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A differential-algebraic geometric analogue of the Dixmier–Moeglin equivalence is articulated, and proven
to hold for D-groups over the constants. The model theory of differentially closed fields of characteristic
zero, in particular the notion of analysability in the constants, plays a central role. As an application it
is shown that if R is a commutative affine Hopf algebra over a field of characteristic zero, and A is an Ore
extension to which the Hopf algebra structure extends, then A satisfies the classical Dixmier–Moeglin
equivalence. Along the way it is shown that all such A are Hopf Ore extensions in the sense of Brown
et al., “Connected Hopf algebras and iterated Ore extensions”, J. Pure Appl. Algebra 219:6 (2015).
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1. Introduction

This article is about an analogue of the Dixmier–Moeglin equivalence for differential-algebraic geometry.
(The immediate motivation is an application to the classical noncommutative Dixmier–Moeglin problem,
which we will describe later in this introduction.) The main objects of study here are D-varieties. An
introduction to this category is given in Section 2A, but let us at least recall here that a D-variety (over the
constants) is an algebraic variety V over a field k of characteristic zero, equipped with a regular section
to the tangent bundle s W V ! TV . A D-subvariety is an algebraic subvariety W for which the restriction
s�W is a section to the tangent bundle of W . There are natural notions of D-morphism and D-rational
map. For convenience, let us assume that k is algebraically closed. We are interested in the following
properties of an irreducible D-subvariety W � V over k:

� ı-local-closedness. There is a maximum proper D-subvariety of W over k.

� ı-primitivity. There is a k-point of W that is not contained in any proper D-subvariety of W over k.

J. Bell and R. Moosa were partially supported by their respective NSERC Discovery Grants.
MSC2010: primary 03C98; secondary 12H05, 16S36, 16T05.
Keywords: D-groups, model theory of differentially closed fields, Dixmier–Moeglin equivalence, Hopf Ore extensions.

343

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2018.12-2
http://dx.doi.org/10.2140/ant.2018.12.343
http://dx.doi.org/10.1016/j.jpaa.2014.09.007
http://dx.doi.org/10.1016/j.jpaa.2014.09.007


344 Jason Bell, Omar León Sánchez and Rahim Moosa

� ı-rationality. There is no nonconstant rational map from .W; s/ to .A1; 0/ over k, where 0 denotes
the zero section to the tangent bundle of the affine line.

The question is, for which ambient D-varieties .V; s/ are these three properties equivalent for all D-
subvarieties? It is not hard to see, and is spelled out in the proof of Corollary 2.14 below, that in general

ı-local-closedness D) ı-primitivity D) ı-rationality.

In earlier work [Bell et al. 2017a], together with Stéphane Launois, we used the model theory of the Manin
kernel to produce (in any dimension � 3) a D-variety which is itself ı-rational but not ı-locally-closed.
Here we focus on positive results. The main one, which appears as Corollary 2.17 below, is the following:

Theorem A. Suppose .G; s/ is a D-group over the constants — that is, G is an algebraic group and
s WG! TG is a homomorphism of algebraic groups. Then for any D-subvariety of .G; s/, ı-rationality
implies ı-local-closedness. In particular, for every D-subvariety of .G; s/, ı-rationality, ı-primitivity,
and ı-local-closedness are equivalent properties.

The proof of Theorem A relies on the model theory of differentially closed fields. In model-theoretic
parlance, the point is that ı-rationality of .V; s/ is equivalent to the generic type of the corresponding
Kolchin closed set being weakly orthogonal to the constants, while ı-local-closedness means that the
type is isolated. One context in which one can prove (using model-theoretic binding groups, for example)
that weak orthogonality to the constants implies isolation is when the type in question is analysable in
the constants. We give a geometric explanation of analysability in Section 2E in terms of what we call
compound isotriviality of D-varieties. The reader can look there for a precise definition, but suffice it to
say that a compound isotrivial D-variety is one that admits a finite sequence of fibrations where at each
stage the fibres are isomorphic (possibly over a differential field extension of the base) to D-varieties
where the section is the zero section. We show that for compound isotrivial D-varieties, ı-rationality
implies ı-local-closedness (Proposition 2.13). Then we show, using known results about the structure
of differential-algebraic groups, that every D-subvariety of a D-group over the constants is compound
isotrivial (Proposition 2.16). Theorem A follows.

It turns out that for our intended application, namely Theorem B2 appearing later in this introduction,
we need Theorem A to work for D-varieties that are slightly more general than D-groups. Given an
affine algebraic group G, we may as well assume that G � GLn, so that a regular section to the tangent
bundle is then of the form sD .id; Ns/ where Ns WG!Matn. It is not hard to check, from how the algebraic
group structure is defined on the tangent bundle, that s WG! TG being a homomorphism is equivalent
to the identity Ns.gh/D Ns.g/hCg Ns.h/, where g; h 2G are matrices and all addition and multiplication is
matrix addition and multiplication. Now suppose we are given a homomorphism to the multiplicative
group, a WG!Gm. By an a-twisted D-group we mean a D-variety .G; s/ where G is an affine algebraic
group and s D .id; Ns/ satisfies the identity Ns.gh/D Ns.g/hC a.g/g Ns.h/. So an a-twisted D-group is a
D-group exactly when aD 1. We are able to show that D-subvarieties of a-twisted D-groups are also
compound isotrivial. This yields the following generalisation of Theorem A: For any D-subvariety of an
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a-twisted D-group over the constants, ı-rationality, ı-primitivity, and ı-local-closedness are equivalent
properties. The passage from D-groups to a-twisted D-groups turns out to be technically quite difficult,
and is done in Section 3.

It is worth pointing out that we have been intentionally ambiguous about the field of definitions in
the statements of Theorem A and its a-twisted generalisation. The reason for this is that the results
actually hold true for D-subvarieties of .G; s/ that are defined over differential field extensions of the base
field k. To make this precise one has to give a more general definition of D-variety using prolongations
rather than tangent bundles, and we have decided to delay this to the main body of the article. While the
final conclusion we are interested in is about D-subvarieties over k, this possibility of passing to base
extensions is an important part of the inductive arguments involved.

Now for the application to noncommutative algebra, to which Section 4 is dedicated. The classical
Dixmier–Moeglin equivalence (DME) is about prime ideals in a noetherian associative algebra over a field
of characteristic zero; it asserts the equivalence between three properties of such prime ideals: primitivity
(a representation-theoretic property), local-closedness (a geometric property), and rationality (an algebraic
property). Precise definitions are given at the beginning of Section 4. We are interested in the question
of when the DME holds for skew polynomial rings RŒxI ı� over finitely generated commutative integral
differential k-algebras .R; ı/. Recall that RŒxI ı� is the noncommutative polynomial ring in x over R

where xr D rxCı.r/. This question is not vacuous since examples of such skew polynomial rings failing
the DME were given in [Bell et al. 2017a]; indeed, these were the first counterexamples to the DME of
finite Gelfand–Kirillov dimension. The connection to D-varieties should be clear: RD kŒV � for some
irreducible algebraic variety V , and the k-linear derivation ı induces a regular section s W V ! TV . So
the study of such .R; ı/ is precisely the same thing as the study of D-varieties. We are able to prove
(this is Proposition 4.6 below) that RŒxI ı� satisfies the DME if ı-rationality implies ı-locally-closedness
for all D-subvarieties of the D-variety .V; s/ associated to .R; ı/. Theorem A therefore answers our
question in the special case of differential Hopf algebras.

Theorem B1. If .R; ı/ is a finitely generated commutative integral differential Hopf k-algebra, then
RŒxI ı� satisfies the DME.

