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Let f1, . . . , fn ∈Q[x] be polynomials of degree d > 1 such that no fi is conjugate to xd or to ±Cd(x),
where Cd(x) is the Chebyshev polynomial of degree d. We let ϕ be their coordinatewise action on An ,
i.e., ϕ : An

→ An is given by (x1, . . . , xn) 7→ ( f1(x1), . . . , fn(xn)). We prove a dynamical version of
the Pink–Zilber conjecture for subvarieties V of An with respect to the dynamical system (An, ϕ), if
min{dim(V ), codim(V )− 1} ≤ 1.

1. Introduction

1A. Notation. As always in dynamics, we write ϕm for the m-th compositional power of the self-map ϕ
for any m ∈ N0 (where N0 = N∪{0}); also, ϕ0 is the identity map. The orbit of some point α under ϕ is
denoted by Oϕ(α) and it consists of all ϕm(α) for m ∈ N0. For a subvariety Y ⊂ An under the action of
an endomorphism ϕ, we say that Y is periodic if there exists a positive integer m such that Y = ϕm(Y );
similarly, we say that Y is preperiodic under the action of ϕ if there exists m ∈ N0 such that ϕm(Y ) is
periodic.

For every d ≥ 2, the Chebyshev polynomial of degree d , denoted Cd(x), is the polynomial of degree d
satisfying the functional equation Cd

(
x + 1

x

)
= xd

+
1
xd . Following [Medvedev and Scanlon 2014], a

disintegrated polynomial is a polynomial of degree d ≥ 2 that is not linearly conjugate to xd or ±Cd(x).

1B. Our results. In [Ghioca and Nguyen 2016], a dynamical version of the bounded height conjecture
(see [Bombieri et al. 2007] for the formulation of this classical conjecture in the context of algebraic
tori) was proven for endomorphisms of An given by coordinatewise action of disintegrated polynomials.
The results of [Ghioca and Nguyen 2016] suggest the following variant of the Pink–Zilber conjecture
in a dynamical setting; see [Bombieri et al. 1999; Zilber 2002; Pink ≥ 2018] for the statement of this
conjecture in the classical setting of algebraic tori, or more generally, of semiabelian schemes.

Conjecture 1.1. Let f1, . . . , fn ∈Q[x] be disintegrated polynomials of degree d ≥ 2. We let ϕ be their
coordinatewise action on An , i.e., ϕ : An

→ An is given by (x1, . . . , xn) 7→ ( f1(x1), . . . , fn(xn)). For
each positive integer s ≤ n, we let Per[s] be the union of all irreducible periodic subvarieties of An of
codimension s; similarly, we let Prep[s] be the union of all irreducible preperiodic subvarieties of An of
codimension s. Let X ⊂ An be an irreducible subvariety of dimension m.
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(1) If X ∩ Per[m+1] is Zariski dense in X , then X is contained in a proper, irreducible subvariety of An ,
which is periodic under the action of ϕ.

(2) If X ∩ Prep[m+1] is Zariski dense in X , then X is contained in a proper, irreducible subvariety of An ,
which is preperiodic under the action of ϕ.

We prove the following result in support of Conjecture 1.1.

Theorem 1.2. Let f1, . . . , fn ∈ Q[x] be disintegrated polynomials of degree d > 1 and let ϕ be their
coordinatewise action on An , i.e., ϕ : An

→ An is given by ϕ(x1, . . . , xn) = ( f1(x1), . . . , fn(xn)). Let
X ⊂ An be an irreducible subvariety defined over Q such that min{dim(X), codim(X) − 1} ≤ 1. If
X ∩Per[dim(X)+1] is Zariski dense, then X is contained in a proper, irreducible, periodic subvariety of An .

Therefore Theorem 1.2 provides a proof for Conjecture 1.1(1) in the following 3 nontrivial cases:

(I) X is a hypersurface (see Theorem 3.1, which proves the more general result that any irreducible
subvariety of An containing a Zariski dense set of periodic points must be itself periodic).

(II) X is a curve (see Theorem 4.1).

(III) X ⊂ An has codimension 2 (see Theorem 5.1 which proves a generalization of this statement by
showing that for any irreducible subvariety X ⊂ An of codimension at least equal to 2, we have that
if X ∩ Per[n−1] is Zariski dense in X , then X must be contained in a proper, periodic, irreducible
subvariety of An).

Clearly, if X is a point (i.e., dim(X) = 0), or if X = An (i.e., codim(X) = 0, in which case Per[n+1] is
void since there is no periodic subvariety of codimension larger than n), Conjecture 1.1 holds.

Remark 1.3. In particular, we observe that Theorem 1.2 proves completely Conjecture 1.1(1) for all
subvarieties of An if n ≤ 4.

1C. The dynamical Pink–Zilber conjecture. We discuss next some subtleties involved in Conjecture 1.1.

Remark 1.4. It is natural to wonder whether Conjecture 1.1 could be formulated alternatively by asking
if X ∩

(⋃
i>dim(X) Per[i]

)
or, respectively, X ∩

(⋃
i>dim(X) Prep[i]

)
is Zariski dense in X . However, since

each periodic subvariety of codimension m+ 1 is contained in a periodic subvariety of codimension m
(see Section 2), this alternative formulation would reduce to our Conjecture 1.1.

It makes sense to restrict Conjecture 1.1 to polynomials which are not conjugate to monomials or
Chebyshev polynomials since otherwise we would encounter the classical Pink–Zilber conjecture (see
[Zannier 2012] for a comprehensive discussion). Also, we note that if X is contained in a proper, irreducible
(pre)periodic subvariety Y of An , then (simply, by geometric considerations of counting the dimensions)
X intersects nontrivially each (pre)periodic subvariety of relative codimension in Y equal to dim(X), and
thus, X has a Zariski dense intersection with Per[dim(X)+1] and Prep[dim(X)+1], respectively; this scenario
is identical to the classical case when a subvariety X ⊂Gn

m contained in a proper algebraic subtorus would
have a Zariski dense intersection with the union of all subtori in Gn

m of codimension equal to dim(X)+ 1.
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We also note that the two parts of Conjecture 1.1 are independent, neither one implying the other
one. Furthermore, it is likely that the methods one would need to employ in proving the above two
conjectures might differ slightly. For example, we would expect that some of the p-adic techniques
developed for attacking the dynamical Mordell–Lang conjecture (for more details, see [Bell et al. 2016,
Chapter 4]) could prove useful in treating Conjecture 1.1(1) in full generality. On the other hand, in
attacking Conjecture 1.1(2), one might need to develop generalizations of the arguments employed in
[Ghioca et al. 2018]. Also, Conjecture 1.1(2) is particularly challenging since one lacks a corresponding
dynamical bounded height conjecture for preperiodic subvarieties, in the spirit of the one proven in
[Ghioca and Nguyen 2016] (which is valid only for periodic subvarieties). Attempting to prove a variant
of the bounded height conjecture for preperiodic subvarieties of An leads to subtle diophantine questions
similar to the ones encountered in [DeMarco et al. 2017].

It is important to observe that if we did not impose the condition that the polynomials have the same
degree, then there would be simple counterexamples, similar to those of a naive formulation of the
dynamical Manin–Mumford conjecture (see Section 1D) which does not require the polarizability of the
given endomorphism. Indeed, if f ∈Q[x] has degree d ≥ 2, then its graph y = f (x) is a (rational) plane
curve containing infinitely many points which are periodic under the coordinatewise action of

(x, y) 7→ ( f (x), f 2(y));

however, this graph is not periodic under the action of ( f, f 2).
It is difficult to extend any of our results to dynamical systems given by the coordinatewise action

of rational functions due to the absence of Medvedev and Scanlon’s [2014] classification of periodic
subvarieties in that case (see also [Ghioca and Nguyen 2016]). Also, it is difficult to extend Theorem 1.2
to subvarieties X ⊂ An of dimension either larger than 1, or codimension larger than 2; see the following
Example, which can be generalized to any subvariety of An of dimension in the range {2, . . . , n− 3}.

