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Quadric surface bundles over surfaces
and stable rationality

Stefan Schreieder

We prove a general specialization theorem which implies stable irrationality for a wide class of quadric
surface bundles over rational surfaces. As an application, we solve, with the exception of two cases, the
stable rationality problem for any very general complex projective quadric surface bundle over P2, given
by a symmetric matrix of homogeneous polynomials. Both exceptions degenerate over a plane sextic
curve, and the corresponding double cover is a K3 surface.

1. Introduction

Recently, Hassett, Pirutka, and Tschinkel [Hassett et al. 2016b; 2016c; 2017] found the first three examples
of families of quadric surface bundles over P2, where the very general member is not stably rational. In
each case, the degeneration locus is a plane octic curve. Smooth quadric surface bundles over rational
surfaces typically deform to smooth bundles with a section, hence to smooth rational fourfolds. This
allowed them to produce the first examples of smooth nonrational varieties that deform to rational ones.

In [Schreieder 2018], we introduced a variant of the method of Voisin [2015] and Colliot-Thélène and
Pirutka [2016a], which allowed us to disprove stable rationality via a degeneration argument where a
universally CH0-trivial resolution of the special fiber is not needed. The purpose of this paper is to show
that one can use this technique to simplify the arguments in [Hassett et al. 2016b; 2016c; 2017] and to
apply them to large classes of quadric surface bundles.

The main result is the following general specialization theorem without resolutions; see Section 1.1
below for what it means that a variety specializes to another variety.

Theorem 1. Let X and Y be complex projective varieties of dimension four. Suppose that X specializes
to Y and that there is a morphism f : Y → S to a rational surface S, such that

(1) the generic fiber of f is a smooth quadric surface Q over K = C(S),

(2) the discriminant d ∈ K ∗/(K ∗)2 of Q is nontrivial, and

(3) H 2
nr (C(Y )/C,Z/2) 6= 0.

Then X is not stably rational.
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Since H 2
nr (C(Y )/C,Z/2)= H 2

nr (K (Y )/C,Z/2), the assumptions in the above theorem concern only
the generic fiber of f . In particular, f need not be flat and there is no assumption on the singularities
of Y at points which do not dominate S. A universally CH0-trivial resolution of Y is not needed. For a
more general version which works also if the discriminant of Q is possibly trivial, X and Y have arbitrary
dimension, and the generic fiber of f is only stably birational to Q, see Theorem 9 below.

The second unramified cohomology group in item (3) coincides with the 2-torsion subgroup of the
Brauer group of any resolution of singularities of Y . Pirutka [2016, Theorem 3.17] computed this group
explicitly for any quadric surface over C(P2) which satisfies (2). This gives rise to many examples to
which the above theorem applies. In this paper we will apply it only to a single example of Hassett,
Pirutka, and Tschinkel [Hassett et al. 2016b, Proposition 11].

The proof of Theorem 1 uses results of Pirutka [2016] on the unramified cohomology of quadric
surfaces over C(P2), together with our aforementioned method from [Schreieder 2018], which builds on
[Voisin 2015; Colliot-Thélène and Pirutka 2016a].

To give an application of Theorem 1, let us consider a generically nondegenerate line bundle valued
quadratic form q : E→ OP2(n), where E=

⊕3
i=0 OP2(−ri ) is split and such that the quadratic form qs on

the fiber Es is nonzero for all s ∈P2. Then, X = {q = 0} ⊂P(E) defines a quadric surface bundle over P2.
We may also regard q as a symmetric matrix A = (ai j ), where ai j is a global section of OP2(ri + r j + n).
Locally over P2, X is given by

3∑
i, j=0

ai j zi z j = 0, (1)

where zi denotes a local coordinate which trivializes OP2(−ri )⊂ E.
If X is smooth, its deformation type depends only on the integers di := 2ri + n; we call any such

quadric surface bundle of type (d0, d1, d2, d3). The degeneration locus of X → P2 is a plane curve of
degree

∑
i di , which is always even. If some di is negative, then ai i = 0 and so X→ P2 admits a section;

hence, X is rational. We may thus from now on restrict ourselves to the case di ≥ 0 for all i .