Being a differential Hopf algebra means that R has the structure of a Hopf algebra and that ı commutes
with the coproduct; this is equivalent to saying that .R; ı/ comes from an affine D-group .G; s/.

More generally than skew polynomial rings, we consider Ore extensions. Suppose R is a finitely
generated commutative integral k-algebra, � is a k-algebra automorphism of R, and ı is a k-linear
�-derivation of R — meaning that ı.rs/D �.r/ı.s/C ı.r/s. Recall that the Ore extension RŒxI �; ı� is
the noncommutative polynomial ring in the variable x over R where xr D �.r/xCı.r/. So when � D id
we are in the skew polynomial case discussed above. What about the DME for RŒxI �; ı�?

Theorem B2. Suppose R is a finitely generated commutative integral Hopf k-algebra. If an Ore extension
RŒxI �; ı� admits a Hopf algebra structure extending that on R, then RŒxI �; ı� satisfies the DME.
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That Theorem B1 is a special case of Theorem B2 uses the (known) fact that one can always extend
the Hopf structure on a differential algebra R to the skew polynomial ring extension RŒxI ı�, namely by
the coproduct induced by �.x/D x˝ 1C 1˝x. Theorem B2 appears as Theorem 4.1 below. Its proof
goes via a reduction to the case when � D id and then an application of the stronger a-twisted version
of Theorem A discussed above. Both of these steps use the work of Brown et al. [2015] on Hopf Ore
extensions. One obstacle is that while their results hold for much more general R than we are considering,
they are conditional on the coproduct of the variable x in the Ore extension taking the special form

�.x/D a˝xCx˝ bC v.x˝x/Cw;

where a; b 2 R and v;w 2 R˝k R. This is part of their definition of a Hopf Ore extension, though
they speculate about its necessity. We prove that when k is algebraically closed, after a linear change of
variable, �.x/ always has the above form. This is Theorem 4.2 below, and may be of independent interest:

Theorem C. Suppose k is algebraically closed and R is a finitely generated commutative integral Hopf
k-algebra. If an Ore extension RŒxI �; ı� admits a Hopf algebra structure extending that of R then, after
a linear change of the variable x,

�.x/D a˝xCx˝ bCw

for some a; b 2R, each of which is either 0 or group-like, and some w 2R˝k R. In particular, RŒxI �; ı�

is a Hopf Ore extension of R.

It has been conjectured [Bell and Leung 2014] that all finitely generated complex noetherian Hopf
algebras of finite Gelfand–Kirillov dimension satisfy the DME. Theorem B2 verifies a special case. To
make more significant progress on this conjecture one would like to pass from Hopf Ore extensions to
iterated Hopf Ore extensions. As of now, this appears to be beyond the scope of the techniques used here.

Throughout this paper, by an affine k-algebra we mean a finitely generated commutative k-algebra
that is an integral domain.

2. The ı-DME for D-groups over the constants

In this section we prove Theorem A of the introduction. After some preliminaries, we articulate
in Section 2C the differential-algebraic geometric analogue of the DME suggested in the introduction,
and call it the ı-DME. A sufficient condition for this to hold in terms of the model-theoretic notion of
analysability to the constants is given in Section 2E, and then applied to show that D-groups over the
constants satisfy the ı-DME in Section 2F. In a final section we reformulate ı-DME algebraically, as a
statement about commutative differential Hopf algebras, thereby preparing the stage for the application to
the classical DME in Section 4.

2A. Preliminaries on D-varieties. Suppose k is a field of characteristic zero equipped with a derivation ı.
In this section we review the notion of a D-variety over k. Several more detailed expositions can be
found in the literature, for instance [Buium 1992], which introduced the notion, and also [Kowalski and
Pillay 2006, ~2].
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We first need to recall what prolongations are. If V � An is an affine algebraic variety over k, then by
the ı-prolongation of V is meant the algebraic variety �V � A2n over k whose defining equations are

P .X1; : : : ;Xn/D 0;

P ı.X1; : : : ;Xn/C

nX
iD1

@P

@Xi
.X1; : : : ;Xn/ �Xi D 0;

for each P 2 I.V /� kŒX1; : : : ;Xn�. Here P ı denotes the polynomial obtained by applying ı to all the
coefficients of P . The projection onto the first n coordinates gives us a surjective morphism � W �V ! V .

Note that if K is any ı-field extension of k, and a 2 V .K/, then

r.a/ WD .a; ıa/ 2 �V .K/:

If V is defined over the constant field of .k; ı/ then �V is nothing other than the tangent bundle TV . In
general, �V is a torsor for the tangent bundle; for each a 2 V the fibre �aV is an affine translate of the
tangent space TaV . In particular, if V is smooth and irreducible then so is �V .

Taking prolongations is a functor which acts on morphisms f W V !W by acting on their graphs.
It preserves the following properties of a morphism: being étale, being a closed embedding, and being
smooth. The functor � acts naturally on rational maps also; this is because for U a Zariski open subset of
an irreducible variety V , �V�U D �.U / is Zariski open in �.V /. Moreover, prolongations commute with
base extension to ı-field extensions.

We have restricted our attention here to the affine case merely for concreteness. The prolongation
construction extends to abstract varieties by patching over an affine cover in a natural and canonical way.

A D-variety over k is an algebraic variety V over k equipped with a regular section s W V ! �V

over k. An example is when V is defined over the constants and s W V ! TV is the zero section.
If V is affine then a D-variety structure on V is nothing other than an extension of ı to the co-

ordinate ring kŒV �. Indeed, if s W V ! �V is given by s.X / D .X; s1.X /; : : : ; sn.X // in variables
X D .X1; : : : ;Xn/, then we can extend ı to kŒX � by Xj 7! sj .X /, and this will induce a deriva-
tion on kŒV �. Conversely, given an extension of ı to kŒV �, and choosing sj .X / to be such that
ı.Xj C I.V //D sj .X /C I.V /, we get that s WD .id; s1; : : : ; sn/ W V ! �V is a regular section.

A D-subvariety of .V; s/ is a closed algebraic subvariety W � V , over a possibly larger ı-field K,
such that s.W /� �W . In principle one should talk about the base extension of V to K before talking
about subvarieties over K, but as prolongations commute with base extension, and following standard
model-theoretic practices, we allow D-subvarieties to be defined over arbitrary ı-field extensions unless
explicitly stated otherwise.

A D-variety .V; s/ over k is said to be k-irreducible if V is k-irreducible as an algebraic variety. In
this case s induces on k.V / the structure of a ı-field extending k. A D-variety .V; s/ is called irreducible
if V is absolutely irreducible. In general, every irreducible component of V is a D-subvariety over kalg

and these are called the irreducible components of .V; s/.
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A morphism of D-varieties .V; s/! .W; t/ is a morphism of algebraic varieties f W V !W such that

�V
�f
// �W

V

s

OO

f
// Wt

OO

commutes. It is not hard to verify that the pull-back of a D-variety, and the Zariski closure of the image
of a D-variety, under a D-morphism, are again D-varieties.

In the same way, we can talk about rational maps between D-varieties. A useful fact is that if U is
a nonempty Zariski open subset of V , then the prolongation of U is the restriction of �V to U , and so
.U; s�U / is a D-variety in its own right. So a rational map on V is a D-rational map if it is a D-morphism
when restricted to the Zariski open subset on which it is defined.

A D-constant rational function on a D-variety .V; s/ over k is a rational map over k from .V; s/ to
.A1; 0/, where 0 denotes the zero section to the tangent bundle of the affine line. In the case when .V; s/
is k-irreducible, they correspond precisely to the ı-constants of .k.V /; ı/.