Example 1.5. Let f ∈Q[x] be a polynomial of degree d ≥ 2 and let ϕ be its coordinatewise action on A6.
Let X ⊂ A6 be a surface which projects to a nonpreperiodic point on each of the first 3 coordinates, i.e.,
X = ζ × X1, where ζ ∈ A3(Q) and X1 ⊂ A3 is a surface defined over Q. We also assume X1 is not a
periodic surface, while ζ is not contained in a proper periodic subvariety of A3; this last assumption can
be achieved (see Section 2) by assuming the coordinates of ζ := (ζ1, ζ2, ζ3) belong to different orbits
under f , i.e., there are no i, j ∈ {1, 2, 3} and no m, n ∈ N such that f m(ζi ) = f n(ζ j ). Then X is not
contained in a proper periodic subvariety of A6 and therefore, Conjecture 1.1 predicts that X ∩ Per[3] is
not Zariski dense in X . In particular, this would yield that

X1 ∩
(
O f (ζ1)×O f (ζ2)×O f (ζ3)

)
(1.6)

is not Zariski dense in X1. However, understanding the intersection from (1.6) is equivalent to solving
a stronger form of the dynamical Mordell–Lang conjecture for hypersurfaces in A3 and at the present
moment, this problem seems very difficult; for a comprehensive discussion about the dynamical Mordell–
Lang conjecture, see [Bell et al. 2016].
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As shown by Bombieri, Masser and Zannier [Bombieri et al. 1999; 2006], even the classical Pink–
Zilber conjecture in the context of algebraic tori is very difficult and initially only the case of curves was
established; for more details, see the beautiful book [Zannier 2012]. In the dynamical context, the fact
that we do not even know the validity of the dynamical Mordell–Lang conjecture makes Conjecture 1.1
particularly challenging.

It is also natural to formulate Conjecture 1.1 for polynomials with complex coefficients. The difficulty
in extending our present results to this more general setting lies in a couple of points. First, there is
no easy specialization argument which would yield a similar result to the one from Theorem 1.2 for
polynomials with complex coefficients by simply using the conclusion of Theorem 1.2. Secondly, it is
essential for our strategy of proof (for more details, see Section 1E) to use the dynamical Bogomolov
conjecture (proven in [Ghioca et al. 2018] for subvarieties of (P1)n) and that result was proven when the
maps are defined over Q.

1D. The dynamical Manin–Mumford and the dynamical Bogomolov conjectures. Our Conjecture 1.1
is related to (and, in fact, motivated by) the dynamical Manin–Mumford conjecture and the dynamical
Bogomolov conjecture, proposed in [Zhang 2006]. We state next a special case of the dynamical
Manin–Mumford conjecture and of the dynamical Bogomolov conjecture for split endomorphisms of An .

Theorem 1.7 [Ghioca et al. 2018]. Let f1, . . . , fn ∈Q[x] be disintegrated polynomials of degree d > 1
and we let ϕ be their coordinatewise action on An , i.e., ϕ : An

→ An is given by (x1, . . . , xn) 7→

( f1(x1), . . . , fn(xr )). For any irreducible Q-subvariety X ⊂An , if X contains a Zariski dense set of prepe-
riodic points, then X is preperiodic. Furthermore, if for each ε > 0, the set of points (a1, . . . , an) ∈ X (Q)
such that

ĥ f1(a1)+ · · ·+ ĥ fn (an) < ε

is Zariski dense in X , then X is a preperiodic subvariety.

In Theorem 1.7, given a polynomial f ∈Q[x] of degree larger than 1, ĥ f (·) is the canonical height
defined as ĥ f (a) := limn→∞ h( f n(a))/deg( f )n for any a ∈Q, where h(·) is the usual Weil height. For
more details regarding heights, see [Bombieri and Gubler 2006].

Actually, in [Ghioca et al. 2018, Theorem 1.1], the conclusion of Theorem 1.7 was established for
all polarizable endomorphisms of (P1)n , i.e., maps of the form (x1, . . . , xn) 7→ ( f1(x1), . . . , fn(xn))

where each fi ∈ Q(x) is a rational function of degree d ≥ 2, which is not conjugate to a monomial, a
±Chebyshev polynomial, or a Lattés map. We will prove in Theorem 3.1 a slightly more precise version
of Theorem 1.7 for any subvariety of An which contains a Zariski dense set of periodic points.

In Theorem 1.7, if each polynomial fi is conjugated with either a monomial or a ±Chebyshev
polynomial, then we recover the classical conjectures of Manin–Mumford and Bogomolov for algebraic
tori. Actually, those conjectures (including in their version for abelian varieties) motivated Zhang to
formulate in the early 1990s a far-reaching dynamical conjecture for polarizable algebraic dynamical
systems generalizing both these classical diophantine problems and Theorem 1.7 (see also [Zhang 2006]).
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In Theorem 1.7, since the coordinatewise action of ϕ on An is given by polynomials, one does not
encounter the counterexamples (see [Ghioca et al. 2011]) to the original formulation of the dynamical
Manin–Mumford conjecture (and of the dynamical Bogomolov conjecture), and hence one is not expected
to require the stronger hypothesis for the reformulation from [Ghioca et al. 2011, Conjecture 1.4] of the
dynamical Manin–Mumford conjecture. We note that Theorem 1.7 was initially proven when X ⊂ An is
a curve in [Ghioca et al. 2015].

1E. Strategy for our proof. We prove Theorem 1.2 by splitting it into its 3 nontrivial cases (I)-(III),
i.e., X is a hypersurface (Theorem 3.1), X is a curve (Theorem 4.1) and finally, X has codimension 2
(Theorem 5.1). The common ingredients for proving these results are the classification of periodic subvari-
eties of An under the coordinatewise action of n one-variable polynomials (as obtained in [Medvedev and
Scanlon 2014], along with some further refinements obtained in [Ghioca and Nguyen 2016]) and also the
proof of the dynamical Manin–Mumford and of the dynamical Bogomolov conjectures for endomorphisms
of (P1)n (see Theorem 1.7 and [Ghioca et al. 2015; 2018]). In the case of curves X ⊂ An , we also need
to employ the recent result of [Xie 2017], who proved the dynamical Mordell–Lang conjecture for plane
curves.

We discuss next a bit more about the actual strategy of proof for our results. First, we note that the
case of hypersurfaces in Theorem 1.2 (see also its extension from Theorem 3.1) is significantly easier
than both the case of curves and also the case of subvarieties of codimension 2 from Theorem 1.2. Next,
we sketch a proof for a special case of both Theorems 4.1 and 5.1.

Assume X ⊂ A3 is a curve which contains an infinite set of points in common with the union of all
periodic curves of A3. We assume f1 = f2 = f3 =: f is a polynomial which commutes only with iterates
of itself; this is actually the generic case for a polynomial mapping. With this assumption, the result of
[Medvedev and Scanlon 2014] yields that each periodic curve of A3 (which projects dominantly on each
coordinate axis) is of the form

Ck,` := {(x, f k(x), f k+`(x)) : x ∈ A1
Q
},

for some integers k, `≥ 0, after a suitable reordering of the coordinate axes. We show that we can reduce
to the case X ∩

⋃
k,` Ck,` is infinite. Now, if there exists some integer j such that either X ∩

⋃
k Ck, j or

X ∩
⋃
` C j,` is infinite, we derive that X is contained in a periodic surface of A3. So, then we are left

with the case that there exists an infinite set of pairs (kn, `n) such that

X ∩Ckn,`n 6=∅ and lim
n→∞

kn = lim
n→∞

`n =∞.

Then letting (an, bn, cn)∈ (X ∩Ckn,`n )(Q), using the fact that for each point on X , the height of any given
coordinate is bounded uniformly (depending only on X , but independently of the given point) in terms of
the heights of the other two coordinates of the point, while ĥ f (cn)� ĥ f (bn)� ĥ f (an), we can show that

lim
n→∞

ĥ f (an)= lim
n→∞

ĥ f (bn)= 0.
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This allows us to apply Theorem 1.7 to derive that the projection of X on the first two coordinate axes
must be a periodic curve and therefore, X must be contained in a periodic surface.

1F. Plan for our paper. In Section 2, using [Medvedev and Scanlon 2014] (along with its refinements
from [Nguyen 2015; Ghioca and Nguyen 2016]) we introduce the structure of periodic subvarieties of An

under the coordinatewise action of n one-variable polynomials. In Section 3 we prove Theorem 1.2 for
hypersurfaces X ⊂ An (see Theorem 3.1, which actually proves that any subvariety of An containing a
Zariski dense set of periodic points must be periodic itself). Then we continue by proving Theorem 1.2
when X is a curve (see Theorem 4.1) in Section 4. We conclude our paper by proving Theorem 1.2 when
codim(X) = 2 in Section 5 (see Theorem 5.1, which proves that if any irreducible subvariety X ⊂ An

of codimension at least equal to 2 intersects Per[n−1] in a Zariski dense subset, then X is contained in a
periodic hypersurface).

2. Structure of preperiodic subvarieties

Most of this section is taken from [Ghioca and Nguyen 2016; 2017] which, in turn, follows from [Medvedev
and Scanlon 2014; Nguyen 2015]. Throughout this section, let n ≥ 2, and let f1, . . . , fn be disintegrated
polynomials in C[x]. For m ≥ 2, an irreducible curve (or more generally, a higher dimensional subvariety)
in Am is said to be fibered if its projection to one of the coordinate axes is constant, otherwise the curve
(or the subvariety) is called nonfibered. For any two disintegrated polynomials f (x) and g(x), write
f ≈ g if the self-map (x, y) 7→ ( f (x), g(y)) of A2 admits an irreducible nonfibered periodic curve. The
relation ≈ is an equivalence relation in the set of disintegrated polynomials (see [Ghioca and Nguyen
2016, Section 7]).

