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For a cycle of codimension 1 in a toric variety, its degree with respect to a nef toric divisor can be
understood in terms of the mixed volume of the polytopes associated to the divisor and to the cycle. We
prove here that an analogous combinatorial formula holds in the arithmetic setting: the global height
of a 1-codimensional cycle with respect to a toric divisor equipped with a semipositive toric metric can
be expressed in terms of mixed integrals of the v-adic roof functions associated to the metric and the
Legendre–Fenchel dual of the v-adic Ronkin function of the Laurent polynomial of the cycle.
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Introduction

The arithmetic intersection theory of toric varieties with respect to toric line bundles equipped with their
canonical metric was first studied by Maillot [2000]. Later, the systematic extension of the toric dictionary
to Arakelov geometry was carried out by Burgos Gil, Philippon and Sombra [Burgos Gil et al. 2014]. It
turns out from their study that suitably metrized toric line bundles can be expressed in terms of families of
concave functions on convex polytopes and that the height of the toric variety with respect to this choice
is related to the integral of such functions. Their theory allows one to treat a large spectrum of height
functions, namely the ones arising from toric line bundles equipped with toric metrics; this includes the
canonical heights studied by Maillot and the Fubini–Study height. On the other hand, the techniques
developed in [Burgos Gil et al. 2014] only apply to the computation of the height of toric subvarieties and
do not solve, for instance, the problem of determining the height of a general cycle of codimension 1. This
question was answered in a very special case by [Maillot 2000], where a relation between the canonical
height of a hypersurface in a smooth projective toric variety and the Mahler measure of the corresponding
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polynomial was given. Other computations have been performed by Cassaigne and Maillot [2000] for the
Fubini–Study height of hypersurfaces in projective spaces. Extending the techniques of [Burgos Gil et al.
2014], we give here a combinatorial formula for the height of a 1-codimensional cycle in a toric variety
for a much more general choice of metrics.

For the sake of simplicity, we restrict for the moment to the case of an ambient proper toric variety X6
of dimension n over Q, leaving the treatment of the case of an arbitrary base adelic field to the body of
the paper. Let M stand for the set of places of Q. As usual in toric geometry, we denote by M the lattice
of characters of the torus of X6 , by N its dual lattice, and by MR and NR the corresponding real vector
spaces. We are interested in a combinatorial expression for the height of a cycle of codimension 1 in
X6 with respect to a suitable choice of a metrized (Cartier) divisor. By the linearity of height functions,
we can restrict to the case of an irreducible hypersurface Y. Moreover, since irreducible hypersurfaces
in X6 not intersecting its dense open torus have to coincide with 1-codimensional toric orbits, whose
heights have already been calculated in [Burgos Gil et al. 2014, Proposition 5.1.11], we can assume that
the generic point of Y lies in the dense open orbit of X6 . Under this assumption, Y is described by an
irreducible Laurent polynomial f with rational coefficients. Its Newton polytope NP( f ) is a nonempty
subset of MR capturing enough information for the intersection-theoretical properties of Y. For instance,
Proposition 5.2 implies that the degree of Y with respect to a toric divisor D on X6 generated by its
global sections is given by

degD(Y )=MVM(1, . . . ,1,NP( f )),

where 1 is the polytope in MR associated to D and MVM denotes the mixed volume of convex bodies in
MR with respect to a suitably normalized Haar measure.

The height of a cycle in X is the arithmetic counterpart of its degree with respect to a divisor D. Its
definition requires as an extra datum the choice of an adelic semipositive metric on D; see Section 3 for a
precise definition. To have a combinatorial description of heights in toric varieties, it is necessary to ask
D to be a toric divisor (with associated polytope 1) and the metric on it to be “toric invariant” in some
sense. In such a situation, Burgos Gil, Philippon and Sombra have shown that a combinatorial description
is possible, translating the additional information of the metric into an extra dimension on the convex
geometrical side: an adelic semipositive toric metric on D is associated to a family (ϑv)v∈M of continuous
concave functions on1, called the roof functions of the metric, such that ϑv = 0 for all but finitely many v.
We show how the height of Y with respect to the adelic semipositive toric metrized divisor D can be
expressed using such an extra-dimensional representation, in a spirit analogous to the formula for its
degree mentioned above. The key idea consists in associating to the polynomial f defining Y, for every
place v of Q, a suitable function which we call the v-adic Ronkin function of f and denote by ρ f,v . It is
a concave function on NR whose value at u can be interpreted as an average of − log | f | on the fiber of
the tropicalization map over u. When v is archimedean, it is the Ronkin function studied by Passare and
Rullgård among others, while for nonarchimedean places it coincides with the v-adic tropicalization of
the polynomial f . Its Legendre–Fenchel dual ρ∨f,v is a concave function on MR which is supported on the
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Newton polytope of f . Recall now that Philippon and Sombra [2008a] introduced a polarized version of
the integration of a concave function with bounded support, called the mixed integral. For the choice of
a suitably normalized Haar measure on the vector space MR, it is a multilinear symmetric real-valued
function MIM taking as entries n+ 1 concave functions supported on convex bodies in MR.

Theorem 1. The height of Y with respect to D is given by

hD(Y )=
∑
v∈M

MIM(ϑv, . . . , ϑv, ρ
∨

f,v).

Despite the complexity of the computation of the archimedean Ronkin function, the formula in the
previous theorem clarifies the relation between the defining polynomial of an irreducible hypersurface
and its height with respect to an adelic semipositive toric metrized divisor. It is easy to specialize it to
the case of the canonical metric on D, where it reduces to the equality proved in [Maillot 2000], or of
the Fubini–Study metric in the projective setting. We hope that a better understanding of the properties
of mixed integrals and archimedean Ronkin functions could be used to deduce both lower and upper
bounds for the height of Y. More importantly, our result asserts that the collection of the v-adic Ronkin
functions of a hypersurface contains enough information to determine its height; we wonder whether
other arithmetical properties of Y might be read in terms of such functions.

To show the stated result, we prove more precise formulas for the local height and the toric local height
of a 1-codimensional cycle. We also show some new properties of mixed integrals and we propose a more
uniform definition and study of v-adic Ronkin functions which is independent of whether the place v is
archimedean or not. The obtained formulas for the height extend to the case of admissible adelic toric
metrized divisors as alternated sums of mixed integrals, as in [Burgos Gil et al. 2014, Remark 5.1.10].

For an arbitrary adelic base field K , we remark that one needs to prove that the global height of Y with
respect to an adelic semipositive toric metrized divisor is a finite sum and hence well-defined. This is
automatic if K is a global field, because of [loc. cit., Proposition 1.5.14 and Theorem 4.9.3]. We show
it here for an arbitrary adelic field K with product formula, in which case the formulas for the height
stay true. In the more general setting of an adelic field K not satisfying the product formula, it is easy to
verify that the same equality for the global height holds up to the sum by the defect of K ; see [loc. cit.,
Definition 1.5.9]. Finally, the recent work [Gubler and Hertel 2017] suggests that similar statements
might hold for a base M-field.

We now briefly summarize the content of each section.
In Section 1, we recall the tools from convex geometry which are needed throughout the paper:

Legendre–Fenchel duality of concave functions, real Monge–Ampère measures and mixed integrals. In
particular, we reinterpret the recursive formula for mixed integrals proved by Philippon and Sombra
in terms of mixed real Monge–Ampère measures. We then make use of it to deduce two elementary,
though useful, properties of such operators. Finally, we describe what happens when one of the functions
appearing in the mixed integral is the indicator function of a line segment.
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Section 2 deals with the key object of our work: v-adic Ronkin functions of Laurent polynomials, which
are introduced and described after recalling the needed preliminaries in tropical and nonarchimedean
geometry. In this context, the discussion of a notion of minimal boundaries allows one to treat the
archimedean and nonarchimedean cases homogeneously.

In Section 3 we briefly recall the general adelic Arakelov framework and focus then on the results
obtained by Burgos Gil, Philippon and Sombra in the toric setting. To keep the treatment of archimedean
and nonarchimedean places on equal footing, we rephrase their description of the Chambert-Loir measure
of semipositive toric metrized divisors in terms of minimal boundaries of tropical fibers.

As a needed step for the main proof, we combinatorially describe the Weil divisor of the rational
function defined by a Laurent polynomial on a toric variety. This result can be of independent interest
and has thus been set aside in Section 4.

Section 5 is dedicated to the proofs of our main results Theorems 5.9 and 5.12, which are formulas for
the local height and the toric local height of cycles of codimension 1 in toric varieties. We then make use
of them to prove the integrability statement and a formula for their global heights, with respect to the
choice of adelic semipositive toric metrized divisors.

For binomial hypersurfaces, such a formula is compatible with the one deduced from [Burgos Gil et al.
2014]. This is shown in Section 6, where we also apply our results to some other particular cases. We
provide convex geometrical formulas for the canonical height of 1-codimensional cycles, obtaining the
quoted result by Maillot, and for the Fubini–Study height of a projective hypersurface. We also propose a
new height function, the ρ-height, for which we give a compact formula. We do not know any application
of such a height, which could be anyway worth studying.

Terminology and notation. A variety X is assumed to be a reduced and irreducible separated scheme
of finite type over a field. By an irreducible hypersurface in it we mean a closed integral subscheme
of codimension 1 in X . A divisor on X is a Cartier divisor, unless otherwise stated. Toric varieties are
assumed to be normal; whenever the choice of the base field K is clear from the context, the notation X6
will refer to the toric variety over K associated to the fan 6.

The term measure on a topological space stands for a signed Borel measure on it; in particular, measures
admit a well-defined push-forward via continuous mappings. A measure which only takes nonnegative
real values on Borel subsets is called a positive measure.

1. Preliminaries in convex geometry

This section is devoted to recalling notions from convex geometry that will be useful in the sequel. We
follow the conventions and notation of [Burgos Gil et al. 2014, Chapter 2], referring to [Rockafellar 1970,
§12] for a more complete treatment of the subject. We refer to these two sources for the proofs of the
statements we make here.

For the whole section, let N be a lattice of rank n and M := Hom(N ,Z) its dual lattice. Denote by
NR = N ⊗Z R and by MR = M ⊗Z R the corresponding n-dimensional real vector spaces.
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By a polyhedron in NR we mean a convex subset of NR obtained as the intersection of finitely many
closed half-spaces {u ∈ NR : 〈x, u〉+ c ≥ 0}, with x ∈ MR and c ∈ R. If all the slopes x can be chosen
in M, the polyhedron is said to be rational. A polytope is a bounded polyhedron. A polytope in NR whose
vertices all lie in N is called a lattice polytope; it is in particular a rational polytope. A compact convex
subset of NR is called a convex body.

1A. Legendre–Fenchel duality. A function f : NR → R ∪ {−∞} is said to be concave if it is not
identically −∞ and, for every u1, u2 ∈ NR and for every t ∈ [0, 1], one has the inequality

f (tu1+ (1− t)u2)≥ t f (u1)+ (1− t) f (u2).

The effective domain of a concave function f is the set on which the function takes values different from
−∞ and it is denoted by dom( f ): it is a convex subset of NR. A concave function is said to be closed if it
is upper semicontinuous. Every concave function with closed effective domain, on which it is continuous,
is closed. The recession function of a closed concave function f is the concave conical function which
takes on u ∈ NR the value

rec( f )(u) := lim
λ→∞

f (v0+ λu)
λ

∈ R∪ {−∞}

for any v0 ∈ dom( f ); see [Rockafellar 1970, Theorem 8.5]. Finally, a concave function f with effective
domain a polyhedron in NR is piecewise affine if

f (u)=min
α∈S

(〈α, u〉+ cα)

for every u ∈ dom( f ), with S a finite subset of MR and cα ∈ R for every α ∈ S.
To each concave function f on NR, one can associate its Legendre–Fenchel dual, which is the closed

concave function f ∨ on MR defined as

f ∨(x) := inf
u∈NR

(〈x, u〉− f (u))

for every x ∈ MR; see [Burgos Gil et al. 2014, §2.2]. If f is closed, ( f ∨)∨ = f . The effective domain of
f ∨ is a convex subset of MR, which one calls the stability set of f and denotes by stab( f ).

The following example is classical and will play a role later on.

Example 1.1. Any nonempty convex body B in MR induces a concave function 9B on NR, called the
support function of B and defined as

9B(u) :=min
x∈B
〈x, u〉

for every u ∈ NR. Its Legendre–Fenchel dual is the indicator function ιB of B, which is the function
taking the value 0 on B and −∞ elsewhere. Hence, dom(9B) = NR and stab(9B) = B. Notice that,
whenever B is a polytope, 9B is a conic piecewise affine concave function.

We also recall that there exist a number of operations that one can define on concave functions, in
addition to the usual pointwise sum and scalar multiplication. Among these, the sup-convolution of two
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concave functions f and g on NR with nondisjoint stability sets is defined as

( f � g)(v) := sup
u1+u2=v

( f (u1)+ g(u2))

and the right scalar multiplication of f by λ ∈ R≥0 as

( f λ)(u) := λ f (u/λ).

Also, the translate of a concave function f on NR by a point u0 ∈ NR is set to be

(τu0 f )(u) := f (u− u0).

These operations are dual, via Legendre–Fenchel duality, to the usual pointwise addition, scalar mul-
tiplication and sum by a linear function, respectively; see [Burgos Gil et al. 2014, Propositions 2.3.1
and 2.3.3].