Corollary 2. Let d0, d1, d2, and d3 be nonnegative integers of the same parity, and let X→ P2 be a very
general complex projective quadric surface bundle of type (d0, d1, d2, d3). If

∑
i di 6= 6, then

(1) X is rational if
∑

i di ≤ 4 or if di = d j = 0 for some i 6= j and

(2) X is not stably rational otherwise.

As we will see in the proof, the bundles in item (1) of the above corollary have a rational section, and
so already the generic fiber of X over P2 is rational.

Up to reordering, the only cases left open by the above corollary are types (1, 1, 1, 3) and (0, 2, 2, 2).
The former corresponds to blow-ups of cubic fourfolds containing a plane, see e.g. [Auel et al. 2017b], and
the latter are Verra fourfolds [Camere et al. 2017; Iliev et al. 2017], i.e., double covers of P2

×P2, branched
along a hypersurface of bidegree (2, 2). In both exceptions, the degeneration locus of the quadric bundle
is a sextic curve in P2, and so the associated double cover is a K3 surface, see e.g. [Auel et al. 2015].
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Specializing to a33 = 0 in (1) shows that all examples in the above corollary deform to smooth quadric
surface bundles with a section, hence to smooth rational fourfolds.

Many quadric surface bundles over P2 are birational to fourfolds which arise naturally in projective
geometry, see e.g. [Schreieder 2018, §3.5]. For instance, Corollary 2 implies that

(I) a very general complex hypersurface of bidegree (d, 2) in P2
×P3 is not stably rational if d ≥ 2,

(II) a very general complex hypersurface X ⊂P5 of degree d+2 and with multiplicity d along a 2-plane
is not stably rational if d ≥ 2, and

(III) a double cover X
2:1
−→ P4, branched along a very general complex hypersurface Y ⊂ P4 of even

degree d + 2 and with multiplicity d along a line, is not stably rational if d ≥ 2.

The case d = 2 in items (I) and (III) corresponds to the aforementioned results in [Hassett et al. 2016b;
2016c]. For stable rationality properties of smooth hypersurfaces and double covers, see [Beauville 2016;
Colliot-Thélène and Pirutka 2016a; 2016b; Hassett et al. 2016c; Okada 2016; Totaro 2016; Voisin 2015];
for results on conic bundles, see [Ahmadinezhad and Okada 2018; Artin and Mumford 1972; Auel et al.
2016; Beauville 2016; Böhning and von Bothmer 2018; Hassett et al. 2016a; Voisin 2015].

In [Schreieder 2018], we studied rationality properties of quadric bundles with arbitrary fiber dimensions.
Our uniform treatment sufficed to prove (I) and (II) for d ≥ 5, and (III) for d ≥ 8. On the other hand,
the results in [Schreieder 2018] left open infinitely many cases in Corollary 2. For instance, the types
(1, 1, d2, d3) and (0, 2, d2, d3) with d2 ≤ 7 and arbitrary d3 are not covered by [Schreieder 2018] and
there are more cases which were not accessible; see [Schreieder 2018, Remark 36].

Our method applies also to quadric surface bundles over other rational surfaces S. We treat in this
paper the case S = P1

×P1 and obtain similar results as those in Corollary 2 above; see Corollaries 11
and 12 below.

1.1. Conventions and notations. All schemes are separated. A variety is an integral scheme of finite
type over a field. A property is said to hold at a very general point of a scheme, if it holds at all closed
points outside a countable union of proper closed subsets.

Let k be an algebraically closed field. We say that a variety X over a field L specializes (or degenerates)
to a variety Y over k, if there is a discrete valuation ring R with residue field k and fraction field F with
an injection of fields F ↪→ L , together with a flat proper morphism X→ Spec R of finite type, such that
Y is isomorphic to the special fiber Y ' X×R k and X ' X×R L is isomorphic to a base change of the
generic fiber. If Y→ B is a flat proper morphism of complex varieties with integral fibers, then for any
closed points 0, t ∈ B with t very general, the fiber Yt specializes to Y0 in the above sense [Schreieder
2018, Lemma 8].