Let ϕ = f1 × · · · × fn be the self-map of An given by ϕ(x1, . . . , xn) = ( f1(x1), . . . , fn(xn)). Let s
denote the number of equivalence classes arising from f1, . . . , fn (under ≈). Let n1, . . . , ns denote the
sizes of these classes (hence n1+· · ·+ns = n). We relabel the polynomials f1, . . . , fn as fi, j for 1≤ i ≤ s
and 1 ≤ j ≤ ni according to the equivalence classes. After rearranging the polynomials f1, . . . , fn

so that equivalence polynomials stay in blocks, we have ϕ = ϕ1 × · · · × ϕs , where ϕi is the self-map
fi,1 × · · · × fi,ni of Ani . There exist a positive integer N , nonconstant pi, j ∈ C[x] for 1 ≤ i ≤ s and

1≤ j ≤ ni and disintegrated w1, . . . , ws ∈ C[x] in s different equivalence classes such that the following
holds. For 1≤ i ≤ s, let ψi be the self-map wi × · · ·×wi on Ani , and let ψ = ψ1× · · ·×ψs . Let ηi be
the self-map pi,1× · · ·× pi,ni of Ani and let η = η1× · · ·× ηs . We have the commutative diagram:

An1 × · · ·×Ans

η

��

ψ
// An1 × · · ·×Ans

η

��

An1 × · · ·×Ans
ψN
// An1 × · · ·×Ans

(2.1)

We have the following simple observations:
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Lemma 2.2. Let V be an irreducible ϕ-preperiodic subvariety of dimension r.

(a) Every irreducible component of η−1(V ) is ψ-preperiodic and has dimension r.

(b) If V is ϕ-periodic then some irreducible component of η−1(V ) is ψ-periodic.

(c) Let X be an irreducible subvariety in An and let Per[r ]ϕ (respectively Per[r ]ψ ) be the union of ϕ-periodic
(respectively ψ-periodic) subvarieties of codimension r . If X ∩Per[r ]ϕ is Zariski dense in X then there
is an irreducible component X ′ of η−1(X) such that X ′ ∩Per[r ]ψ is Zariski dense in X ′.

Proof. Part (a) follows from the commutative diagram (2.1) and the fact that η is finite. For part (b), if
ϕM0(V ) = V then ψM0 maps the set of irreducible components of η−1(V ) to itself; hence at least one
element in this set is a ψ-periodic subvariety.

For part (c), we have a collection of points {Pi : i ∈ S} that is Zariski dense in X and satisfies the
property that for each i ∈ S, there is an irreducible ϕ-subvariety Vi of codimension r such that Pi ∈ X ∩Vi .
For each i ∈ S, there is an irreducible component Wi of η−1(Vi ) that is ψ-periodic and there is a point
Qi ∈ Wi such that η(Qi )= Pi . Let X1, . . . , X M denote all the irreducible components of η−1(X). We
partition S into S1, . . . ,SM such that i ∈ S j implies Qi ∈ X j for every 1≤ j ≤ M . We claim that there
exists some j ∈ {1, . . . ,M} such that {Qi : i ∈ S j } is Zariski dense in X j ; consequently X j ∩ Per[r ]ψ is
Zariski dense in X j . To prove this claim, assume that the Zariski closure of {Qi : i ∈ S j } is strictly smaller
than X j for every j ∈ {1, . . . ,M}. Then the image under η of the union of these M Zariski closures
contains {Pi : i ∈ S} and is strictly smaller than X , a contradiction. �

Remark 2.3. We will also use the following simple observation which can be proved by arguments which
are similar to the ones employed in the proof of part (c) above. If X is an irreducible subvariety of An

and {Vi : i ∈ S} is a collection of irreducible subvarieties of An such that X ∩
⋃

i∈S Vi is Zariski dense in
X and S1, . . . ,SM is a partition of S then there exists j such that X ∩

⋃
i∈S j

Vi is Zariski dense in X .

Each irreducible ϕ-preperiodic subvariety V of An has the form V1× · · · × Vs where each Vi is an
irreducible ϕi -preperiodic subvariety of Ani . Let W be an arbitrary irreducible component of η−1(V ).
Then W is ψ-preperiodic and has the form W1× · · ·×Ws where each Wi is an irreducible component
of ψ−1

i (Vi ) and it is ψi -preperiodic. Note that ψi is the coordinate-wise self-map of Ani induced by the
common polynomial wi .

Let f be a disintegrated polynomial and let 8 = f × · · · × f be the corresponding self-map of An .
We recall the structure of 8-periodic subvarieties of An given in [Ghioca and Nguyen 2016, Section 2].
Write In = {1, . . . , n}. For each ordered subset J of In , we define:

AJ
:= A|J |

equipped with the canonical projection πJ : A
n
→ AJ . In this paper, we will consider ordered subsets of

In whose orders need not be induced from the usual order of the set of integers. If J1, . . . , Jm are ordered
subsets of In which partition In , then we have the canonical isomorphism

(πJ1, . . . , πJm ) : A
n
= AJ1 × · · ·×AJm .
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For each irreducible subvariety V of An , let JV denote the set of all j ∈ In such that the projection from
V to the j-th coordinate axis is constant. If JV 6= ∅, we equip JV with the natural order of the set of
integers, and we let aV ∈ AJV (C) denote πJV (V ). Even when JV =∅, we will vacuously define (A1)JV

as the variety consisting of one point and define aV to be that point. We have the following:

Proposition 2.4. (a) Let V be an irreducible 8-periodic subvariety of An of dimension r. Then there
exists a partition of In − JV into r nonempty subsets J1, . . . , Jr such that the following hold. We fix
an order on each J1, . . . , Jr , and identify

An
= AJV ×AJ1 × · · ·×AJr .

For 1≤ i ≤ r , let 8i denote the coordinatewise self-map of AJi induced by f . For 1≤ i ≤ r , there
exists an irreducible 8i -periodic curve Ci in AJi such that

V = {aV }×C1× · · ·×Cr .

(b) Let C be an irreducible 8-periodic curve in An and denote m := |In − JC | ≥ 1. Then there exist a
permutation (i1, . . . , im) of In − JC and nonconstant polynomials g2, . . . , gm ∈Q[x] such that C is
given by the equations xi2 = g2(xi1), . . . , xim = gm(xim−1). Furthermore, the polynomials g2, . . . , gm

commute with an iterate of f .

Remark 2.5. Let C be a nonfibered irreducible preperiodic curve in A2 under the map 8(x, y) =
( f (x), f (y)). Then 8r (C) is periodic for some r . So we know that C satisfies an equation of the form
f r (x2)= g( f r (x1)) or f r (x1)= g( f r (x2)) where g commutes with an iterate of f . We can express both
cases by an equation of the form g(x1)= G(x2) where both g and G commute with an iterate of f .

Remark 2.6. The above discussion gives a very precise description of irreducible ϕ-preperiodic subvari-
eties of An (recall that ϕ = f1× · · ·× fn). Occasionally, the following simpler observation is sufficient
for our purpose. Let V ( An be an irreducible ϕ-periodic subvariety. Then there exist 1 ≤ i < j ≤ n
and an irreducible curve C in A2 which is periodic under (x, y) 7→ ( fi (x), f j (y)) such that V ⊆ π−1(C)
where π is the projection from An to the i-th and j-th coordinates A2.

Remark 2.7. The permutation (i1, . . . , im) mentioned in part (b) of Proposition 2.4 induces the order
i1 ≺ · · · ≺ im on In − JC . Such a permutation and its induced order are not uniquely determined by V .
For example, let L be a linear polynomial commuting with an iterate of f . Let C be the periodic curve
in A2 defined by the equation x2 = L(x1). Then I − JC = {1, 2}, and 1 ≺ 2 is an order satisfying the
conclusion of part (b). However, we can also express C as x1 = L−1(x2). Then the order 2 ≺ 1 also
satisfies part (b). Therefore, in part (a), the choice of an order on each Ji is not unique. Nevertheless, the
partition of In − JV into the subsets J1, . . . , Jr is unique (see [Nguyen 2015, Section 2]).

Next we describe all polynomials g commuting with an iterate of f .

Proposition 2.8. Let f ∈ C[x] be a disintegrated polynomial of degree greater than 1. We have:
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(a) If g ∈ C[x] has degree at least 2 such that g commutes with an iterate of f then g and f have a
common iterate.

(b) Let M( f∞) denote the collection of all linear polynomials commuting with an iterate of f . Then
M( f∞) is a finite cyclic group under composition.

