, ample, symmetric line bundle on A such that φL = 2λ (see [Poonen and Rains 2012,
Remark 4.5]). In particular, we have K (L)= ker(2λ)= A[2].

Since [−1]∗L∼= L we have an induced automorphism [̃−1] of G(L) as in Lemma 4.12.

Lemma 4.13. With L= (1, λ)∗P as above, the automorphism [̃−1] of G(L) is trivial.

Proof. By [Mumford 1966, Proposition 3], if F is any ample symmetric line bundle on A and (x, ϕ)∈G(F)
is such that x ∈ A[2], then the automorphism [̃−1] of G(F) sends (x, ϕ) to (x, qF (x)ϕ).

In particular, since K (L)= A[2] in our case, it suffices to show that qL is trivial. Pick a symmetric
line bundle M such that λ = φM (whilst it may not be possible to choose an F-rational such M, this
is always possible over F). By standard properties of the Poincaré line bundle we have (1×φM)∗P ∼=
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m∗M⊗ p∗1M
−1
⊗ p∗2M

−1, where m : A× A→ A is addition and p1 and p2 denote projection onto the
first and second factors. Pulling back along the diagonal morphism 1 : A→ A× A we obtain

L∼= [2]∗M⊗M−2 ∼=M2

where for the second isomorphism above we use the symmetry of M along with the fact that for any line
bundle F on A we have [2]∗F ∼=F3

⊗[−1]∗F (see e.g., [Milne 1986, Corollary 6.6]). By Lemma 4.5(iii)
we conclude that qL = (qM)

2
= 1 as desired. �

Remark 4.14. As L is F-rational, the group G(L) carries a natural G F -action. Explicitly, for σ ∈ G F

and (x, ϕ) ∈ G(L), we have

σ · (x, ϕ)= (σ (x), σ ∗(ϕ)) ∈ G(σ ∗L)= G(L)

where for the equality G(σ ∗L)= G(L) we combine Remark 4.9 with the assumption that L is F-rational.
In particular, the exact sequence of Remark 4.10 becomes a short exact sequence of G F groups

0→ F×→ G(L)→ A[2] → 0 (4.15)

(we caution here that G(L) is nonabelian). This short exact sequence will be important in what fol-
lows. More specifically, as in [Poonen and Rains 2012, Corollary 4.7], the associated connecting map
H 1(F, A[2])→ H 2(F, F×) is a quadratic form whose associated bilinear pairing is that arising from
cup-product and the Weil pairing ( · , · )λ : A[2]× A[2] → µ2 ↪→ F×.

4E. Quadratic twists. Maintaining the notation of Section 4D (so in particular L = (1, λ)∗P) let χ :
G F→µ2 be a quadratic character. Write (Aχ , ψ) for the quadratic twist of A by χ (so that ψ : A→ Aχ

is an F-isomorphism with ψ−1
◦ψσ = [χ(σ)] for all σ ∈ G F ). We now consider the effect of quadratic

twisting on the constructions appearing earlier in this section. Note that ψ restricts to a G F -equivariant
isomorphism A[2] −→∼ Aχ [2].

Lemma 4.16. The morphism λχ := (ψ
∨)−1λψ−1

: Aχ→ Aχ∨ is a principal polarization defined over F.

Proof. This is a manifestation of the fact that [−1]∗ acts trivially on the Néron–Severi group. More
precisely, one computes immediately that λχ is defined over F , and it’s a polarization since if M
is a line bundle on A (not necessarily F-rational) such that λ = φM then one has λχ = φMχ

where
Mχ = (ψ

−1)∗M. �

More generally, we have:

Lemma 4.17. We have a commutative diagram of G F -modules

0 // Aχ∨[2]

ψ∨

��

// Picsym Aχ
F

ψ∗

��

// Homself-dual(A
χ

F
, Aχ∨

F
)

��

// 0

0 // A∨[2] // Picsym AF
// Homself-dual(AF , A∨

F
) // 0,

where the rightmost vertical map sends µ to ψµψ∨.
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Proof. As with Lemma 4.16 this follows from an explicit computation, and results from the fact that [−1]
acts trivially on each group appearing. �

Corollary 4.18. Let ψ−1 denote the isomorphism H 1(F, Aχ [2])→ H 1(F, A[2]) induced by ψ−1 and let
cλ ∈ H 1(F, A[2]) and cλχ ∈ H 1(F, Aχ [2]) be the cohomology class associated to λ and λχ , respectively,
as in Definition 4.6. Then we have ψ−1(cλχ )= cλ.

Proof. This follows immediately from the long exact sequences for cohomology associated to the
commutative diagram of Lemma 4.17. �

We now consider the effect of quadratic twisting on the Theta group associated to L= (1, λ)∗P .

Lemma 4.19. Let L= (1, λ)∗P , write Pχ for the Poincaré line bundle on Aχ × Aχ∨ and define Lχ :=
(1, λχ )∗Pχ . Then ψ∗Lχ ∼= L.

Proof. Standard properties of the Poincaré line bundle (see e.g., [Milne 1986, §11]) give

(1×ψ∨)∗P ∼= (ψ × 1)∗Pχ

as line bundles on A× Aχ∨. Since ψ∨ is an isomorphism we obtain

L= (1, λ)∗P ∼= (1, λ)∗(1× (ψ∨)−1)∗(ψ × 1)∗Pχ .

The right-hand side of the above expression is easily seen to be equal to

ψ∗1∗(1× λχ )∗Pχ = ψ∗Lχ

as desired (here 1 : A→ A× A is the diagonal morphism). �

Lemma 4.20. The isomorphism ψ̃ : G(L)→ G(Lχ ) (arising from Lemmas 4.12 and 4.19) is Galois
equivariant. In particular, ψ̃ fits into a commutative diagram of G F -modules

0 // F× // G(L)

ψ̃

��

// A[2]

ψ

��

// 0

0 // F× // G(Lχ ) // Aχ [2] // 0,

where all vertical maps are isomorphisms.

Proof. Write IsomL,Lχ (A, Aχ ) for the set of F-isomorphisms f : A → Aχ for which f ∗Lχ ∼= L.
Then using the explicit Galois action given in Remark 4.14 one sees that the map IsomL,Lχ (A, Aχ )→
Isom(G(L),G(Lχ )) given by f 7→ f̃ is Galois equivariant. It then follows from Lemma 4.12 that we
have, for all σ ∈ G F ,

(ψ̃)σ = ψ̃σ = ˜ψ ◦ [χ(σ)] = ψ̃ ◦ [̃χ(σ)] = ψ̃

where the last equality follows from Lemma 4.13. �
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5. Controlling the parity of dimF2 Xnd(A/K )[2] under quadratic twist

In this section we prove Theorem 1.4 concerning the behavior under quadratic twist of the Shafarevich–Tate
group of a principally polarized abelian variety.

For the rest of the section, fix a number field K and let (A/K , λ) be a principally polarized abelian vari-
ety. To fix notation, we briefly recall the definition of the 2-Selmer and Shafarevich–Tate groups of A/K .

5A. The 2-Selmer group and the Shafarevich–Tate group. For a place v of K we denote by δv :
A(Kv)/2A(Kv) ↪→ H 1(Kv, A[2]) the connecting homomorphism associated to the multiplication-by-two
Kummer sequence

0→ A[2] → A(Kv) [2]−→ A(Kv)→ 0 (5.1)

over the completion Kv of K at v.
The 2-Selmer group of A/K is the group

Sel2(A/K ) := {ξ ∈ H 1(K , A[2]) : ξv ∈ im(δv) ∀v ∈ MK }.

It sits in a short exact sequence

0→ A(K )/2A(K )→ Sel2(A/K )→X(A/K )[2] → 0 (5.2)

where

X(A/K ) := ker(H 1(K , A)→
∏
v∈MK

H 1(Kv, A))

is the Shafarevich–Tate group of A/K .

5B. The Cassels–Tate pairing. Denote by Xnd(A/K ) the quotient of X(A/K ) by its maximal divisible
subgroup. The Cassels–Tate pairing is a bilinear pairing

〈 · , · 〉CT :X(A/K )×X(A∨/K )→Q/Z

the left and right kernels of which are Xnd(A/K ) and Xnd(A∨/K ), respectively. The principal polariza-
tion λ : A→ A∨ induces a nondegenerate bilinear pairing

〈 · , · 〉CT,λ :Xnd(A/K )×Xnd(A/K )→Q/Z

defined by 〈a, b〉CT,λ = 〈a, λ(b)〉CT for a, b ∈X(A/K ). This pairing is antisymmetric [Flach 1990,
Theorem 2; Poonen and Stoll 1999, Corollary 6].

Via the map Sel2(A/K ) → X(A/K )[2] of (5.2) the Cassels–Tate pairing 〈 · , · 〉CT,λ induces an
antisymmetric pairing on Sel2(A/K ) (though this is no longer nondegenerate). By an abuse of notation
we denote this by 〈 · , · 〉CT,λ also.
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5C. Description of the Cassels–Tate pairing on Sel2(A/K ). We will need an explicit description of the
Cassels–Tate pairing 〈 · , · 〉CT,λ on Sel2(A/K ). We use the “Weil pairing” definition as in [Poonen and
Stoll 1999, §12.2] which we copy almost verbatim and to which we refer for more details.

Definition 5.3 (Cassels–Tate pairing). Let a, b ∈ Sel2(A/K ). There will be several choices involved in
the definition of 〈a, b〉CT,λ. We begin with the global choices.

Pick cocycles a and b representing a and b respectively. Next, pick σ ∈C1(K , A[4]) such that 2σ = a.
Then dσ is a 2-cocycle with values in A[2], i.e., an element of Z2(K , A[2]). The Weil pairing ( · , · )λ :
A[2] × A[2] → µ2 ↪→ K× induces a cup-product map ∪ : Z2(K , A[2])× Z1(K , A[2])→ Z3(K , K×).
As K is a number field H 3(K , K×)= 0, so we may choose ε ∈ C2(K , K×) such that dσ ∪ b = dε.

Now for the local choices. Fix a place v of K . The class of av is trivial in H 1(Kv, A(Kv)) so we may
choose Pv ∈ A(Kv) with av = d Pv . Pick Qv ∈ A(Kv) with 2Qv = Pv . Then ρv := d Qv is an element of
Z1(Kv, A[4]) and σv − ρv takes values in A[2], i.e., is an element of C1(Kv, A[2]). Then we may form
the element (σv − ρv)∪ bv of C2(Kv, Kv×) (again defining the cup-product map using the Weil pairing
on A[2]). The difference (σv −ρv)∪ bv − εv is a 2-cocycle with values in Kv×. Let dv denote its class in
H 2(Kv, Kv×)= Br(Kv). Then 〈a, b〉CT,λ is defined as

〈a, b〉CT,λ :=
∑
v∈MK

invv(dv) ∈Q/Z.

The value of the sum above is independent of all choices made.

5D. Controlling the parity of dimF2 Xnd(A/K )[2] globally. If A is an elliptic curve and λ its canonical
principal polarization then it is well known that 〈 · , · 〉CT,λ is in fact alternating and it follows that
dimF2 Xnd(A/K )[2] is even. For general principally polarized abelian varieties however, Poonen and
Stoll [1999] showed that dimF2 Xnd(A/K )[2] need not be even and gave a criterion for determining
whether or not this is the case. Specifically, let cλ ∈ H 1(K , A[2]) be the cohomology class associated to
λ as in Definition 4.6. By [Poonen and Stoll 1999, Lemma 1] we in fact have cλ ∈ Sel2(A/K ).

We then have the following theorem of Poonen–Stoll.

Theorem 5.4. The group Xnd(A/K )[2] has even F2-dimension if and only if

〈cλ, cλ〉CT,λ = 0 ∈Q/Z.

Proof. The image of cλ in X(A/K )[2] is the homogeneous space associated to λ as in [Poonen and Stoll
1999, §2]. Theorem 8 of [loc. cit.] now gives the result. �

Remark 5.5. Since the image of cλ in X(A/K ) is annihilated by 2 we have 〈cλ, cλ〉CT,λ ∈
{
0, 1

2

}
.

5E. Quadratic twists. For the rest of the section fix a quadratic character χ and let (Aχ , ψ) be the
quadratic twist of A by χ . We now set up the notation which we will use when computing with Aχ

in what follows. We endow Aχ with the K -rational principal polarization λχ := (ψ∨)−1λψ−1 (see
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Section 4E). Associated to λχ is the Weil pairing

( · , · )λχ : Aχ [2]× Aχ [2] → µ2

and the Cassels–Tate pairing

〈 · , · 〉CT,λχ :X(Aχ/K )[2]×X(Aχ/K )[2] →Q/Z

(which we also view as a pairing on Sel2(Aχ/K )). Using the isomorphism ψ we identify Aχ [2] and A[2]
as G K -modules. Note that this identification also respects the Weil pairing (i.e., identifies ( · , · )λχ with
( · , · )λ; to see this e.g., combine Lemma 4.5(ii) and Lemma 4.17). In this way, we identify H 1(K , Aχ [2])
with H 1(K , A[2]) and thus view the 2-Selmer group Sel2(Aχ/K ) inside H 1(K , A[2]). In particular, we
may talk about the intersection of Sel2(A/K ) and Sel2(Aχ/K ).

We also use ψ to identify A[4](K ) with Aχ [4](K ). This last identification does not respect the
G K -action. Thus for each i , we have identified C i (K , Aχ [4]) with C i (K , A[4]) but the differential
d : C i (K , Aχ [4])→ C i+1(K , Aχ [4]) is not identified with the usual differential on C i (K , A[4]); we
write dχ for the map C i (K , A[4])→ C i+1(K , A[4]) to which is does correspond. For example, the map
d : C1(K , Aχ [4])→ C2(K , Aχ [4]) corresponds to the map dχ : C1(K , A[4])→ C2(K , A[4]) defined by

(dχ f )(σ, τ )= f (σ )+χ(σ)σ f (τ )− f (στ).

Similarly, we use ψ to identify C i (K , Aχ (K )) and C i (K , A(K )) for each i , and define differentials dχ
on C i (K , A(K )) similarly.

5F. Strategy of the proof of Theorem 1.4. To motivate what follows, we briefly sketch the proof of
Theorem 1.4.

For a, b ∈X(A/K ), in the definition of 〈a, b〉CT,λ the local terms dv (in the notation of Definition 5.3)
depend on the global choices. In particular, it is not clear that 〈cλ, cλ〉CT,λ, and hence the parity of
dimF2 Xnd(A/K )[2], may be expressed as a sum of local terms whose definition requires no global
choices (this is, however, known to be true if A/K is the Jacobian of a curve, see [Poonen and Stoll 1999,
Corollary 12]).

When considering A along with its quadratic twist Aχ , we eliminate the global choices as follows.
Associated to λχ is the class cλχ ∈ Sel2(Aχ/K ) (viewed inside H 1(K , A[2]) as in Section 5E). By
Corollary 4.18 we have cλχ = cλ and in particular, cλ lies in Sel2(A/K )∩Sel2(Aχ/K ). Now the sum of
the pairings 〈 · , · 〉CT,λ and 〈 · , · 〉CT,λχ gives a new pairing on Sel2(A/K )∩Sel2(Aχ/K ). By Theorem 5.4,
dimF2 Xnd(A/K )[2]+ dimF2 Xnd(Aχ/K )[2] is even if and only if cλ pairs trivially with itself under this
new pairing.