2B. Differentially closed fields and the Kolchin topology. Underlying our approach to the study of
D-varieties is the model theory of existentially closed ı-fields (of characteristic zero). These are ı-fields
K with the property that any finite sequence of ı-polynomial equations and inequations over K which
have a solution in some ı-field extension, already have a solution in K. The class of existentially closed
ı-fields of characteristic zero is axiomatisable in first-order logic, and its theory is denoted by DCF0. We
work in a fixed model of this theory, an existentially closed ı-field K. In particular, K is algebraically
closed. We let Kı denote the field of constants of K; it is an algebraically closed field that is pure in the
sense that the structure induced on it by DCF0 is simply that given by the language of rings.

Suppose .V; s/ is a D-variety over K. Let x 2 V .K/. Note that fxg is a D-subvariety if and only if
r.x/D s.x/, recalling that r W V .K/! �V .K/ is given by x 7! .x; ıx/. We call such points D-points,
and denote the set of all D-points in V .K/ by .V; s/].K/. It is an example, the main example we will
encounter, of a Kolchin closed subset of V .K/. In general a Kolchin closed subset of the K-points of an
algebraic variety is one that is defined Zariski-locally by the vanishing of ı-polynomials. Note that when
.V; s/ is defined over the constants and s is the zero section, .V; s/].K/D V .Kı/.

One of the main consequences of working in an existentially closed ı-field is that .V; s/].K/ is Zariski-
dense in V .K/. In particular, for any subvariety W � V , we have that W is a D-subvariety if and only if
W \ .V; s/].K/ is Zariski dense in W .K/.

Suppose .V; s/ is k-irreducible for some ı-subfield k. If we allow ourselves to pass to a larger
existentially closed ı-field, then we can always find a k-generic D-point of .V; s/, that is, a D-point
x 2 .V; s/].K/ that is Zariski-generic over k in V . Note that such a point is also Kolchin-generic in
.V; s/].K/ over k in the sense that it is not contained in any proper Kolchin closed subset defined over k.

In order to ensure the existence of generic D-points without having to pass to larger ı-fields, it is
convenient to assume that K is already sufficiently large, namely saturated. This means that if k is a
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ı-subfield of strictly smaller cardinality than K, and F is a collection of Kolchin constructible sets over
k every finite subcollection of which has a nonempty intersection, then F has a nonempty intersection.

2C. An analogue of the DME for D-varieties. We fix from now on a saturated existentially closed
ı-field K of sufficiently great cardinality. So K serves as a universal domain for ı-algebraic geometry
(and hence, in particular, algebraic geometry). We also fix a small ı-subfield k �K that will serve as the
field of coefficients.

Definition 2.1 (ı-DME for D-varieties). Suppose .V; s/ is a D-variety over k. We say that .V; s/ satisfies
the ı-DME over k, if for every k-irreducible D-subvariety W � V , the following are equivalent:

(i) .W; s/ is ı-locally-closed: it has a maximum proper D-subvariety over k.

(ii) .W; s/ is ı-primitive: there exists a point p2W .kalg/ that is not contained in any proper D-subvariety
of W over k.

(iii) .W; s/ is ı-rational: k.W /ı � kalg.

Remark 2.2. As the model-theorist will notice, and as we will prove in the next section, W being ı-locally
closed means that the Kolchin generic type p of .W; s/].K/ over k is isolated. The model-theoretic
meaning of ı-rationality is that p is weakly orthogonal to the constants. On the other hand, it is not clear
how to express a priori the ı-primitivity of W as a model-theoretic property of p.

Without additional assumptions on k there is no hope for the ı-DME to be satisfied. For example,
there are positive-dimensional ı-rational D-varieties over any k, but if k is differentially closed then the
only ı-locally closed D-varieties over k are zero-dimensional. This is because every D-variety over a
differentially closed field k has a Zariski dense set of D-points over k, and so a D-subvariety over k

containing all of them could not be proper. We are interested, however, in the case when k is very much
not differentially closed; namely, when ı is trivial on k.

Proposition 2.3. For any k-irreducible D-variety, ı-local-closedness implies ı-primitivity. Moreover, if
k �Kı then ı-primitivity implies ı-rationality.

Proof. Let .W; s/ be a k-irreducible D-variety.
Suppose .W; s/ is ı-locally-closed, and denote by A the maximum proper D-subvariety of W over k.

Then p 2W .kalg/ nA.kalg/ witnesses ı-primitivity. This proves the first assertion.
Now suppose that k � Kı, .W; s/ is ı-primitive, and p 2 W .kalg/ is not contained in any proper

D-subvariety over k. Suppose f 2 k.W / is a ı-constant. We want to show that f 2 kalg. We view it
as a rational map of D-varieties, f W .W; s/! .A1; 0/, and suppose for now that it is defined at p. So
f .p/ 2 A1.kalg/. Because of our additional assumption that k �Kı , and hence kalg �Kı , we have that
f .p/ is a D-point of .A1; 0/. Now, let ƒ be the orbit of f .p/ under the action of the absolute Galois
group of k. Then ƒ is a finite D-subvariety of .A1; 0/ over k. Hence the Zariski closure of f �1.ƒ/ is
a D-subvariety of W over k that contains p. It follows that f �1.ƒ/DW . So f is kalg-valued on all
of W . We have shown that every element of k.W /ı that is defined at p is in kalg.
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We have still to deal with the possibility that f is not defined at p. In that case, writing f D a
b

with
a; b 2 kŒW �, we must have b.p/D 0. The fact that ıf D 0 implies by the quotient rule that bıaD aıb.
So either ıaD ıb D 0 or f D a

b
D
ıa
ıb

. Since a and b are defined at p, if ıaD ıb D 0 then a; b 2 kalg by
the previous paragraph, and hence f 2 kalg. If, on the other hand, f D ıa

ıb
, then we iterate the argument

with .ıa; ıb/ in place of .a; b/. What we get in the end is that either f 2 kalg or f D ı`a
ı`b

for all `� 0.
We claim the latter is impossible. Indeed, it would imply that ı`b.p/D 0 for all `, and so p is contained
in the D-subvariety V .I/, where I is the ı-ideal of kŒW � generated by b. But the assumption on p would
then imply that V .I/DW , contradicting the fact that b ¤ 0. So f 2 kalg, as desired. �

So the question becomes:

Question 2.4. Under the assumption that ı is trivial on k, for which D-varieties does ı-rationality imply
ı-local-closedness?

Question 2.4 should be, we think, of general interest in differential-algebraic geometry. In [Bell et al.
2017a] it was pointed out that Manin kernels can be used to construct, in all Krull dimensions at least
three, examples that were ı-rational but not ı-locally closed. Let us point out that in dimension � 2 the
answer is affirmative:

Proposition 2.5. If k �Kı then every D-variety over k of dimension � 2 satisfies the ı-DME over k.

Proof. Suppose .V; s/ is a D-variety over k of dimension at most 2. By Proposition 2.3 it suffices to
show that if W � V is a k-irreducible ı-rational D-subvariety over k then it has a maximum proper
D-subvariety over k. We may assume that dim W > 0. Now, it is a known fact that ı-rationality implies
the existence of only finitely many D-subvarieties of codimension one over k. Indeed, this is a theorem
of Hrushovski1; see [Bell et al. 2017a, Theorem 6.1] and [Freitag and Moosa 2017, Theorem 4.2] for
published generalisations. So it remains to consider the zero-dimensional D-subvarieties of W over k.
But as k �Kı, the union of these is contained in the Zariski closure X of .W; s/].K/\W .Kı/. Note
that s restricts to the zero section on X , and hence X is a D-subvariety of W over k that must be proper
by ı-rationality of .W; s/. So the union of X and the finitely many codimension one D-subvarieties of
W form the maximal proper D-subvariety over k. �

We will give a sufficient condition for ı-rationality to imply ı-local-closedness, and hence for the
ı-DME, having to do with analysability to the constants in the model theory of differentially closed fields.
We will then use this condition to prove the ı-DME for D-groups over the constants.