1B. Real Monge–Ampère measures. For any closed concave function f on NR with dom( f )= NR and
for any Haar measure µ on MR, one can define a corresponding real Monge–Ampère measure Mµ( f ), as
in [Burgos Gil et al. 2014, §2.7]. It is a measure on NR, of total mass µ(stab( f )), being supported on
finitely many points if f is piecewise affine. The Monge–Ampère operator, associating to each closed
concave function f with dom( f )= NR the corresponding measure Mµ( f ) on NR is homogeneous of
degree n with respect to pointwise scalar multiplication. It was shown in [Passare and Rullgård 2004] that
such an operator admits a polarization: for f1, . . . , fn closed concave functions with effective domain NR,
their mixed real Monge–Ampère measure is defined as the measure

MMµ( f1, . . . , fn) :=

n∑
k=1

(−1)n−k
∑

1≤i1<···<ik≤n

Mµ( fi1 + · · ·+ fik ). (1-1)

Notice that this definition differs from [Passare and Rullgård 2004, formula (14)] and [Burgos Gil et al.
2014, Definition 2.7.12] by a multiplicative constant. It follows from [Passare and Rullgård 2004, §5]
that the measure in (1-1) is in fact a positive measure. The so-obtained mixed Monge–Ampère operator
is, by definition, symmetric and multilinear in its entries (with respect to pointwise sum) and it satisfies

MMµ( f, . . . , f )= n!Mµ( f )

for every closed concave function f . In particular, if f1, . . . , fn are closed concave functions with convex
bodies as stability sets, their mixed real Monge–Ampère measure is a finite measure on NR of total mass
MVµ(stab( f1), . . . , stab( fn)). Here, MVµ denotes the mixed volume of convex bodies with respect to the
measure µ, normalized in such a way that MVµ(Q, . . . , Q)= n!µ(Q) for every convex body Q in MR.

Remark 1.2. The integral structure on MR coming from the subjacent lattice M gives a distinguished
measure volM on MR, which is the unique Haar measure for which the volume of a fundamental domain
of M is 1 (this does not depend on the choice of a basis of M). To lighten the notation, the corresponding
(mixed) real Monge–Ampère operator will be denoted by MMM .
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1C. Mixed integrals. For any Haar measure µ on MR, the application mapping a compactly supported
concave function g on MR to its Lebesgue integral with respect to µ is homogeneous of degree n+1 with
respect to right scalar multiplication. As a consequence of [Philippon and Sombra 2008a, Proposition 4.5],
there exists a polarized operator: for g0, . . . , gn concave functions on MR with respective domains the
convex bodies Q0, . . . , Qn , their mixed integral with respect to µ is defined as

MIµ(g0, . . . , gn) :=

n∑
k=0

(−1)n−k
∑

0≤i0<···<ik≤n

∫
Qi0+···+Qik

(gi0 � · · ·� gik ) dµ.

This notion was introduced and studied in [Philippon and Sombra 2008a; 2008b]. The mixed integral
operator is symmetric and multilinear in its entries (with respect to sup-convolution) and it satisfies

MIµ(g, . . . , g)= (n+ 1)!
∫

Q
g dµ

for every concave function g on a convex body Q. As for the mixed Monge–Ampère operator, we will
denote by MIM the mixed integral computed with respect to the Haar measure volM on MR.

The following proposition describes the behavior of mixed integrals with respect to translation of the
entries.

Proposition 1.3. Let gi be a concave function defined on a convex body Qi in MR for i = 0, . . . , n. Let
also x0 ∈ MR. Then,

MIµ(τx0 g0, g1, . . . , gn)=MIµ(g0, . . . , gn).

Proof. For any subset {i1, . . . , ir } ⊆ {1, . . . , n} one has, directly by definition, that

((τx0 g0)� gi1 � · · ·� gir )(x + x0)= (g0 � gi1 � · · ·� gir )(x)

for every x ∈ MR. The change of variables formula implies then that the integrals appearing in the
definitions of MIµ(τx0 g0, g1, . . . , gn) and of MIµ(g0, . . . , gn) are pairwise equal, from which the statement
follows trivially. �

We now focus on a recursive formula for mixed integrals. For any closed convex subset C in MR, and
for every u ∈ NR, one can consider the subset

Cu
:=
{

x ∈ C : 〈x, u〉 = inf
y∈C
〈y, u〉

}
of C . For u 6= 0, this subset is contained in an affine subspace of MR of codimension 1 and parallel to
u⊥ := {x ∈ MR : 〈x, u〉 = 0}. It is immediate from the definition that for every pair of convex bodies
C1 and C2 in MR, and for every u ∈ NR, one has Cu

1 +Cu
2 = (C1+C2)

u , where the plus sign denotes
the Minkowski sum of convex sets. When u ∈ NQ \ {0}, the intersection M(u) := M ∩ u⊥ is a lattice of
rank n− 1 spanning the linear space u⊥ and hence it induces a normalized Haar measure volM(u) on u⊥,
as in Remark 1.2.
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Remark 1.4. Let B1, . . . , Bn be n convex bodies in MR and let u ∈ NR. The invariance under translation
of volM(u) allows one to consistently consider the mixed volume of Bu

1 , . . . , Bu
n as convex bodies in u⊥.

Similarly, let g0, . . . , gn be concave functions defined on convex bodies B0, . . . , Bn in MR, respectively.
For every u ∈ NQ \ {0}, Proposition 1.3 allows one to consider the mixed integral with respect to volM(u)

of g0|Bu
0
, . . . , gn|Bu

n
, as functions defined on convex subsets of u⊥.

For a concave function g with effective domain a polytope Q in MR, its hypograph is the closed
convex set

0(g) := {(x, t) : x ∈ Q, t ≤ g(x)} ⊆ MR×R.

With the pairing between NR×R and MR×R given by 〈(x, t), (u, λ)〉 := 〈x, u〉+ tλ for every (u, λ) ∈
NR×R and (x, t) ∈ MR×R, one can consider the subset 0(g)(u,λ) of 0(g) for every (u, λ) ∈ NR×R. It
is empty when λ > 0.

The mixed real Monge–Ampère measure of piecewise affine concave functions can be made explicit in
terms of the hypographs of their Legendre–Fenchel duals. We denote by δv the Dirac measure supported
on v.

Proposition 1.5. For i = 1, . . . , n, let gi be a piecewise affine concave function with effective domain a
polytope Qi ⊂ MR, and 0i the hypograph of gi . Denote by π : MR×R→ MR the projection onto the
first factor. For any choice of a Haar measure µ on MR one has

MMµ(g∨1 , . . . , g∨n )=
∑
v∈NR

MVµ(π(0
(v,−1)
1 ), . . . , π(0(v,−1)

n )) δv,

and the sum is finite.

Proof. For a piecewise affine concave function g with bounded domain in MR, its Legendre–Fenchel dual
is a piecewise affine concave function with domain NR and [Burgos Gil et al. 2014, Proposition 2.7.4]
affirms that

Mµ(g∨)=
∑
v∈NR

µ(v∗)δv,

with v∗ = {x ∈ MR : g∨(v)= 〈x, v〉− g(x)}. From the definition of the Legendre–Fenchel duality, one
has hence that

v∗ =
{

x ∈ MR : 〈x, v〉− g(x)= min
y∈MR

(〈y, v〉− g(y))
}
= {x ∈ MR : (x, g(x)) ∈ 0(g)(v,−1)

},

and so
Mµ(g∨)=

∑
v∈NR

µ(π(0(g)(v,−1)))δv.

The sum is moreover supported on finitely many v ∈ NR, corresponding to the directions of the finitely
many exposed faces of 0(g).

By [Attouch and Wets 1989, §2], the relation

0(gi � gj )= 0(gi )+0(gj )
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on the hypographs of gi and gj holds for any i, j ∈ {1, . . . , n}. As a consequence, for every subset
{i1, . . . , ik} ⊆ {1, . . . , n}, [Burgos Gil et al. 2014, Proposition 2.3.1] and the linearity of π yield

Mµ(g∨i1
+ · · ·+ g∨ik

)=Mµ((gi1 � · · ·� gik )
∨)

=

∑
v∈NR

µ(π(0
(v,−1)
i1

+ · · ·+0
(v,−1)
ik

))δv

=

∑
v∈NR

µ(π(0
(v,−1)
i1

)+ · · ·+π(0
(v,−1)
ik

))δv,

and the sum is finite. The statement follows then from the definition of the mixed real Monge–Ampère
measure, rearranging the terms. �

We can now prove a recursive formula relating the notions of the mixed real Monge–Ampère measure
and the mixed integral of concave functions, via Legendre–Fenchel duality. A vector u ∈ N is said to be
primitive if it is nonzero and there is no other element u′ ∈ N such that ku′= u for some positive integer k.

Theorem 1.6. For i = 0, . . . , n, let gi be a continuous concave function on a rational polytope Qi in MR.
Then

MIM(g0, . . . , gn)=−
∑
u∈N

primitive

9Q0(u)MIM(u)(g1|Qu
1
, . . . , gn|Qu

n
)−

∫
NR

g∨0 d MMM(g∨1 , . . . , g∨n ),

the first sum being finite.
In particular, if gi is a piecewise affine concave function on Qi with hypograph 0i for any i = 0, . . . , n,

denoting by π : MR×R→ MR the projection onto the first factor, one has

MIM(g0, . . . , gn)

=−

∑
u∈N

primitive

9Q0(u)MIM(u)(g1|Qu
1
, . . . , gn|Qu

n
)−

∑
v∈NR

g∨0 (v)MVM(π(0
(v,−1)
1 ), . . . , π(0(v,−1)

n )).

Proof. By [Burgos Gil et al. 2014, Proposition 2.5.23(1)], any continuous concave function on a polytope
can be approximated, with respect to uniform convergence, by a sequence of piecewise affine concave
functions on the polytope itself. On the other hand, the Legendre–Fenchel duality and the real Monge–
Ampère operator are continuous with respect to uniform limits of concave functions; see [Burgos Gil et al.
2014, Proposition 2.2.3] and [Rauch and Taylor 1977, §3], respectively. It is not difficult to show that the
same holds for mixed integrals. Thanks to Proposition 1.5, it is hence enough to prove the formula in the
particular case of g0, . . . , gn being piecewise affine concave functions.

Let hence gi be a concave piecewise affine function on the rational polytope Qi in MR, and 0i its
hypograph, for i = 0, . . . , n. The choice of a basis of N (and of the dual basis of M) endows NR and MR

with a euclidean structure, allowing one to consider the sets

Sn−1
:= {w ∈ NR : ‖w‖ = 1} ⊆ NR
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and
Sn
−
:= {(v, t) ∈ NR×R : ‖(v, t)‖ = 1, t < 0} ⊆ NR×R.

After a change of sign due to the use of different notation, [Philippon and Sombra 2008b, Proposition 8.5]
affirms that

MIM(g0, . . . ,gn)=−
∑

w∈Sn−1

9Q0(w)MIn−1(g1|Qw
1
, . . . ,gn|Qw

n
)−
∑

r∈Sn
−

900(r) MVn(0
r
1, . . . ,0

r
n), (1-2)

where, on the right-hand side, one refers to the mixed integral with respect to the measure obtained
restricting volM to w⊥ and to the mixed volume with respect to the restriction of volM⊕Z to r⊥.

Concerning the first sum on the right-hand side of (1-2), if a term in the sum is different from zero, then
there exists a subset I ⊂ {1, . . . , n} such that the Minkowski sum of Qw

i , with i ∈ I, is of dimension n−1;
in particular, if one sets Q := Q1+· · ·+ Qn , then Qw

= Qw
1 +· · ·+ Qw

n needs to be of dimension n− 1.
As a consequence, one can restrict the sum to the set of vectors w ∈ Sn−1 for which Qw is an (n−1)-
dimensional face of Q. This set is included in the set of vectors of unitary length which are perpendicular
to an (n−1)-dimensional face of Q; hence it is finite since Q is a polytope. Moreover, since Q is rational,
the ray spanned by such a vector w contains a unique primitive vector u ∈ N. The linearity of 9Q0 yields
hence the equality∑

w∈Sn−1

9Q0(w)MIn−1(g1|Qw
1
, . . . , gn|Qw

n
)=

∑
u∈N

primitive

9Q0(u)
‖u‖

MIn−1(g1|Qu
1
, . . . , gn|Qu

n
).

The fact that the restriction of volM to u⊥ is equal to the measure volM(u) multiplied by ‖u‖, see [Burgos Gil
et al. 2014, proof of Corollary 2.7.10], allows one to conclude that the first sum in (1-2) coincides with
the desired one.

Regarding the second sum in (1-2), there exists an obvious bijection between Sn
−

and NR given by
associating to each r ∈ Sn

−
the only vector v ∈ NR such that (v,−1) lies on the line spanned by r . Hence,∑

r∈Sn
−

900(r) MVn(0
r
1, . . . , 0

r
n)=

∑
v∈NR

900(v,−1)
‖(v,−1)‖

MVn(0
(v,−1)
1 , . . . , 0(v,−1)

n ).

Directly by the definition of Legendre–Fenchel duality, one has that 900(v,−1)= g∨0 (v). The statement
follows then from the fact that for every Borel set E in (v,−1)⊥, the measure of E with respect to the
restriction of volM⊕Z to (v,−1)⊥ equals ‖(v,−1)‖ ·volM(π(E)), again by [Burgos Gil et al. 2014, proof
of Corollary 2.7.10]. �

Remark 1.7. For a rational polytope P of full dimension n in MR, every facet F of P, that is a face of
dimension n−1, admits a distinguished orthogonal vector: it is the unique primitive vector vF ∈ N which
satisfies PvF = F. Under the additional assumption that the Minkowski sum Q := Q1+ · · ·+ Qn is of
dimension n in MR, the formula in Theorem 1.6 can be written as

MIM(g0, . . . , gn)=−
∑

F

9Q0(vF )MIM(vF )(g1|QvF
1
, . . . , gn|QvF

n
)−

∫
NR

g∨0 d MMM(g∨1 , . . . , g∨n ),
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the first sum being over the finite set of facets of the polytope Q. Indeed, in such a situation the application
F 7→ vF realizes a bijection between the set of facets of Q and the set of primitive vectors u ∈ N for
which Qu is an (n−1)-dimensional face of Q, which are the only vectors for which the term of the sum
in the statement of the theorem does not vanish.