We show in Lemma 5.8 that the global choices involved in computing the sum of the two Cassels–Tate
pairings are milder than those for the individual pairings (we remark that this simplification of the
Cassels–Tate pairing under quadratic twist has also been observed in the recent preprint of Smith [2016,
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proof of Theorem 3.2]). Specifically, the global choices involved in computing

〈cλ, cλ〉CT,λ+〈cλ, cλ〉CT,λχ

are: a choice of cocycle cλ ∈ Z1(K , A[2]) representing cλ and a choice of cochain F : G K → µ2 such
that d F = cλ ∪ cλ ∈ Z2(K ,µ2).

By Lemma 4.7, cλ ∈ H 1(K , A[2]) is the cohomology class parametrizing quadratic refinements of
the Weil pairing. In particular, a choice of cocycle representing cλ amounts to a choice of quadratic
refinement q . For each such q we have already constructed a canonical choice for the function F above,
namely that given by Proposition 3.9. Thus the only global choice remaining is that of q . Proposition 3.10
shows how this choice for F changes upon changing q, allowing us to prove that the local terms then
arising do not, in fact, depend on the choice of quadratic refinement either.

5G. Pairings on Sel2(A/K )∩ Sel2(Aχ/K ). Define Sχ := Sel2(A/K )∩ Sel2(Aχ/K ). Here we define
a pairing 〈 · , · 〉Sχ on Sχ with values in Q/Z which we shall see is the sum of the Cassels–Tate pairings
for A and its twist Aχ . However, for clarity when using this pairing later, we define it separately.

Definition 5.6 (the pairing 〈 · , · 〉Sχ ). Let a,b ∈ Sχ = Sel2(A/K )∩Sel2(Aχ/K ). As with the definition of
the Cassels–Tate pairing, we begin with the global choices. We first claim that a∪ b= 0 ∈ H 2(K ,µ2)=

Br(K )[2]. Indeed, for each place v of K both av and bv are in the image of A(Kv)/2A(Kv) under the
connecting homomorphism associated to the multiplication-by-2 Kummer sequence. Since this image is
its own orthogonal complement under the cup-product pairing

H 1(Kv, A[2])× H 1(Kv, A[2])→ H 2(Kv, Kv×)= Br(Kv)

(this results from Tate local duality, see e.g., [Milne 2006, I.3.4]) we have (a∪b)v = 0 ∈ Br(Kv) for each
place v of K . Reciprocity for the Brauer group now gives the claim.

Now represent a and b by cocycles a and b respectively and, as is possible by the above discussion,
pick f ∈ C1(K ,µ2) with d f = a ∪ b ∈ Z2(K ,µ2).

We now turn to the local choices. Fix a place v of K . Since a ∈ Sel2(A/K ) there is Pv ∈ A(Kv)
with d Pv = av. Pick Qv ∈ A(Kv) with 2Qv = Pv. Then ρv := d Qv is an element of Z1(Kv, A[4]).
Since a is also in Sel2(Aχ/K ) we can similarly (i.e., by replacing d by dχ throughout) define Pv,χ ,
Qv,χ and ρv,χ = dχQv,χ ∈ C1(Kv, A[4]). Then ρv + ρv,χ takes values in A[2]. One checks that
d(ρv + ρv,χ )= χv ∪ av ∈ Z2(Kv, A[2]). Thus the difference

(ρv + ρv,χ )∪ bv −χv ∪ fv

is a 2-cocycle with values in µ2. Denote by dv its class in Br(Kv)[2].
Now define

〈a, b〉Sχ :=
∑
v∈MK

invv(dv) ∈Q/Z.
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One easily checks that once the initial global choices are made the cocycle class dv ∈Br(Kv) is independent
of the local choices. That the resulting sum is independent of all choices follows from reciprocity for the
Brauer group.

Remark 5.7. If a place v of K splits in the quadratic extension L/K associated to χ then χv is trivial
and ψ gives an isomorphism between A and Aχ over Kv. It follows easily that the local terms invv(dv)
are trivial at all such v. Thus in the definition of 〈 · , · 〉Sχ we may replace the sum over all places of K by
the sum over all places of K nonsplit in L/K .

Lemma 5.8. The pairing 〈 · , · 〉Sχ is the sum of the Cassels–Tate pairings for A and Aχ :

〈 · , · 〉Sχ = 〈 · , · 〉CT,λ+〈 · , · 〉CT,λχ .

In particular, it is (anti)symmetric.

Remark 5.9. This lemma is implicit in the recent preprint of Smith [2016, proof of Theorem 3.2].

Proof. Fix a, b ∈ Sχ . We begin by making the global choices involved in computing 〈a, b〉CT,λ. We pick
cocycles a and b representing a and b respectively and pick σ ∈ C1(K , A[4]) with 2σ = a. Next, we
pick ε ∈ C2(K , K×) with dε = dσ ∪ b.

We now make the corresponding choices involved in computing 〈a, b〉CT,λχ . As we are at liberty to do,
we pick the same cocycle representatives a and b chosen above. We similarly pick the same element σ of
C1(K , A[4]) satisfying 2σ = a (here using the identification of A[4] with Aχ [4] via ψ as discussed). We
then pick εχ ∈ C2(K , K×) such that dεχ = dχσ ∪ b. Note that we cannot chose ε = εχ in general due to
the difference between the differentials d and dχ . However, we have

d(ε+ εχ )= (dσ + dχσ)∪ b = (χ ∪ a)∪ b,

the last equality following from the definition of dχ and a simple computation.
Now let f ∈C1(K ,µ2) be such that d f = a∪b. By (2.1) and associativity of the cup-product we have

d(χ ∪ f )= d(ε+ εχ ) whence χ ∪ f = ε+ εχ + ν for some cocycle ν ∈ Z2(K , K×).
We now make the local choices involved in computing 〈a, b〉CT,λ. We choose Pv ∈ A(Kv) with

d Pv = av and then pick Qv ∈ A(Kv) with 2Qv = Pv . Next, set ρv := d Qv ∈ C1(Kv, A[4]) and define dv

to be the class of (σv − ρv)∪ bv − εv in H 2(Kv, Kv×).
Finally, we make the local choices involved in computing 〈a, b〉CT,λχ . Thus we pick Pv,χ with

dχ Pv,χ = av , Qv,χ with 2Qv,χ = Pv,χ , set ρv,χ = dχQv,χ and define dv,χ to be the class of (σv−ρv,χ )∪
bv − εχ,v in H 2(Kv, Kv×).

With these choices in place dv + dv,χ is the class in Br(Kv) of

(av − (ρv + ρv,χ ))∪ bv −χv ∪ fv + νv.

Noting that ρv + ρv,χ takes values in A[2] and that av ∪ bv = 0 (as discussed previously) we see that

invv(dv)+ invv(dv,χ )= invv((ρv + ρv,χ )∪ bv −χv ∪ fv)+ invv(νv).
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Summing over all places and noting that by reciprocity for the Brauer group we have∑
v∈MK

invv(νv)= 0 ∈Q/Z,

we have

〈a, b〉CT +〈a, b〉CT,χ =
∑
v∈MK

invv((ρv + ρv,χ )∪ bv −χv ∪ fv).

But this is precisely how the quantity 〈a, b〉Sχ was defined. �

5H. The local terms g(A, λ, χ). In this subsection we study the local terms which arise in computing
〈cλ, cλ〉Sχ , and show in particular that they are independent of certain choices involved. We work purely
locally and take F to be a local field of characteristic 0. Let (A/F, λ) be a principally polarized abelian
variety. Let χ ∈ Homcnt(G F ,µ2) be a quadratic character of F and (Aχ/F, ψ) be the quadratic twist of
A by χ . We use the same conventions and notation as in Section 5E when talking about objects associated
to Aχ . We will need to identify µ2 with the additive group of F2 in the following, and we write the group
law on µ2 additively to avoid confusion when doing this.

Denote by cλ ∈ H 1(F, A[2]) the cohomology class associated to λ as in Definition 4.6. By [Poonen
and Stoll 1999, Lemma 1] its image in H 1(F, A)[2] is trivial. By Corollary 4.18, it follows also that
the image of cλ in H 1(F, Aχ )[2] is trivial too (here the map H 1(F, A[2])→ H 1(F, Aχ )[2] comes from
identifying A[2] with Aχ [2] via ψ).

Remark 5.10. By Lemma 4.7 cλ is equal to the cohomology class associated to the set of quadratic
refinements of the Weil pairing ( · , · )λ on A[2]. In particular, for each quadratic refinement q of ( · , · )λ,
the function cq : G F → A[2] sending σ ∈ G F to the unique element cq(σ ) ∈ A[2] such that

q(σ−1v)− q(v)= (v, cq(σ ))λ

for all v ∈ A[2], is a cocycle in Z1(F, A[2]) representing the class cλ.

Definition 5.11. Let q : A[2]→µ2 be a quadratic refinement of the Weil pairing ( · , · )λ. Then we define
the function Fq : G F → µ2 as the composition

Fq : G F → Sp(A[2]) fq
−→ F2 ∼= µ2,

where the map G F → Sp(A[2]) is the homomorphism coming from the action of G F on A[2] and
fq : Sp(A[2])→ F2 is the map afforded by Proposition 3.9.

Remark 5.12. For each quadratic refinement q of ( · , · )λ it follows from Proposition 3.9 that we have
d Fq = cq ∪ cq ∈ Z2(F,µ2).

Definition 5.13. Let χ ∈ Homcnt(G F ,µ2) be a quadratic character, let q be a quadratic refinement of
( · , · )λ and let cq be the associated cocycle representing cλ. As in the definition of the local choices
for the pairing 〈 · , · 〉Sχ , pick Pq ∈ A(F) with d Pq = cq , let Qq ∈ A(F) be such that 2Qq = Pq and set
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ρq = d Qq . Similarly, pick Pχ,q ∈ A(F) with dχ Pχ,q = cq , let Qχ,q ∈ A(F) be such that 2Qχ,q = Pχ,q
and set ρχ,q = dχQχ,q .

We then define g(A, λ, χ, q) to be the class of the cocycle

g(A, λ, χ, q) := (ρq + ρχ,q)∪ cq −χ ∪ Fq

in Br(F)[2]. As in Section 5G, g(A, λ, χ, q) does not depend on the choices of Pq , Qq , Pχ,q or Qχ,q .

The following lemma is key to the proof of Theorem 1.4.

Lemma 5.14. The quantity g(A, λ, χ, q) ∈ Br(F)[2] is independent of the choice of quadratic refine-
ment q.

Proof. Keep the notation of Definition 5.13 in what follows. Let q and q ′ be two quadratic refinements.
Then q − q ′ = (−, v)λ for some v ∈ A[2] and cq ′ = cq + dv. By Proposition 3.10 we have

Fq ′ = Fq + cq ∪ v+ v ∪ cq + v ∪ dv.

Now fix choices for Pq , Qq , Pχ,q and Qχ,q as in Definition 5.13. Then we may take Pq ′ = Pq + v and
Pχ,q ′ = Pχ,q + v. Pick T ∈ A[4] with 2T = v. Then we may take Qq ′ = Qq + T and Qχ,q ′ = Qχ,q + T .
Thus

ρq ′ + ρχ,q ′ = ρq + ρχ,q + dT + dχT .

An easy computation gives dT + dχT = dv+χ ∪ v. Combining this with the expressions for Fq ′ and cq ′

in terms of Fq and cq respectively, we see that we have an equality of cocycles

g(A, λ, χ, q ′)= g(A, λ, χ, q)+(ρq+ρχ,q)∪dv+(dv+χ∪v)∪(cq+dv)−χ∪(cq∪v+v∪cq+v∪dv)

inside Z2(F,µ2).
Now cq + dv ∈ C1(F, A[2]) is a cocycle whilst dv ∈ C1(F, A[2]) is a coboundary. Thus the class

of dv ∪ (cq + dv) is trivial in Br(F)[2]. Using this observation, canceling like terms in the previous
expression, and passing to classes in the Brauer group, one has

g(A, λ, χ, q ′)= g(A, λ, χ, q)+ [(ρq + ρχ,q)∪ dv−χ ∪ cq ∪ v]

(where here “[ ]” denotes the operation of taking classes in the Brauer group).
Now, as remarked in the definition of the pairing 〈 · , · 〉Sχ , we have d(ρq + ρχ,q)= χ ∪ cq . Thus by

standard properties of cup product on cochains (see Section 2B) we have

d((ρq + ρχ,q)∪ v)= (ρq + ρχ,q)∪ dv−χ ∪ cq ∪ v.

In particular, the class of (ρq + ρχ,q) ∪ dv − χ ∪ cq ∪ v is trivial in Br(F), whence g(A, λ, χ, q ′) =
g(A, λ, χ, q) as desired. �

Lemma 5.14 allows us to make the following refinement of Definition 5.13.
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Definition 5.15. Define g(A, λ, χ)∈Br(F)[2] to be the quantity g(A, λ, χ, q) for any choice of quadratic
refinement q of ( · , · )λ.

The following proposition computes explicitly the terms g(A, λ, χ) in certain cases.

Proposition 5.16. Let g(A, λ, χ) ∈ Br(F)[2] be as in Definition 5.15.

(i) We have g(A, λ,1)= 0 where 1 is the trivial character of F.

(ii) Suppose that q is a G F -invariant quadratic refinement of the Weil pairing ( · , · )λ on A[2] and let
α : G F → µ2 be the quadratic character corresponding to the homomorphism

G F → O(q)/SO(q)∼= Z/2Z∼= µ2

coming from the action of G F on A[2]. Then

g(A, λ, χ)= α ∪χ ∈ Br(F)[2].

(iii) Suppose that F is nonarchimedean with odd residue characteristic and that A has good reduction.
Then we have

invF g(A, λ, χ)=
{

0 χ unramified,
1
2 dimF2 A(F)[2] ∈Q/Z χ ramified.

(iv) Suppose that F is archimedean. Then we have

invF g(A, λ, χ)=
{

0 F = C or χ trivial,
1
2 dimF2 A(F)[2] ∈Q/Z F = R and χ nontrivial.

Proof.

(i) Clear.

(ii) If there is an F-rational quadratic refinement q then cq is identically zero and it follows immediately
from Lemma 5.14 and the definition of g(A, λ, χ, q) that

g(A, λ, χ)= g(A, λ, χ, q)=−χ ∪ Fq = χ ∪α

where for the last equality we use that the restriction of Fq to elements of O(q) agrees with the Dickson
homomorphism dq (see Proposition 3.9).

(iii) By [Poonen and Rains 2011, Proposition 3.6(d)], our assumptions on F and the reduction of A
imply that there is a G F -invariant quadratic refinement q of the Weil pairing on A[2]. Let α be the
associated quadratic character so that g(A, λ, χ)= α ∪χ by (ii). Now by definition, α factors through
Gal(F(A[2])/F) and our assumptions on F and A mean that F(A[2])/F is unramified. Consequently, α
is unramified. In fact, let σ denote the Frobenius element in F(A[2])/F . Then by Proposition 3.5 we
have

α(σ)= (−1)dimF2 A[2]σ
= (−1)dimF2 A(F)[2].