A morphism f : X→ Y of varieties over a field k is universally CH0-trivial, if f∗ : CH0(X × L)
'
−→

CH0(Y × L) is an isomorphism for all field extensions L of k.
A quadric surface bundle is a flat morphism f : X → S between projective varieties such that the

generic fiber is a smooth quadric surface; the degeneration locus is given by all s ∈ S such that f −1(s) is
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singular. If f is not assumed flat, then we call X a weak quadric surface bundle over S. Quadric surface
bundles over surfaces have been studied in detail in [Auel et al. 2015].

We denote by µ2 ⊂ Gm the group of second roots of unity. If X is a proper variety over a field k of
characteristic different from 2, the unramified cohomology group H i

nr (k(X)/k, µ⊗i
2 ) is the subgroup of

all elements of the Galois cohomology group H i (k(X), µ⊗i
2 ) which have trivial residue at all discrete

valuations of rank one on k(X) over k [Colliot-Thélène and Ojanguren 1989]. This is a stable birational
invariant of X [Colliot-Thélène and Ojanguren 1989, Proposition 1.2]. If X is smooth and proper over k,
then H i

nr (k(X)/k, µ⊗i
2 ) coincides with the subgroup of elements of H i (k(X), µ⊗i

2 ) that have trivial
residue at any codimension-one point of X [Colliot-Thélène 1995, Theorem 4.1.1].

2. Second unramified cohomology of quadric surfaces

Let K be a field of characteristic different from 2. It will be convenient to identify the Galois cohomology
group H i (K , µ⊗i

2 ) with the étale cohomology group H i
ét(Spec(K ), µ⊗i

2 ). We also use the identification
H 1(K , µ2) ' K ∗/(K ∗)2, induced by the Kummer sequence. For a, b ∈ K ∗, we denote by (a, b) ∈
H 2(K , µ⊗2

2 ) the cup product of the classes given by a and b. If S is a normal variety over a field k and
with fraction field k(S)= K , then for any α ∈ H 2(K , µ⊗2

2 ), the ramification divisor ram(α)⊂ S is given by
(the closure of) all codimension-one points x ∈ S(1) with ∂2

xα 6=0. Here, ∂2
x : H

2(K , µ⊗2
2 )→ H 1(κ(x), µ2)

denotes the residue induced by the local ring OS,x ⊂ K .
To any nondegenerate quadratic form q over K , one associates the discriminant discr(q) ∈ K ∗/(K ∗)2

and the Clifford invariant cl(q) ∈ H 2(K , µ⊗2
2 ). If q has even dimension, then the discriminant discr(q)

depends only on the quadric hypersurface Q = {q = 0} and the Clifford invariant satisfies cl(λ · q) =
cl(q)+ (λ, discr(q)) for all λ ∈ K ∗ [Lam 1973, Chapter 5, (3.16)]. If Q is a surface, then up to similarity,
q ' 〈1,−a,−b, abd〉 for some a, b, d ∈ K ∗. In this case, discr(q)= d and cl(q)= (−a,−b)+ (ab, d).
We will need the following [Arason 1975; Kahn et al. 1998, Corollary 8]:

Theorem 3. Let K be a field with char(K ) 6= 2, and let f : Q→ Spec K be a smooth projective quadric
surface over K . Denote by d ∈ K ∗/(K ∗)2 the discriminant of Q and by β ∈ H 2(K , µ⊗2

2 ) the Clifford
invariant of some quadratic form q with Q = {q = 0}. Then

f ∗ : H 2(K , µ⊗2
2 )→ H 2

nr (K (Q)/K , µ⊗2
2 )

is an isomorphism if d is nontrivial. If d ∈ (K ∗)2, then ker( f ∗)= {1, β}.