Remark 1.8. The statement of Theorem 1.6 can be reformulated in terms of Legendre–Fenchel duality.
For i = 0, . . . , n, let fi be a concave function on NR with stability set a rational polytope Qi in MR.
Under the assumption that Q1+ · · ·+ Qn is of dimension n in MR, Remark 1.7 yields

MIM( f ∨0 , . . . , f ∨n )=−
∑

F

9Q0(vF )MIM(vF )( f ∨1 |QvF
1
, . . . , f ∨n |QvF

n
)−

∫
NR

f0 d MMM( f1, . . . , fn). (1-3)

Indeed, it is sufficient to readily apply the previous theorem to the functions f ∨0 , . . . , f ∨n , which are
continuous on their domain and satisfy the equality ( f ∨i )

∨
= fi for each i = 0, . . . , n by concavity and

closedness. It is easy to verify that the choice f0= · · · = fn = f in (1-3) yields the formula in [Burgos Gil
et al. 2014, Corollary 2.7.10].

We present now two applications of the recursive formula proved above. The first one concerns the
computation of the mixed integral when all except one entry are indicator functions in the sense of
Example 1.1.

Corollary 1.9. Let Q1, . . . , Qn be rational polytopes in MR and f a concave function on NR with
stability set a rational polytope. Then

MIM(ιQ1, . . . , ιQn , f ∨)=−MVM(Q1, . . . , Qn) · f (0).

Proof. By symmetry, one can develop the recursive formula in Remark 1.8 with respect to f ∨ to obtain

MIM(ιQ1, . . . , ιQn , f ∨)=−
∫

NR

f d MMM(ι
∨

Q1
, . . . , ι∨Qn

),

the indicator functions ιQ1, . . . , ιQn being zero where defined. The duality in Example 1.1 and the fact that

MMM(9Q1, . . . , 9Qn )=MVM(Q1, . . . , Qn)δ0

because of Proposition 1.5 conclude the proof. �

The second application explains how the mixed integral behaves with respect to pointwise sum by a
constant in one entry.

Corollary 1.10. Let gi be a concave function defined on a rational polytope Qi ⊆ MR for i = 0, . . . , n
and c ∈ R. Then

MIM(g0, . . . , gn−1, gn + c)=MIM(g0, . . . , gn)+ c ·MVM(Q0, . . . , Qn−1).

Proof. Denoting by cδ0 the concave function which has value c at 0 and −∞ otherwise, it follows from
the definitions that gn + c = gn � cδ0. The multilinearity of mixed integrals implies then that

MIM(g0, . . . , gn−1, gn + c)=MIM(g0, . . . , gn)+MIM(g0, . . . , gn−1, cδ0).
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Using the fact that (cδ0)
∨
= −c, the recursive formula in Theorem 1.6, developed with respect to cδ0,

yields

MIM(g0, . . . , gn−1, cδ0)=

∫
NR

c d MMM(g∨0 , . . . , g∨n−1)= c ·MMM(g∨0 , . . . , g∨n−1)(NR).

The statement follows then from the fact that the total volume of the mixed Monge–Ampère measure
of g∨0 , . . . , g∨n−1 is equal to MVM(dom(g0), . . . , dom(gn−1)) by [Passare and Rullgård 2004, Proposi-
tion 3(iv)]. �

We conclude the section by proving a formula expressing the mixed integral of an (n+1)-tuple of
concave functions on MR where one of them is the indicator function of a line segment.

Let m be a primitive vector of M and consider the quotient P := M/Zm. Since m is primitive, P is a
lattice of rank n− 1. By abuse of notation, let π denote both the projection from M to P and the induced
linear map from MR to PR. For each closed concave function g defined on a compact subset B of MR, let

π∗g : π(B)→ R, x 7→ max
y∈π−1(x)

g(y), (1-4)

be the direct image of g by π . It is a well-defined closed concave function with domain a bounded subset
of PR; see [Rockafellar 1970, Theorems 5.7 and 9.2]. Finally, for x1, x2 ∈ MR, denote by x1x2 the line
segment in MR with extremal points x1 and x2. The following lemma is a generalization of [Ewald 1996,
Exercise 3, p. 128] and seems to be well known to experts, though we could not find an adequate reference
in the literature for its proof.

Lemma 1.11. In the above hypotheses and notation and for n ≥ 2, let Q1, . . . , Qn−1 be polytopes in MR.
Then,

MVM(0m, Q1, . . . , Qn−1)=MVP(π(Q1), . . . , π(Qn−1)).

Proof. Since the vector m is primitive, it can be extended to a basis of the lattice M ; see for in-
stance [Lekkerkerker 1969, Theorem 5, p. 21]. We suppose fixed throughout the proof such a basis
(m1, . . . ,mn−1,m) of M and the induced isomorphism MR'Rn; under this identification, the normalized
volume volM corresponds to the Lebesgue measure voln on Rn. Since (π(m1), . . . , π(mn−1)) is a basis
of P, such a lattice is isomorphic to the span of m1, . . . ,mn−1 in M and hence it is identified with the
linear subspace Rn−1

× {0} of Rn. Moreover, volP corresponds to the (n−1)-dimensional Lebesgue
measure voln−1 on Rn−1

×{0} and the map π to the vertical projection.
The claim reduces then to the particular case of a family of polytopes Q1, . . . , Qn−1 in Rn, m =

(0, . . . , 0, 1) and π the vertical projection. Denoting by S the vertical segment of unitary length and
rearranging the terms in the definition of the mixed volume given for instance in [Burgos Gil et al. 2014,
Definition 2.7.14] one obtains

MVn(S, Q1, . . . , Qn−1)=

n−1∑
k=1

(−1)n−1−k
∑

1≤i1<···<ik≤n−1

(voln(S+Qi1+· · ·+Qik )−voln(Qi1+· · ·+Qik ))



Heights of hypersurfaces in toric varieties 2415

since the n-dimensional volume of a line segment vanishes for n ≥ 2. To prove the claim it is hence
enough to show that for each polytope Q in Rn the equality

voln(S+ Q)− voln(Q)= voln−1(π(Q))

holds. But Q⊂ S+Q and the difference of their volumes coincides with the integral over π(Q)=π(S+Q)
of the difference between the concave functions parametrizing the roof of the polytope S+ Q and Q
respectively. Such a difference being constantly equal to 1 on π(Q), the claim follows from the definition
of the Lebesgue integral, concluding the proof. �

Proposition 1.12. In the above hypotheses and notation, let gi be a continuous concave function defined
on a polytope Qi in MR, for i = 1, . . . , n. Then,

MIM(ι0m, g1, . . . , gn)=MIP(π∗g1, . . . , π∗gn).

Proof. For n= 1, the claim follows from Corollary 1.9. Assume hence n≥ 2. Choose for each i = 1, . . . , n
a nonpositive real number γi such that γi ≤minx∈Qi gi (x) and consider the convex body

Qgi ,γi := {(x, t) ∈ Qi ×R : γi ≤ t ≤ gi (x)}

in MR×R. The formula in [Philippon and Sombra 2008a, Proposition IV.5(d)] implies that

MIM(ι0m, g1, . . . , gn)=MVM⊕Z((0, 0)(m, 0), Qg1,γ1, . . . , Qgn,γn )

+

n∑
i=1

γi MVM(0m, Q1, . . . , Qi−1, Qi+1, . . . , Qn).

By the hypotheses on m, (m, 0) is a nonzero primitive vector of the lattice M ⊕ Z. The map π ′ :=
π × idZ : M ⊕Z→ P ⊕Z is a surjective group homomorphism, giving (M ⊕Z)/Z(m, 0)' P ⊕Z. By
Lemma 1.11,

MIM(ι0m, g1, . . . , gn)=MVP⊕Z(π
′(Qg1,γ1), . . . , π

′(Qgn,γn ))

+

n∑
i=1

γi MVP(π(Q1), . . . , π(Qi−1), π(Qi+1), . . . , π(Qn)).

The statement follows hence from the equality in [Philippon and Sombra 2008a, Proposition IV.5(d)]
applied to the concave functions π∗g1, . . . , π∗gn , the direct image of gi by π being a concave function
defined on π(Qi ) and satisfying

π ′(Qgi ,γi )= {(π(y), t) ∈ π(Qi )×R : γi ≤ t ≤ gi (y)}

= {(x, t) ∈ π(Qi )×R : γi ≤ t ≤ (π∗gi )(x)}

for every i = 1, . . . , n. �

2. Ronkin functions

Fix for the whole section an algebraically closed complete field (K , | · |), that is, a pair of an algebraically
closed field and an absolute value with respect to which the field is complete. Depending on the nature
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of the absolute value, (K , | · |) is said to be archimedean or nonarchimedean. As a consequence of the
Gelfand–Mazur theorem, the only archimedean algebraically closed complete field is C endowed with a
power of the usual absolute value. When the choice of the absolute value is clear from the context, an
algebraically closed complete field will be simply denoted by K .

2A. Tropicalization. Given an affine variety X = Spec A over an algebraically closed complete field K ,
let ι : K → A be the corresponding ring homomorphism. Berkovich’s construction allows one to define a
locally ringed space (X an,OX an), called the analytification of X ; as a set,

X an
:= {‖ · ‖x multiplicative seminorm on A : ‖ι(k)‖x = |k| for all k ∈ K }.

We refer to [Berkovich 1990, §1.5] (or also to [Burgos Gil et al. 2014, §1.2] for a more concise treatment)
for the definition of the topology and the structure sheaf on X an. By a gluing argument, one can then
extend the definition to any variety over K .

Remark 2.1. When K = C endowed with the usual absolute value, the Gelfand–Mazur theorem implies
that the locally ringed space produced by Berkovich’s construction agrees with the standard complex
analytification of a variety over Spec C.

Let T denote a split torus over K of dimension n and M its character lattice, in such a way that
T= Spec K [M]. A basis of the K -algebra K [M] will be denoted, as in [Fulton 1993, beginning of §1.3],
by (χm)m∈M and the elements of K [M] will be called Laurent polynomials over K . Let N be the dual
lattice of M and denote by NR = N ⊗R the associated real vector space.

Definition 2.2. The tropicalization map trop : Tan
→ NR = Hom(M,R) is the application defined by

(trop(‖ · ‖x))(m) := − log ‖χm
‖x

for every ‖ · ‖x ∈ Tan.

The tropicalization map turns out to be a continuous application with respect to the Berkovich topology
of Tan and the Euclidean topology of NR. Moreover, in the archimedean case, the choice of a basis of M
allows one to write such map in the more familiar form

trop((z1, . . . , zn))= (− log |z1|, . . . ,− log |zn|).

Remark 2.3. The tropicalization map coincides with the valuation map val used by Burgos Gil, Philippon
and Sombra [Burgos Gil et al. 2014, equation 4.1.2].

When the absolute value on K is nonarchimedean, one can construct a suitable section of trop. For
each u ∈ NR, consider the map which associates to a Laurent polynomial f =

∑
cmχ

m the real value

‖ f ‖κ(u) :=max
m
|cm |e−〈m,u〉.

One can verify that ‖ · ‖κ(u) is a multiplicative seminorm on K [M] extending the absolute value on K ,
and hence it corresponds to a point κ(u) ∈ Tan, which one calls the Gauss point over u. The application
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κ : NR→ Tan defined by

κ : u→‖ · ‖κ(u)

is proved to be a continuous section of trop; see for instance [Burgos Gil et al. 2014, Proposition-
Definition 4.2.12], noting that κ coincides with θ0 ◦ e in the cited reference.

It is easily seen that for any closed subvariety X of T, there is a natural inclusion of sets X an
⊆ Tan,

making the following definition meaningful.

Definition 2.4. Let f be a nonzero Laurent polynomial in K [M] and V ( f ) the associated closed subvariety
of T. The subset

A f := trop(V ( f )an)⊆ NR

is called the amoeba of f .

The so-defined set has been widely studied in the literature. In the archimedean case, it coincides (up
to a change of sign) with the notion of amoeba studied by Gelfand, Kapranov and Zelevinsky [1994]
and by Passare and Rullgård [2004]. In the nonarchimedean case, the amoeba of a nonzero Laurent
polynomial f coincides with the corner locus of the associated tropical polynomial f trop; see [Einsiedler
et al. 2006, Theorem 2.1.1].

2B. Minimal boundaries. To keep the treatment of the archimedean and nonarchimedean settings uni-
form, the following notion is crucial.

Definition 2.5. Let K be an algebraically closed complete field and A a K -algebra. For any set S of
multiplicative seminorms on A extending the absolute value of K , a boundary of S is a subset B ⊆ S
such that

max
x∈S
‖a‖x =max

x∈B
‖a‖x

for every a ∈ A.

In other words, any boundary of S contains all of the information about the maximal values that the
seminorms in S can attain. As a trivial example, S is a boundary of S.

We are especially interested in the boundary of the fibers of the tropicalization map. Keeping the
notation of the previous subsection, for a point u ∈ NR, it is immediate to show that

trop−1(u)= {‖ · ‖x ∈ Tan
: ‖χm

‖x = e−〈m,u〉 for all m ∈ M}.