(c) Let f̃ ∈ C[x] be a polynomial of minimum degree d̃ ≥ 2 such that f̃ commutes with an iterate of f .
Then there exists D = D f > 0 relatively prime to the order of M( f∞) such that f̃ ◦ L = L D

◦ f̃ for
every L ∈ M( f∞).

(d) { f̃ m
◦ L : m ≥ 0, L ∈ M( f∞)} = {L ◦ f̃ m

: m ≥ 0, L ∈ M( f∞)}, and these sets describe exactly
all polynomials g commuting with an iterate of f . As a consequence, there are only finitely many
polynomials of bounded degree commuting with an iterate of f .

Remark 2.9. In the diagram (2.1), if f1, . . . , fn are in Q[x] then the polynomials wi and pi, j can be
chosen to be in Q[x]. In Proposition 2.8, if f (x)∈Q[x] then f̃ ∈Q[x] and elements of M( f∞) are in Q[x].

We will use the following immediate corollary to recognize when a point is f -periodic.

Corollary 2.10. Let f ∈ C[x] be a disintegrated polynomial of degree greater than 1.

(a) Let g(x) ∈ C[x] such that deg(g)≥ 2 and g commutes with an iterate of f . Then α ∈ C is g-periodic
if and only if it is f -periodic.

(b) Let p(x) ∈C[x] such that deg(p)≥ 1 and p commutes with an iterate of f . Let α ∈C be f -periodic.
Then p(α) is also f -periodic.

(c) If α is f -preperiodic then for any polynomial g that commutes with an iterate of f and deg(g) is
sufficiently large, g(α) is f -periodic.

(d) If α is f -preperiodic then the set

{g(α) : g commutes with an iterate of f }

is finite.

Proof. Part (a) is obvious since g and f have a common iterate. For part (b), choose m such that f m

commutes with p and α = f m(α). Then f m(p(α)) = p( f m(α)) = p(α). For part (c), let r ≥ 0 such
that f r (α) is f -periodic, then if deg(g)≥ deg( f )r , we can write g = g1 ◦ f r where g1 commutes with
an iterate of f by Proposition 2.8(d). Now g(α) = g1( f r (α)) is f -periodic by part (b). For part (d),
let f̃ be as in Proposition 2.8, we can write g as L ◦ f̃ m for some m ≥ 0 and L ∈ M( f∞). Since α is
f̃ -preperiodic and M( f∞) is finite, there are only finitely many possibilities for g(α). �

We now consider the more general self-map ϕ = f1× · · ·× fn as in the beginning of this section. Let
V be an irreducible ϕ-preperiodic subvariety of An with r := dim(V ). As before, JV denotes the set
of i ∈ In such that the projection from V to the i-th coordinate A1 is constant and aV ∈ AJV (C) is the
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image π JV (V ). By Proposition 2.4 and the diagram (2.1), we can partition the set In \ JV into r nonempty
subsets J1, . . . , Jr such that after identifying

An
= AJV ×AJ1 × · · ·×AJr ,

we have:

V = {aV }×C1× · · ·×Cr

where each C j is a preperiodic curve in AJ j with respect to the coordinatewise self-map induced by the
polynomials fi ’s for i ∈ J j . Moreover, if V is periodic then aV and each C j are periodic. Since each Ci

is necessarily nonfibered thanks to the definition of JV , we have that f ≈ g for f, g ∈ J j for 1≤ j ≤ r .
We have the following:

Definition 2.11. The weak signature of V is the collection consisting of the set JV and the partition of
In \ JV into the sets J1, . . . , Jr .

3. Proof of Theorem 1.2 for hypersurfaces

The case of hypersurfaces X ⊂ An in Theorem 1.2 is a consequence of the following more general result.

Theorem 3.1. Let f1, . . . , fn , d, and ϕ be as in Theorem 1.2. Let X be an irreducible subvariety of
An such that X contains a Zariski dense set of ϕ-periodic points, then X is periodic. Consequently,
Theorem 1.2 holds when codim(X)= 1.

We thank the referee for suggesting the following proof for Theorem 3.1, which is simpler than our
original proof.

Proof. By Theorem 1.7 X is preperiodic; so there exist positive integers m and r such that ϕm+r(X)=ϕm(X).
We define a function

9 : N→ {1, 2, . . . ,m+ r − 1}

given by

9(n)=
{

n if 1≤ n ≤ m− 1,
ρ if n ≥ m,

where ρ is the unique integer in the set {m,m+1, . . . ,m+r−1} satisfying the property that ρ≡n (mod r).
In particular, using the fact that ϕm(X)= ϕm+r (X), we get that ϕn(X)= ϕ9(n)(X) for each n ∈ N.

Let S be the set of periodic points in X . For each point x ∈ S, we denote by rx ≥ 1 its period (under
the action of ϕ). Then for each i = 1, . . . ,m+ r − 1, we let

Si := {x ∈ S :9(rx)= i}.

Since S is Zariski dense in X (and X is irreducible), there exists some i ∈ {1, . . . , r +m−1} such that Si

is Zariski dense in X . Now, for each x ∈ Si , we have that

x = ϕrx (x) ∈ ϕrx (X)= ϕi (X).
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It follows that X ⊆ ϕi (X) and since ϕ is finite, we conclude that X = ϕi (X); therefore, X is periodic, as
claimed. �

4. Proof of Theorem 1.2 for curves

In this section we prove the following result

Theorem 4.1. Theorem 1.2 holds when X ⊂ An is a curve.

Proof. The case n = 2 follows from Theorem 3.1. We will prove next the result for n ∈ {3, 4} and
proceed by induction for n ≥ 5. We recall the notation and terminology from Section 2. We are given
that the curve X has a Zariski dense (i.e., infinite) set of points each of which is contained in a periodic
subvariety V of codimension 2. Since there are only finitely many possibilities for the weak signature, by
Remark 2.3, we may assume that all of the above periodic subvarieties have a common weak signature
consisting of a (possibly empty) subset J = JV of In and a partition of In \J into n−2 nonempty subsets
J1, . . . , Jn−2. Let h denote the absolute logarithmic Weil height on P1(Q). We also let h denote the
height on An(Q)⊂ (P1)n(Q) given by

h(x1, . . . , xn)= h(x1)+ · · ·+ h(xn).

For each fi , let ĥ fi denote the canonical height on P1(Q) associated to fi , and let ĥ denote the function
on An

⊂ (P1)n(Q) given by

ĥ(x1, . . . , xn)= ĥ f1(x1)+ · · ·+ ĥ fn (xn).

Note that ĥ is the canonical height associated to ϕ (which is the coordinatewise action of the polynomials
fi on An). We refer the readers to [Bombieri and Gubler 2006; Silverman 2007, Chapter 3] for more
details on height and canonical height functions.

4A. The case when the ambient space has dimension 3. Without loss of generality, we have the follow-
ing possibilities for the weak signature (J , J1):

Case A: J =∅ and J1 = {1, 2, 3}. By part (c) of Lemma 2.2, we may assume that f1 = f2 = f3 =: f .
By Proposition 2.4 and Remark 2.3, we may assume that there are infinitely many points {Pi }

∞

i=1 such
that for each i , there is a periodic curve Vi defined by the equations x2 = gi,2(x1) and x3 = gi,3(x2) such
that Pi ∈ X ∩Vi where gi,2 and gi,3 are polynomials commuting with an iterate of f . If {deg(gi,2)}i≥1 has
a bounded subsequence then Proposition 2.8(d) yields that there exists a polynomial g such that gi,2 = g
for infinitely many i . Hence X is contained in the periodic surface defined by x2 = g(x1) because it is a
curve containing infinitely many points from this surface. The case when {deg(gi,3)}i≥1 has a bounded
subsequence is treated similarly. We now assume that

lim
i→∞

deg(gi,2)= lim
i→∞

deg(gi,3)=∞.
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Write Pi = (ai , bi , ci ). Let π1,2 denote the projection from A3 to the first two coordinates A2 and let Y
be the Zariski closure of π1,2(X).

We consider the case when π1,2 is nonconstant on X , in other words Y is a curve in A2. Then there exist
positive constants C1 and C2 depending only on the curve X such that for every point (a, b, c) ∈ X (Q),
we have

h(c)≤ C1 max{h(a), h(b)}+C2. (4.2)

Inequality (4.2) is a special case of [Ghioca and Nguyen 2016, Lemma 3.2(b)] (see also Corollary 3.4
of that paper). Essentially, inequality (4.2) says that the height of each coordinate of a point on a curve
is bounded in terms of the heights of the other coordinates, as long as the curve is not fibered. Since
|h− ĥ f | = O(1), there exist positive constants C3 and C4 depending on X and f such that

ĥ f (c)≤ C3 max{ĥ f (a), ĥ f (b)}+C4

for every (a, b, c) ∈ X (Q) (see also [Ghioca and Nguyen 2016, Corollary 3.4]). In particular, this
inequality holds for the points Pi = (ai , bi , ci ). On the other hand, we have

ĥ f (ci )= deg(gi,3)ĥ f (bi ) and ĥ f (bi )= deg(gi,2)ĥ f (ai ).