864 Adam Morgan

In particular, we see that if dimF2 A(F)[2] is even then α is the trivial character, whilst if dimF2 A(F)[2]
is odd then α is the unique nontrivial unramified quadratic character of F . Since F is assumed to have
odd residue characteristic, standard properties of the cup-product of two quadratic characters gives the
result (we review these later in Section 8A: see, in particular, Lemma 8.4).

(iv) The argument here is similar to that of (iii). First note that if χ is trivial then g(A, λ, χ) = 0 by
(i). In particular, the only case we have not already covered is when F = R and χ is the quadratic
character corresponding to the extension C/R. By [Poonen and Rains 2011, Proposition 3.6(d)] there
is an R-rational quadratic refinement q of the Weil pairing ( · , · )λ. Let α be the associated quadratic
character and write σ for the unique nontrivial element of Gal(C/R). By Proposition 3.5 we see that α
is trivial if dimF2 A[2]σ = dimF2 A(R)[2] is even, and is the quadratic character corresponding to C/R

otherwise. The result now follows from (ii). �

Remark 5.17. As in Lemma 4.5, if the polarization λ is of the form φL for an F-rational symmetric line
bundle L then there is an associated G F -invariant quadratic refinement of the Weil pairing on A[2]. Thus
combined with Proposition 5.16(ii) this gives a geometric condition for when the local terms g(A, λ, χ)
may be evaluated.

Remark 5.18. It is natural to ask if the terms g(A, λ, χ) are independent of the choice of principal
polarization λ. The above proposition shows that this is true when χ is trivial, when A/F has good
reduction and F has odd residue characteristic, or when F is archimedean. We have been unable to prove
this in general however.

Remark 5.19. Write L= F(A[2]) and let χ be any quadratic character. Since for any quadratic refinement
q the cocycle cq factors through Gal(L/F), the points Pq and Pχ,q of Definition 5.13 lie in A(L) and
Aχ (L) respectively. In particular, it follows that the cocycle g(A, λ, χ) factors through Gal(L ′/F), where
L ′ is the compositum of all the (finitely many) quadratic extensions of F(A[2]).

5I. Controlling the parity of dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] via local contributions.
We return to the notation of Section 5A–5G so that, in particular, K is a number field and (A/K , λ) a
principally polarized abelian variety.

Theorem 5.20 (Theorem 1.4). Let χ be a quadratic character of K and for each place v of K write χv
for the restriction of χ to G Kv

, A/Kv for the base change of A to Kv , and λv for the principal polarization
on A/Kv corresponding to λ.

Then dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] ≡ 0 (mod 2) if and only if∑
v∈MK

invv g(A/Kv, λv, χv)= 0 ∈Q/Z.

Remark 5.21. Before proving Theorem 5.20 we remark that if v is a nonarchimedean place of K , not
dividing 2 and such that both A has good reduction and χ is unramified at v, then g(A/Kv, λv, χv)= 0
by Proposition 5.16(iii). In particular, the sum in the statement of Theorem 5.20 is finite.
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Proof of Theorem 5.20. By Corollary 4.18, Theorem 5.4 applied to both A and Aχ (along with their prin-
cipal polarizations λ and λχ ), and Lemma 5.8, we see that dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2]
is even if and only if 〈cλ, cλ〉Sχ = 0.

We now follow Definition 5.6 to compute 〈cλ, cλ〉Sχ . For the global choices, fix a quadratic refinement q
of the Weil pairing ( · , · )λ on A[2]. Then as in the local case (Remark 5.10) the function cq : G K → A[2]
sending σ ∈ G K to the unique element cq(σ ) ∈ A[2] such that

q(σ−1v)− q(v)= (v, cq(σ ))λ

for all v∈ A[2], is a cocycle in Z1(F, A[2]) representing the class cλ. Similarly, the function Fq :G K→µ2

defined as the composition

Fq : G K → Sp(A[2]) fq
−→ F2 ∼= µ2,

(where the map G K → Sp(A[2]) is the homomorphism coming from the action of G K on A[2] and
fq : Sp(A[2]) → F2 is the map afforded by Proposition 3.9) is an element of C1(K ,µ2) satisfying
d Fq = cq ∪ cq ∈ Z2(K , K×).

With these global choices in place, the local terms arising in the definition of 〈cλ, cλ〉Sχ are precisely
the terms g(A/Kv, λv, χv, q) of Definition 5.13. By Lemma 5.14 (for fixed v) they are independent of q ,
their common value being by definition g(A/Kv, λv, χv).

Thus

〈cλ, cλ〉Sχ =
∑
v∈MK

invv g(A/Kv, λv, χv)

and the result follows. �

6. Disparity in Selmer ranks: definitions and recollections

The next four sections are devoted to proving Theorem 7.4 concerning the parity of certain Selmer groups
defined in terms of abstract twisting data. Our approach follows closely the strategy of [Klagsbrun et al.
2013], which proves the result for Galois modules of dimension 2 (whilst we handle arbitrary (even)
dimension). Many of the statements of [loc. cit.] go through with some minor changes however in order
to highlight the differences it is necessary to recall much of their setup and basic results. Thus in this
section we recall the setup of [loc. cit.]. Where notions need to be generalized or slightly adapted we
state the differences in a remark immediately following the definition.

6A. Notation. Here we fix some notation which will remain in place for the entirety of Sections 6–9. Fix
first a prime p and number field K . Following [loc. cit.], for a field L (either K or Kv for some v ∈ MK )
we define C(L) := Homcnt(GL ,µp), the group of characters of order dividing p. We denote the trivial
character by 1L . Further, we define F(L) to be the quotient of C(L) by the action of Aut(µp) (the action
given by post-composition). The set F(L) is naturally identified with the set of cyclic extensions of L of
degree dividing p, the map being given by sending the equivalence class of χ ∈ C(L) to the fixed field
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K ker(χ). When L is a nonarchimedean local field we write Cram(L) and Cur(L) for the subsets of C(L)
consisting of ramified and unramified characters, and similarly write Fram(L) and Fur(L) for the subsets
of F(L) corresponding to ramified and unramified extensions. Note that if L has residue characteristic
coprime to p then Cram(L) (and hence also Fram(L)) is nonempty if and only if µp ⊆ L .

For an finite dimensional Fp-vector space M we say that a map q : M→Q/Z is a quadratic form if
q(nx)= n2q(x) for all n ∈ Z and x ∈ M , and if the map (x, y) 7→ q(x+ y)−q(x)−q(y) is a symmetric
bilinear pairing on M . We say that q is nondegenerate if the associated pairing is (i.e., if it has trivial
kernel). If q is a quadratic form on M with associated pairing 〈 · , · 〉 then for a subspace W of M we write

W⊥ = {m ∈ M : 〈w,m〉 = 0, ∀w ∈W }

for the orthogonal complement of W and say that W is a Lagrangian subspace of (M, q) if W =W⊥ and
q(W )= 0. We call (M, q) a metabolic space if q is nondegenerate and if M has a Lagrangian subspace.

6B. The module T and the finite set of places 6. Fix, for the remainder of Sections 6–9, a finite dimen-
sional Fp-vector space T equipped with a continuous G K -action and a nondegenerate G K -equivariant
alternating pairing

( · , · ) : T × T → µp

(so that, in particular, dimFp T is necessarily even). For v ∈ MK , if the inertia subgroup of G Kv
acts

trivially on T then we say that T is unramified at v, and ramified at v otherwise. We denote by K (T ) the
field of definition of the elements of T , i.e., the fixed field of the kernel of the action of G K on T . Note
that the presence of the pairing forces K (µp)⊆ K (T ).

We also fix a finite set 6 of places of K containing all archimedean places, all places over p, and all
places where T is ramified (and possibly some more to be specified later).

6C. The local Tate pairing and Tate quadratic forms. For each place v ∈ MK write 〈 · , · 〉v for the local
Tate pairing

H 1(Kv, T )× H 1(Kv, T )→Q/Z

given by the composition

H 1(Kv, T )× H 1(Kv, T ) ∪−→ H 2(Kv,µp)
invv−−−→Q/Z,

where the first map is induced by cup-product and the pairing ( · , · ). It is nondegenerate, bilinear and
symmetric.

Definition 6.1. Let v be a place of K . We say a quadratic form qv : H 1(Kv, T )→Q/Z is a Tate quadratic
form if its associated bilinear form is the local Tate pairing 〈 · , · 〉v. If v /∈ 6 then we say that qv is
unramified if it vanishes on H 1

ur(Kv, T ) (in which case H 1
ur(Kv, T ) is a Lagrangian subspace for qv).

Remark 6.2. If p= 2 then our definition differs slightly from that of Klagsbrun, Mazur and Rubin [2013,
Definition 3.2] since it allows quadratic forms valued in 1

4 Z/Z whilst their definition only allows quadratic
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forms taking values in 1
2 Z/Z. This extra generality is necessary when dimFp T > 2 in order to allow

T = A[2] for a principally polarized abelian variety A/K (see Remark 10.4).

As in [loc. cit., Lemma 3.4], if p > 2 then there is a unique Tate quadratic form qv on H 1(Kv, T )
given by

qv = 1
2〈 · , · 〉v.

6D. Global metabolic structures. With our slightly modified definition of a Tate quadratic form in hand
we can define a global metabolic structure on T in an identical way to [loc. cit., Definition 3.3].

Definition 6.3. A global metabolic structure q on T consists of a collection q = (qv)v (v ∈ MK ) of Tate
quadratic forms such that:

(i) For each v ∈ MK the pair (H 1(Kv, T ), qv) is a metabolic space.

(ii) The quadratic form qv is unramified at each place v /∈6.

(iii) If c ∈ H 1(K , T ) then
∑

v qv(cv)= 0.

As in [loc. cit., Lemma 3.4], if p > 2 then the unique Tate quadratic forms on H 1(Kv, T ) defined
above do indeed give a global metabolic structure on T , so specifying a global metabolic structure is only
necessary when p = 2.

6E. Selmer structures and Selmer groups. We define Selmer structures for (T, q), along with the
associated Selmer groups, as in [loc. cit., Definition 3.8].

Definition 6.4. A Selmer structure S for (T, q) is the data:

(i) A finite set 6S of places of K containing 6.

(ii) For each v ∈6S a Lagrangian subspace HS(Kv, T ) of (H 1(Kv, T ), qv).

Definition 6.5. Let S be a Selmer structure for (T, q). For each v /∈6S we set H 1
S(Kv, T )= H 1

ur(Kv, T )
and define the Selmer group associated to S as

H 1
S(K , T ) := ker

(
H 1(K , T )→

⊕
v∈MK

H 1(Kv, T )/H 1
S(Kv, T )

)
.

The following theorem, which is a very slight generalization of [loc. cit., Theorem 3.9], allows us to
compare the dimensions of two Selmer groups modulo 2.

Theorem 6.6. Let S and S ′ be two Selmer structures for (T, q). Then

dimFp H 1
S(K , T )− dimFp H 1

S ′(K , T )≡
∑

6S∪6S′

dimFp H 1
S(Kv, T )/(H 1

S(Kv, T )∩ H 1
S ′(Kv, T )) (mod 2).

Proof. This is proven for dimFp T = 2 in [loc. cit., Theorem 3.9] and the proof generalizes verbatim
to the case where T has arbitrary (even) dimension with one subtlety: their proof relies on [loc. cit.,
Proposition 2.4] which is a general result concerning the dimension of the intersection of Lagrangian
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subspaces of a finite dimensional metabolic space. The one difference from the case there is that now our
quadratic forms (in general) take values in Q/Z rather than just Fp as they assume. However, one readily
verifies that this assumption is not used in the proof of the cited result. Alternatively, see [Česnavičius
2018, Theorem 5.9] which gives a further generalization of [Klagsbrun et al. 2013, Theorem 3.9] which
includes our case. �

6F. Twisting data and twisted Selmer groups. Fix from now on a global metabolic structure q on T .

Definition 6.7. For each place v ∈ MK , write H(qv) for the set of Lagrangian subspaces for qv and,
for v /∈ 6, write Hram(qv) for the subset of H(qv) consisting of Lagrangian subspaces X for which
X ∩ H 1

ur(Kv, T )= 0.

Definition 6.8 (twisting data). We define twisting data α for (T, q, 6) to consist of

(i) for each v ∈6 a map

αv : F(Kv)→H(qv),

(ii) for each v /∈6 for which µp ⊆ Kv, a map

αv : Fram(Kv)→Hram(qv).

Remark 6.9. Our definition of twisting data is slightly different to that of [Klagsbrun et al. 2013,
Definition 4.4]. In their case, since T has dimension 2, for v /∈ 6 and with µp ⊆ Kv, Hram(qv) has
cardinality 0,1, or p according to dim T G Kv = 0, 1 or 2 respectively. In the first two cases they do not
specify a map αv as there is a unique such. In the final case they additionally insist that αv is a bijection,
as is possible since Fram(Kv) has order p.

Since for us T is allowed to have dimension greater that 2 we in general have |Hram(qv)|> p and thus
cannot insist that αv is a bijection once it ceases to be unique. Although omitting this condition does not
impact what follows, and is in fact not used in the main results of [Klagsbrun et al. 2013], we remark that
it is used crucially in a follow up paper to that paper: [Klagsbrun et al. 2014].

Definition 6.10 (twisted Selmer groups). Let (T, q, 6,α) as above be fixed, and let χ ∈ C(K ). Let Pχ
denote the set of primes of K for which χ ramifies. Then we define a Selmer structure S(χ) by taking
6S(χ) to be 6 ∪ Pχ and setting H 1

S(χ)(Kv, T ) := αv(χv) for v ∈ 6 ∪ Pχ . We write Sel(T, χ) for the
associated Selmer group

Sel(T, χ) := H 1
S(χ)(K , T ).

6G. Comparing the parity of dimensions of twisted Selmer groups. From now on we fix T , the set of
places 6, a global metabolic structure q, and twisting data α.

The following theorem, which is a slight variant of [Klagsbrun et al. 2013, Theorem 4.11] allows us to
compare the parity of the dimensions of the Selmer groups Sel(T, χ) as we vary χ . We first make one
further definition.
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Definition 6.11. Let v be a place of K and χ1 and χ2 be elements of C(Kv). Then we set

hv(χ1, χ2) := dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

Note that since any two Lagrangian subspaces of H 1(Kv, T ) have the same dimension this is symmetric
in χ1 and χ2.

Theorem 6.12. For any χ ∈ C(K ) we have

dimFp Sel(T, χ)− dimFp Sel(T,1K )≡
∑
v∈6

hv(1Kv
, χv)+

∑
v /∈6,χv ram

dimFp T G Kv (mod 2)

(here the second sum is taken over places v /∈6 for which the character χv is ramified).

Proof. This is essentially [Klagsbrun et al. 2013, Theorem 4.11]. Let S(χ) and S(1K ) be the Selmer
structures associated to the characters χ and 1K respectively. Then

6S(χ) ∪6S(1K ) =6 t {v /∈6 : χv ramified}.

Applying Theorem 6.6 to S(χ) and S(1K ) and noting that, by the definition of the twisting data,
H 1

ur(Kv, T )∩αv(χv)= 0 for all v /∈6 for which χv is ramified, we obtain

dimFp Sel(T, χ)− dimFp Sel(T,1K )≡
∑
v∈6

hv(1Kv
, χv)+

∑
v /∈6,χv ram

dimFp H 1
ur(Kv, T ) (mod 2).