In the complex case, the existence of a unique minimal boundary for an algebra of functions on a compact
space has been proved by Shilov. The following result, which equally holds in the nonarchimedean case,
is well-known by experts.

Proposition 2.6. The set trop−1(u) has a unique minimal boundary. In the archimedean case, it coincides
with the whole trop−1(u), while in the nonarchimedean case it consists of the Gauss point over u.
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Proof. In the archimedean case, after having chosen a basis of M, one can treat Tan as (C∗)n, by identifying
a point z = (z1, . . . , zn) of (C∗)n with the seminorm ‖ · ‖z defined as

‖ f ‖z = | f (z)|

for every f ∈ K [T1, . . . , Tn]. Assuming that the coordinates of u in the basis dual to the chosen one are
(u1, . . . , un), the set trop−1(u) corresponds to the subset of (C∗)n consisting of the points (z1, . . . , zn)

satisfying − log |zi | = ui for every i = 1, . . . , n. A point z̃ of trop−1(u) is then of the form

z̃ := (e−u1+iθ1, . . . , e−un+iθn ),

with θi ∈ [0, 2π) for every i = 1, . . . , n. It is easy to check that such a point is the only one in trop−1(u)
for which

‖(T1+ e−u1+iθ1) · · · (Tn + e−un+iθn )‖z

is maximal. As a consequence, z̃ must belong to any boundary of trop−1(u). This proves that the only
boundary of trop−1(u) is the set itself.

In the nonarchimedean case, for every ‖ · ‖x ∈ trop−1(u) and for every f =
∑

cmχ
m
∈ K [M] one has

(by definition of nonarchimedean absolute value) that

‖ f ‖x ≤max
m
|cm |‖χ

m
‖x =max

m
|cm |e−〈m,u〉.

This trivially implies that the Gauss norm ‖ f ‖κ(u) =maxm |cm |e−〈m,u〉 is a boundary for trop−1(u). �

For u∈NR, one denotes the unique minimal boundary of trop−1(u) described in the previous proposition
by B(u). If not otherwise mentioned, such a set is considered to be endowed with the topology induced
from Tan. If one sets

BK :=

{
(S1)n if K is archimedean,
{1} otherwise,

the boundary B(u) is homeomorphic to the compact group BK for every u ∈ NR. This allows one to
define the measure

σu := HaarB(u)

on trop−1(u), which is the Haar measure on the compact group B(u) normalized to have total mass 1; it
is a finite measure on trop−1(u), supported on B(u) and distributing homogeneously on this set. In the
nonarchimedean case it coincides with the Dirac delta at the Gauss point over u.

There exists an embedding ι : NR×BK → Tan fitting in the commutative diagram

NR×BK Tan

NR

ι

trop
(2-1)

with the vertical arrow being the projection onto the first factor. In the archimedean case, it is determined
by the choice of a homeomorphism (C∗)n ' NR× (S

1)n, while in the nonarchimedean case it coincides
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with the map (u, 1) 7→ κ(u). The image of ι is homeomorphic to NR×BK and it is a deformation retract
of the analytic torus, coinciding with it if K is archimedean.

2C. Ronkin functions. The terminology and notation introduced in the previous subsection allow one
to define Ronkin functions in the archimedean and nonarchimedean cases simultaneously.

Definition 2.7. Let f be a nonzero Laurent polynomial over K . The Ronkin function of f is the map
ρ f : NR→ R defined as

ρ f (u) :=
∫

trop−1(u)
− log ‖ f ‖x dσu(x)

for every u ∈ NR.

The integral in the previous definition is finite. Indeed, logarithmic singularities are integrable in the
archimedean case, and the Gauss norm of a nonzero Laurent polynomial is positive in the nonarchimedean
case.

Remark 2.8. In the archimedean case, ρ f (u)=−N f (−u), where N f is the classical Ronkin function
associated to a complex Laurent polynomial; refer for instance to [Passare and Rullgård 2004]. In
the nonarchimedean case, it is easily checked that ρ f = f trop, where the tropicalization of a Laurent
polynomial f =

∑
cmχ

m is defined by

f trop(u)=min
m
(〈m, u〉− log |cm |)

for every u ∈ NR.

The following property of the Ronkin function follows immediately from its definition.

Proposition 2.9. For every pair of nonzero Laurent polynomials f and g, one has ρ f ·g = ρ f + ρg. For
every λ ∈ K , moreover, ρλ· f =− log |λ| + ρ f .

Recall that for any Laurent polynomial f =
∑

m cmχ
m, we denote by NP( f ) the Newton polytope of f ,

that is, the convex hull in MR of the set {m ∈ M : cm 6= 0}. Its support function, as defined in Example 1.1,
is denoted by 9NP( f ).

Proposition 2.10. Let f be a nonzero Laurent polynomial. Then:

(1) ρ f is a continuous concave function on NR (in particular it is closed) and it is affine on each
connected component of the complement of the amoeba of f .

(2) |ρ f −9NP( f )| is bounded on NR.

(3) The stability set of ρ f coincides with NP( f ) and rec(ρ f )=9NP( f ).

Proof. The statements in (1) are trivial in the nonarchimedean case. In the archimedean case, the concavity
of ρ f and its affinity outside the amoeba are shown in [Passare and Rullgård 2004, Theorem 1]. As a
consequence of concavity, ρ f is continuous on NR, and hence closed.
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To prove (2), suppose that f =
∑

m cmχ
m and let γK ( f ) be the number of nonzero coefficients of f if K

is archimedean, and 1 otherwise. For any x ∈ trop−1(u), the inequality ‖ f ‖x ≤ γK ( f ) ·maxm(|cm |‖χ
m
‖x)

implies

− log ‖ f ‖x ≥min
m
(〈m, u〉− log |cm |)− log γK ( f )≥9NP( f )(u)−max

m
log |cm | − log γK ( f )

and hence
ρ f (u)≥9NP( f )(u)− log(γK ( f )max

m
|cm |)

for every u ∈ NR. For a reverse inequality, denote by V( f ) the set of vertices of NP( f ). Then, for
every m ∈ V( f ) the Ronkin function of f coincides with 〈m, u〉− log |cm | in a nonempty open subset of
NR (this follows from [Passare and Rullgård 2004, Proposition 2] in the archimedean setting and from
[Einsiedler et al. 2006, Corollary 2.1.2] in the nonarchimedean one). By the concavity of ρ f , one deduces
hence that

ρ f (u)≤9NP( f )(u)− log min
m∈V( f )

|cm |

for every u ∈ NR, concluding the proof of (2).
The statements in (3) follow directly from (2). Indeed, since |ρ f −9NP( f )| is bounded, stab(ρ f ) =

stab(9NP( f ))= NP( f ); the last equality follows then from [Rockafellar 1970, Theorem 13.3]. �

The calculation of the Ronkin function of a nonzero Laurent polynomial is typically very difficult.
Anyway, an explicit expression for it is available in the following two simple situations.

Example 2.11. It follows from the definition that the Ronkin function of the monomial χm coincides
with the linear function m on NR for every m ∈ M.

Example 2.12. For any m,m′ ∈ M with m 6= m′, the Ronkin function of the binomial f = χm
− χm′

coincides with the support function of the segment mm′, that is,

ρ f (u)=min(〈m, u〉, 〈m′, u〉)

for every u ∈ NR. To prove this, note first that one can restrict to the case of the binomial f = χm
− 1

with m 6= 0 because of Proposition 2.9 and Example 2.11 and by factoring with a monomial. In the
nonarchimedean case the statement follows immediately from Remark 2.8. In the archimedean one, the
choice of a basis for M allows one to write

ρ f (u)=−
1

(2π)n

∫
θ1,...,θn∈[0,2π ]

log
∣∣e−m1u1+im1θ1 · · · · · e−mnun+imnθn − 1

∣∣ dθ1 · · · dθn,

with m1, . . . ,mn being the coordinates of m in such a basis and u1, . . . , un the coordinates of u in the
dual one. Assuming that m1 > 0, which is always possible since m 6= 0, Jensen’s formula yields, for every
θ2, . . . , θn , ∫

θ1∈[0,2π ]
log
∣∣e−m1u1+im1θ1 · · · · · e−mnun+imnθn − 1

∣∣ dθ1 =−2π
k∑

j=1

log
|αj |

e−m1u1
(2-2)
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with α1, . . . , αk being the zeros of the univariate polynomial

(e−m2u2+im2θ2 · · · · · e−mnun+imnθn )T − 1

lying inside the closed disk of radius e−m1u1 , repeated according to multiplicity. The only complex zero of
the above polynomial has modulus em2u2+···+mnun ; the integral in (2-2) is then zero if m1u1+· · ·+mnun>0;
otherwise it equals −2π(m1u1+ · · ·+mnun). It follows that

ρ f (u)=min(m1u1+ · · ·+mnun, 0),

and hence the claim.

3. Heights of toric varieties

A well-suited framework to develop Arakelov geometry is provided by the study of varieties over adelic
fields. In this setting, local and global heights of cycles of arbitrary dimension can be defined following
[Zhang 1995; Gubler 1998; Chambert-Loir 2006]. A more general approach involving M-fields has been
suggested in [Gubler 1997]. Even if the theory is often phrased in terms of line bundles, we adopt here
the equivalent point of view of divisors, which turns out to be more convenient in the toric case; see for
instance [Burgos Gil et al. 2015].

3A. Adelic fields. By a place on a field K , we mean an equivalence class of absolute values on K , which
could be either archimedean or nonarchimedean. Whenever M is a collection of places on K , the subset
of archimedean places in M is denoted by M∞.

Definition 3.1. Let K be a field. A family of places M on K is said to be adelic if it satisfies the following
properties:

(1) For every v ∈M\M∞, one (and hence all) absolute value in the class of v is associated to a nontrivial
discrete valuation.

(2) For each α ∈ K ∗, the set of places v for which |α|v 6= 1 for any | · |v ∈ v is finite.

It is clear that the two conditions of the previous definition do not depend on the choice of the
representative of the class v.

Definition 3.2. An adelic field is a field K together with an adelic family of places M on K and a
choice of an absolute value | · |v and of a real positive number nv for each place v ∈M. An adelic field
(K , (| · |v, nv)v∈M) is said to satisfy the product formula if for every α ∈ K ∗∑

v∈M

nv log |α|v = 0.

Whenever there is no ambiguity on its adelic structure, an adelic field will be simply denoted by K .
The following property is an easy, though fundamental, consequence of the definition.

Lemma 3.3. Any adelic field K only admits finitely many archimedean places.
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Proof. Since an absolute value on K is nonarchimedean if and only if it is bounded on the image of Z

in K , a field with positive characteristic has no archimedean absolute values. Suppose hence that K has
characteristic zero. In this case it contains a copy of Q and any archimedean absolute value | · |v on K
restricts to an archimedean absolute value on Q. By Ostrowski’s theorem, one has |2|v > 1. The second
axiom in Definition 3.1 then allows one to conclude the claim. �

For an adelic field K and a finite field extension F of K , there exists a canonical way of endowing F
with the structure of an adelic field; see [Gubler 1997, Remark 2.5] and [Martínez and Sombra 2018, §3]
for the detailed construction. With this induced adelic structure, F satisfies the product formula whenever
K does.

Example 3.4. The archetypal example of an adelic field satisfying the product formula is given by the
field Q, together with the collection of all its nontrivial places, the standard normalized absolute value for
each of them and weights equal to 1.

More generally, any global field, that is, a number field or the function field of a smooth projective
curve over a field k with the structure described in [Burgos Gil et al. 2014, Example 1.5.4], is an adelic
field satisfying the product formula.

3B. Local and global heights. Let K be an adelic field satisfying the product formula and X a proper
variety of dimension n over K . For every place v ∈M, denote by Kv the completion of K with respect
to | · |v and by Cv the completion of an algebraic closure of Kv with respect to the unique extension
of the absolute value. It is a well-known fact that Cv is algebraically closed; moreover, Cv comes with
an absolute value that one denotes, with abuse of notation, by | · |v. The pair (Cv, | · |v) is hence an
algebraically closed complete field as in Section 2.

The base change XCv is a scheme of finite type over Spec Cv to which one associates its Berkovich
analytification (X an

v ,OX an
v
), whose underlying topological space is compact because of the properness

of X . To stress its dependence on the choice of the place v, X an
v is called the v-adic analytification

of X . Similarly, one can consider the base change X Kv
of X over Spec Kv and consider its Berkovich

analytification X an
Kv

. The two spaces are related by the isomorphism

X an
Kv
' X an

v /Gal(K sep
v /Kv),

as shown in [Berkovich 1990, Proposition 1.3.5]. Moreover, there exists a surjective morphism of locally
ringed space πv : X an

v → XCv .

Remark 3.5. By Ostrowski’s theorem and the Gelfand–Mazur theorem, if v is an archimedean absolute
value on K , then Cv is isometric to the field C endowed with a power of the usual absolute value. In this
case, the Berkovich space (X an

v ,OX an
v
) is isomorphic to the usual complex analytification of XC.