2D. Maximum D-subvarieties. Here we look closer at which D-varieties over k have a proper D-
subvariety over k that contains all other proper D-subvarieties over k. This is something that never
happens in the pure algebraic geometry setting: every variety over k has a Zariski dense set of kalg-points,
and each kalg-point is contained in a finite subvariety defined over k. So a k-irreducible variety cannot
have a maximum proper subvariety over k. In the enriched context of D-varieties there will be many

1It is Proposition 2.3 in his unpublished and untitled manuscript dated 1995 on “how to deduce the @0-categoricity of degree
one strongly minimal sets in DCF0 from Jouanolou’s work”.



D-groups and the Dixmier–Moeglin equivalence 351

D-points over a differential closure of k, say Qk, but a Qk-point need not live in a proper D-subvariety
defined over k. So D-points are not an obstacle to the existence of a maximum proper D-subvariety. In
fact, as the following lemma points out, the existence of a maximum proper D-subvariety is a natural
property to consider from both the Kolchin topological and model-theoretic points of view.

We continue to work in our sufficiently saturated differentially closed field .K; ı/, and fix a ı-subfield
k of coefficients.

Lemma 2.6. Suppose .V; s/ is a k-irreducible D-variety. The following are equivalent.

(i) .V; s/ is ı-locally closed.

(ii) .V; s/ has finitely many maximal proper k-irreducible D-subvarieties.

(iii) ƒ WD .V; s/].K/ n
S
f.W; s/].K/ WW ¨ V is a D-subvariety over kg is Kolchin constructible.

(iv) The Kolchin generic type of .V; s/].K/ over k is an isolated type.

Proof. (i))(ii). Let W be the maximum proper D-subvariety over k. The k-irreducible components of
W are D-subvarieties of V ; see for example [Kaplansky 1976, Theorem 2.1]. Every proper k-irreducible
D-subvariety of V is contained in one of these components. So the maximal proper k-irreducible
D-subvarieties of V are precisely the k-irreducible components of W .

(ii))(iii). Let W1; : : : ;W` be the maximal proper k-irreducible D-subvarieties of V . ThenS
f.W; s/].K/ WW ¨ V is a D-subvariety over kg D .W1; s/

].K/[ � � � [ .W`; s/
].K/:

(iii))(iv). The Kolchin generic type of .V; s/].K/ over k is the complete type p.X / in DCF0 axiomatised
by the formulas saying that “X 2 .V; s/].K/”, and, for each proper Kolchin closed subset A of .V; s/].K/
over k, the formula “X 62A”. Note that as .V; s/].K/ is defined by r.X /D s.X /, the occurrences of each
ıX in the defining equations of A can be replaced by polynomials, so that ADAZar\ .V; s/].K/, where
AZar denotes the Zariski closure of A in V . When A is over k, we have that AZar is a D-subvariety of V

over k. It follows that the set of realisations of p is precisely ƒ, so that ƒ being Kolchin constructible
implies that p is axiomatised by a single formula, that is, it is isolated.

(iv))(i). Let ƒ be as in statement (iii). As we have seen, this is the set of realisations of the Kolchin
generic type of .V; s/].K/ over k. The latter being isolated implies, by quantifier elimination, that ƒ is
Kolchin constructible. By saturation, this in turn implies that

A WD
S
f.W; s/].K/ WW ¨ V is a D-subvariety over kg

is a finite union, and hence is itself a proper Kolchin closed subset over k. Then AZar is the maximum
proper D-subvariety over k. �

The following lemma will be useful in showing that certain D-varieties satisfy the equivalent conditions
of Lemma 2.6.
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Lemma 2.7. Suppose f W .V; s/! .W; t/ is a dominant D-rational map of k-irreducible D-varieties
over k. The following are equivalent.

(i) .V; s/ has a maximum proper D-subvariety over k.

(ii) .W; t/ has a maximum proper D-subvariety over k, and for some (equivalently, every) k-generic
D-point � of W , the fibre V� WD f

�1.�/Zar has a maximum proper D-subvariety over k.�/.

Proof. We show how this follows easily from basic properties of isolated types, leaving it to the reader to
make the straightforward, but rather unwieldy, translation into an algebro-geometric argument if desired.

(i))(ii). Suppose a 2 .V; s/].K/ is a k-generic D-point. Since f is a dominant D-rational map,
f .a/ 2 .W;T /].K/ is also k-generic. By characterisation (iv) of the previous lemma, tp.a=k/ is isolated.
As f .a/ is in the definable closure of a over k, it follows that tp.f .a/=k/ is isolated. Hence, .W; t/ has
a maximum proper D-subvariety over k.

Now fix � 2 .W; t/].K/ a k-generic D-point, and let a be a k.�/-generic D-point of the fibre V�.
Then a is k-generic in .V; t/, and hence tp.a=k/ is isolated. It follows that the extension tp.a=k.�// is
also isolated. So V� has a maximum proper D-subvariety over k.�/.

(ii))(i). Fix � 2 .W; t/].K/ a k-generic D-point such that V� has a maximum proper D-subvariety
over k.�/. Let a be a k.�/-generic D-point of V�. So tp.a=k.�// and tp.�=k/ are both isolated, implying
that tp.a=k/ is isolated. Since a 2 .V; s/].K/ is k-generic, condition (i) follows. �

2E. Compound isotriviality. Our sufficient condition for ı-rationality to imply ı-local-closedness will
come from looking at isotrivial D-varieties.

Definition 2.8. An irreducible D-variety .V; s/ over k is said to be isotrivial if there is some ı-field
extension F � k such that .V; s/ is D-birationally equivalent over F to a D-variety of the form .W; 0/,
where W is defined over the constants F ı and 0 is the zero section. We say that a possibly reducible
D-variety is isotrivial if every irreducible component is.

This definition comes from model theory: it is a geometric translation of the statement that the Kolchin
generic type of .V; s/].K/ over k is Kı-internal. Note that there is some tension, but no inconsistency,
between isotriviality and ı-rationality; for example, .W; 0/ is far from being ı-rational, instead of there
being no new ı-constants in the rational function field we have that ı is trivial on all of k.W /. The reason
these notions are not inconsistent is that the isotrivial .V; s/ is only of the form .W; 0/ after base change —
that is, over additional parameters — and that makes all the difference.

Fact 2.9. A k-irreducible D-variety that is at once both ı-rational and isotrivial must be ı-locally closed.

Proof. Suppose .V; s/ is a k-irreducible isotrivial D-variety with k.V /ı � kalg. We want to show that V

has a maximum proper D-subvariety over k. The proof we give makes essential use of model theory. We
show how the statement translates to the well-known fact that a type internal to the constants but weakly
orthogonal to the constants is isolated.
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Let p be the Kolchin generic type of .V; s/].K/ over k. By Lemma 2.6, it suffices to show that p is
isolated. That in turn reduces to showing that every extension of p to kalg is isolated. Fix q an extension
of p to kalg. So q is the Kolchin generic type of .bV ; s/].K/ over kalg, for some irreducible componentbV of V . Isotriviality of .V; s/ implies isotriviality of .bV ; s/, and this means that q is internal to the
constants Kı; see, for example, [Kowalski and Pillay 2006, Fact 2.6]. By stability, this implies that the
binding group G D Aut.q=kalg.Kı// is type-definable over kalg; see, for instance, [Hrushovski 2002,
Appendix B]. In fact, G is definable: G lives in the constants and by !-stability of the induced structure
on the constants, every type-definable group in Kı is a definable group. So we have a definable group
acting definably on the set of realisations of q.