Overall, we have

deg(gi,3)max{ĥ f (ai ), ĥ f (bi )} ≤ ĥ f (ci )≤ C3 max{ĥ f (ai ), ĥ f (bi )}+C4.

Since lim deg(gi,3)=∞, we get limi→∞(max{ĥ f (ai ), ĥ f (bi )})= 0 and so, Theorem 1.7 yields that the
curve Y is preperiodic.

A more careful analysis shows that X is contained in a periodic surface, as follows.
First, consider the case when the projection from X to the first or second coordinate A1 is constant,

then this constant, denoted γ , is necessarily preperiodic since Y is preperiodic. From ci = gi,3(bi ) =

gi,3(gi,2(ai )) and Corollary 2.10, we have that ci is periodic for all sufficiently large i and the sequence
{ci }i≥1 consists of only finitely many points. Hence there is a periodic point ζ such that ci = ζ for
infinitely many i . We conclude that X is contained in the periodic surface A2

×{ζ }.
When the projection from X to neither the first nor second A1 is constant, by Proposition 2.4 and

Remark 2.5, the preperiodic curve Y satisfies an equation of the form g(x1) = G(x2) where g and G
commute with an iterate of f . Therefore the point (ai , bi ) satisfies both g(ai )= G(bi ) and bi = gi,2(ai ).

The following observation will be used repeatedly throughout our proof.

Lemma 4.3. With the above notation, for all i sufficiently large, we have that bi is periodic.

Proof of Lemma 4.3.. When i is sufficiently large so that deg(gi,2)≥ deg(g), from Proposition 2.8(d), we
can write gi,2 = ui ◦ g where ui is a polynomial commuting with an iterate of f . Therefore

bi = ui (g(ai ))= ui (G(bi ))

and Corollary 2.10(a) implies that bi is f -periodic. �
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Using that bi is periodic along with the fact that ci = gi,3(bi ), we obtain that ci is also f -periodic
(by Corollary 2.10(b)). Let Y ′ be the Zariski closure of the projection from X to the second and third
coordinates A2. Since (bi , ci ) is periodic for all sufficiently large i , we have that Y ′ is periodic (according
to Theorem 3.1). Hence X is contained in the periodic subvariety A1

× Y ′.
The case when π1,2 is constant on X is obvious. Indeed, X = {(a, b)}×A1 and since X ∩ V1 6=∅, we

have b = g1,2(a) and g1,2 commutes with an iterate of f . Hence X is contained in the periodic surface
defined by x2 = g1,2(x1).

Case B: J = {1} and J1 = {2, 3}. As in Case A, we may assume that f2 = f3 =: f and there are infinitely
many points {Pi = (ai , bi , ci )}i≥1 such that for each i , there is a periodic curve Vi defined by x1 = ζi and
x3 = gi (x2) such that Pi ∈ X ∩ Vi where ζi is f1-preperiodic and gi commutes with an iterate of f . By
arguments similar to Case A, we may assume limi→∞ deg(gi )=∞.

When π1,2 is nonconstant on X , we can use similar arguments as in Case A. This time, we have an
inequality of the form

ĥ f (c)≤ C5 max{ĥ f1(a), ĥ f (b)}+C6 (4.4)

for every (a, b, c) ∈ X (Q) where C5 and C6 are constants depending only on X , f1, and f . So we can
conclude that limi→∞ ĥ f (bi )= 0. Since Y contains the Zariski dense set {(ai = ζi , bi )}i , we have that Y
is preperiodic, by Theorem 1.7. If the projection π1 from X (and Y ) to the first A1 is constant then we
have ai = ζ1 for every i and X is contained in the periodic surface {ζ1}×A2. If the projection π2 from X
(and Y ) to the second A1 is constant, then inequality (4.4) combined with the fact that ai = ζi is periodic
and the fact that limi→∞ deg(gi )=∞ yields that bi must be preperiodic. But then, because bi is constant
as we vary i and deg(gi )→∞, Corollary 2.10(c) yields that ci must be constant and periodic, thus
providing the desired conclusion in Theorem 4.1. If π1 and π2 are nonconstant then Y satisfies an equation
g(x1) = G(x2), where g and G commute with an iterate of f . In particular g(ζi ) = g(ai ) = G(bi ); so,
by Corollary 2.10, G(bi ) is f -periodic (note that ζi is periodic). When deg(gi )≥ deg(G), by (the proof
of) part (c) of Corollary 2.10, we have that ci = gi (bi ) is also periodic. Now the Zariski closure of the
projection from X to the first and third coordinates A2 contains the Zariski dense set {(ai , ci ) : i is large}
of periodic points, it must be periodic thanks to Theorem 3.1. Hence X is contained in a periodic surface.

The case π1,2 is constant on X is also obvious. Indeed, X = {(a, b)}×A1 and since X ∩ V1 6=∅, we
have that a = ζ1. Hence X is contained in the periodic surface {ζ1}×A2.

Case C: J = {1, 2} and J1 = {3}. This time, each periodic curve Vi has the form {(αi , βi )}×A1 where
αi is f1-periodic and βi is f2-periodic. If π1,2 is nonconstant on X then Theorem 3.1 implies that Y is a
periodic curve in A2, hence X is contained in the periodic surface Y ×A1. If π1,2 is constant on X , since
X ∩ V1 6=∅, we have X = V1 is periodic.

4B. The case when the ambient space has dimension 4. We will need the following result:

Proposition 4.5. Let f (x), g(x) ∈Q[x] with deg( f )= deg(g)=: d ≥ 2. Let C ⊂ A2 be an irreducible
Q-curve with the following properties:
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• C is nonfibered.

• There exist α, β ∈Q such that C ∩ (O f (α)×Og(β)) is infinite.

Then C is periodic under the action (x1, x2) 7→ ( f (x1), g(x2)).

Before proceeding to its proof, we explain the necessity of Proposition 4.5 for our proof of Theorem 4.1
when n = 4. In this case, we have a curve X ⊂A4 which intersects the union of all periodic surfaces in an
infinite set. For example, if f1 = f2 = f3 = f4 =: f we could deal with the special case that X projects
to a point (a, b) on the first two coordinate axes, where both a and b are not preperiodic under the action
of f ; we let Y be the projection of X on the last two coordinate axes of A4. Each surface Sk,` ⊂A4 given
by the equations x3 = f k(x1) and x4 = f `(x2) is periodic. Next, assume

X ∩
(⋃

k,`

Sk,`

)
is infinite.

So, we are left to prove that if Y ∩ (O f (a)×O f (b)) is infinite, then Y is periodic under the induced
action of f on the last two coordinate axes of A4, which is precisely the conclusion from Proposition 4.5.

Proof of Proposition 4.5. As in Cases A and B (see also [Ghioca and Nguyen 2016, Corollary 3.4]), since
C is nonfibered there exist positive constants C7 and C8 depending on C , f , and g such that for each
(a1, a2) ∈ C(Q), we have

max{ĥ f (a1), ĥg(a2)} ≤ C7 min{ĥ f (a1), ĥg(a2)}+C8. (4.6)

Now, since C ∩ (O f (α)×Og(β)) is infinite and C projects dominantly to both coordinates, we get that α
and β are not f -preperiodic and g-preperiodic, respectively. Hence ĥ f (α)>0 and ĥg(β)>0. From this ob-
servation, inequality (4.6) for each point ( f m(α), gn(β))∈C(Q), and the fact that ĥ f ( f m(α))= dm ĥ f (a)
and ĥg(gn(β))= dn ĥg(β), we conclude that |m− n| is uniformly bounded as we vary among all points
( f m(α), gn(β)) ∈ C(Q). Therefore, there exists an integer ` such that there exist infinitely many
(m, n) ∈ N0×N0 with the property that ( f m(α), gn(β)) ∈ C(Q) and also m − n = `. Without loss of
generality, we assume that `≥ 0, and therefore get that C contains infinitely many points from the orbit of
( f `(α), β) under the action of (x1, x2) 7→ ( f (x1), g(x2)). Since the dynamical Mordell–Lang conjecture
(see [Bell et al. 2016, Chapter 3]) is known in the case of endomorphisms of A2 (as proven in [Xie 2017]),
we conclude that C is periodic under the action of (x1, x2) 7→ ( f (x1), g(x2)), as desired. �

We now return to the proof of Theorem 4.1. We have the following cases for the weak signature
(J , J1, J2):

Case D: |J1| = 1 or |J2| = 1. Without loss of generality, assume |J2| = 1, more specifically J2 = {4}.
Now there are infinitely many points {Pi = (ai , bi , ci , di )}i≥1 such that for each i , there is a periodic
surface Vi such that Pi ∈ X ∩ Vi . Moreover, we have that Vi = Wi ×A1 where Wi is a periodic curve
under the self-map f1× f2× f3 of A3.