The result now follows since for each v /∈6 we have dimFp H 1
ur(Kv, T )= dimFp T G Kv . This is shown in

(the proof of) [Klagsbrun et al. 2013, Lemma 3.7] in the case that T has dimension 2. The general case is
identical. �

7. Disparity in Selmer ranks: statement and first cases

In this section we fix (T, 6, q,α) as in the previous section and consider the proportion of characters
χ for which the associated Selmer groups Sel(T, χ) have odd (resp. even) Fp-dimension. To make this
precise, one has to order the elements of C(K ).

7A. Ordering twists. We use the same ordering as in [Klagsbrun et al. 2013, Definition 7.3].

Definition 7.1. For χ ∈ C(K ), set

‖χ‖ =max{N (p) : χ is ramified at p}

(where here for a prime pCOK , N (p) denotes the norm of p). If this set is empty, our convention is that
‖χ‖ = 1. Now for each X > 0 define

C(K , X)= {χ ∈ C(K ) : ‖χ‖< X}.
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For each X ≥ 1 this is a finite subgroup of C(K ) and each element of C(K ) appears in C(K , X) for
some X . We will make crucial use of the group structure on the C(K , X) to facilitate with counting
problems.

We will repeatedly use the following fact.

Lemma 7.2. For all sufficiently large X > 0 the restriction homomorphism

C(K , X)→
∏
v∈6

C(Kv)

sending χ to (χv)v∈6 is surjective.

Proof. This follows immediately from the Grunwald–Wang theorem. See for example [Neukirch et al.
2008, Theorem 9.2.3(ii)]. See also [Klagsbrun et al. 2013, Proposition 6.8(i)] but note that they have a
running hypothesis on the set of places 6 which we do not wish to impose at this stage. �

7B. Statement of the result. The proportion of characters for which dimFp Sel(T, χ) is even (resp. odd)
will depend heavily on the action of G K on T . More specifically, it will depend on the behavior of the
following function. Recall that K (T ) denotes the field of definition of the elements of T .

Definition 7.3. Write G := Gal(K (T )/K ) and define the function:

ε : G→ {±1}

σ 7→ (−1)dimFp T σ

The result is then the following.

Theorem 7.4. We have:

(i) If either p = 2 and ε fails to be a homomorphism, or p > 2 and ε is nontrivial when restricted to
Gal(K (T )/K (µp)), then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
.

Moreover, if p = 2 then it suffices to take X sufficiently large as opposed to taking the limit X→∞.

(ii) If either p=2 and ε is a homomorphism, or p>2 and ε is trivial when restricted to Gal(K(T )/K(µp)),
then for all sufficiently large X we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Sel(T,1K ) · δ

2

with δ =
∏
v∈6 δv given in Definition 7.8.

The proof of Theorem 7.4, which is a combination of Theorems 7.10 and 9.5, will occupy the remainder
of Sections 7–9.
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Remark 7.5. Here we briefly discuss the function ε. For convenience we identify µp with the additive
group of Fp and think of the pairing ( · , · ) as landing in Fp. Due to this pairing, the group G =
Gal(K (T )/K ) is a subgroup of the general symplectic group

GSp(T )= {g ∈ GL(V ) : ∀v,w ∈ T, (gv, gw)= λ(g)(v,w) for some λ(g) ∈ F×p }.

First suppose p=2 so that GSp(T )=Sp(T ) is the symplectic group associated to ( · , · ). If dimF2 T >4
then Sp(T ) is simple and since any symplectic transvection σ (i.e., element of Sp(T ) of the form
v 7→ v+ (v,w)w for fixed 0 6=w ∈ T ) has dimF2 T σ odd, if G is isomorphic to Sp(T ) (i.e., is as large as
possible) then ε is not a homomorphism. Thus case (i) of Theorem 7.4 is, in some sense, the “generic”
case. When dimF2 T = 2 one can check that ε is always a homomorphism, whilst if dimF2 T = 4 then
Sp(T ) is isomorphic to the symmetric group S6. One can check (see Example 10.17 later) that when G is
either the whole of S6 or the alternating group A6 then ε is not a homomorphism, so again case (i) of
Theorem 7.4 holds for G “large enough”. On the other hand, Proposition 3.5 gives a supply of examples
where ε is a homomorphism. Namely, if G fixes a quadratic refinement q of ( · , · ) then G is a subgroup
of the orthogonal group O(q), in which case ε is the Dickson homomorphism.

Now suppose that p > 2. The subgroup Gal(K (T )/K (µp)) consists of those elements g ∈ G for
which λ(g) = 1. That is, it is the intersection of G with the symplectic group Sp(T ). If G contains a
symplectic transvection σ (which as now p > 2 is an element of Sp(T ) of the form v 7→ v+β · (v,w)w

for β ∈ F×p , 0 6= w ∈ T ) then one sees easily that ε(σ ) = −1, so that ε is nontrivial when restricted to
Gal(K (T )/K (µp)). Thus again case (i) of Theorem 7.4 holds for G “large enough”.

7C. The cases p = 2 and ε is a homomorphism, and p > 2 and ε is trivial when restricted to
Gal(K (T )/K (µ p)). Suppose now that either p = 2 and ε is a homomorphism, or p > 2 and ε is
trivial for all σ ∈ Gal(K (T )/K (µp)).

Definition 7.6. Let v ∈6 and χ ∈ C(Kv). If p > 2 we define

ωv(χ) := (−1)hv(1Kv ,χ).

If p = 2 view ε as a quadratic character of K and let 1 ∈ K×/K×2 be such that the corresponding
quadratic extension is given by K (

√
1)/K . We then define

ωv(χ) := χ(1)(−1)hv(1Kv ,χ)

where here for a place v of K we evaluate χv at 1 via local class field theory.

Lemma 7.7. For any χ ∈ C(K ) we have

(−1)dimFp Sel(T,χ)
= (−1)dimFp Sel(T,1K )

∏
v∈6

ωv(χv).

Proof. Fix v /∈6 with µp ⊆ Kv , and let Frobv ∈ G denote the Frobenius element at v in K (T )/K . Then
as T is unramified at v we have

(−1)dimFp T G Kv
= ε(Frobv).
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If p > 2 then ε(Frobv)= 1 for all v /∈6 by assumption, whence the result follows from Theorem 6.12.
Now suppose that p = 2. As above, view ε as a quadratic character of K . Since ε factors through

Gal(K (T )/K ) it is unramified outside 6. In particular, if v /∈6 is such that χv is unramified, then both
εv and χv are unramified at v and so χv(1)= 1. On the other hand, if v /∈6 is such that χv ramifies at v
then since Kv has odd residue characteristic, we have χv(1) = ε(Frobv) (see Lemma 8.4(ii)). Global
class field theory gives

∏
v∈MK

χv(1)= 1 from which it follows that∏
v /∈6,χv ram

(−1)dimFp T G Kv
=

∏
v∈6

χv(1).

We now conclude by Theorem 6.12. �

The proof of Theorem 7.4(ii) now proceeds as in [Klagsbrun et al. 2013, §7].

Definition 7.8. For each v ∈6 define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ωv(χ) and δ :=
∏
v∈6

δv.

Remark 7.9. We have decided to define δ slightly differently to [Klagsbrun et al. 2013, §7] so that it is a
product of local terms. Our definition of the δv is consistent with theirs however.

Theorem 7.10. Suppose that either p = 2 and ε is a homomorphism, or p > 2 and ε is trivial when
restricted to Gal(K (T )/K (µp)). Then for all sufficiently large X > 0 we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Sel(T,1K )δ

2
.

Proof. The argument is the same as in [Klagsbrun et al. 2013, Theorem 7.6]. We repeat it for convenience.
Write 0=

∏
v∈6 C(Kv) and for χ ∈ C(K ), write χ |0 for the image of χ under the natural restriction homo-

morphism C(K )→ 0 sending χ to (χv)v∈6 . From Lemma 7.7 we see that the parity of dimFp Sel(T, χ)
depends only on χ |0 and that dimFp Sel(T, χ) is even if and only if∏

v∈6

ω(χv)= (−1)dimFp Sel(T,1K ).

As is possible by Lemma 7.2, take X sufficiently large that C(K , X) surjects onto 0 under restriction.
Since restriction is a group homomorphism, its fibers all have the same size (being cosets of the kernel)
and, in particular, we have

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
|{γ ∈ 0 :

∏
v∈6 ω(γv)= (−1)dimFp Sel(T,1K )}|

|0|

where here, for γ ∈ 0 we denote by γv its projection onto C(Kv).
To evaluate the right-hand side of the above expression, define

N :=
∣∣∣∣{γ ∈ 0 :∏

v∈6

ω(γv)= 1
}∣∣∣∣.
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Then we have

N − (|0| − N )=
∑
γ∈0

∏
v∈6

ω(γv)=
∏
v∈6

∑
χv∈C(Kv)

ω(χv).

Dividing the above expression through by 2|0| gives

|{γ ∈ 0 :
∏
v∈6 ω(γv)= 1}|
|0|

=
1+ δ

2

and the result follows immediately. �

8. Disparity in Selmer ranks: local symbols and global characters

In order to prove the remaining cases of Theorem 7.4 we now recall and slightly generalize (as well as
rephrase for convenience in Section 9) the results of [Klagsbrun et al. 2013, §6], which uses class field
theory to analyze which collections of local characters arise from a global character.

8A. Local symbols. For each nonarchimedean place v of K , Tate local duality gives a nondegenerate
pairing

H 1(Kv,µp)× H 1(Kv,Z/pZ)→Q/Z, (8.1)

defined as the composition

H 1(Kv,µp)× H 1(Kv,Z/pZ) ∪−→ H 2(K ,µp) ↪→ Br(Kv)
invv−−−→Q/Z

(here the map “∪” is the cup product map on cohomology combined with the canonical isomorphism
Z/pZ⊗µp ∼= µp).

We now slightly modify this pairing. As the Galois action on Z/pZ is trivial we have H 1(Kv,Z/pZ)=

Homcnt(G Kv
,Z/pZ). Picking an isomorphism of abstract groups θ :µp

∼
→ Z/pZ induces isomorphisms

C(Kv)∼= H 1(Kv,Z/pZ) and 1
p Z/Z∼= µp (8.2)

where for the latter we identify Z/pZ with 1
p Z/Z by sending 1 ∈ Z/pZ to 1

p . Noting that H 2(Kv,µp)⊆

Br(Kv) is mapped by invv into 1
p Z/Z, combining the pairing (8.1) with the isomorphisms of (8.2) yields

a nondegenerate pairing

[ · , · ]v : H 1(Kv,µp)× C(Kv)→ µp (8.3)

which is easily seen to be independent of the choice of θ .
The following well-known lemma summarizes the properties of this local pairing.

Lemma 8.4. Let v be a nonarchimedean place of K . Then:

(i) If v - p then the groups H 1
ur(Kv,µp) and Cur(Kv) are orthogonal complements with respect to the

pairing [ · , · ]v.
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(ii) Let x ∈ K×v and write φx ∈ H 1(Kv,µp) for the image of x under the boundary map associated to
the Kummer sequence

1→ µp→ Kv× x 7→x p
−−−→ Kv×→ 1.

Then for any χ ∈ C(Kv) we have

[φx , χ]v = χ(ArtKv
(x))−1,

where here ArtKv
: K×v → Gab

Kv
denotes the local Artin map.

(iii) Suppose v is such that µp ⊆ Kv so that H 1(Kv,µp)= C(Kv). Then the resulting pairing

[ · , · ]v : C(Kv)× C(Kv)→ µp

is antisymmetric.

Proof. Part (i) is [Neukirch et al. 2008, Theorem 7.2.15] whilst part (ii) is Corollary 7.2.13 of [loc. cit.].
(The cited results are stated for the pairing of (8.1) rather than the altered pairing [ · , · ]v but in each case
they immediately imply the claimed results.) Finally, antisymmetry of the cup product

H 1(Kv,Z/pZ)× H 1(Kv,Z/pZ)→ H 2(Kv,Z/pZ⊗Z/pZ)

gives part (iii). �

8B. Existence of global characters with specified restriction and ramification. We will need the fol-
lowing lemma which is the analogue of [Klagsbrun et al. 2013, Proposition 6.8(iii)] in the case that the
dimension of T is allowed to be larger than 2.

Notation 8.5. Writing 0 :=
∏
v∈6 C(Kv), we denote by [ · , · ]6 the nondegenerate bilinear pairing

[ · , · ]6 :

(∏
v∈6

H 1(Kv,µp)

)
×0→ µp

defined as the sum (or rather product) over v ∈6 of the pairings [ · , · ]v of (8.3).

Lemma 8.6. Let P denote the set of primes of K not in 6 which split completely in K (T )/K , and fix
γ ∈ 0. Then there is a character χ ∈ C(K ) unramified outside 6 ∪ P and with χ |0 = γ , if and only if
[c, γ ]6 = 0 for each c in the image of the restriction homomorphism

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp).

Proof. Exactness at the middle term of the Poitou–Tate exact sequence (see, for example, [Milne 2006,
Theorem I.4.10]) applied to the set 6 ∪ P of places and the G K -module Z/pZ (and its dual µp), shows
that

im
(

H 1(K6∪P/K ,Z/pZ)→
∏′

v∈6∪P

H 1(Kv,Z/pZ)

)
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is the orthogonal complement of

im
(

H 1(K6∪P/K ,µp)→
∏′

v∈6∪P

H 1(Kv,µp)

)
under the sum of the local pairings of (8.1), where here K6∪P denotes the maximal extension of K
unramified outside 6 ∪ P and the restricted direct products are taken with respect to unramified classes.

Now fix any choice of isomorphism µp ∼= Z/pZ and use it to identify C(K ) with H 1(K ,Z/pZ), and
C(Kv) with H 1(Kv,Z/pZ) for each v similarly. Then the group H 1(K6∪P/K ,Z/pZ) corresponds to the
group of characters unramified outside6∪P , which we denote by C(K )6∪P . Making these identifications
and projecting onto

∏
v∈6 C(Kv), it follows formally that the image of C(K )6∪P in

∏
v∈6 C(Kv) is the

orthogonal complement with respect to the pairing [ · , · ]6 of the image of

ker
(

H 1(K6∪P/K ,µp)→
∏′

v∈P

H 1(Kv,µp)

)
in
∏
v∈6 H 1(Kv,µp). We now conclude by the following lemma. �

Lemma 8.7. Let P denote the set of primes of K not in 6 and which split completely in K (T )/K , and
let K6∪P denote the maximal extension of K unramified outside 6 ∪ P. Then we have

H 1(K (T )/K ,µp)= ker
(

H 1(K6∪P/K ,µp)→
∏′

v∈P

H 1(Kv,µp)

)
,

the groups being compared inside H 1(K ,µp) (and the restricted direct product being taken with respect
to unramified classes as above).

Proof. Since K (T ) is unramified outside 6 we have K (T )⊆ K6∪P . Thus it suffices to show that we have

H 1(K (T )/K ,µp)= ker
(

H 1(K ,µp)
res
−→

∏′

v∈P

H 1(Kv,µp)

)
.