Pirutka [2016, Theorem 3.17] computed the unramified cohomology group H 2
nr (K (Q)/C, µ

⊗2
2 ) of a

smooth quadric surface Q with nonzero discriminant over the function field of a smooth complex surface.
The following reflects one half of her result:

Theorem 4 (Pirutka). Let f : Q → Spec K be a smooth projective quadric surface over the function
field K of some smooth surface S over C. Let d ∈ K ∗/(K ∗)2 denote the discriminant and β ∈ H 2(K , µ⊗2

2 )

the Clifford invariant of some quadratic form q with Q = {q = 0}. If for some α ∈ H 2(K , µ⊗2
2 ) the

pullback f ∗(α) ∈ H 2
nr (K (Q)/K , µ⊗2

2 ) is unramified over C, then the following holds:
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(∗) If the residue ∂2
xα at some codimension-one point x ∈ S(1) is nonzero, then

(a) ∂2
xα = ∂

2
xβ and

(b) d becomes a square in the fraction field of the completion ÔS,x .

Proof. The condition on d is by Hensel’s lemma equivalent to asking that, up to multiplication by a
square, d is a unit in OS,x whose image in κ(x) is a square. The theorem follows therefore from [Pirutka
2016, §3.6.2]. (In [Pirutka 2016, Theorem 3.17], the assumption that d is not a square is only used to
invoke bijectivity of f ∗ via Theorem 3; the assumption that ram(β) is a simple normal crossing divisor
on S is only used in [Pirutka 2016, §3.6.1].) �

Remark 5. Up to replacing S by some blow-up, one can always assume that ram(β) is a simple normal
crossing divisor on S. Under this assumption, the analysis of Pirutka [2016, §3.6.1] shows that the
following converse of the above theorem is also true: if α ∈ H 2(K , µ⊗2

2 ) is such that condition (∗) holds,
then f ∗α ∈ H 2

nr (K (Q)/K , µ⊗2
2 ) is unramified over C; nontriviality can be checked via Theorem 3.

The result of Pirutka [2016, Theorem 3.17] applies to the following important example, due to Hassett,
Pirutka, and Tschinkel [Hassett et al. 2016b, Proposition 11]; for a reinterpretation in terms of conic
bundles, see [Auel et al. 2016].

Proposition 6 (Hassett, Pirutka, and Tschinkel). Let K =C(x, y) be the function field of P2, and consider
the quadratic form q = 〈y, x, xy, F(x, y, 1)〉 over K , where

F(x, y, z)= x2
+ y2
+ z2
− 2(xy+ xz+ yz).

If f : Q→ Spec K denotes the corresponding projective quadric surface over K , then

0 6= f ∗((x, y)) ∈ H 2
nr (K (Q)/C, µ

⊗2
2 ).

3. A vanishing result

The following general vanishing result is the key ingredient of this paper.

Proposition 7. Let Y be a smooth complex projective variety, and let S be a smooth complex projective
surface. Let f : Y 99K S be a dominant rational map whose generic fiber Yη is stably birational to
a smooth quadric surface Q over K = C(S). Suppose that there is some α ∈ H 2(K , µ⊗2

2 ), such that
α′ := f ∗α ∈ H 2

nr (K (Yη)/K , µ⊗2
2 ) is unramified over C. Then for any prime divisor E ⊂ Y which does

not dominate S, the restriction of α′ to E vanishes:

α′|E = 0 ∈ H 2(C(E), µ⊗2
2 ).

Proof. Since unramified cohomology is a functorial stable birational invariant [Colliot-Thélène and
Ojanguren 1989], we may up to replacing Y by Y ×Pm assume that Yη is birational to Q×Pr

K for some
r ≥ 0. This birational map induces a dominant rational map Yη 99K Q.

Since Y is smooth, f is defined at the generic point y of E . By [Merkurjev 2008, Propositions 1.4
and 1.7; Schreieder 2018, §5], we may up to replacing S by a different smooth projective model assume
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that the image x := f (y) ∈ S(1) is a codimension-one point on S. Consider the local ring A := OS,x , and
let Â be its completion with field of fractions K̂ := Frac( Â). The local ring B := OY,y contains A. We
let B̂ be the completion of B and L̂ := Frac(B̂) be its field of fractions. Since Yη 99K Q is dominant,
inclusion of fields induces the sequence

H 2(K , µ⊗2
2 )

ϕ1
−→ H 2(K̂ , µ⊗2

2 )
ϕ2
−→ H 2(K̂ (Q), µ⊗2

2 )
ϕ3
−→ H 2(L̂, µ⊗2

2 ). (2)

Lemma 8. If some γ ∈ H 2(K , µ⊗2
2 ) satisfies ∂2

xγ = 0, then ϕ1(γ )= 0 ∈ H 2(K̂ , µ⊗2
2 ).