For any line bundle L on X , its v-adic analytification is the analytic line bundle

Lan
v := π

∗

v LCv
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on X an
v . Continuous metrics on Lan

v are defined as in [Chambert-Loir 2011, §1.1.1], independently of the
nature of the place v. Relevant classes of metrics on Lan

v are smooth metrics in the archimedean case and
algebraic (or, equivalently, formal, see [Gubler and Künnemann 2017, Proposition 8.13]) metrics when v
is nonarchimedean; see for example [Chambert-Loir 2011, §1] and [Gubler and Künnemann 2017, 8.8 and
8.12] for the precise definitions. A divisor D on X together with a continuous Gal(K sep

v /Kv)-invariant
metric ‖ · ‖v on the analytic line bundle O(D)an

v is called a v-adic metrized divisor and it is denoted
by Dv or also by (O(D), ‖ · ‖v). Sums and pull-backs of v-adic metrized divisors can be defined as in
[Chambert-Loir 2011, §1.2].

A v-adic metrized divisor Dv is said to be semipositive if the corresponding metric can be approximated
by semipositive smooth (when v is archimedean) or algebraic (when v is nonarchimedean) semipositive
metrics in the sense of [Burgos Gil et al. 2014, §1.4]. For any d-dimensional subvariety Y of X and
for any d-tuple of v-adic semipositive metrized divisors D0,v, . . . , Dd−1,v on X , there exists a positive
measure

c1(D0,v)∧ · · · ∧ c1(Dd−1,v)∧ δY (3-1)

on X an
v , which was first introduced in [Chambert-Loir 2006, Définition 2.4 and Proposition 2.7(b)] in the

nonarchimedean setting and extended in [Gubler 2007, §3.8] under weaker assumptions. The suggestive
notation for the measure in (3-1) is compatible with the wedge product of first Chern forms in the
smooth archimedean case, while it is justified by the recent advances in the theory of forms and currents
on Berkovich spaces otherwise, as shown in [Chambert-Loir and Ducros 2012, §6.9] and [Gubler and
Künnemann 2017, Theorem 10.5].

Recall also that for a d-dimensional cycle Z in X and a family (D0, s0), . . . , (Dd , sd) of divisors on
X with rational sections of the associated line bundles, one says that s0, . . . , sd meet Z properly if for
every J ⊆ {0, . . . , d}, each irreducible component of |Z | ∩

⋂
i∈J | div(si )| has dimension d − #J , where

| · | denotes here the support of a cycle.

Definition 3.6. Let Z be a d-dimensional cycle in X and (D0,v, s0), . . . , (Dd,v, sd) a collection of v-
adic semipositive metrized divisors on X with rational sections of the corresponding line bundles, with
s0, . . . , sd meeting Z properly. The v-adic local height of Z in X with respect to (Di,v, si ) for i = 0, . . . , d
is defined, linearly in its irreducible components, by the recursive formula

hD0,v,...,Dd,v
(Z; s0, . . . , sd)

:= hD0,v,...,Dd−1,v
(Z · div(sd); s0, . . . , sd−1)−

∫
X an
v

log ‖sd‖d,v c1(D0,v)∧ · · · ∧ c1(Dd−1,v)∧ δZ ,

where ‖ · ‖d,v denotes the metric of Dd,v and one sets the height of the zero cycle to be zero.

The integrals appearing in the previous definition are well-defined, as shown in [Chambert-Loir and
Thuillier 2009, Théorème 4.1] in both the archimedean and nonarchimedean settings, and in [Gubler
and Hertel 2017, Theorem 1.4.3] for the case of nonarchimedean valuations which are not necessarily
discrete. The v-adic local height function is moreover symmetric and multilinear with respect to sums of
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metrized divisors with rational sections of the associated line bundles; see [Gubler 2003, Proposition 3.4
and Remark 9.3].

The adelic structure on the field K allows one to define a semipositive metrized divisor D on X by the
choice, for every place v ∈M, of a continuous semipositive metric on O(D)an

v . This global definition
induces a notion of a v-adic local height function at each place of K . Some care has to be taken when
defining global heights as sums of such v-adic local heights, since they do not need to be well-defined in
general.

Definition 3.7. A d-dimensional irreducible subvariety Y of X is said to be integrable with respect to
the choice of d + 1 semipositive metrized divisors D0, . . . , Dd if there exists a birational proper map
ϕ : Y ′→ Y, with Y ′ projective, and sections si of ϕ∗O(Di ) for each i = 0, . . . , d, meeting Y ′ properly,
such that the v-adic local height

hϕ∗D0,v,...,ϕ∗Dd,v
(Y ′; s0, . . . , sd)

is zero for all but finitely many places v ∈M. A d-dimensional cycle is said to be integrable if each of
its irreducible components is. If Y is an integrable d-dimensional irreducible subvariety, the global height
of Y in X with respect to D0, . . . , Dd is defined as

hD0,...,Dd
(Y ) :=

∑
v∈M

nv hϕ∗D0,v,...,ϕ∗Dd,v
(Y ′; s0, . . . , sd).

The global height of integrable cycles is defined by linearity.

The previous definition does not depend on the choice of the projective resolution Y ′ of Y nor of the
sections s0, . . . , sd , as a consequence of [Gubler 2003, Proposition 3.6 and Remark 9.3], [Burgos Gil
et al. 2014, Theorem 1.4.17(3)] and the product formula on K . As its local counterparts, the global height
is symmetric and multilinear with respect to sums of metrized divisors. Moreover, it is well-behaved
under proper transformations, in the sense of the next proposition.

Proposition 3.8. Let ϕ : X ′ → X be a dominant morphism of proper varieties over K , D0, . . . , Dd

semipositive metrized divisors over X and Z ′ a d-dimensional cycle in X ′. The cycle ϕ∗Z ′ is integrable
with respect to D0, . . . , Dd if and only if Z ′ is integrable with respect to ϕ∗D0, . . . , ϕ

∗Dd and in this case

hD0,...,Dd
(ϕ∗Z ′)= hϕ∗D0,...,ϕ∗Dd

(Z ′).

Proof. The statement about integrability is [Burgos Gil et al. 2014, Proposition 1.5.8(2)], while the
equality of the global heights follows from the same property on local heights, as proved in [Gubler 2003,
Proposition 3.6 and Remark 9.3] in the more general context of pseudodivisors. �

3C. Heights on toric varieties. In this section the basic constructions and results of the arithmetic
geometry of toric varieties are recalled, following the treatment of [Burgos Gil et al. 2014]. Let hence
X6 be a proper toric variety of dimension n over an adelic field K , with torus T and dense open orbit X0.
Denote by N and M the character and cocharacter groups of T and by NR and MR the associated



Heights of hypersurfaces in toric varieties 2425

(reciprocally dual) real vector spaces. The toric variety X6 is associated with a complete fan 6 in NR,
whose collection of k-dimensional cones is written 6(k). For any τ ∈ 6(1), denote by vτ its minimal
nonzero integral vector and by V (τ ) its associated orbit closure, as in [Fulton 1993, §3.1].

Divisors on X6 which are invariant under the torus action are called toric divisors and admit a nice
combinatorial description, as follows. By [Kempf et al. 1973, §I.2, Theorem 9], there exists a bijection
between the set of toric Cartier divisors on X6 and the set of virtual support functions on 6, that is,
piecewise linear real-valued functions on the support of 6, with integral slope on each cone of 6. The
toric Cartier divisor constructed from the virtual support function 9 is denoted by D9 and it defines a
distinguished rational section s9 of O(D9) satisfying div(s9)= D9 . The corresponding Weil divisor is
given by

[D9] =

∑
τ∈6(1)

−9(vτ )V (τ ). (3-2)

In particular, the rational section s9 is regular and nowhere-vanishing on X0. A toric divisor D9 also
determines a polyhedron

19 := {x ∈ MR : x −9 ≥ 0}

in MR, which is bounded because of the properness of X6 , see [Fulton 1993, Proposition on p. 67], and
coincides with the stability set of 9 if 9 is concave. Many algebro-geometric properties of a toric divisor
are read from its associated virtual support function: for instance, D9 is generated by global sections
if and only if 9 is concave, and it is ample if and only if 9 is concave and restricts to different linear
functions on different maximal cones of 6.

Regarding the arithmetic part of the toric dictionary, let D9 be a toric divisor on X6 , with associated
virtual support function 9. The continuous metrics on O(D9) admitting a combinatorial description are
the ones which are invariant under the action of a certain compact torus; see [Burgos Gil et al. 2014, §4.2]
for more details about this notion. In concrete terms, a continuous metric ‖ · ‖v on O(D9)

an
v is called a

v-adic toric metric if the map

(X0)
an
v → R, p 7→ ‖s9(p)‖v,

is constant along the fibers of the v-adic tropicalization map tropv : (X0)
an
v → NR introduced in

Definition 2.2. A toric divisor D together with a v-adic toric metric on O(D) is called a v-adic toric
metrized divisor. To a v-adic toric metrized divisor Dv one can associate the real-valued map ψDv

on NR

satisfying the equality

ψDv
◦ tropv = log ‖sD‖v (3-3)

on the analytic torus (X0)
an
v , where sD is the distinguished rational section of O(D).

The map ψDv
, which will be referred to as the metric function of Dv, was introduced by Burgos Gil,

Philippon and Sombra in their study of Arakelov geometry of toric varieties to encode many arithmetic
properties of Dv; see [Burgos Gil et al. 2014, Chapter 4]. For instance, it is smooth in the archimedean case
if the metric is smooth, while in the nonarchimedean setting it is rational piecewise affine if the metric is
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algebraic; see [Burgos Gil et al. 2014, Theorem 4.5.10(1)] and [Gubler and Hertel 2017, Proposition 2.5.5].
Also, the semipositivity of Dv is translated into the concavity of its corresponding metric function.

Theorem 3.9. Let D be the toric divisor associated to the virtual support function 9. The assignment
‖ · ‖v 7→ ψDv

is a bijection between the space of v-adic semipositive toric metrics on O(D)an
v and the

space of concave functions ψ on NR such that |ψ −9| is bounded.

Proof. This is [Burgos Gil et al. 2014, Theorem 4.8.1(1)]. The extension to the general nonarchimedean
case is [Gubler and Hertel 2017, Theorem 2.5.8]. �

If Dv is a v-adic semipositive toric metrized divisor, the Legendre–Fenchel dual of the metric function
of Dv is called the roof function of Dv and denoted by ϑDv

: it is a concave function on MR with effective
domain the polytope 19 .

A toric divisor admits a v-adic semipositive metric if and only if it is generated by global sections, as
proved in [Burgos Gil et al. 2014, Corollary 4.8.5]. For such divisors, moreover, there exists a distinguished
choice of a v-adic semipositive metric.

Definition 3.10. Let D be a toric divisor generated by global sections, and9 its associated virtual support
function. The v-adic canonical metric on D is the semipositive toric metric on O(D)an

v corresponding to
9 in the bijection of Theorem 3.9.

In the nonarchimedean case, the canonical metric on D coincides with the algebraic metric induced by
the canonical model of X6 and D; see [Burgos Gil et al. 2014, Example 4.5.4].

For semipositive v-adic toric metrized divisors, the measure in (3-1) can be expressed in terms of the
associated metric functions. Indeed, recall from Section 2B that there exists an embedding

ιv : NR×BCv → X an
0,v

which fits into the commutative diagram (2-1), and denote by HaarBCv
the Haar measure on BCv normalized

to have total mass 1.

Theorem 3.11. For i = 0, . . . , n− 1, let Di,v be a semipositive v-adic toric metrized divisor on X6 , 9i

the virtual support function associated to Di and ψi,v the metric function of Di,v. Then, the positive
measure

c1(D0,v)∧ · · · ∧ c1(Dn−1,v)∧ δX6

is zero outside X an
0,v and

c1(D0,v)∧ · · · ∧ c1(Dn−1,v)∧ δX6 |X an
0,v
= (ιv)∗(MMM(ψ0,v, . . . , ψn−1,v)×HaarBCv

).

In particular,

(tropv)∗(c1(D0,v)∧ · · · ∧ c1(Dn−1,v)∧ δX6 |X an
0,v
)=MMM(ψ0,v, . . . , ψn−1,v)

as measures on NR.
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Proof. The first statement follows from [Burgos Gil et al. 2014, Theorem 1.4.10(1)] and [Gubler and
Hertel 2017, Corollary 1.4.5]. The expression for the measure in the archimedean and the discrete
nonarchimedean case is obtained from [Burgos Gil et al. 2014, Theorem 4.8.11] and multilinearity; the
general nonarchimedean case is deduced from [Gubler and Hertel 2017, Theorem 2.5.10]. The last
assertion is an easy consequence of the commutativity of the diagram (2-1). �

Moving to the global case, a (semipositive) toric metric on a toric divisor D is a choice, for each place
v ∈M, of a (semipositive) v-adic toric metric on the line bundle O(D). The toric divisor D together with
a (semipositive) toric metric is called a (semipositive) toric metrized divisor and it is denoted by D. From
the point of view of convex geometry, the semipositive toric metrized divisor D is completely described
by the collection (ψv)v∈M of its metric functions or, equivalently, by the collection (ϑv)v∈M of its roof
functions.

A notion of well-behaving toric metrics was defined in [Burgos Gil et al. 2014, Definition 4.9.1].

Definition 3.12. A toric metric (‖ · ‖v)v∈M on a toric divisor is said to be adelic if for all but finitely
many v ∈M the v-adic toric metric ‖ · ‖v is the canonical one, in the sense of Definition 3.10.

In convex terms, a toric metric on the toric divisor D associated to the virtual support function 9 is
adelic if and only if the family (ψv)v of its metric functions satisfies ψv = 9 for all but finitely many
v ∈M.

It follows from [Burgos Gil et al. 2014, Theorem 5.2.4] that any toric subvariety of X6 is integrable
with respect to the choice of adelic semipositive toric metrized divisors. In particular, one can compute
the global height of the n-dimensional cycle X6 with respect to such choices.