On the other hand, for all aˆ q we have that

kalg.a/ı � .k.a/alg/ı D .k.a/ı/alg
� kalg;

where the last containment uses our assumption on k.V /D k.a/. This shows that q is weakly orthogonal
to Kı. So the action of G on the set of realisations of q is transitive. As G is definable, the set of
realisations of q must be definable — that is, q is isolated. �

Using Lemma 2.7 we can extend Fact 2.9 to the case of D-varieties that are built up by a finite sequence
of fibrations by isotrivial D-subvarieties.

Definition 2.10. An irreducible D-variety .V; s/ over k is said to be compound isotrivial if there exists
a sequence of irreducible D-varieties .Vi ; si/ over k, for i D 0; : : : ; `, with dominant D-rational maps
over k

V D V0

f0
// V1

f1
// � � � // V`�1

f`�1
// V` D 0;

where 0 denotes an irreducible zero-dimensional D-variety, and such that the generic fibres of each fi are
isotrivial. That is, for each i D 0; : : : ; `�1, if � is a k-generic D-point in ViC1, then f �1

i .�/Zar, which is
a k.�/-irreducible D-subvariety of .Vi ; si/, is isotrivial. We say .V; s/ is compound isotrivial in ` steps.

While isotriviality is equivalent to the Kolchin generic type being internal to the constants, compound
isotriviality corresponds to that type being analysable in the constants. As this is a less familiar notion,
even among model theorists, we spell out the equivalence here.

Lemma 2.11. Suppose .V; s/ is an irreducible D-variety over k, and a 2 .V; s/].K/ is a k-generic
D-point. Then .V; s/ is compound isotrivial if and only if the type of a over k in DCF0 is analysable
in Kı.

Proof. Analysability in Kı means that there are tuples aD a0; a1; : : : ; a` such that

(i) ai is in the ı-field generated by ai�1 over k, for i D 1; : : : ; `� 1, a` 2 k, and

(ii) the type of ai over the algebraic closure of the ı-field generated by k.aiC1/ is internal to Kı.

If .V; s/ is compound isotrivial one simply takes ai Dfi�1.ai�1/ for i D 1; : : : ; `. Condition (i) is clear —
in fact with “ı-field generated by” replaced by “field generated by” — and condition (ii) follows from



354 Jason Bell, Omar León Sánchez and Rahim Moosa

the fact that ai is a k.aiC1/
alg-generic D-point of one of the irreducible components of f �1

i .aiC1/
Zar,

all of which are isotrivial. For the converse, given a D a0; a1; : : : ; a` satisfying condition (i) and (ii),
one first replaces ai with .ai ; ı.ai/; : : : ; ı

n.ai// for some sufficiently large n, so that ai is a k-generic
D-point of an irreducible D-variety .Vi ; si/ over k. This sequence of D-varieties witnesses the compound
isotriviality, using the fact that the irreducible components of f �1

i .aiC1/
Zar are all conjugate over k.aiC1/

and hence the isotriviality of one implies the isotriviality of them all. �

Remark 2.12 (stability under base change). The definition of compound isotriviality seems to be sensitive
to parameters; the D-varieties Vi and the D-rational maps fi need also be defined over k. In fact, the
notion is stable under base change: if an irreducible D-variety .V; s/ over k is compound isotrivial when
viewed as a D-variety over some ı-field extension F � k then it was already compound isotrivial over k.
A model-theoretic restatement of this is the well-known fact that a stationary type with a nonforking
extension that is analysable in the constants is already analysable in the constants. We leave it to the
reader to formulate a geometric argument.

Note also that (compound) isotriviality is preserved by D-birational maps.

Proposition 2.13. For an irreducible compound isotrivial D-variety over k, ı-rationality implies ı-local-
closedness.

Proof. Suppose .V; s/ is an irreducible compound isotrivial D-variety over k with k.V /ı � kalg. We need
to show that V has a maximum proper D-subvariety over k. We proceed by induction on the number of
steps witnessing the compound isotriviality. The case `D 0 is vacuous. Suppose we have a compound
isotrivial .V; s/ witnessed by

V D V0

f0
// V1

f1
// � � � // V`�1

f`�1
// V` D 0

with ` � 1. Then V1 is compound isotrivial in ` � 1 steps, and as k.V1/ is a ı-subfield of k.V / by
dominance of f0, the induction hypothesis applies to give us a maximum proper D-subvariety of V1

over k.
On the other hand, the generic fibre V� WDf

�1
0
.�/Zar is an isotrivial k.�/-irreducible D-subvariety of V ,

where � is a k-generic D-point of V1. Moreover, as k.�/.V�/D k.V /, V� is ı-rational, and therefore
Fact 2.9 applies to V� and we obtain a maximum proper D-subvariety over k.�/. Now Lemma 2.7 implies
that V has a maximum proper D-subvariety over k. �

Corollary 2.14. Suppose k �Kı and .V; s/ is a D-variety over k with the property that every irreducible
D-subvariety of V over kalg is compound isotrivial. Then .V; s/ satisfies ı-DME.

Proof. By Proposition 2.3, it suffices to show that every ı-rational k-irreducible D-subvariety .W; s/

is ı-locally closed. Note that if k D kalg then .W; s/ is absolutely irreducible, and compound isotrivial
by assumption, so that ı-local-closedness follows by Proposition 2.13. In general, let .W0; s/ be an
absolutely irreducible component of .W; s/. It is over kalg. The ı-rationality of .W; s/ over k implies
the ı-rationality of .W0; s/ over kalg — see, for example, the last paragraph of the proof of Fact 2.9. By
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assumption, .W0; s/ is compound isotrivial, and so by Proposition 2.13 it is ı-locally closed over kalg.
We have shown that every irreducible component of .W; s/ is ı-locally closed over kalg, and it is not hard
to see, by taking the union of the maximum proper D-subvarieties of these components, for example, that
this implies that .W; s/ is ı-locally closed, as desired. �

2F. D-groups over the constants. A D-group is a D-variety .G; s/ over k whose underlying variety G

is an algebraic group, and such that the section s WG! �G is a morphism of algebraic groups. (Note that
there is a unique algebraic group structure on �.G/ which makes the embedding r W G.K/! �G.K/

a homomorphism.) The notions of D-subgroup and homomorphism of D-groups are the natural ones,
with the caveat that, unless stated otherwise, parameters may come from a larger ı-field. The quotient
of a D-group by a normal D-subgroup admits a natural D-group structure. The terms connected and
connected component of identity when applied to D-groups refer just to the underlying algebraic group,
though note that the connected component of identity of a D-group over k is a D-subgroup.

In the context of D-groups, isotriviality is better behaved. A connected D-group .G; s/ is isotrivial if
and only if it is isomorphic as a D-group to one of the form .H; 0/, where H is an algebraic group over
the constants and 0 is the zero section. So one remains in the category of D-groups, and D-birational
equivalence is replaced by D-isomorphism. See the discussion around Fact 2.6 of [Kowalski and Pillay
2006] for a proof of this. In particular, every D-subvariety of an isotrivial D-group is itself isotrivial.
Quotients of isotrivial D-groups are also isotrivial. Moreover, by [Pillay 2006, Corollary 3.10], if a
D-group .G; s/ has a finite normal D-subgroup H such that G=H is isotrivial, then .G; s/ must have
been isotrivial to start with. We also note that, as (compound) isotriviality is preserved under D-birational
maps, when working inside a D-group (compound) isotriviality is preserved under translation by D-points
of G (as these translations are in fact D-automorphisms of G).