Let π1,2,3 denote the projection from A4 to the first three coordinates A3. If π1,2,3 is nonconstant
on X , then the Zariski closure Y of π1,2,3(X) in A3 is a curve and we can apply Theorem 4.1 to the
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data (n = 3, f1, f2, f3, Y ) to conclude that Y is contained in a periodic surface S in A3. Hence X is
contained in the periodic hypersurface S×A1. The case π1,2,3 is constant on X is obvious. We have that
X = {(a, b, c)}×A1. Since Pi = (ai , bi , ci , di )= (a, b, c, di ) lies in Vi =Wi ×A1, we have that X itself
is contained in the periodic subvariety Vi (for every i).

Case E: |J1| = |J2| = 2. Without loss of generality, assume J1 = {1, 2} and J2 = {3, 4}. As in Case A,
we may assume f1 = f2 =: f and f3 = f4 =: g. By Proposition 2.4 and without loss of generality, we
may assume that there are infinitely many points {Pi = (ai , bi , ci , di )}i≥1 such that for each i , there is a
periodic surface Vi defined by x2 =Ui (x1) and x4 = Ti (x3) such that Pi ∈ X ∩ Vi and Ui (x) and Ti (x)
commute with an iterate of f (x) and g(x), respectively. For such polynomials Ui (x) and Ti (x), and for
any a ∈Q, we have (see [Nguyen 2015, Lemma 3.3])

ĥ f (Ui (a))= deg(Ui )ĥ f (a) and ĥg(Ti (a))= deg(Ti )ĥg(a). (4.7)

As in Case A, we may assume that limi→∞ deg(Ui ) = limi→∞ deg(Ti ) = ∞. Let π1,3 denote the
projection from A4 to the first and third coordinates A2 and let Y denote the Zariski closure of π1,3(X).

We consider first the case when π1,3 is nonconstant on X, in other words Y is a curve in A2.
As in Case A, there are positive constants C9 and C10 depending only on X and f such that for every

point (a, b, c, d) ∈ X (Q), we have

ĥ f (b)+ ĥg(d)≤ C9(ĥ f (a)+ ĥg(c))+C10.

Combining with (4.7) and the fact that Pi = (ai , bi , ci , di ) ∈ X ∩ Vi , we have

(deg(Ui )−C9)ĥ f (ai )+ (deg(Ti )−C9)ĥg(bi )≤ C10.

Since limi→∞ deg(Ui ) = limi→∞ deg(Ti ) = ∞, we get that limi→∞ ĥ f (ai ) = limi→∞ ĥg(ci ) = 0. By
Theorem 1.7, the curve Y is preperiodic under the map (x1, x3) 7→ ( f (x1), g(x3)). A more careful analysis
shows that X is contained in a periodic subvariety as follows.

When the projection from X to the first (or respectively the third) coordinate is constant, then this
constant is necessarily preperiodic since Y is preperiodic. Since bi =Ui (ai ) (respectively di = Ti (ci )),
we can argue as in Case A to conclude that there is an f -periodic point (respectively g-periodic point) ζ
such that bi = ζ (respectively di = ζ ) for infinitely many i . Hence X is contained in the periodic surface
A1
×{ζ }×A2 (respectively A3

×{ζ }).
Now consider the case when the projection from X to both the first and third coordinates is nonconstant,

or equivalently Y is a nonfibered curve in A2. This implies f ≈ g. By Lemma 2.2, we may assume
that f = g (i.e., f1 = f2 = f3 = f4 = f ). Remark 2.5 gives that Y satisfies an equation of the form
g(x1)= G(x3) where g and G commute with an iterate of f . In particular bi =Ui (ai ), di = Ti (ci ), and
g(ai )=G(ci ). When i is sufficiently large so that deg(Ui )≥ deg(g) and deg(Ti )≥ deg(G), we can write

Ui =U∗i ◦ g and Ti = T ∗i ◦G
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where U∗i and T ∗i commute with an iterate of f . Obviously, either deg(U∗i ) ≥ deg(T ∗i ) or deg(T ∗i ) ≥
deg(U∗i ). By restricting to an infinite subsequence of {Pi } and without loss of generality, we may assume
that deg(T ∗i )≥ deg(U∗i ) for every i . From Proposition 2.8, we can write T ∗i = Si ◦U∗i where Si commutes
with an iterate of f . We have

di = Ti (ci )= T ∗i (G(ci ))= T ∗i (g(ai ))= Si (U∗i (g(ai )))= Si (Ui (ai ))= Si (bi ).

If {deg(Si )}i has a bounded subsequence then by similar arguments as before, X would be contained
in a periodic surface of the form x4 = S(x2) and we are done. Now assume limi→∞ deg(Si )=∞. Since
the projection from X to the first 3 coordinates is nonconstant, there exist C11 and C12 such that:

ĥ f (di )≤ C11 max{ĥ f (ai ), ĥ f (bi ), ĥ f (ci )}+C12.

On the other hand

ĥ f (di )= deg(Ti )ĥ f (ci ), ĥ f (di )= deg(Si )ĥ f (bi )= deg(Si ) deg(Ui )ĥ f (ai )

and {deg(Si )}i , {deg(Ti )}i , and {deg(Ui )}i become arbitrarily large; so, we conclude that

lim
i→∞

ĥ f (ai )= lim
i→∞

ĥ f (bi )= lim
i→∞

ĥ f (ci )= 0.

By Theorem 1.7, the Zariski closure Z of the projection from X to the first 2 coordinates A2 is preperiodic.
We are assuming that the projection from X to the first coordinate is nonconstant. If the projection
to the second coordinate is constant then it must be preperiodic (since Z is preperiodic), denoted γ .
Now di = Si (bi )= Si (γ ) and we can argue as in Case A to conclude that X is contained in a periodic
hypersurface of the form A3

×{ζ }. It remains to treat the case when the projection to the second coordinate
is nonconstant. Then Z satisfies an equation g∗(x1)= G∗(x2) where g∗ and G∗ commute with an iterate
of f . By similar arguments as in Case A (see Lemma 4.3), we conclude that bi is f -periodic when i is
sufficiently large, and so, di = Si (bi ) is also f -periodic. Then Theorem 3.1 implies that the projection from
X to the second and fourth coordinates axes is a periodic curve and we are done since we obtain that X is
contained in the periodic (irreducible) hypersurface in A4, which is the pullback of the aforementioned
periodic plane curve under the projection map (x1, x2, x3, x4) 7→ (x2, x4).

Finally, we treat the case when π1,3 is constant on X.
Write {(α, γ )} = π1,3(X), hence (ai , ci ) = (α, γ ) for every i . If α is f -preperiodic then for all i

sufficiently large, we get that bi =Ui (ai )=Ui (γ ) must be some given periodic point β and thus, X is
contained in the periodic hypersurface A1

×{β}×A2 and hence, we are done. Therefore we may assume
that α and γ are not f -preperiodic and g-preperiodic, respectively. Hence ĥ f (α) > 0 and ĥg(γ ) > 0.
From (4.7) and the fact that

lim
i→∞

deg(Ui )= lim
i→∞

deg(Ti )=∞,
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we conclude that limi→∞ ĥ f (bi )= limi→∞ ĥg(di )=∞. Consequently, X projects dominantly to both
the second and fourth coordinates of A4. Let X ′ be the curve in A2 which is the Zariski closure of the
image of X under the projection to the second and fourth coordinates.

From Proposition 2.8, we can write

Ui = f mi ◦ ui , Ti = gni ◦ ti

where mi , ni ∈N0, ui and ti commute with an iterate of f and g, respectively, and max{deg(ui ), deg(ti )}≤
deg( f ) = deg(g). From Proposition 2.8 again, there are only finitely many possibilities for the pair
(ui , ti ). Hence there exist polynomials u and t such that (ui , ti )= (u, t) for infinitely many i . Overall,
the curve X ′ in A2 satisfies the following properties:

• X ′ is nonfibered.

• X ′ ∩ (O f (u(α))×Og(t (β))) is infinite.

By Proposition 4.5, X ′ is periodic under the map (x2, x4) 7→ ( f (x2), g(x4)). Therefore X is contained in
the periodic hypersurface

{(x1, x2, x3, x4) : (x2, x4) ∈ X ′}

and we finish the proof of this case.