Proof. Since ∂2
xγ = 0, the image of γ in H 2(K̂ , µ⊗2

2 ) is contained in H 2
ét(Spec Â, µ⊗2

2 )⊂ H 2(K̂ , µ⊗2
2 )

[Colliot-Thélène 1995, §3.3 and §3.8]. It thus suffices to show that H 2
ét(Spec Â, µ⊗2

2 ) vanishes. Since
Â is a henselian local ring, restriction to the closed point gives an isomorphism H 2

ét(Spec Â, µ⊗2
2 ) '

H 2(κ(x), µ⊗2
2 ) [Milne 1980, Corollary VI.2.7]. By Tsen’s theorem, H 2(κ(x), µ⊗2

2 )= 0. This concludes
the lemma. �

Since f ∗α is unramified, we know that

ϕ3 ◦ϕ2 ◦ϕ1(α) ∈ H 2
ét(Spec B̂, µ⊗2

2 )⊂ H 2(L̂, µ⊗2
2 ) (3)

[Colliot-Thélène 1995, §3.3 and §3.8] and the compatibility of the residue map illustrated in [Colliot-
Thélène and Ojanguren 1989, p. 143]. We aim to show that this class vanishes, which is enough to
conclude the proposition, because α′|E is obtained as the restriction of the above class to the closed point
Spec C(E).

In order to show that (3) vanishes, we choose some quadratic form q with Q = {q = 0} and denote
by d ∈ K ∗/(K ∗)2 and β ∈ H 2(K , µ⊗2

2 ) the discriminant and the Clifford invariant of q, respectively. If
∂2

xα = 0, then (3) vanishes by Lemma 8. If ∂2
xα 6= 0, then ∂2

x (α− β)= 0 by Theorem 4, because Yη is
stably birational to Q and unramified cohomology is a stable birational invariant. By Lemma 8, it then
suffices to show that β maps to zero via (2). By Theorem 4, d becomes a square in K̂ , and so the latter
follows from Theorem 3, applied to ϕ2 in (2). This concludes the proof of the proposition. �

4. Proof of Theorem 1

The following is a generalization of Theorem 1, stated in the introduction. For what it exactly means that
a variety specializes to another variety, see Section 1.1 above.

Theorem 9. Let X be a proper variety which specializes to a complex projective variety Y . Suppose that
there is a dominant rational map f : Y 99K P2 with the properties that

(a) some Zariski open and dense subset U ⊂Y admits a universally CH0-trivial resolution of singularities
Ũ →U such that the induced rational map Ũ 99K P2 is a morphism whose generic fiber is proper
over C(P2) and

(b) the generic fiber Yη of f is stably birational to a smooth projective quadric surface g : Q→ Spec K
over K = C(P2), such that there is a class α ∈ H 2(K , µ⊗2

2 ) whose pullback g∗α is nontrivial and
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unramified over C:

0 6= g∗α ∈ H 2
nr (K (Q)/C, µ

⊗2
2 )= H 2

nr (C(Y )/C, µ
⊗2
2 ).

Then no resolution of singularities of X admits an integral decomposition of the diagonal. In particular,
X is not stably rational.

Proof. Since g∗α 6= 0 is unramified over C and unramified cohomology is a stable birational invariant,
α′ := f ∗α∈ H 2(C(Y ), µ⊗2

2 ) is a nontrivial class which is unramified over C. By Hironaka’s theorem, there
exists a resolution of singularities τ : Ỹ→Y , such that τ−1(U ) identifies with the resolution of singularities
Ũ of U given in (a), and such that E := Ỹ \ Ũ is a simple normal crossing divisor in Ỹ . Our assumption
on Ũ then implies that τ−1(U )→U is universally CH0-trivial. Moreover, each component Ei of E is
smooth and does not dominate P2. Therefore, Proposition 7 implies that the nontrivial class α′ restricts
to zero on Ei for all i and so Theorem 9 follows from the new key technique in [Schreieder 2018, §4]. �

Proof of Theorem 1. Condition (1) in Theorem 1 implies condition (a) in Theorem 9 with Ũ = U . By
Theorem 3, conditions (1), (2), and (3) in Theorem 1 imply condition (b) in Theorem 9. Theorem 1
follows therefore from Theorem 9. �

5. Applications

5.1. Quadric surface bundles over P2. If the symmetric matrix A= (ai j ) in (1) is of diagonal form, i.e.,
ai j = 0 for all i 6= j , then we say that the corresponding quadric surface bundle X is given by the quadratic
form q = 〈a00, . . . , a33〉. The condition that X is flat over P2 means that the ai i have no common zero.
If the homogeneous polynomials ai i degenerate and acquire common zeros, then the same formula still
defines a weak quadric bundle as long as the ai i are nonzero and have no common factor. We will use
such degenerations in the proofs below.

Proof of Corollary 2. In the notation of (1), let A= (ai j )0≤i, j≤3 be the symmetric matrix which corresponds
to the very general quadric surface bundle X of type (d0, d1, d2, d3) over P2. We may without loss of
generality assume 0≤ d0≤ d1≤ d2≤ d3. If d1= 0, then also d0= 0 and ai j ∈C is constant for i, j ∈ {0, 1}.
The quadric {a00z2

0+2a01z0z1+a11z2
1 = 0} thus has a point over C and so X→ P2 has a section. Hence,

X is rational. If di = 1 for all i , then X is a hypersurface of bidegree (1, 2) in P2
×P3 and so projection

to the second factor shows that X is rational. Since the di have all the same parity, this shows that X is
rational if

∑
di ≤ 4 or d1 = 0.

The case di = 2 for all i is due to [Hassett et al. 2016b]; a quick proof follows from [Hassett et al.
2016b, Proposition 11] (= Proposition 6 above) and Theorem 1.

It remains to deal with the case where
∑

i di ≥ 8, d1 ≥ 1, and d3 ≥ 3. Recall that all di are either even
or odd. Consider the weak quadric surface bundle Yi := {qi = 0} ⊂ P(E) of type (d0, d1, d2, d3), given
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by the diagonal forms
q1 := 〈zd0, xd1, xyzd2−2, yzd3−3 F(x, y, z)〉,

q2 := 〈zd0, xzd1−1, xd2−1 y, yzd3−3 F(x, y, z)〉,

q3 := 〈zd0, xd1, yzd2−1, xyzd3−4 F(x, y, z)〉,

where F is the quadratic polynomial from Proposition 6.
Note that Yi is integral, because the entries in the diagonal form are coprime. Consider the natural

projection Yi → P2. The generic fiber is a smooth quadric surface Qi over K = C(P2). Setting
z = 1 shows that Q1 is given by the quadratic form q ′1 = 〈1, xd1, xy, yF(x, y, 1)〉, Q2 is given by
q ′2 = 〈1, x, xd2−1 y, yF(x, y, 1)〉, and Q3 is given by q ′3 = 〈1, xd1, y, xyF(x, y, 1)〉.

If d0 is even, then so is d2. Multiplying through by y, absorbing squares and reordering the entries thus
shows in this case that q ′2 is similar to the quadratic form q = 〈y, x, xy, F(x, y, 1)〉 from Proposition 6.
If d0 is odd, then so is d1 and so q ′1 is isomorphic to 〈1, x, xy, yF(x, y, 1)〉 and q ′3 is isomorphic to
〈1, x, y, xyF(x, y, 1)〉. Again, q ′1 and q ′3 are both similar to q. Hence, H 2

nr (K (Qi )/C, µ
⊗2
2 ) 6= 0 for

i ≡ d0 mod 2 by [Hassett et al. 2016b, Proposition 11] (= Proposition 6 above).
Since d1, d2 ≥ 1 and d3 ≥ 3, the very general quadric surface bundle X ⊂ P(E) as in Corollary 2

degenerates to Y2. If d0 is odd, X also degenerates to Y1 or Y3, depending on whether d2 ≥ 3 or d2 = 1.
Depending on the parity of d0 and the size of d2, we can choose one of the three degenerations together
with Theorem 1 (or 9) to conclude. �

Remark 10. Pirutka informed me that for any total degree d :=
∑

i di ≥ 8, one can reprove some cases
of Corollary 2 via degenerations to similar quadric surface bundles as in [Hassett et al. 2016b], for which
[Pirutka 2016, Theorem 3.17] applies, and for which one can compute universally CH0-trivial resolutions
explicitly [Auel et al. 2017a].