The following fact is mostly a matter of putting together various results in the literature on D-groups.
As we will see, it will imply that every D-subvariety of a D-group over the constants is compound
isotrivial in at most 3 steps. At this point it is worth noting that the set of D-points of a D-group is a
subgroup definable in DCF0 of finite Morley rank. Moreover, the ] functor is an equivalence between the
categories of D-groups over k and finite Morley rank groups in DCF0 definable over k; see [Kowalski
and Pillay 2006, Fact 2.6].

Fact 2.15. Suppose .G; s/ is a connected D-group over the constants.

(a) The centre Z.G/ is a normal D-subgroup of G over the constants, and the quotient G=Z.G/ is an
isotrivial D-group.

(b) Let H be the algebraic subgroup of points in Z.G/, where s agrees with the zero section. Then
Z.G/=H is an isotrivial D-group.

Proof. For a proof that Z.G/ is a D-subgroup, see [Kowalski and Pillay 2006, Fact 2.7(iii)]. That
G=Z.G/ is isotrivial was originally proved by Buium [1992] in the centreless case, and then generalised
by Kowalski and Pillay [2006, Theorem 2.10].
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For part (b), note first of all that H is a D-subgroup of Z.G/ by definition; the zero section does
map to the tangent bundle of H . Now, it suffices to show that Zı=H ı is isotrivial, where Zı is the
connected component of identity of Z.G/ and H ı WDZı\H . Let Z WD .Zı; s/].K/, the subgroup of
D-points of Z. Then .H ı; s/].K/D Z.Kı/, the ı-constant points of Z. These are now commutative
ı-algebraic groups. As the ] functor is an equivalence of categories, isotriviality of Zı=H ı follows once
we show that Z=Z.Kı/ is definably isomorphic (over some parameters) to .Kı/n for some n. Because
Zı is a connected commutative algebraic group over the constants, there exists a ı-algebraic group
homomorphism `d WZı!L.Zı/ over k0, where L.Zı/ is the Lie algebra of Zı, the tangent space at
the identity. This homomorphism is called the logarithmic derivative and is defined as

`d.X /Dr.X / � .s.X //�1;

with the operations in TZı. One can check that `d is surjective with kernel Zı.Kı/ (a proof appears in
[Marker 2000, ~3]; see also [Kolchin 1973, ~V.22]). So Z=Z.Kı/ is definably isomorphic to a ı-algebraic
subgroup F of L.Zı/. Since L.Zı/ is a vector group, F is a finite-dimensional Kı-vector subspace (see,
for example, [Pillay 1996, Fact 1.3]), and hence definably isomorphic over a basis to some .Kı/n. �

Suppose .G; s/ is a D-group over a ı-field k and .H; s/ is a D-subgroup over k. Even when H is
not normal, it makes sense to consider the quotient space G=H as an algebraic variety, and s induces
on G=H the natural structure of a D-variety .G=H; Ns/ over k, in such a way that the quotient map
� W G! G=H is a D-morphism. See [Kowalski and Pillay 2006, Fact 2.7(ii)] for details. Now if ˛ is
a D-point of .G=H; Ns/, then the fibre ��1.˛/ is a D-subvariety over k.˛/; and for ˇ a D-point of this
fibre we have ��1.˛/D ˇCH . So each fibre .��1.˛/; s/ is isomorphic to .H; s/ over k.ˇ/. One could
develop in this context the notion of “D-homogeneous spaces”.

Using Fact 2.15 we obtain the following highly restrictive property on the structure of D-subvarieties
of D-groups over the constants.

Proposition 2.16. Suppose .G; s/ is a connected D-group over k0 �Kı . If k is any ı-field extension of
k0 and W is any irreducible D-subvariety of G over k, then W is compound isotrivial in at most 3 steps.

In particular, if W is ı-rational then it is ı-locally closed.

Proof. Consider the normal sequence of D-subgroups

G BZ.G/BH B 0;

where Z.G/ is the centre of G and H is the algebraic subgroup of points in Z.G/ where s agrees with the
zero section. Consider the corresponding sequence of irreducible D-varieties and D-morphisms over k0:

G
�0
// G=H

�1
// G=Z.G/

�2
// 0 :

Since G=Z.G/, Z.G/=H , and H are isotrivial — the first two by Fact 2.15 and the last as s�H is the
zero section — this exhibits G as compound isotrivial in three steps. We can then obtain the same result
for any irreducible D-subvariety of G by using the fact that any element of .G; s/].K/ is a product of
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two generic elements. Alternatively, we can argue as follows, keeping in mind that every D-subvariety of
an isotrivial D-group is itself isotrivial.

If W �G is an irreducible D-variety over k, then we get a sequence of dominant D-morphisms

W
f0
// W1

f1
// W2

f2
// 0;

where W1 �G=H is the Zariski closure of �0.W /, W2 �G=Z.G/ is the Zariski closure of �1.W1/, and
the fi are the appropriate restrictions of the �i . Then W2 is isotrivial, as it is a D-subvariety of G=Z.G/.
If ˛ is a D-point of W2 then f �1

1
.˛/ is a D-subvariety of ��1

1
.˛/ which is isomorphic as a D-variety

to Z.G/=H . So the fibres of f1 over D-points are all isotrivial D-subvarieties of W1. If ˇ is a D-point
of W1 then f �1

0
.ˇ/ is a D-subvariety of ��1

0
.ˇ/ which is isomorphic as a D-variety to H . So the fibres

of f0 over D-points are all isotrivial. Hence, W is compound isotrivial in 3 steps.
The “in particular” clause is by Proposition 2.13. �

We have now proved Theorem A of the introduction:

Corollary 2.17. If k �Kı then every D-group over k satisfies ı-DME.

Proof. Suppose .G; s/ is a D-group over k and W is an irreducible D-subvariety of G over kalg. Then,
over kalg, it is isomorphic to an irreducible D-subvariety of the connected component of identity, G0.
Applying Proposition 2.16 to G0, we have that W is compound isotrivial. So every irreducible D-
subvariety of G over kalg is compound isotrivial. The ı-DME now follows from Corollary 2.14. �

2G. Differential Hopf algebras. In this section we give equivalent algebraic formulations of the ı-DME
and our results so far. This will help us make the connection to the classical DME, which is about
noncommutative associative algebras and as such does not have a direct geometric formulation.

We restrict our attention to the case when ı is trivial on the base field k.
As explained in Section 2A, the standard geometry-algebra duality, which assigns to a variety its coordi-

nate ring, induces an equivalence between the category of k-irreducible affine D-varieties .V; s/ and that
of differential rings .R; ı/, where R is an affine k-algebra and ı is a k-linear derivation. This equivalence
associates to a k-irreducible D-subvariety of V a prime ı-ideal of R. Using this dictionary, we can easily
translate the geometric Definition 2.1, in the case when k �Kı , into the following algebraic counterpart.

Definition 2.18 (ı-DME for affine differential algebras). Suppose R is an affine k-algebra equipped with
a k-linear derivation ı. We say that .R; ı/ satisfies the ı-DME if for every prime ı-ideal P of R, the
following conditions are equivalent:

(i) P is ı-primitive: There exists a maximal ideal m of R such that P is maximal among the prime
ı-ideals contained in m.

(ii) P is ı-locally-closed: The intersection of all the prime ı-ideals of R that properly contain P is a
proper extension of P .