4C. The case when the ambient space has dimension larger than 4. Let N ≥ 5, assume Theorem 4.1
holds for n≤ N−1. We now consider n= N . Note that the common weak signature (J , J1, . . . , Jn−2) of
the Vi ’s is a partition of {1, . . . , n} for which J could possibly be empty while each J j is nonempty. Since
2(n− 2) > n, there must be some j such that |J j | = 1. Without loss of generality, assume Jn−2 = {n}.
We can now proceed as in Case D: if the projection from X to the first (n− 1) coordinates is nonconstant
then we reduce to n = N − 1 and apply the induction hypothesis, otherwise we can easily conclude that
X is contained in Vi for every i . This finishes the proof of Theorem 4.1. �

5. Proof of Theorem 1.2 for subvarieties of codimension 2

Theorem 1.2 is proven once we deal with the last case of it, which is covered by the following more
general result:

Theorem 5.1. Let X ⊂An be an irreducible subvariety of codimension at least equal to 2. If X ∩Per[n−1]

is Zariski dense in X , then X must be contained in a proper, periodic, irreducible subvariety of An .

The reason why we can obtain the stronger Theorem 5.1 for the intersection of any subvariety X ⊂ An

of codimension at least equal to 2 with Per[n−1] is that in this case we intersect X with periodic curves
C and this gives a firmer control on the magnitude of the canonical heights for the points from the
intersection X ∩C . Indeed, we sketch below our approach for the proof of Theorem 5.1. So, assume (for
simplicity) that f1 = · · · = fn =: f ; then for each nonzero integers k1, . . . , kn−1, we let Ck1,...,kn−1 ⊂ An
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be the curve given by the equations

x2 = f k1(x1), x3 = f k2(x2), · · · , xn = f kn−1(xn−1).

Also, assume that X intersects the union of all curves Ck1,...,kn−1 in a Zariski dense subset. Then, arguing
as in the proof of Theorem 4.1, we can assume that the integers ki are arbitrarily large. This yields
that the projection Y of X on the first (n− 1) coordinate axes contains a Zariski dense set of points of
canonical height tending to 0. Then Theorem 1.7 yields that Y must be preperiodic; also, note that Y
is a proper subvariety of An−1 since the codimension of X ⊂ An is at least equal to 2. So, using the
results of [Medvedev and Scanlon 2014], Y itself must be contained in some hypersurface of An−1 of the
form C ×An−3, for some preperiodic plane curve C . Then arguing as in the proof of Lemma 4.3, we
obtain that C must be periodic and so, X is contained in a proper, periodic, irreducible subvariety of An .
However, there are extra complications appearing in the proof of Theorem 5.1 compared to the proof
of Theorem 4.1 since we cannot reduce our arguments to the case n is small (note that the case n ≥ 5
reduces to the cases n = 3, 4 in the proof of Theorem 4.1); this leads to significant difficulties in showing
that the aforementioned curve C is actually periodic.

Proof of Theorem 5.1.. Here we are assuming that the intersection between X and the union of all periodic
curves is Zariski dense in X and we need to prove that X is contained in a periodic hypersurface of An .
We argue by induction on n; the case n = 2 is trivial while the case n = 3 was proven in Theorem 3.1.
We assume n ≥ 4 from now on.

By using Remark 2.3 as in the proof of Theorem 4.1, we can assume that all of the above periodic
curves have a common weak signature J1 which is assumed to be {1, . . . , s} where 1 ≤ s ≤ n. By
Lemma 2.2, Remark 2.3, and Proposition 2.4, we may assume that f1 = · · · = fs =: f and there are
periodic curves {Vm}m≥1 (in An) such that the following hold:

(a) There is a Zariski dense set of points {Pm}m≥1 in X such that Pm ∈ X ∩ Vm for every m.

(b) Each Vm is defined by equations x2= gm,1(x1), . . . , xs= gm,s−1(xs−1)where the gm,i are polynomials
commuting with an iterate of f , along with equations xs+1 = am,s+1, . . . , xn = am,n where each am,i

is fi -periodic for s+ 1≤ i ≤ n.

Write

Pm = (bm,1, . . . , bm,n),

with bm, j+1 = gm, j (bm, j ) for 1≤ j ≤ s− 1 and bm, j = am, j for s+ 1≤ j ≤ n.
By restricting to a subsequence, we may assume that {Pm}m≥1 is generic which means that every

subsequence is Zariski dense in X . This is possible, as follows. First we enumerate all the countably many
strictly proper irreducible Q-subvarieties of X as {Z1, Z2, . . .}. Then we let m0 := 0, let Pm1 be the first
point in the sequence {Pm}m>m0 which is not contained in Z1, let Pm2 be the first point in the sequence
{Pm}m>m1 that is not contained in Z1 ∪ Z2, and so on. The subsequence {Pmk }k≥1 is generic in X .
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If for some i ∈ {s+ 1, . . . , n}, the projection from X to the i-th coordinate axis A1 is constant, then
X is contained in the periodic hypersurface xi = a1,i and we are done.

So, from now on, we may assume that each projection of X on the coordinate axes xs+1, . . . , xn is not
constant.

In particular, this means that for every i ∈ {s + 1, . . . , n} and any fi -periodic point ζ , there are at
most finitely many m such that am,i = ζ ; otherwise an infinite subsequence of {Pm} is contained in the
hypersurface {xi = ζ }. Since {Pm}m is generic, X is also contained in {xi = ζ }, as desired.

Claim 5.2. Theorem 5.1 holds when s = 1.

Proof. Since s = 1, each Vm is of the form

A1
× (am,2, . . . , am,n).

We project X to the last n− 1 coordinate axes and thus obtain a proper subvariety X1 ⊂ An−1 (note that
X ⊂ An has codimension at least equal to 2). Furthermore, according to our hypothesis, X1 contains a
Zariski dense set of periodic points (ai,2, . . . , ai,n); thus Theorem 3.1 yields that X1 is periodic. Therefore,
X is contained in the periodic, proper, irreducible subvariety A1

× X1 ⊂ An , as desired. �

From now on, we assume 2 ≤ s ≤ n. Furthermore, as argued in the proof of Theorem 4.1, we may
assume that for j = 1, . . . , s− 1, we have deg(gm, j )→∞ as m→∞.

Claim 5.3. Theorem 5.1 holds if X does not project dominantly onto the s-th coordinate A1 of An .

Proof. Let bs be the image of the constant projection from X to the s-th coordinate A1 and let π(s) be the
projection from X to the remaining n− 1 coordinates An−1. Let X(s) be the Zariski closure of π(s)(X).

For each m we have that Vm ∩ X contains some point (bm,1, . . . , bm,n) such that for i = 1, . . . , s− 1,
we have

ĥ f (bm,i )=
ĥ f (bs)∏s−1

j=i deg(gm, j )
→ 0, as m→∞.

Since for i = s + 1, . . . , n we have ĥ f (bm,i ) = ĥ f (am,i ) = 0, we conclude that X(s) contains a Zariski
dense set of points of canonical height converging to 0. Thus Theorem 1.7 yields that X(s) is preperiodic.
A more careful analysis shows that X is contained in a proper, irreducible, periodic subvariety, as follows.

Since dim(X(s))= dim(X)≤ n− 2, we have that X(s) ⊂ An−1 is a proper, preperiodic subvariety. By
Remark 2.6, there exist i < j in {1, . . . , s − 1, s + 1, . . . , n} and an irreducible curve C in A2 that is
preperiodic under (xi , x j ) 7→ ( fi (xi ), f j (x j )) such that X(s) ⊆ π−1(C) where π is the projection to the
i-th and j-th coordinate axes, i.e.,

(x1, . . . , xs−1, xs+1, . . . , xn)→ (xi , x j ). (5.4)

We have several cases (note that the projection from X to each of the `-th coordinate A1 for ` ∈
{s+ 1, . . . , n} is nonconstant):
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(i) i, j ∈{s+1, . . . , n}. Then the curve C contains the Zariski dense set of periodic points {(am,i , am, j )}m .
By Theorem 3.1, C is periodic. Hence π−1(C) is periodic and X is contained in the periodic
hypersurface π−1

(s) (π
−1(C)).

(ii) i, j ∈ {1, . . . , s− 1} and the curve C is fibered. Hence there exists an f -preperiodic point γ such
that X is contained in the hypersurface xi = γ , say. From bs = bm,s = gm,s−1 ◦ · · · ◦ gm,i (γ ) and
Corollary 2.10, by choosing sufficiently large m, we have that bs is f -periodic. Hence X is contained
in the periodic hypersurface {xs = bs}.

(iii) i, j ∈ {1, . . . , s − 1} and the curve C is nonfibered. By Remark 2.5, C satisfies an equation
g(xi ) = G(x j ) where g and G commute with an iterate of f . As in Case A in Section 4 (see
Lemma 4.3), we have that bm, j is f -periodic when m is sufficiently large (see Lemma 4.3). Then
bs = bm,s = gm,s−1 ◦ · · · ◦ gm, j (bm, j ) is f -periodic and we are done.