5.2. Quadric surface bundles over P1×P1. As a second example where Theorem 1 applies, we consider
quadric surface bundles X over P1

×P1 that are given by a line bundle valued quadratic form q : E→
O(m, n), where E =

⊕3
i=0 O(−pi ,−qi ) is split. Locally, X := {q = 0} ⊂ P(E) is given by (1) where

ai j is a global section of O(pi + p j +m, qi + q j + n). If ai j = 0 for i 6= j , we say that X is given by
the quadratic form q = 〈a00, . . . , a33〉. If the ai i degenerate and acquire common zeros, then the same
formulas still define a hypersurface in P(E) which is a weak quadric surface bundle over P2 as long as
the ai i are nonzero and have no common factor. The deformation type of X depends only on the integers
di :=m+2pi and ei := n+2qi , and we call (di , ei )0≤i≤3 the type of X . Note that the di as well as the ei

have the same parity for all i . We say that the type (di , ei )0≤i≤3 is lexicographically ordered, if di < di+1,
or di = di+1 and ei ≤ ei+1.

Corollary 11. Let X→ P1
×P1 be a very general quadric surface bundle of lexicographically ordered

type (di , ei )0≤i≤3, with di , ei ≥ 0 and d3, e3 ≥ 3. Then

(1) X is rational if d2 = 0, d1 = e1 = e0 = 0 or e0 = e1 = e2 = 0 and

(2) X is not stably rational otherwise.
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All examples in Corollary 11 deform to smooth rational varieties of dimension four; see for instance
[Schreieder 2018, §3.5]. The condition d3, e3 ≥ 3 in the above theorem could be replaced by a weaker but
more complicated assumption; we collect in Corollary 12 below the remaining cases where our method
works.

Proof of Corollary 11. Let A = (ai j )0≤i, j≤3 be a symmetric matrix, where ai j is a very general global
section of OP1×P1(pi + p j +m, qi + q j + n), and consider the corresponding quadric surface bundle X
over P1

×P1. Here the integers di := 2pi +m and ei := 2qi + n are assumed to satisfy the assumptions
of Corollary 11; i.e., (di , ei )0≤i≤3 is lexicographically ordered with di , ei ≥ 0 and d3, e3 ≥ 3.

If d1 = e1 = e0 = 0, then (ai j )0≤i, j≤1 is a constant matrix and so X has a section. If d2 = 0, then
(ai j )0≤i, j≤2 is a matrix of polynomials which are constant along the first factor. Since any conic bundle
over P1 has a section, X also admits a section. If e0 = e1 = e2 = 0, then (ai j )0≤i, j≤2 is a matrix of
polynomials, constant along the second factor, and so X has a section as before. Since X is general and
di , ei ≥ 0, the generic fiber of X over P1

×P1 is a smooth quadric surface and so X is rational in each of
the above cases.

The case where (e0, e1, e2) 6= (0, 0, 0), (d1, e0, e1) 6= (0, 0, 0), and d2 6= 0 is similar to the proof of
Corollary 2. The main point is that we can always degenerate X to weak quadric surface bundle Y over
P1
×P1 whose generic fiber is isomorphic to the example in Proposition 6. To find such a degeneration,

we consider coordinates x0, x1 and y0, y1 on the first and second factors of P1
×P1, respectively, and

consider the bidegree-(2, 2) polynomial

h := x2
1 y2

0 + x2
0 y2

1 + x2
0 y2

0 − 2(x1 y1x0 y0+ x1x0 y2
0 + y1 y0x2

0). (4)

We then start with the quadratic form q = 〈1, y1, x1, x1 y1h〉. Putting x0 = y0 = 1 shows that the
corresponding quadric surface over K = C(P1

×P1) is isomorphic to the one in Proposition 6. The point
is that the isomorphism type of this quadric surface does not change if we perform any of the following
operations to the quadratic form q:

• multiply some entries with even powers of x1 and y1,

• multiply some entries with arbitrary powers of x0 and y0, or

• reorder the entries of the quadratic form.