Theorem 3.13. Let D0, . . . , Dn be toric divisors over X6 , equipped with adelic semipositive toric metrics.
Then

hD0,...,Dn
(X6)=

∑
v∈M

nv MIM(ϑ0,v, . . . , ϑn,v),

where ϑi,v is the roof function of Di,v for every i = 0, . . . , n and v ∈M.

Proof. This is [Burgos Gil et al. 2014, Theorem 5.2.5]. �

4. Divisors of rational functions

The present section focuses on the combinatorial description of the Weil divisor on a toric variety of the
rational function coming from a Laurent polynomial. This result will be used in the proof of the main
theorems in the next section.

To fix notation, let X6 be a proper smooth toric variety of dimension n over a field K , M the character
lattice of its torus T and NR the associated dual vector space. The toric variety X6 has a dense open
orbit X0 isomorphic to T and hence the function field of X6 coincides with K (M). In particular, any
Laurent polynomial f =

∑
cmχ

m gives rise to a rational function on X6 , which is regular and coincides
with f on X0. To avoid confusion, one will denote by f̃ such a rational function.
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Recall from [Cox et al. 2011, Theorem 3.1.19(a)] that the toric variety X6 is smooth if and only if
each cone of 6 is a smooth cone, that is, it is generated by a part of a basis of the lattice N. For each
cone τ in 6 of dimension 1, denote by vτ its minimal nonzero integral vector, which generates τ ∩ N as
a monoid. If σ is a smooth cone of dimension n in NR, the collection (vτ )τ , with τ ranging in the set of
1-dimensional faces of σ , is a basis of N and hence gives a dual basis (v∨τ )τ of the lattice M.

Lemma 4.1. Let σ be a strongly convex polyhedral rational cone in NR. For every face τ of σ of
dimension 1, the orbit closure V (τ ) in the affine toric variety Xσ is the subvariety corresponding to the
prime ideal

p= (χm
: m ∈ σ∨ ∩M,m /∈ τ⊥)

of O(Xσ )= K [σ∨ ∩M]. Moreover, if σ is smooth and of maximal dimension in NR, then p is principal
and generated by χv

∨
τ .

Proof. Recall for example from [Fulton 1993, §3.1] that the orbit closure V (τ ) is the toric variety
Spec K [σ∨∩τ⊥∩M] and can be embedded in Xσ = Spec K [σ∨∩M] via the surjection of rings sending
χm to itself if m ∈ τ⊥, and to 0 otherwise. Then V (τ ) is seen as the subvariety of Xσ corresponding to
the kernel of such homomorphism, that is,

p=
⊕

m∈σ∨∩M
m /∈τ⊥

Kχm
= (χm

: m ∈ σ∨ ∩M,m /∈ τ⊥),

proving the first statement.
Suppose now that σ is smooth and of dimension n in NR; denote by v1, v2, . . . , vn the basis of N

given by the minimal integral vectors of the rays of σ , with the assumption that v1 = vτ . By definition,

σ = R≥0v1+ · · ·+R≥0vn.

As a result, denoting by (v∨i )i=1,...,n the basis of M dual to (vi )i=1,...,n , one has that

〈v∨i , u〉 = λi ≥ 0

for every i ∈ {1, . . . , n} and for every u =
∑

i λivi ∈ σ . In particular, v∨τ ∈ σ
∨. It is easy to check that v∨τ

is integrally valued on each element of N and hence it belongs to M. It follows then from 〈v∨τ , vτ 〉 = 1
that

(χv
∨
τ )⊆ p.

For the reverse inclusion, consider m ∈ σ∨∩M with m /∈ τ⊥. By assumption, 〈m, vτ 〉 ∈Z and 〈m, vτ 〉 ≥ 0;
moreover, since m /∈ τ⊥, one has 〈m, vτ 〉 ≥ 1. For each u =

∑
i λivi ∈ σ one has

〈m− v∨τ , u〉 = λ1〈m− v∨τ , vτ 〉+
∑
i≥2

λi 〈m, vi 〉 ≥ λ1(〈m, vτ 〉− 1)≥ 0.

As a result, m− v∨τ ∈ σ
∨
∩M and hence χm

= χv
∨
τ ·χm−v∨τ ∈ (χv

∨
τ ), completing the proof. �
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Remark 4.2. The last statement of the previous lemma is not true for a general strongly convex polyhedral
rational cone σ of maximal dimension in N. For example, if σ has more than n faces of dimension 1, the
divisor class group of Xσ , which is generated by the classes of the orbit closures associated to the rays,
turns out to be nontrivial, as a consequence of [Fulton 1993, Proposition on p. 63].

For a nonzero Laurent polynomial f ∈ K [M], the subset V ( f ) of zeros of f in X0 is a closed
subscheme of the dense open orbit. Its closure in X6 is a closed subscheme of X6 , denoted by V ( f ).
Taking into account multiplicities, one can consider the associated Weil divisor [V ( f )]. It is the zero
cycle when f is a monomial.

Theorem 4.3. Let f be a nonzero Laurent polynomial and f̃ the rational function on X6 arising from f.
Then,

div( f̃ )= [V ( f )] +
∑
τ∈6(1)

9NP( f )(vτ )V (τ ),

where9NP( f ) denotes the support function of the Newton polytope of f . In particular, [V ( f )] is rationally
equivalent to the cycle −

∑
τ∈6(1) 9NP( f )(vτ )V (τ ) on X6 .

Proof. By [Fulton 1993, formula on p. 55], the irreducible components of X6 \ X0 are exactly the orbit
closures V (τ ), with τ ranging in the set of 1-dimensional cones of 6. Since moreover the restriction of
f̃ to X0 is the regular function f , it follows from the classical theory of divisors that

div( f̃ )= [V ( f )] +
∑
τ

ντ ( f̃ )V (τ ),

where ντ ( f̃ ) ∈ Z is the order of vanishing of f̃ along V (τ ). The statement of the theorem then follows
from the fact that, for every τ ∈6(1), such an order equals 9NP( f )(vτ ).

This claim can be proved locally; fix a ray τ ∈6(1) and let σ be any maximal-dimensional cone of 6
containing τ . The fan being complete and consisting of smooth cones, such a σ exists and the minimal
integral vectors v1, . . . , vn of its rays are a basis of N. Assume moreover that v1 = vτ and, for simplicity,
denote by R := K [σ∨ ∩M] the ring of regular functions over Xσ . The order of vanishing of f̃ along
V (τ ) is computed as the valuation of f̃ determined by the valuation ring Rp, the localization of R at the
prime ideal p corresponding to the subvariety V (τ ) in Xσ . By Lemma 4.1, since the cone σ is smooth
and maximal-dimensional, one has that p= (χv

∨
τ ). The maximal ideal pRp of Rp is hence the principal

ideal generated by χv
∨
τ .

Suppose first that f̃ =
∑

m cmχ
m lies in R, that is, every m appearing in f̃ belongs to σ∨ ∩M. By

definition of the valuation in Rp,

ντ ( f̃ )=max{l ∈ N : f̃ ∈ (pRp)
l
} =max {l ∈ N : f̃ ∈ (χ lv∨τ )}

=max {l ∈ N : χm−lv∨τ ∈ Rp for all m with cm 6= 0}.

The condition χm−lv∨τ ∈ Rp is equivalent to the fact that 〈m, vτ 〉 ≥ l. Indeed, if the first is true, then

〈m, vτ 〉− l = 〈m− lv∨τ , vτ 〉 ≥ 0.
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Conversely, for each u =
∑

i λivi ∈ σ one has

〈m− lv∨τ , u〉 = λ1(〈m, vτ 〉− l)+
∑
i≥2

λi 〈m, vi 〉 ≥ 0,

and so m− lv∨τ ∈ σ
∨
∩M. As a consequence,

ντ ( f̃ )=max{l ∈ N : 〈m, vτ 〉 ≥ l for all m with cm 6= 0}

=min{〈m, vτ 〉 : m with cm 6= 0} =9NP( f )(vτ ).

For a general f̃ =
∑

m cmχ
m , the fact that σ∨ has dimension n in MR (σ is indeed strongly convex)

ensures that there exists a big enough vector m0 ∈ σ
∨
∩M for which m+m0 ∈ σ

∨
∩M for each m such

that cm 6= 0. Hence

f̃ =
∑

m cmχ
m+m0

χm0
,

with both the numerator and the denominator belonging to R. Applying the result for such elements one
deduces

ντ ( f̃ )= ντ

(∑
m

cmχ
m+m0

)
− ντ (χ

m0)=9NP( f )+m0(vτ )−〈m0, vτ 〉 =9NP( f )(vτ ),

concluding the proof. �

5. Local and global heights of hypersurfaces

Fix for the whole section an adelic field (K , (| · |v, nv)v∈M) satisfying the product formula. Let X6 be a
proper toric variety over K , of dimension n, with torus T = Spec K [M] and dense open orbit X0. For
an effective cycle Z on X6 of pure codimension 1, whose prime components intersect X0, we present a
series of results concerning its integrability and its local and global height with respect to suitable choices
of metrized divisors on X6 .

5A. Degrees. With the notation and assumptions given above, the effective cycle Z can be written as

Z =
r∑

i=1

`i Yi

for prime divisors Y1, . . . , Yr intersecting X0. For every i = 1, . . . , r , the closed irreducible subvariety of
X0 obtained as the intersection between Yi and X0 is associated to a prime ideal of height 1 in K [M],
which is principal since K [M] is a unique factorization domain; denote by fi an irreducible Laurent
polynomial generating such an ideal. The Laurent polynomial f = f `1

1 · · · · · f `r
r is called a defining

polynomial for the cycle Z and is uniquely defined up to multiplication by an invertible element of K [M],
which means by a monomial. Moreover,

[V ( f )] = Z; (5-1)
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that is, the cycle associated to the closure of the subscheme V ( f ) in X6 agrees with Z . Let

9 f :=9NP( f )

be the support function, in the sense of Example 1.1, of the Newton polytope NP( f ) of f ; it is a piecewise
linear function on NR. It is not necessarily a virtual support function on the fan 6, but it can always be
made such after a suitable refinement of the fan.

Lemma 5.1. For any proper toric variety X6 there exist a smooth projective toric variety X6′ with fan 6′

in NR and a proper toric morphism π : X6′→ X6 satisfying:

(1) π restricts to the identity on the dense open orbit of X6′ and X6 .

(2) 9 f is a virtual support function on 6′.

Proof. One can always refine the complete fan 6 to a fan 6′ in such a way that 9 f is a virtual support
function on6′. After possibly refining again, one can suppose that6′ is the fan of a projective toric variety
(because of the toric Chow lemma, see [Cox et al. 2011, Theorem 6.1.18]) and that each of its cones is
generated by a part of a basis of N ; see [Fulton 1993, §2.6]. The associated toric variety X6′ is smooth,
projective and it satisfies (2). Finally, since 6′ is a refinement of 6, the toric morphism π given by [Cox
et al. 2011, Theorem 3.3.4] is proper and restricts to the identity on the dense open orbit of X6′ . �

The previous lemma, together with the fact that intersection-theoretical properties are stable under
birational transformations, allows one to compute the degree of a cycle of codimension 1 in a toric variety
with respect to a family of toric divisors generated by global sections.

Proposition 5.2. Let D91, . . . , D9n−1 be toric divisors on X6 generated by global sections and Z an
effective cycle on X6 of pure codimension 1 and prime components intersecting X0, with defining
polynomial f . Then

degD91 ,...,D9n−1
(Z)=MVM(191, . . . ,19n−1,NP( f )),

where MVM denotes the mixed volume function associated to the measure volM (see Remark 1.2) and
19i the polytope associated to the toric divisor D9i for each i = 1, . . . , n− 1.

Proof. Consider the smooth projective toric variety X6′ and the proper toric morphism π : X6′→ X6
given by Lemma 5.1. Since the support function 9 f is a virtual support function on 6′, one can consider
the corresponding toric divisor D f on X6′ and the associated distinguished rational section s f of O(D f ).
The product f̃ s f is a rational section of O(D f ), with associated Weil divisor satisfying

π∗ div( f̃ s f )= π∗(div( f̃ )+ div(s f ))= Z

by Theorem 4.3, (3-2), (5-1) and the definition of π . The projection formula in [Fulton 1998, Proposi-
tion 2.3(c)] and Bézout’s theorem yield

degD91 ,...,D9n−1
(Z)= degπ∗D91 ,...,π

∗D9n−1,D f
(X6′).
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Since the function 9 f is concave, D f is generated by global sections. Moreover, the virtual support
function associated to the toric divisor π∗D9i on X6′ agrees with 9i for every i = 1, . . . , n− 1. The
combinatorial description in [Oda 1988, Proposition 2.10] of the degree of a toric variety with respect to
toric divisor generated by global sections then concludes the proof. �

Remark 5.3. By [Fulton 1993, formula on page 55], the irreducible components of X6 \ X0 are the orbit
closures V (τ ), with τ ranging in the set of 1-dimensional cones of 6. It follows that if Z is a prime
divisor of X6 not intersecting X0, it coincides with V (τ ) for some τ ∈6(1). In such a case, the degree of
Z with respect to a collection D91, . . . , D9n−1 of toric divisors on X6 generated by global sections is
given by

degD91 ,...,D9n−1
(V (τ ))=MVM(vτ )(1

vτ
91
, . . . ,1

vτ
9n−1

),

where vτ is the minimal nonzero integral vector of τ ; see [Burgos Gil et al. 2014, formulae (3.4.1)
and (3.4.4)].