Since each prime in P splits completely in K (T )/K the restriction map above factors as

H 1(K ,µp)
f1−→ H 1(K (T ),µp)

f2−→

∏′

v∈P

H 1(Kv,µp),

where both maps are given by restriction. Since the inflation-restriction exact sequence identifies
H 1(K (T )/K ,µp) with ker( f1), it suffices to show that f2 is injective. Since K (T ) and each Kv (v ∈ P)
contain µp, we may reinterpret f2 as the restriction map on characters

C(K (T ))→
∏′

v∈P

C(Kv).

Suppose χ ∈ C(K (T )) is a character of K (T ) which is trivial in C(Kv) for each v ∈ P , let L/K (T )
denote the extension corresponding to the fixed field of the kernel of χ , and let L ′/K denote the Galois
closure of L/K . Then our assumption on χ means that every prime v ∈ P splits completely in L ′/K . By
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the Chebotarev density theorem this gives [L ′ : K ] ≤ [K (T ) : K ]. Since we already know that K (T )⊆ L ′

we must have L ′ = K (T ) whence χ is the trivial character. �

8C. Assumptions on the set of places 6. We now impose conditions on the finite set of places 6 (in
addition to containing all archimedean places, all primes over p and all places for which T is ramified)
which will be necessary for the proof of the remaining cases of Theorem 7.4.

Assumption 8.8. We henceforth impose the following conditions on the finite set of places 6:

(i) The restriction homomorphism

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp)

is injective.

(ii) Pic(OK ,6)= 0.

(iii) The natural map
O×K ,6/(O

×

K ,6)
p
→

∏
v∈6

K×v /(K
×

v )
p

is injective.

(In (ii) and (iii), OK ,6 denotes the elements of K integral outside 6.)

Lemma 8.9. A set of places 6 satisfying Assumption 8.8 exists.

Proof. We begin by taking 6 large enough that it contains all archimedean places, all primes over p and
all places where T ramifies. By the Grunwald–Wang theorem [Neukirch et al. 2008, Theorem 9.1.9(ii)]
the map

H 1(K ,µp)→
∏
v∈MK

H 1(Kv,µp)

is injective. In particular, as H 1(K (T )/K ,µp) is a finite subgroup of H 1(K ,µp), we see that by enlarging
6 if necessary we may additionally ensure that (i) holds.

Finally, [Klagsbrun et al. 2013, Lemma 6.1] shows that any finite set of places may be further enlarged
so that (ii) and (iii) hold. �

Lemma 8.10. Suppose Assumption 8.8 is satisfied and let p be a prime of K with p /∈6 and µp ⊆ K×p .
Write

δp : K×p /K×p
p −→

∼ C(Kp)

for the isomorphism (coming from the Kummer sequence) sending x ∈ K×p to the character σ 7→ σ(y)/y
where y ∈ K×p is such that y p

= x (any two choices for y yield the same character since µp ⊆ Kp).
Then there is a (global) character ϕ(p) ∈ C(K ) satisfying the following three conditions:

ϕ(p) ramifies at p.

ϕ(p) is unramified outside 6 ∪ {p}.

The restriction of ϕ(p) to C(Kp) is equal to δp($) for some uniformizer $ of Kp.

(8.11)
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Proof. Given the assumptions on6, the existence of a character ϕ(p) which ramifies at p and is unramified
outside 6 ∪ {p} follows from [Klagsbrun et al. 2013, Proposition 6.8 (ii)]. Fix one such and pick x ∈ K×p
such that the restriction of ϕ(p) is equal to δp(x). Since ϕ(p) ramifies at p the extension of K×p obtained
by adjoining a p-th root of x ramifies. In particular, since Kp has residue characteristic coprime to p
(as p /∈ 6), the valuation vp(x) of x is coprime to p. Noting that replacing ϕ(p) with ϕ(p)m for any m
coprime to p yields another character which ramifies at p and is unramified outside 6 ∪ {p}, we may
suppose that vp(x) is congruent to 1 modulo p. Finally, since K×p

p is in the kernel of δp we may now
shift x by a p-th power of a uniformizer to suppose that x has valuation 1 as desired. �

The following lemma evaluates the pairing [ · , · ]6 of Notation 8.5 between the characters ϕ(p) of
Lemma 8.10 and elements of H 1(K (T )/K ,µp).

Lemma 8.12. Let p be a prime of K not in 6, let ϕ(p) satisfy (8.11), and let c ∈ H 1(K (T )/K ,µp). Then
writing Frobp for the Frobenius element at p in Gal(K (T )/K ) we have

[c, ϕ(p)]6 = c(Frobp).

Proof. By global class field theory the product of [c, ϕ(p)]v over all places of K is equal to 1. In particular,
we have

[c, ϕ(p)]6 =
∏
v /∈6

[c, ϕ(p)]v.

If q is a prime of K not in 6 then q - p and, additionally, K (T )/K is unramified at q whence the restriction
of c to H 1(Kq,µp) is in the unramified subgroup H 1

ur(Kq,µp). If q 6= p then ϕ(p) is also unramified at q
whence [c, ϕ(p)]q = 1 by Lemma 8.4(i).

It now follows that [c, ϕ(p)]6 = [c, ϕ(p)]p and to conclude we must show that [c, ϕ(p)]p = c(Frobp).
Since µp ⊆ Kp and we’ve chosen ϕ(p) so that its restriction to C(Kp) agrees with δp($) for some
uniformizer $ of Kp, parts (ii) and (iii) of Lemma 8.4 combine to give

[c, ϕ(p)]p = c(ArtKp($)).

Now c is unramified at p and by standard properties of the local Artin map we have ArtKp($)|Kp
nr=FrobKp .

On the other hand, since c came from H 1(K (T )/K ,µp), its restriction to H 1(Kp,µp) factors through
Gal(Kp(T )/Kp). As the restriction of FrobKp to Gal(Kp(T )/Kp) is precisely Frobp, we have the result. �

9. Disparity in Selmer ranks: remaining cases

We now treat the remaining cases of Theorem 7.4, namely when p= 2 and ε fails to be a homomorphism,
or when p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)). Our strategy is broadly based
on that of [Klagsbrun et al. 2013, §8], although the arguments are more involved.

We begin by fixing a finite set of places 6 satisfying Assumption 8.8. As before let G denote the
Galois group of K (T )/K and write 0 :=

∏
v∈6 C(Kv). For χ ∈ C(K ) we denote by χ |0 the image of χ

in 0 under the (product of the) natural restriction map(s).
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Definition 9.1. Define a map w : C(K )→ {±1} by

w(χ) :=
∏

v /∈6,χv ram

(−1)dimFp T G Kv
=

∏
v /∈6,χv ram

ε(Frobv),

where here Frobv ∈ G denotes the Frobenius element at v in K (T )/K .

Remark 9.2. By Theorem 6.12, for each χ ∈ C(K ) we have

(−1)dimF2 Sel(T,χ)
= w(χ)(−1)dimF2 Sel(T,1K )

∏
v∈6

(−1)hv(1K ,χv).

We now examine the extent to which w(χ) behaves “independently” of the restriction of χ to 0. To
this end, we make the following definition.

Definition 9.3. For each X ≥ 1 and γ ∈ 0, define

sX (γ )=
|{χ ∈ C(K , X) : χ |0 = γ,w(χ)= 1}|
|{χ ∈ C(K , X) : χ |0 = γ }|

.

The rest of the section is occupied with the proof of the following theorem.

Theorem 9.4. We have:

(i) If p = 2 and ε fails to be a homomorphism then, for all sufficiently large X , sX (γ )=
1
2 for all γ ∈ 0.

(ii) If p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)) then limX→∞ sX (γ )=
1
2 for all

γ ∈ 0.

Assuming this for the moment we get as a corollary the remaining cases of Theorem 7.4.

Theorem 9.5. We have:

(i) If p = 2 and ε fails to be a homomorphism then, for all sufficiently large X.

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
,

(ii) If p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Sel(T, χ) is even}|
|C(K , X)|

=
1
2
.

Proof. Fix γ ∈ 0 and suppose that χ ∈ C(K , X) is such that χ |0 = γ . Then by Remark 9.2 we have

dimF2 Sel(T, χ) is even⇔ w(χ)= (−1)dimF2 Sel(T,1K )
∏
v∈6

(−1)hv(1K ,γv),

and the right-hand side depends only on γ . In particular, by Theorem 9.4 we have

lim
X→∞

|{χ ∈ C(K , X) : χ |0 = γ and dimF2 Sel(T, χ) is even}|
|{χ ∈ C(K , X) : χ |0 = γ }|

=
1
2
,

and if p = 2 then this is in fact an equality for all sufficiently large X rather than a limit. Averaging over
all γ ∈0 gives the result (note that the sets {χ ∈ C(K , X) : χ |0 = γ } all have the same size for sufficiently
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large X as the restriction map χ 7→ χ |0 is a homomorphism and is surjective for X sufficiently large by
Lemma 7.2). �

We now turn to the proof of Theorem 9.4.

Definition 9.6. Fix an Fp-basis {φ1, . . . , φr } for H 1(K (T )/K ,µp). Further, define the homomorphism
f : 0→ µr

p by setting

f (γ )= ([φi , γ ]6)
r
i=1

where here we view the φi inside
∏
v∈6 H 1(Kv,µp) via the product of the natural restriction maps, and

[ · , · ]6 is the pairing of Notation 8.5 (we allow the case r = 0 in which case µr
p is the trivial group).

Remark 9.7. Since we have taken 6 large enough that the map

H 1(K (T )/K ,µp)→
∏
v∈6

H 1(Kv,µp)

is injective, it follows from the nondegeneracy of the pairing [ · , · ]6 that f is surjective.

Definition 9.8. For each n ≥ 1 and η ∈ µr
p, define

tX (η)=
|{χ ∈ C(K , X) : f (χ |0)= η,w(χ)= 1}|

|{χ ∈ C(K , X) : f (χ |0)= η}|
.

The following lemma reduces the problem of understanding sX (γ ) as γ ranges over the elements of 0,
to understanding tX (η) as η ranges over the elements of µr

p.

Lemma 9.9 [Klagsbrun et al. 2013, Lemma 8.4]. Let γ ∈ 0. Then for X sufficiently large we have

sX (γ )= tX ( f (γ )).

Proof. Let P denote the set of primes of K not in6 and which split completely in K (T )/K , and let γ ′ ∈0
be such that f (γ ′) = f (γ ). Then γ ′γ−1 is in the kernel of f so by Lemma 8.6 there is χγ,γ ′ ∈ C(K )
with χγ,γ ′ |0 = γ ′γ−1 and such that χγ,γ ′ is unramified outside 6 ∪ P . Now for any χ ∈ C(K ) we have
w(χ)=w(χχγ,γ ′) since the sets of primes not in 6 where χ and χγ,γ ′ ramify differ only at primes p∈ P ,
and at such primes we have

ε(Frobp)= ε(1)= (−1)dim T
= 1

(where as usual Frobp denotes the Frobenius element at p in K (T )/K ). Thus if X is sufficiently large
that χγ,γ ′ is in C(K , X), multiplication by χγ,γ ′ gives a bijection between the set

{χ ∈ C(K , X) : χ |0 = γ, w(χ)= 1}

and the set

{χ ∈ C(K , X) : χ |0 = γ ′, w(χ)= 1},

as well as between the same two sets with the conditions on w(χ) removed.
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Writing η = f (γ ), it follows that for X sufficiently large we have

tX (η)=

∑
γ ′∈ f −1({η})|{χ ∈ C(K , X) : χ |0 = γ ′, w(χ)= 1}|∑

γ ′∈ f −1({η})|{χ ∈ C(K , X) : χ |0 = γ ′}|

=
| f −1({η})| · |{χ ∈ C(K , X) : χ |0 = γ, w(χ)= 1}|

| f −1({η})| · |{χ ∈ C(K , X) : χ |0 = γ }|
= sX (γ )

as desired. �

We now study the quantities tX (η) as η ranges over µr
p, splitting into cases according to p= 2 or p> 2.

9A. The case where p = 2 and ε fails to be a homomorphism. Suppose now that p = 2 and ε fails to
be a homomorphism.

Definition 9.10. Define the map θ : C(K )→ µr
2×{±1} by setting

θ(χ) := ( f (χ |0), w(χ)).

The following observation will be crucial to our method. We remark that it fails for p > 2.

Lemma 9.11. The map θ is a homomorphism.

Proof. Since both the restriction map C(K )→ 0 and the map f : 0→µr
2 are homomorphisms, it suffices

to show that w : C(K )→ {±1} is a homomorphism.
For each v /∈6, define a map wv : C(Kv)→ {±1} by

wv(χ)=

{
(−1)dimF2 T G Kv

χ ramified,
1 else.

Since w is the product of the wv over v /∈6, it suffices to show that each wv is a homomorphism. To see
this, note that as v /∈6, Kv has odd residue characteristic. In particular, the product of any two ramified
characters of Kv is unramified, and the product of a ramified character with an unramified character is
again ramified. �

Remark 9.12. For X > 0 write θX for the restriction of θ to C(K , X). Then for each η ∈ µr
2 we have

tX (η)=
|θ−1

X ((η, 1))|

|θ−1
X ((η, 1))| + |θ−1

X ((η,−1))|
.

Now (for X > 1), C(K , X) is a group and θX is a homomorphism. Thus the fibers over points in the
image of θX have the same size, being cosets of the kernel. In light of Lemma 9.9, Theorem 9.4(i) is
equivalent to the statement that, if ε fails to be a homomorphism, then θX is surjective for sufficiently large
X > 0. Since µr

2×{±1} is a finite group this is, in turn, equivalent to the statement that if ε fails to be a
homomorphism then θ is surjective. This is the statement we now study, and prove in Proposition 9.14.

We now fix a collection of global characters {ϕ(p)}p/∈6 satisfying (8.11). Each ϕ(p) is ramified at p,
yet unramified outside 6 ∪ {p}. Lemma 8.12 allows us to evaluate the map θ on the ϕ(p).
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Lemma 9.13. For each p /∈6 we have

θ(ϕ(p))= ((φi (Frobp))ri=1, ε(Frobp))

where here Frobp ∈ G denotes the Frobenius element at p in K (T )/K .

Proof. Since amongst the primes not in 6 the character ϕ(p) only ramifies at p, we have w(ϕ(p)) =
ε(Frobp) by definition. We have f (ϕ(p)|0)= (φi (Frobp))ri=1 by Lemma 8.12. �

Proposition 9.14. The map θ : C(K )→µr
2×{±1} is surjective if and only if ε fails to be a homomorphism.

Proof. Note that the subgroup U of C(K ) consisting of characters unramified outside 6 is in the kernel
of θ , and the quotient C(K )/U is generated by the ϕ(p) as p ranges over primes not in 6.

By the Chebotarev density theorem, each conjugacy class in G = Gal(K (T )/K ) arises as Frobp for
some p /∈6 and so by Lemma 9.13 it follows that the image of θ is the subgroup of µr

2×{±1} generated
by the set

{((φi (σ ))
r
i=1, ε(σ )) : σ ∈ G}

(note that for σ ∈ G, both ε(σ ) and the φi (σ ) depend only on the conjugacy class of σ in G).
Recall that the set {φi : 1≤ i ≤ r} is a basis for H 1(K (T )/K ,µ2)= Hom(G,µ2). To make this more

explicit denote by G2 the subgroup of G generated by the squares of all the elements of G. It’s a normal
subgroup and the quotient G/G2 is an abelian group of exponent 2. That is, G/G2 is a finite dimensional
F2-vector space. Since every homomorphism from G to µ2 factors through G/G2 we have

Hom(G,µ2)= Hom(G/G2,µ2)

and the right-hand group is just the dual of G/G2 as an F2-vector space. In particular, the map G/G2
→µr

2

sending σ to (φi (σ ))
r
i=1 is an isomorphism.