(iii) P is ı-rational: Frac.R=P /ı is contained in kalg.
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The algebraic counterpart of an affine algebraic group G over k is the commutative Hopf k-algebra
R D kŒG�, where the group law G �G ! G induces a coproduct � W R! R˝k R. So what is the
algebraic counterpart of a D-group .G; s/ over k? The following lemma says that it is a differential Hopf
k-algebra, a commutative Hopf k-algebra R equipped with a k-linear derivation ı that commutes with
the coproduct, where ı acts on R˝k R by ı.r1˝ r2/D ır1˝ r2C r1˝ ır2.

Lemma 2.19. Suppose k �Kı and let .G; s/ be a D-variety defined over k such that G is a connected
affine algebraic group. Let ı on RD kŒG� be the corresponding k-linear derivation. Then s WG! TG is
a group homomorphism if and only if ı commutes with the coproduct.

Proof. Unravelling the facts that s induces the derivation ı on kŒG� and that the group operation
m WG �G!G induces the coproduct � on kŒG�, we have that for all f 2 kŒG�,

�.ıf /D ı�.f /() df .s.m.y; z///D d.f ım/.s.y/; s.z//; (2-1)

where .y; z/ are coordinates for G �G. But

d.f ım/.s.y/; s.z//D df ı dm.s.y/; s.z//D df .s.y/� s.z//;

where � denotes the group operation dm W TG � TG ! TG. And so the right-hand side of (2-1) is
equivalent to

df .s.m.y; z///D df .s.y/� s.z//:

But this, asserted for all f 2 kŒG�, is equivalent to s.m.y; z// D s.y/ � s.z/, i.e., that s is a group
homomorphism. �

In other words, the study of connected affine D-groups over the constants is the same thing as the
study of affine differential Hopf k-algebras. So our Theorem A becomes the following.

Theorem 2.20. Every commutative affine differential Hopf algebra over a field of characteristic zero
satisfies ı-DME.

Proof. By Lemma 2.19 our differential Hopf algebra is of the form kŒG� for some connected affine
D-group .G; s/ with k � Kı. By Corollary 2.17, .G; s/ satisfies the ı-DME. So .kŒG�; ı/ satisfies
ı-DME. �

3. Twisting by a group-like element

As it turns out, the application to the classical Dixmier–Moeglin problem that we have in mind, and
that will be treated in Section 4, requires a generalisation of Theorem 2.20. Instead of working with
differential Hopf algebras, we need to consider Hopf algebras equipped with derivations that do not quite
commute with the coproduct. Suppose R is a commutative affine Hopf k-algebra. We use Sweedler
notation2 and write �.r/D

P
r1˝ r2 for any r 2R. Now, for a k-linear derivation ı to commute with

2Recall that in Sweedler notation
P

r1˝ r2 is used to denote an expression of the form
Pd

jD1 rj ;1˝ rj ;2. We use Sweedler
notation throughout, hopefully without confusion.
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� on R means that for all r 2R,

�.ır/D
X

ır1˝ r2C r1˝ ır2:

We wish to weaken this condition by asking instead simply that there exists some a 2 R satisfying
�.a/D a˝ a — that is, a is a group-like element of R — such that for all r 2R,

�.ır/D
X

ır1˝ r2C ar1˝ ır2: (3-1)

That is, we ask ı to be what Panov [2003] calls an a-coderivation. We wish to prove the following.

Theorem 3.1. Suppose k is a field of characteristic zero, R is a commutative affine Hopf k-algebra, and
ı is a k-linear derivation on R that is an a-coderivation for some group-like a 2R. Then .R; ı/ satisfies
the ı-DME.

When a D 1 this is just the case of affine differential Hopf k-algebras, and hence is dealt with by
Theorem 2.20. The general case requires some work. Throughout this section k is a fixed field of
characteristic zero.

Let us begin with a geometric explanation of what this twisting by a group-like element means. First
of all, we have R D kŒG� for some connected affine algebraic group G over k, with the coproduct �
on R induced by the group operation on G, and the derivation ı on R induced by a D-variety structure
s W G ! TG. Note that ı being a k-derivation implies that k � Kı and so �G D TG. Now, as G is
an affine algebraic group, we may assume it is an algebraic subgroup of GLn, so that TG �G �Matn.
Writing sD .id; Ns/, where Ns WG!Matn, we want to express as a property of Ns what it means for ı to be an
a-coderivation. That a 2R is group-like means that a WG!Gm is a homomorphism of algebraic groups.

Lemma 3.2. Suppose G � GLn is a connected affine algebraic group over k, a W G ! Gm is a ho-
momorphism, and s D .id; Ns/ W G ! TG � G �Matn is a D-variety structure on G over k. Then the
corresponding k-linear derivation ı on kŒG� is an a-coderivation if and only if

Ns.gh/D Ns.g/hC a.g/g Ns.h/ (3-2)

for all g; h 2G, where all addition and multiplication is in the sense of matrices.

Proof. Note that for r 2 kŒG�, �.ır/ 2 kŒG �G� is given by

�.ır/.g; h/D dghr.Ns.gh//

for all g; h 2 G, where dr W TG ! A2 is the differential of r W G ! A1. On the other hand, writing
�.r/D

P
r1˝ r2 we haveX

.ır1˝ r2C ar1˝ ır2/.g; h/D
X

dgr1.Ns.g// r2.h/C a.g/r1.g/ dhr2.Ns.h//

D d.g;h/

�X
r1˝ r2

�
.Ns.g/; a.g/Ns.h//

D d.g;h/.�r/.Ns.g/; a.g/Ns.h//;
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where the second equality uses the fact that a.g/ is a scalar. Now, as an element of kŒG�G�,�.r/D r ım,
where m WG �G!G is the restriction of matrix multiplication on GLn. Note that when we differentiate
matrix multiplication we get d.g;h/m.A;B/DAhCgB, for all g; h 2 GLn and A;B 2Matn. Hence,X

.ır1˝ r2C ar1˝ ır2/.g; h/D d.g;h/.�r/.Ns.g/; a.g/Ns.h//

D dghr ı d.g;h/m.Ns.g/; a.g/Ns.h//

D dghr.Ns.g/hCga.g/Ns.h//

D dghr.Ns.g/hC a.g/g Ns.h//:

Hence, ı being an a-coderivation, as in (3-1), is equivalent to

dghr.Ns.gh//D dghr.Ns.g/hC a.g/g Ns.h//

for all r 2 kŒG�. But this implies

Ns.gh/D Ns.g/hC a.g/g Ns.h/;

as desired. �

Definition 3.3. When G is an affine algebraic group and .G; s/ is a D-variety structure such that (3-2)
holds, we say that .G; s/ is an a-twisted D-group.

The following family of examples of 2-dimensional twisted D-groups will play an important role in
the proof.