Remark 5.4. The reduction to the case of a smooth projective toric variety employed in the proof of
Proposition 5.2 equally works when computing the local height of the cycle Z with respect to a family of
v-adic semipositive toric metrized divisors D0,v, . . . , Dn−1,v . Indeed, let f be a defining polynomial for Z ,
and X6′ and π be as in the statement of Lemma 5.1. For every family of rational sections s0, . . . , sn−1

of O(D0), . . . ,O(Dn−1) respectively for which the following local heights are well-defined, the local
arithmetic projection formula in [Burgos Gil et al. 2014, Theorem 1.4.17(2)] asserts that

hD0,v,...,Dn−1,v
(Z; s0, . . . , sn−1)= hπ∗D0,v,...,π∗Dn−1,v

(Z ′;π∗s0, . . . , π
∗sn−1),

where Z ′ is the cycle in X6′ associated to the subscheme obtained as the closure of V ( f ) and has hence
f as a defining polynomial. Because of [Burgos Gil et al. 2014, Proposition 4.3.19], the pull-back of
Di,v via π is a v-adic semipositive toric metrized divisor on X6′ whose metric function coincides with
the one of Di,v for every i = 0, . . . , n− 1 and v ∈M. It follows that any combinatorial formula for the
local height of Z ′ in X6′ with respect to π∗D0,v, . . . , π

∗Dn−1,v only involving the defining polynomial
of Z and the metric functions of the metrized divisors equally holds for the local height of Z in X6
with respect to D0,v, . . . , Dn−1,v. Similarly, the reduction step can be adopted when dealing with the
integrability and the global height of Z , because of Proposition 3.8.

5B. Local heights. Let f be a defining polynomial for the cycle Z and, as in the previous subsection,
denote by 9 f the support function of its Newton polytope. Under the assumption that 9 f is a virtual
support function on the fan of X6 , it determines a toric divisor D f on X6 together with a distinguished
rational section s f of O(D f ), as in Section 3C.

Definition 5.5. In the notation above, and for a place v ∈M, the v-adic Ronkin metric on D f is the v-adic
semipositive toric metric on O(D f )

an
v corresponding to the v-adic Ronkin function ρ f,v via Theorem 3.9.

The previous definition makes sense since, for every v ∈M, the v-adic Ronkin function of f is concave
on NR and has bounded difference from 9 f because of Proposition 2.10. If not otherwise specified, D f,v
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will denote the divisor D f equipped with the v-adic Ronkin metric ‖ · ‖ f,v defined above. By definition,

log ‖s f ‖ f,v = ρ f,v ◦ tropv (5-2)

on X an
0,v. To lighten the notation, we will drop the subscript v whenever the choice of the place is clear

from the context.

Proposition 5.6. Let f and g be two nonzero Laurent polynomials and assume that9 f and9g are virtual
support functions on the fan of X6 . Then,

D f + Dg = D f ·g.

Proof. The equality NP( f · g) = NP( f )+NP(g) implies that 9 f ·g = 9 f +9g. In particular, 9 f ·g is
a virtual support function on the fan 6 and then defines a toric divisor D f ·g on X6 which satisfies
D f ·g = D f + Dg because of [Fulton 1993, §3.4]. The statement follows now from [Burgos Gil et al.
2014, Proposition 4.3.14(1)] and Proposition 2.9. �

The key property of the Ronkin metric is given in the following proposition.

Proposition 5.7. Let X6 be a smooth projective toric variety and Z an effective cycle on X6 of pure
codimension 1 and prime components intersecting X0. Let f be a defining polynomial for Z and f̃ the
associated rational function on X6 . Assume moreover that 9 f is a virtual support function on the fan 6.
For a fixed place v of K , let D0, . . . , Dn−1 be toric divisors on X6 , equipped with v-adic semipositive
toric metrics. Then

hD0,...,Dn−1
(Z; s0, . . . , sn−1)= hD0,...,Dn−1,D f

(X6; s0, . . . , sn−1, f̃ s f ) (5-3)

for every choice of rational sections s0, . . . , sn−1 of O(D0), . . . ,O(Dn−1) respectively with div(s0), . . . ,
div(sn−1), Z intersecting properly.

Proof. The product f̃ s f is a rational section of O(D f ) on X6 with associated Weil divisor

div( f̃ s f )= div( f̃ )+ div(s f )= Z

by Theorem 4.3, (3-2) and (5-1). Hence, the sections s0, . . . , sn−1, f̃ s f meet X6 properly and the
right-hand side term in (5-3) is well-defined.

Definition 3.6 states that

hD0,...,Dn−1
(Z; s0, . . . , sn−1)

= hD0,...,Dn−1,D f
(X6; s0, . . . , sn−1, f̃ s f )+

∫
X an
6

log ‖ f̃ s f ‖ f c1(D0)∧ · · · ∧ c1(Dn−1),

and thus the proposition follows from the vanishing of the integral on the right-hand side. Indeed, thanks
to Theorem 3.11, such an integral is supported on the analytification of the dense open orbit of X6 , where
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the rational function f̃ coincides with the regular function f . Together with the definition of the Ronkin
metric in (5-2), this yields∫

X an
6

log ‖ f̃ s f ‖ f c1(D0)∧ · · · ∧ c1(Dn−1)

=

∫
X an

0

log | f | c1(D0)∧ · · · ∧ c1(Dn−1)+

∫
X an

0

(ρ f,v ◦ tropv) c1(D0)∧ · · · ∧ c1(Dn−1).

For every i = 0, . . . , n − 1, denote by ψi the metric function of Di . The tropicalization map being
continuous, the change of variables formula and Theorem 3.11 imply on the one hand that∫

X an
0

(ρ f,v ◦ tropv) c1(D0)∧ · · · ∧ c1(Dn−1)=

∫
NR

ρ f,v d MMM(ψ0, . . . , ψn−1).

On the other hand, Theorem 3.11, together with the change of variables formula and Fubini’s theorem,
gives∫

X an
0

log | f | c1(D0)∧ · · · ∧ c1(Dn−1)=

∫
NR

(∫
BCv

(log | f | ◦ ιv) d HaarBCv

)
d MMM(ψ0, . . . , ψn−1).

The definition of the maps ιv and ρ f,v ensures that the inner integral coincides with the opposite of the
v-adic Ronkin function of f , concluding the proof. �

5C. Toric local heights. Recall from Definition 3.10 that any toric divisor generated by global sections
admits a distinguished v-adic semipositive toric metric, the canonical metric. This allows one to define a
local height with respect to toric divisors that is independent of the choice of the sections. Such a notion
was introduced in [Burgos Gil et al. 2014, §5.1] as a key step in the proof of the formula for the global
height of a toric variety.

Definition 5.8. For a place v of K , let D0, . . . , Dd be toric divisors on X6 , endowed with v-adic
semipositive toric metrics. Denote by Dcan

0 , . . . , Dcan
d the same divisors equipped with their v-adic

canonical metric. Let Y be an irreducible d-dimensional subvariety of X6 and ϕ : Y ′→ Y a birational
morphism, with Y ′ projective. The v-adic toric local height of Y with respect to D0, . . . , Dd is defined as

htor
D0,...,Dd

(Y ) := hϕ∗D0,...,ϕ∗Dd
(Y ′; s0, . . . , sd)− hϕ∗Dcan

0 ,...,ϕ∗Dcan
d
(Y ′; s0, . . . , sd),

where si is a rational section of ϕ∗O(Di ) for every i = 0, . . . , d and s0, . . . , sd meet Y ′ properly. The
definition extends by linearity to any cycle of dimension d .

The toric local height of a cycle neither depends on the choice of the sections s0, . . . , sd , nor on the
birational model Y ′ of Y because of [Burgos Gil et al. 2014, Theorem 1.4.17(2) and (3)]. Moreover, the
definition is nonempty: Chow’s lemma provides Y with a projective birational model, while the moving
lemma ensures the existence of rational sections meeting Y ′ properly.

We prove here a formula for the toric local height of an effective cycle Z on X6 of pure codimension 1
and prime components intersecting X0.
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Theorem 5.9. Let X6 be a proper toric variety, Z an effective cycle on X6 of pure codimension 1
and prime components intersecting X0. For a place v of K , let D0, . . . , Dn−1 be toric divisors on X6 ,
equipped with v-adic semipositive toric metrics. Then

htor
D0,...,Dn−1

(Z)=MIM(ϑ0, . . . , ϑn−1, ρ
∨

f,v)+ degD0,...,Dn−1
(X6) · ρ f,v(0),

where f is a defining polynomial for Z and ϑi is the roof function of Di for i = 0, . . . , n− 1.

Proof. Because of Remark 5.4, one can assume that X6 is a smooth projective toric variety on whose
fan 9 f is a virtual support function. Thanks to the moving lemma, one can choose rational sections
s0, . . . , sn−1 of O(D0), . . . ,O(Dn−1) respectively such that div(s0), . . . , div(sn−1), Z intersect properly.
Proposition 5.7 implies then that

htor
D0,...,Dn−1

(Z)= hD0,...,Dn−1,D f
(X6; s0, . . . , sn−1, f̃ s f )− hDcan

0 ,...,Dcan
n−1,D f

(X6; s0, . . . , sn−1, f̃ s f ).

By adding and subtracting the quantity

hDcan
0 ,...,Dcan

n−1,D
can
f
(X6; s0, . . . , sn−1, f̃ s f )

on the right-hand side, one obtains that

htor
D0,...,Dn−1

(Z)= htor
D0,...,Dn−1,D f

(X6)− htor
Dcan

0 ,...,Dcan
n−1,D f

(X6).

Denote by9i the virtual support function on6 associated to the toric divisor Di for every i = 0, . . . , n−1.
Thanks to [Burgos Gil et al. 2014, Corollary 5.1.9], the previous equality yields

htor
D0,...,Dn−1

(Z)=MIM(ϑ0, . . . , ϑn−1, ρ
∨

f,v)−MIM(9
∨

0 , . . . , 9
∨

n−1, ρ
∨

f,v).

Since they admit by hypothesis a semipositive toric metric, the toric divisors D0, . . . , Dn−1 are generated
by global sections. For every i = 0, . . . , n − 1, the function 9i is hence concave and conic and so it
is the support function of the polytope 1i := stab(9i ) ⊆ MR. The statement of the theorem follows
from a combination of Example 1.1, Corollary 1.9 and the combinatorial expression for the degree of a
toric variety with respect to toric divisors generated by their global sections; see for example [Oda 1988,
Proposition 2.10]. �

5D. Global heights. To state the result concerning the global case, recall that for a defining polynomial f
for Z , the support function of its Newton polytope is denoted by 9 f ; whenever it is linear on each cone
of a complete fan 6, it defines a toric divisor D f on the toric variety X6 , together with a distinguished
rational section s f of O(D f ).

Definition 5.10. In the above assumptions, the Ronkin metric on D f is the choice, for every place v ∈M,
of the v-adic Ronkin metric on D f defined in Definition 5.5.

Unless otherwise stated, D f will denote the toric divisor D f equipped with its Ronkin metric. By
definition, it is a semipositive toric metrized divisor.
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Lemma 5.11. The Ronkin metric on D f is adelic.

Proof. For a nonarchimedean place v ∈M, the function ρ f,v coincides with the tropicalization of the
Laurent polynomial f , as claimed in Remark 2.8. The fact that f has finitely many nonzero coefficients
and the second axiom in Definition 3.1 imply that ρ f,v =9 f for all but finitely many nonarchimedean
places. The statement follows then from Lemma 3.3. �

The definition of such a toric metrized divisor and the study of the local height of Z in Section 5B
allow one to answer the question of the integrability of Z and to give a formula for its global height,
implying Theorem 1 in the Introduction.

Theorem 5.12. Let X6 be a proper toric variety and Z an effective cycle on X6 of pure codimension 1
and prime components intersecting X0. Let D0, . . . , Dn−1 be toric divisors on X6 , equipped with adelic
semipositive toric metrics. Then, Z is integrable with respect to D0, . . . , Dn−1 and its global height is
given by

hD0,...,Dn−1
(Z)=

∑
v∈M

nv MIM(ϑ0,v, . . . , ϑn−1,v, ρ
∨

f,v),

where f is a defining polynomial for Z and ϑi,v is the roof function of Di,v for every i = 0, . . . , n− 1 and
v ∈M.

Proof. Because of Remark 5.4, one can assume that X6 is a smooth projective toric variety on whose
fan 9 f is a virtual support function. Let hence s0, . . . , sn−1 be rational sections of O(D0), . . . ,O(Dn−1)

respectively such that div(s0), . . . , div(sn−1), Z intersect properly. Because of Proposition 5.7, the v-adic
local height of Z with respect to the above choice of sections is given by

hD0,v,...,Dn−1,v
(Z; s0, . . . , sn−1)= hD0,v,...,Dn−1,v,D f,v

(X6; s0, . . . , sn−1, f̃ s f ). (5-4)

Because of Lemma 5.11, each member of the family D0, . . . , Dn−1, D f is an adelic semipositive toric
metrized divisor on X6 . As a consequence of the first assertion in [Burgos Gil et al. 2014, Proposi-
tion 5.2.4], X6 is integrable with respect to such a choice of metrized divisors and hence [loc. cit.,
Proposition 1.5.8(1)] allows one to conclude that

hD0,v,...,Dn−1,v,D f,v
(X6; s0, . . . , sn−1, f̃ s f )= 0

for all but finitely many places v ∈M. Comparing with (5-4), one deduces that Z is integrable with
respect to D0, . . . , Dn−1.

From the same equality, the global height of Z is seen to satisfy

hD0,...,Dn−1
(Z)= hD0,...,Dn−1,D f

(X6).