Combining the above we arrive at a purely group theoretic criterion: θ is surjective if and only if the set

S := {(σ , ε(σ )) : σ ∈ G}

generates G/G2
×{±1}, where here for σ ∈ G we write σ for the image of σ in G/G2.

Suppose now that ε is a homomorphism. Then ε necessarily factors through G/G2 and we see that S
generates an index 2 subgroup of G/G2

×{±1}, so that θ is not surjective in this case.
Conversely, suppose that ε fails to be a homomorphism and write H for the subgroup of G/G2

×{±1}
generated by S. By assumption, we may find σ and τ in G with ε(στ)=−ε(σ )ε(τ ). Then

(σ , ε(σ )) · (τ , ε(τ )) · (στ , ε(στ))= ((στ)2,−1)= (1,−1)

is in H (here the first 1 denotes the identity in G/G2). Then for any σ ∈ G, both (σ , ε(σ )) and

(σ ,−ε(σ ))= (1,−1) · (σ , ε(σ ))

are in H . Thus H = G/G2
×{±1} and θ is surjective. �
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Proof of Theorem 9.4(i). By Remark 9.12 we see that Theorem 9.4(i) holds if and only if θ is surjective
whenever ε fails to be a homomorphism. The result now follows from Proposition 9.14. �

9B. The case where p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µ p)). Suppose now
that p > 2 and that the restriction of ε to Gal(K (T )/K (µp)) is nontrivial.

We begin by defining a slight refinement of the quantity tX (η).

Definition 9.15. Fix an enumeration of the primes p /∈6 such that if i ≤ j then N (pi )≤ N (p j ), and for
each n ≥ 1 define the subgroup Cn(K ) of C(K ) by

Cn(K ) := {χ ∈ C(K ) : χ is unramified outside 6 ∪ {p1, . . . , pn}}.

Further, for each n ≥ 1 and η ∈ µr
p, define

t̂n(η) :=
|{χ ∈ Cn(K ) : f (χ |0)= η,w(χ)= 1}|

|{χ ∈ Cn(K ) : f (χ |0)= η}|
−

1
2
.

Remark 9.16. Note that we subtract 1
2 in the definition of t̂n(η) whilst we did not in the definition of

tX (η). This will neaten the statement of some results in the rest of the section. Clearly for any η ∈ µr
p, to

show that limX→∞ tX (η)=
1
2 it suffices to show that limn→∞ t̂n(η)= 0.

As in the case p = 2 we now fix a collection of global characters {ϕ(p)}p/∈6,µp⊆Kp satisfying (8.11).

Lemma 9.17. Fix n≥ 1. Then if µp ( Kpn+1 we have Cn+1(K )= Cn(K ). On the other hand, if µp⊆ Kpn+1

then we have

Cn+1(K )=
p−1⊔
i=0

ϕ(pn+1)
i
· Cn(K ).

Proof. In each case this follows from the structure of C(Kpn+1); see [Klagsbrun et al. 2013, Lemma 8.3]. �

Definition 9.18. Let V be the regular representation of µr
p over C, so that V has basis {eη : η ∈ µr

p} on
which µr

p acts via η′ · eη = eη′η. For each n ≥ 1 define

t̂n :=
∑
η∈µr

p

t̂n(η)eη ∈ V .

Further, for σ ∈ Gal(K (T )/K (µp)), define ρ(σ) := (φi (σ ))
r
i=1 ∈ µ

r
p and

M(σ ) := 1
p

(
1+ ε(σ )

p−1∑
i=1

ρ(σ)i
)
∈ End(V ).

Remark 9.19. For σ ∈ Gal(K (T )/K (µp)) the element M(σ ) depends only on the conjugacy class of σ
in G. Indeed, for each 1≤ i ≤ r and g ∈G, the cocycle relation for φi gives φi (gσg−1)= gφi (σ ). It now
follows that for each i ,

∑p−1
j=1 φi (σ )

j depends only on the conjugacy class of σ in G. Since the same is
true for ε(σ ) we are done.
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Lemma 9.20. Fix n ≥ 1. If µp ( Kpn+1 then we have t̂n+1 = t̂n . On the other hand, if µp ⊆ Kpn+1 then
we have the following recurrence relation for t̂n:

t̂n+1 = M(Frobpn+1) t̂n,

where here Frobpn+1 ∈ G denotes the Frobenius element at pn+1 in K (T )/K .

Proof. If µp ( Kpn+1 then Cn+1(K )= Cn(K ) and the result is clear.
Suppose now that µp ⊆ Kpn+1 and define the map θ : C(K )→ µr

p×{±1} by

θ(χ) := ( f (χ |0), w(χ))

(note that, unlike the case p = 2 this is not a homomorphism). Then Lemma 8.12 gives

θ(ϕ(pn))= (ρ(Frobpn ), ε(Frobpn )).

Moreover, if χ0 ∈ Cn(K ) then we have

θ(χ0 ·ϕ(pn+1)
i )= θ(χ0) · θ(ϕ(pn+1)

i )

since the sets of primes not in 6 at which χ0 and ϕ(pn+1)
i ramify are disjoint. Writing σ for Frobpn+1 ,

this gives

θ(χ0 ·ϕ(pn+1)
i )=

{
θ(χ0) i = 0,
θ(χ0) · (ρ(σ )

i , ε(σ )) 1≤ i ≤ p− 1.

It now follows from Lemma 9.17 that for each η ∈ µr
p we have

|{χ ∈ Cn+1(K ) : θ(χ)= (η, 1)}|

=

p−1∑
i=0

|{χ ∈ ϕ(pn+1)
i
· Cn(K ) : θ(χ)= (η, 1)}|

= |{χ0 ∈ Cn(K ) : θ(χ0)= (η, 1)}| +
p−1∑
i=1

|{χ0 ∈ Cn(K ) : θ(χ0)= (η · ρ(σ)
−i , ε(σ ))}|.

Dividing through by |Cn+1(K )| = p|Cn(K )| gives

t̂n+1(η)=
1
p

(
t̂n(η)+ ε(σ )

p−1∑
i=1

t̂n(ρ(σ )−i
· η)

)
and the result now follows from the definition of M(σ ). �

Lemma 9.21. For any m ≥ 1 and σ ∈ Gal(K (T )/K (µp)) we have

M(σ )m =
{

M(σ ) ε(σ )= 1,( 2
p

( 2−p
p

)m
−

2−p
p

( 2
p

)m) idV +
(( 2

p

)m
−
( 2−p

p

)m)M(σ ) ε(σ )=−1.
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In particular, for p > 2 and writing ‖·‖ for the operator norm on End(V ), we have

lim
m→∞
‖M(σ )m‖ =

{
‖M(σ )‖ ε(σ )= 1,
0 ε(σ )=−1.

Proof. Fix σ ∈ Gal(K (T )/K (µp)) and define

T (σ ) := 1
p

p−1∑
i=0

ρ(σ)i .

Then T (σ ) is an idempotent in End(V ) (e.g., by orthogonality of characters of µp or by explicit compu-
tation) so that T (σ )m = T (σ ) for each m ≥ 1. Note that we have

M(σ )=
{

T (σ ) ε(σ )= 1,
2
p − T (σ ) ε(σ )=−1.

If ε(σ )= 1 this immediately gives M(σ )m = M(σ ), whilst if ε(σ )=−1 the result now follows easily
either by induction on m or by expanding

( 2
p − T (σ )

)m with the binomial theorem.
Since p > 2 we have both

lim
m→∞

(
2
p

)m

= 0 and lim
m→∞

(
2− p

p

)m

= 0,

from which the statement about limm→∞‖M(σ )m‖ follows immediately. �

Proposition 9.22. Suppose that p > 2 and ε is nontrivial when restricted to Gal(K (T )/K (µp)). Then
for each η ∈ µr

p we have

lim
n→∞

t̂n(η)= 0.

Proof. Write H := Gal(K (T )/K (µp)), and note that this is a normal subgroup of G. For each n ≥ 1 we
have µp ⊆ Kpn if and only if Frobpn ∈ H . By Lemma 9.20, for each n ≥ 1 we have

t̂n =
( n∏

i=2
Frobpi ∈H

M(Frobpi )

)
t̂1. (9.23)

Write C1, . . . ,Cl for the conjugacy classes in G that are contained in H and, for each i , fix a
representative σi for Ci . Further, for each 1≤ i ≤ l, define

mi (n) := |{2≤ j ≤ n : Frobp j ∈ Ci }|.

Since the group ring C[µr
p] is commutative, the matrices M(σi ) all mutually commute and we may group

like terms in (9.23) to obtain (cf. Remark 9.19)

t̂n =
( l∏

i=1

M(σi )
mi (n)

)
t̂1.
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Writing ‖·‖ for the usual Euclidean norm on V (with respect to the basis {eη : η ∈ µr
p}), we have

‖ t̂n‖ =
∥∥∥∥( l∏

i=1

M(σi )
mi (n)

)
t̂1
∥∥∥∥≤ ( l∏

i=1

‖M(σi )‖
mi (n)

)
‖ t̂1‖.

By the Chebotarev density theorem each of the mi (n) tend to infinity with n and, since we have assumed
there is at least one i with ε(σi )=−1, it follows from Lemma 9.21 that

lim
n→∞
‖ t̂n‖ = 0.

That is, limn→∞ t̂n(η)= 0 for each η ∈ µr
p. �

Proof of Theorem 9.4(ii). Fix γ ∈ 0 and write η = f (γ ). Then by Lemma 9.9, for all X sufficiently large
we have sX (γ )= tX (η). It follows from Proposition 9.22 that limX→∞ tX (η)=

1
2 , from which the result

follows. �

10. Twisting data for abelian varieties ( p = 2)

In this section let K be a number field and (A/K , λ) a principally polarized abelian variety. In the notation
of Sections 6–9 we take p = 2 and T = A[2] endowed with the Weil pairing ( · , · )λ. Let 6 be a finite set
of places of K containing all archimedean places, all places dividing 2, and all places at which A has bad
reduction. Then T is unramified outside 6.

We now endow T with a global metabolic structure and twisting data in such a way that for χ ∈ C(K )
the associated Selmer group Sel(A[2], χ) agrees with the 2-Selmer group Sel2(Aχ/K ) of the quadratic
twist of A by χ . For elliptic curves this is done in [Klagsbrun et al. 2013, §5]. Our definition of the
global metabolic structure and twisting data will be a direct generalization of theirs. The main difficulty
is establishing Lemma 10.6 which for elliptic curves is [Klagsbrun et al. 2013, Lemma 5.2(ii)] and for
Jacobians of odd degree hyperelliptic curves is [Yu 2016, Theorem 5.10]. We will deduce the general
case from the results of Section 4E concerning the behavior of certain Theta groups under quadratic twist.

10A. A global metabolic structure on A[2]. For a place v of K write

δv : A(Kv)/2A(Kv) ↪→ H 1(Kv, A[2])

for the connecting homomorphism in the multiplication-by-2 Kummer sequence.

Definition 10.1. Let P denote the Poincaré line bundle on A× A∨. For each place v of K write Lv for
the pull back of L= (1, λ)∗P to a line bundle on A/Kv and let G(Lv) denote the associated Theta group.
Then we define qA,λ,v to be the map

qA,λ,v : H 1(Kv, A[2])→ H 2(Kv, Kv×)= Br(Kv)
invv−−−→Q/Z

where the first map is the connecting map associated to the short exact sequence of G Kv
-modules

0→ Kv×→ G(Lv)→ A[2] → 0 (10.2)

of Remark 4.14.
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Lemma 10.3. Let v be a place of K . Then:

(i) qA,λ,v is a quadratic form on H 1(Kv, A[2]) whose associated bilinear pairing is the local Tate
pairing corresponding to ( · , · )λ.

(ii) The image of A(Kv)/2A(Kv) under δv is a Lagrangian subspace of H 1(Kv, A[2]) with respect to
qA,λ,v.

In particular, qA,λ,v is a Tate quadratic form on H 1(Kv, A[2]) in the sense of Definition 6.1.

Proof. Part (i) is [Poonen and Rains 2012, Corollary 4.7] whilst Proposition 4.9 of op. cit. gives (ii). �

Remark 10.4. In contrast to the case of elliptic curves the quadratic form qA,λ,v in general takes values in
1
4 Z/Z rather than just 1

2 Z/Z, which is the reason for allowing Q/Z-valued quadratic forms in Definition 6.1
rather than just those valued in F2. See [Poonen and Rains 2012, Remark 4.16] for an example of this
phenomenon.

Corollary 10.5. The collection q = (qA,λ,v)v defines a global metabolic structure on A[2].

Proof. By Lemma 10.3(ii) qA,λ,v admits a Lagrangian subspace making (H 1(Kv, T ), qA,λ,v) into a
metabolic space for each place v of K . Moreover, if v /∈ 6 then im(δv) = H 1

ur(Kv, A[2]) (see e.g.,
[Poonen and Rains 2012, Proposition 4.12] and the preceding remark). In particular, by Lemma 10.3(ii),
qA,λ,v is unramified at each such place.

Finally, let a ∈ H 1(K , A[2]). Write

q : H 1(K , A[2])→ H 2(K , K×)= Br(K )

for the connecting homomorphism associated to the sequence (10.2) viewed over K instead of Kv (with
Lv replaced by L := (1, λ)∗P). Then q(a) ∈ Br(K ) and we have∑

v∈MK

qv(av)=
∑
v∈MK

invv q(a)= 0,

the last equality following from reciprocity for the Brauer group of K . �

10B. Twisting data associated to A/K. We now define the twisting data α.
Fix a place v of K and χ ∈C(Kv), and let (Aχ , ψ) denote the quadratic twist of A by χ . By Lemma 4.16

λχ := (ψ
∨)−1λψ−1 is a principal polarization on Aχ , defined over Kv. In particular, associated to the

pair (Aχ , λχ ) we have a quadratic form qAχ ,λχ ,v on H 1(Kv, Aχ [2]).

Lemma 10.6. The isomorphism H 1(Kv, Aχ [2])∼= H 1(Kv, A[2]) induced by ψ identifies the quadratic
forms qA,λ,v and qAχ ,λχ ,v.

Proof. Take the long exact sequences for Galois cohomology associated to the commutative diagram of
Lemma 4.20. �
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Definition 10.7. For χ ∈ C(Kv) define αv(χ)⊆ H 1(Kv, A[2]) to be the image of the map

Aχ (Kv)/2Aχ (Kv) ↪→ H 1(Kv, Aχ [2])−→∼ H 1(Kv, A[2])

the first map arising from the multiplication-by-2 Kummer sequence for Aχ and the latter being induced
by ψ−1. Note that by combining Lemma 10.6 with Lemma 10.3(ii) applied to Aχ/Kv we see that αv(χ)
is a Lagrangian subspace of H 1(Kv, A[2]).