(iv) i ∈ {1, . . . , s−1}, j ∈ {s+1, . . . , n}, and the curve C is fibered. We can use the same arguments as in
Case (ii) above since we know C must project dominantly onto the x j coordinate axis and therefore,
we must have that the curve C is given by an equation of the form xi = γ , for a preperiodic point γ .

(v) i ∈ {1, . . . , s− 1}, j ∈ {s+ 1, . . . , n}, and the curve C is nonfibered. Then fi ≈ f j . By Lemma 2.2,
we may assume that f j = fi = f . Now C satisfies an equation g(xi )=G(x j ) as in Case (iii). Hence
g(bm,i )=G(am, j ) is f -periodic. By choosing m sufficiently large such that deg(gm,s−1◦· · ·◦gm,i )≥

deg(g), we conclude that bs = bm,s = gm,s−1 ◦ · · · ◦ gm,i (bm,i ) is periodic.

This finishes the proof of Claim 5.3. �

From now on, in the proof of Theorem 5.1 we assume that X projects dominantly onto the s-th axis.
Let π(s) and X(s) be as in the proof of Claim 5.2. We still have 2 more cases: dim(X(s))= dim(X)− 1

or dim(X(s))= dim(X).

Claim 5.5. Theorem 5.1 holds if dim(X(s))= dim(X)− 1.

Proof. In this case, we have that X = X(s)×A1 (where the factor A1 comes from the s-th coordinate).
Furthermore, by our assumption, we know that X(s) has a Zariski dense intersection with periodic curves
of An−1 given by the equations

x2 = gm,1(x1), x3 = gm,2(x2), . . . , xs−1 = gm,s−1(xs−2)

and the equations
xs+1 = am,s+1, xs+2 = am,s+2, . . . , xn = am,n.

In other words, X(s) has a dense intersection with Per[n−2]
⊂ An−1. By the inductive hypothesis, we

conclude that X(s) is contained in a strictly proper periodic subvariety of An−1, and so is X ⊂ An . �

From now on, in the proof of Theorem 5.1 we may assume dim(X(s))= dim(X).
Then there is a strictly smaller Zariski closed subset Y(s) of X(s) such that for Y := π−1(Y(s)), the

induced morphism from X \ Y to X(s) \ Y(s) is finite. At the expense of removing finitely many pairs
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(Pm, Vm) for which Pm ∈ Y , we may assume that Pm ∈ Vm ∩ (X \Y ) for every m (note that the sequence
of points {Pm} is generic in X ).

Since the map from X \ Y to X(s) \ Y(s) is finite, by [Ghioca and Nguyen 2016, Corollary 3.4] there
are constants c0, . . . , cs−1, cs+1, . . . cn such that for each m ∈ N we have the inequality

ĥ f (bm,s)≤ c0+
∑

1≤i≤n
i 6=s

ci ĥ f (bm,i ). (5.6)

Using the fact that for each i = 1, . . . , s− 1, we have

ĥ f (bm,i )=
ĥ f (bm,s)∏s−1

j=i deg(gm, j )
, (5.7)

while for each i = s+ 1, . . . , n, we have that ĥ f (bm,i )= ĥ f (am,i )= 0. Combining (5.7) with (5.6) and
with the fact that deg(gm,i )→∞ as m→∞ for each i = 1, . . . , s− 1, we conclude that

lim
m→∞

ĥ f (bm,i )= 0, for each i = 1, . . . , s− 1. (5.8)

So, X(s) contains a Zariski dense set of points of small height, i.e., the points

(bm,1, . . . , bm,s−1, bm,s+1, . . . , bm,n).

Then Theorem 1.7 yields that X(s) is preperiodic.
As in the proof of Claim 5.3, there exist i < j in {1, . . . , s− 1, s+ 1, . . . , n} and a preperiodic curve

C in A2 such that X(s) is contained in π−1(C) where π is the projection to the i-th and j-th coordinate
axes, as in (5.4). We have cases (i)–(v) as in the proof of Claim 5.3. Case (i) can be handled by the exact
same arguments. On the other hand, cases (ii) and (iv) cannot occur under the hypothesis that X projects
dominantly onto the s-th coordinate axis. Indeed, in both those two cases (ii) and (iv) we would have
that C is fibered, given by some equation xi = γ (or x j = γ ) for some i (or j ) in {1, . . . , s−1} and some
preperiodic point γ . But then (without loss of generality) bm,i = γ for each m and so,

bm,s = (gm,s−1 ◦ · · · ◦ gm,i )(bm,i )= (gm,s−1 ◦ · · · ◦ gm,i )(γ )

takes only finitely many values as we vary m by Corollary 2.10. However, the points {Pm} are dense in X
and X projects dominantly onto the s-th coordinate axis, contradiction. Therefore, we are left to analyze
only cases (iii) and (v) appearing in the proof of Claim 5.3.

In cases (iii) and (v), we have that bm,s is periodic when m is large; by removing finitely many m, we may
assume that bm,s is periodic for every m. For any k ∈ {1, . . . , s−1}, from bm,s = gm,s−1 ◦ . . .◦gm,k(bm,k),
we have that bm,k is f -preperiodic. Therefore, using again that each bm,k = am,k is periodic for k > s,
Theorem 1.7 yields that X is preperiodic because it contains a Zariski dense set of preperiodic points. From
the discussion in Section 2, we know that X is a product of preperiodic curves. Since dim(X)= dim(X(s))
and X(s) ⊆C×An−3 (the factor An−3 comes from all the `-axes where ` ∈ {1, . . . , n} \ {i, j, s}), we only
have two possibilities.
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Case F: The first possibility is that X ⊆ C ′×An−3 where C ′ is a preperiodic curve in A3 which is also
the projection from X to the i-th, j-th, and s-th axes (hence C is the projection from C ′ to the i-th and
j-th axes A2). Now in both cases (iii) and (v) from the proof of Claim 5.3, we have that bm, j is periodic
for all (sufficiently large) m. Consequently, the projection from X to the j-th axis together with the s-th
axis is a curve containing the Zariski dense set of periodic points (bm, j , bm,s)m . Therefore this projection
is a periodic curve by Theorem 3.1. Hence X lies in the periodic hypersurface which is the inverse image
in An of this periodic plane curve under the projection map (x1, . . . , xn) 7→ (x j , xs).

Case G: The second possibility is that there exist ` ∈ {1, . . . , n} \ {i, j, s} such that X ⊆ C ×C ′′×An−4

where C ′′ is a preperiodic curve in A2 which is also the projection from X to the s-th and `-th axes and
the factor An−4 comes from the k-th axes for k ∈ {1, . . . , n} \ {i, j, s, `}. Now if ` ∈ {s+ 1, . . . , n} then
we have bm,` = am,` is periodic, hence the curve C ′′ contains the Zariski dense set of periodic points
(bm,s, bm,`)m . From Theorem 3.1, we have that C ′′ is periodic and we are done since then X is contained
in the periodic hypersurface A2

×C ′′×An−4.

From now on, in the proof of Theorem 5.1 we assume that ` ∈ {1, . . . , s}.
If the projection from C ′′ to the `-th coordinate is constant then we derive a contradiction. Indeed, then

x` = γ where γ is f -preperiodic. From bm,s = gm,s−1 ◦ . . . ◦ gm,`(γ ), we obtain that the s-th coordinates
bm,s of the points Pm must belong to a finite set, contradicting thus the fact that these points are dense
in X , which is a variety projecting dominantly onto the s-th coordinate axis.

So, from now on, we may assume that C ′′ is nonfibered (note that we are already working under the
assumption that X projects dominantly onto the s-th coordinate axis).

Therefore C ′′ satisfies an equation U (xs)= T (x`) where U and T commute with an iterate of f . It
remains to treat case (iii) or case (v) in the proof of Claim 5.3. In either case, we may assume that
f j = f and C satisfies an equation g(xi )= G(x j ) where g and G commute with an iterate of f . As in
the proof of Claim 5.3, we have that bm, j is f -periodic for all large m. Hence both T (bm,`)=U (bm,s)

and g(bm,i )= G(bm, j ) are f -periodic for all large m.
If i <`, we have bm,`= gm,`−1◦. . .◦gm,i (bm,i ). Therefore when m is large enough so that deg(gm,`−1◦

. . .◦gm,i )≥ deg(g), we have that bm,` is periodic (see Lemma 4.3). Consequently, the curve C ′′ is periodic
since it contains a Zariski dense set of periodic points (bm,`, bm,s). Similarly, if `< i , when m is large so that

deg(gm,i−1 ◦ . . . ◦ gm,`)≥ deg(T ),

we have bm,i is periodic (again using Lemma 4.3), hence C is periodic because it contains a Zariski dense
set of periodic points (bm,i , bm, j ). This finishes the proof of Theorem 5.1. �
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