The formula for the global height of Z follows then from Theorem 3.13. �

Remark 5.13. As in Remark 5.3, if Z is an irreducible hypersurface on X6 not intersecting X0 it
coincides with V (τ ) for a 1-dimensional cone τ of the fan 6. In such a case, Z is integrable with respect
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to a family of adelic semipositive toric metrized divisors D0, . . . , Dn−1 on X6 and its global height is
given by

hD0,...,Dn−1
(V (τ ))=

∑
v∈M

nv MIM(vτ )(ϑ0,v|1vτ0
, . . . , ϑn−1,v|1vτn−1

);

see [Burgos Gil et al. 2014, Propositions 5.1.11 and 5.2.4]. In the previous formula, 1i is the polytope
associated to the divisor Di and ϑi,v is the roof function of Di,v for every i = 0, . . . , n− 1 and v ∈M,
while vτ is the minimal nonzero integral vector of τ .

Remark 5.14. Local and global heights of cycles are symmetric and multilinear with respect to sums
of semipositive metrized divisors, provided that all terms are defined. The formulas obtained for
1-codimensional cycles in toric varieties are consistent with these properties, the sum of semipositive
toric metrized divisors corresponding to the sup-convolution of the associated roof functions, as shown in
[Burgos Gil et al. 2014, Proposition 4.3.14(1)].

6. Examples

For a fixed adelic field (K , (| · |v, nv)v∈M) satisfying the product formula and a proper toric variety X6
over K , of dimension n, with torus T= Spec K [M] and dense open orbit X0, we apply in this section the
formula in Theorem 5.12 to four particular cases. In the first one, we focus on specific hypersurfaces
of X6 , while in the following three we make relevant choices of the metrized divisors.

6A. Binomial hypersurfaces. For a primitive vector m in M one can consider the Laurent binomial
f = χm

− 1; it is irreducible in K [M], as can be verified by considering its Newton polytope. Hence the
closure Z in X6 of the subvariety V ( f ) of the torus Spec K [M] is an irreducible hypersurface of X6
with defining polynomial f .

Let D0, . . . , Dn−1 be toric divisors on X6 , equipped with adelic semipositive toric metrics, with ϑi,v

the roof function of Di,v for every i = 0, . . . , n− 1 and v ∈M. By Example 2.12, ρ f,v coincides for
every v ∈M with the support function of the segment 0m in MR. The formula in Theorem 5.12 implies
then that Z is integrable with respect to D0, . . . , Dn−1 and that its global height is given by

hD0,...,Dn−1
(Z)=

∑
v∈M

nv MIM(ϑ0,v, . . . , ϑn−1,v, ι0m),

because of Example 1.1. Considering, as at the end of Section 1C, the quotient lattice P := M/Zm and
the associated projection π : M→ P, Proposition 1.12 allows one to deduce

hD0,...,Dn−1
(Z)=

∑
v∈M

nv MIP(π∗ϑ0,v, . . . , π∗ϑn−1,v), (6-1)

with π∗ϑi,v denoting the direct image of ϑi,v by π for every i = 0, . . . , n− 1 and v ∈M; see (1-4).

Remark 6.1. Let Q be the dual lattice of P = M/Zm. The projection π : M→ P induces an injective
dual map Q → N, with image m⊥ ∩ N. By identifying Q with such an image, which is a saturated
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sublattice of N, one can consider the restriction of the fan 6 to QR; its corresponding toric variety X6Q is
proper and has torus Spec K [P]. It also comes with a toric morphism ϕ : X6Q → X6 , whose restriction
to the dense open orbit coincides with the closed immersion of split tori Spec K [P] → Spec K [M] given
by the surjection π : M→ P; see [Burgos Gil et al. 2014, pp. 81–83]. Finally, the push-forward of the
cycle X6Q by ϕ is the cycle Z associated to the hypersurface defined by χm

− 1. Indeed, the image of ϕ
coincides by properness with the closure in X6 of the image of Spec K [P] → Spec K [M], which is an
irreducible (n−1)-dimensional subscheme of Spec K [M] contained in V (χm

− 1) as χπ(m)− 1= 0.
Hence, equality (6-1) can also be obtained from Theorem 3.13, the arithmetic projection formula and

the fact that π∗ϑi,v is the roof function of the pull-back of Di,v via π for every i = 0, . . . , n − 1 and
v ∈M, because of [loc. cit., Propositions 4.3.19 and 2.3.8(3)].

6B. The canonical height. A toric divisor D on X6 generated by global sections admits by Definition 3.10
a distinguished semipositive toric metric at any place. The metrized divisor obtained by the choice of
such a family of v-adic canonical metrics is denoted by Dcan; it is an adelic semipositive toric metrized
divisor.

For a cycle Z of dimension d in X6 , the canonical global height of Z with respect to a family
D0, . . . , Dd of toric divisors on X6 generated by global sections is defined to be its global height
with respect to Dcan

0 , . . . , Dcan
d and it is also denoted by hcan

D0,...,Dd
(Z). The machinery developed in the

previous sections allows one to express the canonical global height of an effective cycle on X6 of pure
codimension 1 via convex geometry.

Proposition 6.2. Let Z be an effective cycle on X6 of pure codimension 1 and prime components
intersecting X0 and D0, . . . , Dn−1 a family of toric divisors on X6 generated by global sections. The
canonical global height of Z with respect to D0, . . . , Dn−1 is given by

hcan
D0,...,Dn−1

(Z)=− degD0,...,Dn−1
(X6) ·

∑
v∈M

nvρ f,v(0)

for any choice of a defining polynomial f for Z.

Proof. Denoting by 9i , for any i = 0, . . . , n− 1, the function associated to Di , the property of being
globally generated implies that 9i is the support function of the lattice polytope 1i := stab(9i )⊆ MR.
The roof function of Dcan

i,v is hence ι1i for every i = 0, . . . , n − 1 and for every v ∈ M, because of
Example 1.1. It follows from Theorem 5.12 and Corollary 1.9 that

hcan
D0,...,Dn−1

(Z)=−MVM(10, . . . ,1n−1) ·
∑
v∈M

nvρ f,v(0),

with f any defining polynomial for Z . To conclude, recall that the degree of X6 with respect to
D0, . . . , Dn−1 is given by the mixed volume of the associated polytopes, as proved in [Oda 1988,
Proposition 2.10]. �

The case of the base field Q with the adelic structure described in Example 3.4 is particularly interesting
for arithmetic purposes. For a Laurent polynomial f in n variables and complex coefficients, one defines
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its (logarithmic) Mahler measure to be

m( f ) :=
1

(2π)n

∫
θ1,...,θn∈[0,2π ]

log | f (eiθ1, . . . , eiθn )| dθ1 · · · dθn.

Such a quantity is notoriously difficult to compute and is sometimes related to special values of L-functions;
see [Smyth 1981; Deninger 1997; Boyd 1998; Lalín 2008].

Maillot [2000, Proposition 7.2.1] expressed the canonical height of a hypersurface in a toric variety
over Q in terms of the Mahler measure of the associated section. While its proof relies on the study of
the arithmetic Chow ring of the ambient toric variety, we here deduce his result from Proposition 6.2.

Corollary 6.3 (Maillot). In the hypotheses and notation of Proposition 6.2, assume moreover that the
base adelic field is Q with its usual adelic structure. Let f be a defining polynomial for Z having as
coefficients integers with greatest common divisor 1. Then,

hcan
D0,...,Dn−1

(Z)= degD0,...,Dn−1
(X6) ·m( f ).

Proof. Let f be a defining polynomial for Z satisfying the assumptions. Because of Remark 2.8, for
every nonarchimedean place v of Q

ρ f,v(0)= f trop(0)= 0.

At the unique archimedean place v of Q one has by definition that ρ f,v(0) = −m( f ). The statement
follows then directly from Proposition 6.2. �

6C. The ρ-height. The strategy adopted in the previous section to prove the main results of the paper
suggests the introduction of a distinguished height function. Let Z be an effective cycle on X6 of pure
codimension 1 and prime components intersecting X0 and assume that the support function of the Newton
polytope of a defining polynomial for Z is a virtual support function on the fan 6. By Lemma 5.1,
this is always the case up to a birational toric transformation. In this setting, the choice of a defining
polynomial f for Z determines a toric divisor D f on X6 and a distinguished toric metric on it, the Ronkin
metric, as introduced in Definition 5.10. The so-obtained metrized divisor, which is denoted by D f , is an
adelic semipositive toric metrized divisor by Lemma 5.11.

Definition 6.4. In the above hypotheses and notation, the ρ-height of Z , denoted by hρ(Z), is defined as
its global height with respect to D f , . . . , D f for a choice of a defining polynomial f for Z .

As shown below, the ρ-height of Z is independent of the choice of the defining polynomial f . Even if
it is not clear whether such a height has a significant geometrical interpretation or arithmetical application,
it is straightforward to give a combinatorial formula for it.

Proposition 6.5. In the above hypotheses and notation, the ρ-height of Z is given by

hρ(Z)= (n+ 1)!
∑
v∈M

nv

∫
NP( f )

ρ∨f,v d volM ,

where f is a defining polynomial for Z and NP( f ) is its Newton polytope.
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Proof. The statement follows trivially from Theorem 5.12, Proposition 2.10(3) and the properties of
mixed integrals. �

Remark 6.6. The equality in Proposition 6.5 shows that the ρ-height of Z does not depend on the choice
of a defining polynomial for it. Indeed, if f ′ is another such polynomial, it must satisfy f ′ = c ·χm

· f
for some nonzero monomial c ·χm

∈ K [M]. For every v ∈M, one has then that

ρ f ′,v =− log |c|v +m+ ρ f,v

by Proposition 2.9 and Example 2.11. The stated independence follows hence from the relation

ρ∨f ′,v = τmρ
∨

f,v + log |c|v

obtained using [Burgos Gil et al. 2014, Proposition 2.3.3] and from the product formula on K .

It is significant to stress that the formula in Proposition 6.5, though compact, is difficult to evaluate
because of the complexity of the archimedean Ronkin function.

6D. The Fubini–Study height. As a last example, consider the ambient toric variety X6 to be the n-
dimensional projective space over K . Denote by D∞ the toric divisor on Pn

K whose associated Weil
divisor is the hyperplane at infinity; the corresponding sheaf is the universal line bundle O(1) on Pn

K .
If not otherwise specified, the notation D∞ will refer to D∞ equipped with the Fubini–Study metric at
archimedean places, see [Burgos Gil et al. 2014, Example 1.1.2], and the canonical one at nonarchimedean
places, in the sense of Definition 3.10. It turns out that D∞ is an adelic semipositive toric metrized divisor.
Thanks to Theorem 5.12, any effective cycle Z on Pn

K of pure codimension 1 is then integrable with
respect to D∞, . . . , D∞ and the corresponding global height

hFS(Z) := hD∞,...,D∞(Z)

is called the Fubini–Study height of Z .

Remark 6.7. The Fubini–Study height defined here coincides with the one introduced in [Faltings 1991]
and studied in [Philippon 1995]. Examples of the computation of such height for projective hypersurfaces
can be found in [Cassaigne and Maillot 2000].

Specializing Theorem 5.12, one can write the Fubini–Study height of a projective hypersurface in
terms of convex geometry. To do so, denote by M∞ the collection of archimedean places of K , which is
a finite set by Lemma 3.3. After fixing an isomorphism M ' Zn, consider the standard simplex

1n
:= {(x1, . . . , xn) : x1+ · · ·+ xn ≤ 1, xi ≥ 0 for all i = 1, . . . , n}

in MR ' Rn and, agreeing that x0 := 1−
∑n

i=1 xi , set the function ϑFS :1
n
→ R to be

ϑFS(x) := −
1
2

n∑
i=0

xi log xi ,

which is defined on the boundary of 1n by continuity.
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Proposition 6.8. Let Z be an effective cycle on Pn
K of pure codimension 1 and prime components

intersecting X0. The Fubini–Study height of Z is given by

hFS(Z)=
∑
v∈M∞

nv MIM(ϑFS, . . . , ϑFS, ρ
∨

f,v)−
∑

v∈M\M∞

nvρ f,v(0),

where f is a defining polynomial for Z.

Proof. The roof functions of the metrized divisor D∞ are given by the function ϑFS at archimedean places,
as remarked in [Burgos Gil et al. 2014, Examples 2.4.3 and 4.3.9(2)] and by the indicator function of 1n

at nonarchimedean places, by [loc. cit., Example 4.3.9(1)] and Example 1.1. The statement follows then
from Theorem 5.12 and Corollary 1.9, together with the fact that MVM(1

n, . . . ,1n)= 1 because of the
conventions introduced in Section 1B and Remark 1.2. �

The nonarchimedean contributions to the Fubini–Study height are easily computable, since for every
Laurent polynomial f with set of coefficients 0( f ),

−ρ f,v(0)= log max
c∈0( f )

|c|v

if v ∈M \M∞. From this equality one easily obtains the following special case.

Corollary 6.9. Assume the base adelic field to be Q with its usual adelic structure. The Fubini–Study
height of an effective cycle Z on Pn

Q
of pure codimension 1 and prime components intersecting X0 is

given by
hFS(Z)=MIM(ϑFS, . . . , ϑFS, ρ

∨

f,∞),

where f is a defining polynomial for Z whose coefficients are integers with greatest common divisor 1.

Because of the presence of an archimedean Ronkin function, the formula in Corollary 6.9 appears
arduous to evaluate. It would anyway be interesting to use it to study arithmetical properties of projective
hypersurfaces or recover similar results to the ones obtained in [Cassaigne and Maillot 2000].
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