As in Definition 6.11, for χ1 and χ2 elements of C(Kv) we set

hv(χ1, χ2)= dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

Lemma 10.8. For each quadratic character χ ∈ C(Kv), let Lχ denote the extension of Kv cut out by χ .
Then

hv(1, χv)= dimF2 A(Kv)/NLχ/Kv
A(Lχ )

where here NLχ/Kv
: A(Lχ )→ A(Kv) is the “local norm map” sending P ∈ A(Lχ ) to

NLχ/Kv
(P) :=

∑
σ∈Gal(Lχ/Kv)

σ(P).

Proof. This is shown in [Mazur and Rubin 2007, Proposition 5.2]. Whilst that statement is for the case of
elliptic curves and for twists by characters of order p > 2, the proof carries over unchanged to our case.
See also [Kramer 1981, Proposition 7]. �

The following lemma evaluates the cokernel of the local norm map in certain cases.

Lemma 10.9. Let v be a place of K and χ ∈ C(Kv). As above, let Lχ denote the extension of Kv cut out
by χ .

(i) Suppose v -2 is nonarchimedean and that A has good reduction at v. If χ is unramified then

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= 0.

On the other hand, if χ is ramified then NLχ/Kv
A(Lχ )= 2A(Kv) and, in particular, we have

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= dimF2 A(Kv)[2].

(ii) Suppose v is archimedean and χ nontrivial. Then

dimF2 A(Kv)/NLχ/Kv
A(Lχ )= dimF2 A(Kv)[2] − g

where g = dim A is the dimension of A.

Proof.

(i) The case where χ is unramified is a result of Mazur [Mazur 1972, Corollary 4.4]. For χ ramified the
case where A is an elliptic curve is [Mazur and Rubin 2007, Lemma 5.5(ii)] and the argument for general
abelian varieties is identical.
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(ii) By assumption Lχ/Kv is the extension C/R. Since A/Kv is an abelian variety of dimension g over
the reals we have an isomorphism of real Lie groups

A(Kv)∼= (R/Z)
g
× (Z/2Z)m (10.10)

for some 0 ≤ m ≤ g (see, for example, [Silhol 1989, Proposition 1.9 and Remark.12]). Now NLχ/Kv

is a continuous map from the connected group A(Lχ ) to A(Kv) (for the complex and real topologies
respectively) and it follows that the image of NLχ/Kv

is contained in the connected component of the
identity in A(Kv), which we denote A0(Kv). Under the isomorphism (10.10), A0(Kv) is the factor
corresponding to (R/Z)g. On the other hand, we have 2A(Kv)⊆ NLχ/Kv

A(Lχ ) and we see again from
(10.10) that multiplication by 2 is surjective on A0(Kv). Thus NLχ/Kv

A(Lχ )= A0(Kv). Appealing to
(10.10) one last time we obtain |A(Kv)/NLχ/Kv

A(Lχ )| = 2−g
|A(Kv)[2]|. �

Proposition 10.11. The collection of maps α = (αv)v defines twisting data with respect to (A[2], q, 6).
Moreover, we have

Sel(A[2], χ)∼= Sel2(Aχ/K )

where Sel(A[2], χ) is defined with respect to (A[2], q, 6,α) as in Definition 6.10.

Proof. Note that since p = 2 the group F(Kv) appearing in the definition of twisting data (Definition 6.8)
is equal to C(Kv). For each place v of K and χv ∈ C(Kv), the subspace αv(χv) of H 1(Kv, A[2]) is
Lagrangian by Lemmas 10.6 and 10.3(ii) applied to Aχ/Kv . Moreover, if v /∈6 and χv is ramified then
αv(χv) is an element of Hram(qv). Indeed, by definition we need to show that αv(χv)∩H 1

ur(Kv, A[2])= 0.
As before, as v /∈6 we have

H 1
ur(Kv, A[2])= δv(A(Kv)/2A(Kv))= αv(1v).

Combining Lemma 10.8 with Lemma 10.9 gives

dimF2(α(1v)/αv(χv)∩αv(1v))= dimF2 A(Kv)/2A(Kv)= dimF2 α(1v)

whence αv(χv)∩αv(1v)= 0 as desired. Thus α defines twisting data.
Finally, we will show that for χ ∈ C(K ) the associated Selmer group Sel(A[2], χ) agrees with the

classical Selmer group Sel2(Aχ/K ). By the definition of Sel2(Aχ/K ) and the maps αv we have

Sel2(Aχ/K )= {a ∈ H 1(K , A[2]) : av ∈ αv(χv) for all v ∈ MK }.

On the other hand, we have

Sel(A[2], χ)= {a ∈ H 1(K , A[2]) : av ∈ H 1
S(χ)(Kv, A[2]) for all v ∈ MK }

where, as in Definition 6.10, H 1
S(χ)(Kv, A[2]) = α(χv) if v ∈ 6 or χv is ramified at v, and is equal to

H 1
ur(Kv, A[2]) otherwise.
In particular, to show that Sel(A[2], χ)= Sel2(Aχ/K ) it suffices to show that α(χv)= H 1

ur(Kv, A[2])
whenever v /∈6 and χv is unramified. But for such places we have α(1v)= H 1

ur(Kv, A[2]) and since χv is
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unramified Lemma 10.9(i) gives h(1v, χv)= 0. It now follows immediately that α(χv)= H 1
ur(Kv, A[2])

as desired. �

10C. Main theorems for 2-Selmer ranks. Having interpreted the groups Sel2(Aχ/K ) as those arising
from twisting data we apply the results of the previous sections to deduce results about abelian varieties.

The following generalizes a theorem of Kramer [1981, Theorem 1] for elliptic curves and Yu [2016,
Theorem 5.11] for odd degree hyperelliptic curves.

Theorem 10.12. Let K be a number field, χ a quadratic character of K corresponding to the extension
L/K , and A/K a principally polarized abelian variety. Then

dimF2 Sel2(Aχ/K )≡ dimF2 Sel2(A/K )+
∑
v∈MK

dimF2 A(Kv)/NLw/Kv
A(Lw) (mod 2)

(here w denotes any place of L extending v).

Proof. Combine Theorem 6.12, Proposition 10.11 and Lemma 10.8. �

Theorem 10.13 (Theorem 1.1). Let K be a number field, A/K a principally polarized abelian variety,
and 6 the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2. Define ε : Gal(K (A[2])/K )→ {±1} by σ 7→ (−1)dimF2 A[2]σ .

(i) If ε fails to be a homomorphism then for all sufficiently large X

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(ii) If ε is a homomorphism, let K (
√
1)/K be the fixed field of the kernel of ε. For each v ∈ 6 and

quadratic character χ ∈ C(Kv) write Lχ/Kv for the extension cut out by χ and define

ωv(χ) := χ(1)(−1)dimF2 A(Lχ )/NLχ /Kv A(Lχ ).

Finally, define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ω(χ) and δ :=
∏
v∈6

δv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimF2 Sel2(A/K )

· δ

2
.

Proof. Combine Proposition 10.11, Theorem 7.4 and Lemma 10.8. �

Remark 10.14. Lemma 10.9(ii) enables one to evaluate the local terms δv for archimedean places. For
nonarchimedean places of odd residue characteristic, the dimension of the cokernel of the norm map may
be expressed in terms of Tamagawa numbers, see [Morgan 2015, Lemma 2.5].

In the following examples we examine when ε is (or is not) a homomorphism for certain families of
abelian varieties.
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Example 10.15 (generic 2-torsion). For any principally polarized abelian variety A/K of dimension g,
Gal(K (A[2])/K ) is a subgroup of the symplectic group Sp2g(F2). As in Remark 7.5, if g ≥ 2 and
Gal(K (A[2])/K )∼= Sp2g(F2) then ε is not a homomorphism.

Example 10.16 (elliptic curves). Suppose that A/K is an elliptic curve, say given by a Weierstrass equa-
tion of the form y2

= f (x) for some monic (separable) cubic polynomial f (x). Then Gal(K (A[2])/K )=
Gal( f ) is the Galois group of the splitting field of f (x) and as such may be viewed as a subgroup of the
symmetric group S3. One readily checks that the map σ 7→ (−1)dimF2 A[2]σ is the sign homomorphism.
Thus ε is always a homomorphism and we may take 1 to be the discriminant of the elliptic curve. Thus
Theorem 10.13 recovers [Klagsbrun et al. 2013, Theorem A]. See Proposition 7.9 of that work for a table
computing the local terms δv as a function of the reduction of the elliptic curve.

Example 10.17 (hyperelliptic curves). Let C/K be a hyperelliptic curve of genus g ≥ 2, say given
by a Weierstrass equation y2

= f (x) for a (separable, not necessarily monic) polynomial f (x) with
deg( f ) ∈ {2g+ 1, 2g+ 2}. Take A/K to be the Jacobian of C so that A/K is a principally polarized
abelian variety of dimension g. Then again Gal(K (A[2])/K )= Gal( f ) which we view as a subgroup
of the symmetric group Sdeg( f ). Write sgn : Sn→ {±1} for the sign homomorphism and fix σ ∈ Gal( f )
with cycle type (d1 · · · ds). Then we have

ε(σ )=

{
− sgn(σ ) all di even and deg( f ) (mod 2),
sgn(σ ) else.

(10.18)

Indeed, this follows from [Cornelissen 2001, Theorem 1.4] (whilst [loc. cit.] is stated for hyperelliptic
curves over finite fields of odd residue characteristic, the proof yields the above statement for all fields of
characteristic not 2; note also the erratum [Cornelissen 2005]).

Suppose now that either g is odd or deg( f ) is odd. Then by (10.18) ε is always a homomorphism and
again we may take 1 to be the discriminant of the hyperelliptic curve C . In particular, the case deg( f )
odd recovers [Yu 2016, Theorem 1].

Now suppose that both g and deg( f ) are even, or equivalently deg( f )≡ 2 (mod 4). Suppose further
that either Gal( f )∼= S2g+2 or Gal( f )∼= A2g+2. Then by (10.18) we see that ε is not a homomorphism
(indeed, the only nontrivial homomorphism from S2g+2 to {±1} is sgn yet (10.18) shows that ε is nontrivial
when restricted to A2g+2).

Example 10.19 (abelian varieties with principal polarization induced by a rational symmetric line bundle).
Suppose that (A/K , λ) is a principally polarized abelian variety and that the polarization λ is induced by a
rational (i.e., G K -invariant) symmetric line bundle L. Then the associated quadratic refinement qL of the
Weil-pairing ( · , · )λ on A[2] (as in Definition 4.3) is G K -invariant also, whence Gal(K (A[2])/K ) acts on
A[2] through the orthogonal group O(qL). Then ε is the Dickson homomorphism dqL (Proposition 3.5).
We remark that this case includes both elliptic curves and Jacobians of hyperelliptic curves of either odd
degree or odd genus, see [Poonen and Rains 2011, Proposition 3.11].
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10D. Main theorems for 2∞-Selmer ranks. We now incorporate the results of Section 5 to move from
2-Selmer ranks to 2∞-Selmer ranks.

Theorem 10.20. Let K be a number field and (A/K , λ) a principally polarized abelian variety. Let 6
be the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2, and let L/K be a quadratic extension with associated quadratic character χ . Then

rk2(A/L)≡
∑
v∈6

v nonsplit in L/K

(2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)) (mod 2)

where the local terms 2 g(A/Kv, λv, χv) ∈ Br(Kv)[2] are given in Definition 5.15, and w denotes any
place of L extending v.

Proof. First note that rk2(A/L)= rk2(A/K )+ rk2(Aχ/K ). Moreover, we have

dimF2 Sel2(A/K )= rk2(A/K )+ dimF2 A(K )[2] + dimF2 Xnd(A/K )[2]

and the analogous equality for Aχ/K . Noting that dimF2 A(K )[2] = dimF2 Aχ (K )[2] the above observa-
tions combine to give

rk2(A/L)

≡ dimF2 Sel2(A/K )+ dimF2 Sel2(Aχ/K )+ dimF2 Xnd(A/K )[2] + dimF2 Xnd(Aχ/K )[2] (mod 2).

Combining Theorem 10.12 with Theorem 5.20 then gives

rk2(A/L)≡
∑
v∈MK

(2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)) (mod 2).

Finally, combining Proposition 5.16 with Lemma 10.9 shows that

2 invv g(A/Kv, λv, χv)+ dimF2 A(Kv)/NLw/Kv
A(Lw)≡ 0 (mod 2)

for each place v /∈6, and similarly for each place v ∈6 which split in L/K . �

We now prove Theorem 1.2, after first defining the local terms appearing in the statement.

Definition 10.21. Let K be a number field, (A/K , λ) a principally polarized abelian variety, and let 6
denote the set consisting of all archimedean places of K , all places of bad reduction for A, and all places
dividing 2.

For each v ∈6 and χ ∈ C(Kv) define

�v(χ) := (−1)2 invv g(A/Kv,λv,χ)+dimF2 A(Kv)/NLχ /Kv A(Lχ )

2Here and in Definition 10.21 we think of invv g(A/Kv, λv, χv) as being equal to 0 or 1
2 (as opposed to the class of this in

Q/Z) so that 2 invv g(A/Kv, λv, χv) is either 0 or 1 accordingly.
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where here Lχ is the extension of Kv cut out by χ . Further, we define (for each v ∈6)

κv =
1

|C(Kv)|

∑
χ∈C(Kv)

�v(χ) and κ =
∏
v∈6

κv.

Remark 10.22. If v is archimedean then by Theorem 10.20 we have

�v(χv)=

{
1 χv trivial,
(−1)dim A else.

In particular, if v is a real place and dim A is odd then κv = 0 (hence also κ = 0), whilst if v is complex
or dim A is even, we have κv = 1.

Theorem 10.23. Let A/K be a principally polarized abelian variety. Then for all sufficiently large X > 0,

|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)rk2(A/K )

· κ

2
.

Proof. As noted previously, for any χ ∈ C(K ) corresponding to the quadratic extension L/K , we have

rk2(A/L)= rk2(A/K )+ rk2(Aχ/K ).

Thus for each χ ∈ C(K ), Theorem 10.20 gives

(−1)rk2(Aχ/K )
= (−1)rk2(A/K )

∏
v∈6

�(χv)

with �(χv) ∈ {±1} depending only on the restriction of χ to Kv. The argument is now identical to that
in the proof of Theorem 7.10. As is the case there, “sufficiently large X > 0” means that we require only
that X is large enough that the restriction homomorphism from C(K , X) to

∏
v∈6 C(Kv) is surjective. �

The following example shows that the proportion of twists having even 2-Selmer rank can differ from
the proportion having even 2∞-Selmer rank.