Our aim is to produce a quadratic form of given type (ei , di )0≤i≤3 whose entries are coprime, since the
latter guarantees that the associated quadratic form defines a weak quadric surface bundle Y over P1

×P1.
Once this is achieved, Corollary 11 will follow from Proposition 6 and Theorem 1.

By assumption, d2 ≥ 1, and if e0 = e1 = 0, then d1 ≥ 1 and e2 ≥ 1. This leads to Cases A, B, and C
below. We divide into further subcases and provide each time a quadratic form (produced via the above
process) with the properties we want. Recall that the di , as well as the ei , have the same parity.

Case A (e1 ≥ 1). (1) If d0 and e0 are even, then we take

〈xd0
1 ye0

1 , xd1
0 ye1−1

0 y1, xd2−1
0 x1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.
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(2) If d0 is odd and e0 is even, then we take

〈xd0
0 ye0

1 , xd1
0 ye1−1

0 y1, xd2
1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

(3) If d0 is even and e0 is odd, then we take

〈xd0
1 ye0

0 , xd1
0 ye1

1 , xd2−1
0 x1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

(4) If d0 and e0 are odd, then we take

〈xd0
0 ye0

0 , xd1
0 ye1

1 , xd2
1 ye2

0 , xd3−3
0 ye3−3

0 x1 y1h〉.

Case B (e0 ≥ 1 and e1 = 0; hence, ei is even for all i). (1) If d0 is even, then we take

〈xd0
1 ye0−1

0 y1, xd1
0 , xd2−1

0 x1 ye2
0 , xd3−3

0 ye3−3
0 x1 y1h〉.

(2) If d0 is odd, then we take

〈xd0
0 ye0−1

0 y1, xd1
0 , xd2

1 ye2
0 , xd3−3

0 ye3−3
0 x1 y1h〉.

Case C (d1, e2 ≥ 1 and e0 = e1 = 0; hence, ei is even for all i). (1) If d0 is even, then we take

〈xd0
1 , xd1−1

0 x1, xd2
0 ye2−1

0 y1, xd3−3
0 ye3−3

0 x1 y1h〉.

(2) If d0 is odd, then we take

〈xd0
0 , xd1

1 , xd2
0 ye2−1

0 y1, xd3−3
0 ye3−3

0 x1 y1h〉.

In each of the above cases, putting x0 = y0 = 1 and reordering the factors if necessary shows that the
corresponding weak quadric surface bundle Y over P1

×P1 has generic fiber which is isomorphic to
〈1, y1, x1, x1 y1 F(x1, y1, 1)〉. Corollary 11 therefore follows from [Hassett et al. 2016b, Proposition 11]
(see Proposition 6 above) and Theorem 1. �

Corollary 12. Let (di , ei )0≤i≤3 be a lexicographically ordered tuple of pairs of nonnegative integers with
di + d j and ei + e j even for all i, j . Suppose that one of the following holds:

(1) d1 ≥ 1, d3 ≥ 2, e1+ e2 ≥ 1, and e3 ≥ 3 or

(2) d1 ≥ 1, d3 ≥ 2, e0 ≥ 1, e1+ e2 ≥ 1, and e2 ≥ 2.

Then a very general complex projective quadric surface bundle X over P1
×P1 of type (di , ei )0≤i≤3 is not

stably rational.

Proof. We start with the quadratic forms q1 := 〈1, x1, x1 y1, y1h〉 and q2 := 〈y1, x1, x1 y1, h〉, where h
is as in (4). If condition (1) holds, then we can use q1 and if (2) holds, then we can use q2 to obtain,
via the procedure explained in the proof of Corollary 11, a quadratic form of type (di , ei )0≤i≤3 whose
coefficients are coprime. This yields a special fiber to which Theorem 1 applies. The details are similar
as in the proof of Corollary 11, and we leave them to the reader. �
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