Example 10.24. Consider the genus 2 hyperelliptic curve C : y2
= x6
+x4
+x+3 over Q. The polynomial

f (x)= x6
+x4
+x+3 has Galois group S6. By Theorem 10.13 (see also Example 10.17) the 2-Selmer ranks

are distributed half-and-half amongst even/odd in the quadratic twist family of the Jacobian J/K of C .
On the other hand, we claim that κ = 3

16 so that 19
32 of the twists of J have even 2∞-Selmer rank whilst

13
32 have odd 2∞-Selmer rank. The discriminant of f (x) is −5 ·2670719, so J/K has good reduction away
from 2, 5 and 2670719. Thus we have 6 = {2, 5, 2670719,∞}. Using the computer algebra package
MAGMA [Bosma et al. 1997], one computes that rk2(J/K ) is odd. By Remark 10.22, κ∞= 1. To compute
κ2, κ5 and κ2670719, one may use the following trick. By Theorem 10.20 and the above discussion, for
a quadratic character χ of Q corresponding to the extension L/Q, one has

(−1)rk2(Jχ/Q) =−
∏

v∈{2,5,2670719}
v nonsplit in L

�v(χv). (10.25)
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Now for 0 6= n ∈ Z, the quadratic twist of J by Q(
√

n)/Q is the Jacobian of the hyperelliptic curve
y2
= n f (x). Thus one may use MAGMA to compute (−1)rk2(Jχ/Q) for various (finitely many) quadratic

characters χ , from which one may then determine all the �v(χv) by (10.25). Upon doing this one obtains
κ2 =

3
4 , κ5 =−

1
2 and κ2670719 =

1
2 and the claim follows.

Remark 10.26. Since by Theorem 10.20 the parity of rk2(Aχ/K ) depends only on the restriction of
χ to the archimedean places, the places of bad reduction for A, and the places over 2, it follows from
Theorem 9.4(i) (along with Proposition 10.11) that when ε fails to be a homomorphism we in fact have

|{χ ∈ C(K , X) : dimF2 Sel2(Aχ/K ) is even and rk2(Aχ/K ) is even}|
|{χ ∈ C(K , X) : rk2(Aχ/K ) is even}|

=
1
2

for all sufficiently large X (assuming the denominator is nonzero) and that the same holds when we
condition on rk2(Aχ/K ) being odd also. Thus when ε fails to be a homomorphism the parities of Selmer
ranks and the parities of 2-infinity Selmer ranks behave “independently”.

10E. The proportion of twists having nonsquare Shafarevich–Tate group. We now prove an analogue
of Theorem 1.1 for dimF2 Xnd(A/K )[2] rather than for dimF2 Sel2(A/K ). Since the Shafarevich–Tate
group of a principally polarized abelian variety, if finite, has square order if and only if dimF2 Xnd(A/K )[2]
is even (see e.g., [Poonen and Stoll 1999, Theorem 8]), this may be viewed as quantifying the failure of
the Shafarevich–Tate group to have square order in quadratic twist families. The proof of the theorem is
identical to its analogue for 2-Selmer ranks, so we only sketch the proof.

Theorem 10.27. Let K be a number field, (A/K , λ) a principally polarized abelian variety, and 6 the
set consisting of all archimedean places of K , all places of bad reduction for A, and all places dividing 2.
Define ε : Gal(K (A[2])/K )→ {±1} by σ 7→ (−1)dimF2 A[2]σ .

(i) If ε fails to be a homomorphism then for all sufficiently large X

|{χ ∈ C(K , X) : dimF2 Xnd(Aχ/K )[2] is even}|
|C(K , X)|

=
1
2
.

(ii) If ε is a homomorphism, let K (
√
1)/K be the fixed field of the kernel of ε. For each v ∈ 6 and

quadratic character χ ∈ C(Kv) write Lχ/Kv for the extension cut out by χ and define

ϒv(χ) := χ(1)(−1)2 invv g(A/Kv,λv,χv).

Finally, define

ρv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ϒ(χ) and ρ :=
∏
v∈6

ρv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimF2 Xnd(Aχ/K )[2] is even}|
|C(K , X)|

=
1+ (−1)dimF2 Xnd(A/K )[2]

· ρ

2
.
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Proof. Fix a quadratic character χ of K . As in Definition 9.1, set

w(χ) :=
∏

v /∈6,χv ram

(−1)dimFp A(Kv)[2] =
∏

v /∈6,χv ram

ε(Frobv).

Combining Theorem 5.20 with Proposition 5.16 we obtain

(−1)dimF2 Xnd(Aχ/K )[2]
= w(χ)(−1)dimF2 Xnd(A/K )[2]

∏
v∈6

(−1)2 invv g(A/Kv,λv,χv). (10.28)

If ε is a homomorphism then, as in the proof of Lemma 7.7, we have w(χ)=
∏
v∈6 χv(1), whence

(−1)dimF2 Xnd(Aχ/K )[2]
= (−1)dimF2 Xnd(A/K )[2]

∏
v∈6

ϒv(χ)

and the same argument as in the proof of Theorem 7.10 gives the result.
On the other hand, suppose that ε is a homomorphism and enlarge6 if necessary so that Assumption 8.8

holds, noting that (10.28) still remains true. The result now follows from Theorem 9.4 (cf. proof of
Theorem 9.5). �

10F. The joint distribution of parities of 2-Selmer ranks and 2-infinity Selmer ranks. By combining
Theorem 10.27 with Theorems 10.13 and 10.23 we are able to push Remark 10.26 further to determine
the “joint distribution” of parities of 2-Selmer ranks and 2-infinity Selmer ranks.

Corollary 10.29 (of Theorem 10.27). Let K be a number field, A/K a principally polarized abelian
variety, and ε : Gal(K (A[2])/K )→ {±1} the map σ 7→ (−1)dimF2 A[2]σ . Let the constants δ, κ and ρ be
as in Theorem 10.13, Definition 10.21 and Theorem 10.27 respectively. Then for m, n ∈ {0, 1} we have,
for all sufficiently large X ,∣∣{χ ∈ C(K , X) : rk2(Aχ/K )≡ m (mod 2), dimF2 Sel2(Aχ/K )≡ n (mod 2)}

∣∣/|C(K , X)|

=
1
4 + (−1)ma1+ (−1)na2+ (−1)m+na3

where

a1 =
1
4(−1)rk2(A/K )κ,

and a2 = a3 = 0 if ε fails to be a homomorphism whilst

a2 =
1
4(−1)dimF2 Sel2(A/K )δ and a3 =

1
4(−1)dimF2 Sel2(A/K )+rk2(A/K )ρ

otherwise.

Proof. Follows from Theorems 10.27, 10.13 and 10.23 upon noting that, for any χ ∈ C(K ), we have

dimF2 Sel2(Aχ/K )= rk2(Aχ/K )+ dimF2 A(K )[2] + dimF2 Xnd(Aχ/K )[2]. �
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11. Twisting data for abelian varieties ( p> 2)

As in the previous section, let K be a number field and (A/K , λ) a principally polarized abelian variety.
This time we take p to be an odd prime and T = A[p]. As with A[2] in the previous section, we endow
T with a canonical global metabolic structure and twisting data so that the resulting Selmer groups have a
classical interpretation. For elliptic curves this is done by Klagsbrun, Mazur and Rubin [2013, §5]. This
time the case of an arbitrary principally polarized abelian variety is almost identical to that of [loc. cit.],
though to fix notation we repeat the relevant material.

11A. The global metabolic structure on A[ p]. As with the case p = 2, the polarization λ along with
the Weil-pairing

( · , · )ep : A[p]× A∨[p]

provides the desired (nondegenerate, alternating, G K -equivariant) bilinear pairing

( · , · )λ : T × T → µp

(defined by setting (x, y)λ = (x, λ(y))ep for x, y ∈ T ). We take 6 to be a finite set of places of K
containing all archimedean places, all primes over p, and all primes at which A has bad reduction. Then
T is unramified outside 6.

Since p is odd, the quadratic forms qv = 1
2〈 · , · 〉v (here v a place of K and 〈 · , · 〉v denotes the local

Tate pairing associated to ( · , · )λ) are Tate quadratic forms which endow T with a global metabolic
structure q (cf. Section 6C).

11B. Twisting data associated to A[ p]. Here we associate canonical twisting data to (A[p], 6, q).

Definition 11.1. Let χ ∈C(K ) be nontrivial and let L denote the associated cyclic p-extension L=K ker(χ)

of K . We write Aχ for the abelian variety denoted AL in [Mazur et al. 2007, Definition 5.1], so that
Aχ/K is an abelian variety of dimension (p−1) dim A which may be defined as the kernel of the “norm”
homomorphism ResL/K A→ A (here ResL/K A denotes the restriction of scalars of A from L to K ).

By [Mazur et al. 2007, Theorem 5.5(iv)], χ induces an inclusion of Z[µp] into EndK (Aχ ). Moreover,
by Theorem 2.2(iii) of [loc. cit.] we have a canonical isomorphism ψ : A[p] −→∼ Aχ [p] where p denotes
the unique prime of Z[µp] lying over p.

If 1Kv
6= χ ∈ C(Kv) for some place of K then we define Aχ/Kv similarly.

Remark 11.2. Fix χ ∈ C(K ) nontrivial, and let π be a generator of the prime p of Z[µp] lying over p.
View π inside EndK (Aχ ) as above. Then π is an isogeny and we have an associated π -Selmer group

Selπ (Aχ/K )= {a ∈ H 1(K , Aχ [p]) : av ∈ im(δv) ∀v ∈ MK },

where here for each place v of K , δv : Aχ (Kv)/π Aχ (Kv) ↪→ H 1(Kv, Aχ [p]) is the connecting homo-
morphism associated to the multiplication-by-π Kummer sequence for Aχ/Kv.

One checks that Selπ (Aχ/K ) does not depend on the choice of generator π for p.
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We now define the twisting data.

Definition 11.3. Let v be a place of K and χ ∈ C(Kv). Define αv(χ)⊆ H 1(Kv, A[p]) as follows:

(i) If χ is trivial, define αv(χ) to be the image of A(K )/p A(K ) under the connecting homomorphism
associated to the multiplication-by-p Kummer sequence for A/Kv,

(ii) If χ is nontrivial, let π be a generator of the prime p of Z[µp] lying over p. Then we define αv(χ)
to be the image of Aχ (Kv)/π Aχ (Kv) under the composition

Aχ (Kv)/π Aχ (Kv)
δv−→ H 1(Kv, Aχ [p])−→∼ H 1(Kv, A[p]),

where the rightmost map is induced by the isomorphism ψ : A[p] −→∼ A[p] of Definition 11.1. One
sees easily that αv(χ) does not depend on the choice of π , and depends only on the extension cut
out by χ .

As usual, for v a place of K and χ1, χ2 ∈ C(Kv), write

hv(χ1, χ2)= dimFp(αv(χ1)/(αv(χ1)∩αv(χ2))).

As in the case p = 2, we have.

Lemma 11.4. Let v be a place of K , χ ∈ C(Kv) and Lχ the extension of Kv cut out by χ . Then

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )

where NLχ/Kv
: A(Lχ )→ A(Kv) is the norm map.

Moreover, if v - p is a nonarchimedean place of K at which A has good reduction then:

(i) If χ is unramified, we have

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )= 0.

(ii) If χ is ramified, we have

hv(1Kv
, χ)= dimFp A(Kv)/NLχ/Kv

A(Lχ )= dimFp A(Kv)[p].

Proof. As in the case p = 2 the first claim is shown for elliptic curves in [Mazur and Rubin 2007,
Proposition 5.2] and the argument is identical. The evaluation of the cokernel of the local norm map is
[Mazur 1972, Corollary 4.4] for χ unramified, and for χ ramified the case where A is an elliptic curve is
[Mazur and Rubin 2007, Lemma 5.5(ii)] and the same argument works in general. �

Proposition 11.5. The maps α = (αv)v define twisting data for T = (A[p], q, 6) and the associated
Selmer groups Sel(A[p], χ) satisfy

Sel(A[p], χ)∼= Selπ (Aχ/K ).
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Proof. We first claim that for each place v of K and χ ∈ C(Kv), we have αv(χ) ∈H(qv) (i.e., αv(χ) is
Lagrangian). That is (since p is odd), that αv(χ) ⊆ H 1(Kv, A[p]) is its own orthogonal complement
under the Tate pairing. For χ trivial, that (the image in H 1(Kv, A[p]) of) A(Kv)/p A(Kv) is its own
orthogonal complement is a well known consequence of Tate local duality, see e.g., [Milne 2006, I.3.4].
For χ nontrivial this is shown for A an elliptic curve in [Mazur and Rubin 2007, Proposition A.7] and the
argument for a general principally polarized abelian variety is identical (with the Weil pairing associated to
the principal polarization λ providing the pairing on the p-adic Tate-module Tp(A) required for Definition
A.5 of [loc. cit.]). We remark that in the above, unlike the case p = 2, the twist Aχ need not possess a
principal polarization (see [Howe 2001, Theorem 1.1]) so one cannot deduce the result by just applying
Tate duality to Aχ/Kv, as one does not have an appropriate Weil-pairing on A[p].

To show that α defines twisting data, it remains to show that for each place v /∈6 with µp ⊆ Kv, we
have αv(χ) ∈Hram(qv). That is, that αv(χ)∩ H 1

ur(Kv, A[p])= 0. Again, the argument is the same as in
the case p = 2. Indeed, for such places we have αv(1Kv

)= H 1
ur(Kv, A[p]) (again, see e.g., [Poonen and

Rains 2012, Proposition 4.12] and the preceding remark) and we conclude by Lemma 11.4(ii).
The isomorphism Sel(A[p], χ)∼=Selπ (Aχ/K ) is also proven identically to the case p=2 by comparing

the local conditions defining the two Selmer groups. �

Corollary 11.6 (Theorem 1.5). Let p be an odd prime, K a number field, A/K a principally polarized
abelian variety, and 6 the set consisting of all archimedean places of K , all places of bad reduction for A,
and all places dividing p. Define ε : Gal(K (A[p])/K )→ {±1} by σ 7→ (−1)dimFp A[p]σ .

(i) If ε is nontrivial when restricted to Gal(K (A[p])/K (µp)) then

lim
X→∞

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1
2
.

(ii) Suppose ε is trivial when restricted to Gal(K (A[p])/K (µp)). For each v ∈ 6 and character
χ ∈ C(Kv), write Lχ/Kv for the extension cut out by χ and define

ωv(χ) := (−1)dimFp A(Lχ )/NLχ /Kv A(Lχ ).

Finally, define

δv :=
1

|C(Kv)|

∑
χ∈C(Kv)

ω(χ) and δ :=
∏
v∈6

δv.

Then for all sufficiently large X ,

|{χ ∈ C(K , X) : dimFp Selπ (Aχ/K ) is even}|
|C(K , X)|

=
1+ (−1)dimFp Selp(A/K )

· δ

2
.

Proof. Combine Theorem 7.4 with Proposition 11.5 and Lemma 11.4. �

Remark 11.7. As observed by Klagsbrun, Mazur and Rubin [2013, immediately before the statement of
Theorem 8.2 ], as each |C(Kv)| has odd size we cannot have δ = 0 in case (ii) above.
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Remark 11.8. As in Remark 7.5, a sufficient condition to ensure that ε is nontrivial when restricted
to Gal(K (A[p])/K (µp)) is that Gal(K (A[p])/K ) (viewed as a subgroup of GSp2g(Fp) for g = dim A)
contains a symplectic transvection. In particular, if the Galois action on A[p] is as large as possible,
so that Gal(K (A[p])/K ) ∼= GSp2g(Fp), then case (i) of Corollary 11.6 applies. It is also known that
Gal(K (A[p])/K ) contains a transvection if there is a place v of K , not dividing p, such that A has
semistable reduction of toric dimension 1 at v, and such that the order of the Néron component group of
A/Kv is coprime to p (see [Le Duff 1998, Proposition 1.3]).
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