Example 3.4. Let c 2 k be a parameter. Let RD k
�
x; 1

x
;y
�

with ı the k-linear derivation induced by
ı.x/D xy and ı.y/D 1

2
y2C c.1� x2/. Note that R is the coordinate ring of the algebraic subgroup

E � GL2 made up of matrices of the form �
x y

0 1

�
;

and hence is a commutative affine Hopf k-algebra. We denote by .E; tc/ the D-variety structure on E

induced by ı. Writing tc D .id; Ntc/, we have

Ntc

�
a b

0 1

�
D

�
ab 1

2
b2C c.1� a2/

0 0

�
:

Now a straightforward computation shows that

Ntc

��
a b

0 1

��
a0 b0

0 1

��
D

�
a2a0b0C aa0b 1

2
a2.b0/2C abb0C 1

2
b2C c.1� .aa0/2/

0 0

�
D Ntc

�
a b

0 1

��
a0 b0

0 1

�
C a

�
a b

0 1

�
Ntc

�
a0 b0

0 1

�
:

That is, .E; tc/ is an x-twisted D-group. (Note that x 2R is group-like.) Note that since .E; tc/ is not a
D-group, we cannot use Theorem 2.20 to deduce the ı-DME. However, since the Krull dimension is two,
.E; tc/ does satisfy the ı-DME (see Proposition 2.5).
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Our strategy for proving Theorem 3.1 is to show that every a-twisted D-group over the constants admits
the example described above as an image, with each fibre having the property that every D-subvariety
is compound isotrivial. From the ı-DME for .E; tc/, together with our earlier work around compound
isotriviality and maximum proper D-subvarieties, we will then be able to conclude that every a-twisted
D-group satisfies the ı-DME.

To relate an arbitrary a-twisted D-group to one of those considered in Example 3.4, we will require the
following proposition, whose proof is rather technical, and for which it would be nice to give a conceptual
explanation.

Proposition 3.5. Suppose R is a commutative affine Hopf k-algebra, and ı is a k-linear derivation on R

that is an a-coderivation for some group-like a 2R. Then for some c 2 k we have

aı2aD
3

2
.ıa/2C c.a2

� a4/:

We delay the proof of this proposition until we have established the preliminary Lemmas 3.6 and 3.7
below, for which we fix a commutative affine Hopf k-algebra R, equipped with a k-linear derivation ı,
such that ı is also an a-coderivation for some group-like a 2R. As a is group-like it is invertible in R.
We fix the following sequence of elements in R:

u0 WD a; u1 WD
ıa

a
; u2 WD ıu1�

1

2
u2

1; um WD ı.um�1/ for m� 3.

Note that the desired identity aı2aD 3
2
.ıa/2C c.a2 � a4/ is equivalent to u2 D c.1� a2/; this is our

eventual aim.

Lemma 3.6. For all m� 1, we have

�.um/D um˝ 1C am
˝umC

m�1X
jD2

cj ;maj um�j ˝uj C

X
fi ˝gi ;

where the cj ;m are positive (nonzero) integers, the fi 2 .u1; : : : ;um�1/
2kŒu0; : : : ;um�1�, and the

gi 2 kŒu0; : : : ;um�1�.

Proof. We can compute the coproducts of the elements u0;u1; : : : using the fact that aD u0 is group-like
and ı is an a-coderivation:

�.u0/D a˝ a;

�.u1/D
�

1

a
˝

1

a

�
.ıa˝ aC a2

˝ ıa/D u1˝ 1C a˝u1;

�.u2/D ıu1˝ 1C ıa˝u1C a2
˝ ıu1�

1

2
u2

1˝ 1� au1˝u1� a2
˝

1

2
u2

1 D u2˝ 1C a2
˝u2:

Then for mD 1; 2, the conclusion of the statement of the lemma follows from the above computations
with fi D gi D 0 and the middle sum being empty. Now one computes �.umC1/D�.ıum/ for m� 2,
using the inductively given expression for �.um/ and the fact that ı is an a-coderivation. The rest is a
straightforward brute force computation that we leave to the reader. �
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Lemma 3.7. There exist n� 1, a polynomial P 2 kŒu0; : : : ;un�1�, and some r � 0 such that

un D
P .u0; : : : ;un�1/

ur
0

:

Proof. Since R is finitely generated as a k-algebra, this sequence .um/ cannot be algebraically independent
over k. Choose n minimal such that .u0; : : : ;un/ is algebraically dependent over k. Note that if nD 0

then aD u0 is a constant and so u1 D u2 D 0 by definition. So we assume that n> 0.
So there is some d � 1 such that

ud
n C

X
i<d

Ai.u0; : : : ;un�1/u
i
n D 0; (3-3)

with A0; : : : ;Ad�1 rational functions over k. We may assume that d is minimal. Our first step is to show
that d D 1.

Since R D kŒG� for some connected affine algebraic group G over k, we have that R˝ R is a
domain. Indeed, R ˝ R D kŒG � G� and G � G is a connected affine algebraic group. We can
thus work inside the fraction field of R ˝ R. Let F be the subfield which is the fraction field of
kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�. Note that by the minimality of d , f1;un; : : : ;u

d�1
n g is linearly

independent over k.u0; : : : ;un�1/, from which it follows that fui
n ˝ u

j
n W 0 � i; j < dg is linearly

independent over F . Applying � to both sides of (3-3), Lemma 3.6 gives us that

.un˝ 1C an
˝un/

d
2

X
i<d

F � .un˝ 1C an
˝un/

i
�

X
iCj<d

F � .ui
n˝uj

n/:

On the other hand, ud
n ˝ 1 and and ˝ud

n are also in
P

iCj<d F � .ui
n˝u

j
n/ by (3-3). It follows that

d�1X
iD1

�
d

i

�
an.d�i/ui

n˝ud�i
n 2

X
iCj<d

F � .ui
n˝uj

n/:

If d > 1 then ud�1
n ˝un appears with a nonzero coefficient on the left-hand side but with zero coefficient

on the right-hand side. This contradicts the F -linear independence of .ui
n˝u

j
n W 0� i; j < d/.

So d D 1, and we have that
un D

P .u0; : : : ;un�1/

Q.u0; : : : ;un�1/
; (3-4)

for some relatively prime polynomials P and Q over k. We aim to show that Q is a monomial in u0.
First we argue that Q˝Q divides �.Q/ in S WD kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�, which we note

is the polynomial ring over k in the variables ui ˝ 1; 1˝uj , and hence is a UFD. Indeed,

�.P /D�.Q/�.un/ by applying � to both sides of (3-4)

D�.Q/.un˝ 1C an
˝unCy/ by Lemma 3.6, for some y 2 S

D�.Q/..P=Q/˝ 1C an
˝ .P=Q/Cy/:
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We can then multiply both sides by 1˝Q to see that �.Q/..P=Q/˝Q/ 2 S . Hence, multiplying
by Q˝1, we see that Q˝1 divides�.Q/.P˝Q/D�.Q/.P˝1/.1˝Q/. Since P and Q are relatively
prime, Q˝ 1 divides �.Q/. A similar argument shows that 1˝Q divides �.Q/. Since we are working
in a UFD and 1˝Q and Q˝ 1 are relatively prime, we see that Q˝Q divides �.Q/, as desired.

Let i � n� 1 be the largest index for which ui appears in Q. Then we can write

QD

MX
jD0

u
j
i Qj .u0;u1; : : : ;ui�1/

with M > 0 and QM nonzero. So

Q˝QD .uM
i ˝uM

i /.QM ˝QM /C
X

j ;k<M

.u
j
i ˝uk

i /.Qj ˝Qk/

while, if i � 1, then

�.Q/D

MX
jD0

�.ui/
j Qj .�.u0/; : : : ; �.ui�1//D

X
`Cm�M

f`;m.u
`
i ˝um

i /;

where f`;m 2 kŒu0; : : : ;ui�1�˝k kŒu0; : : : ;ui�1�, by Lemma 3.6. (Note that Lemma 3.6 fails for u0,
so we are using that i � 1 in the above calculation.) But this contradicts Q˝Q dividing �.Q/, since
uM

i ˝uM
i appears in the former while in the latter no u`i ˝um

i appears with `;m�M . So it must be
that i D 0 and we have shown that Q is a polynomial in u0.

Multiplying by a nonzero scalar if necessary, we may assume that Q is in fact a polynomial in u0 with
leading coefficient 1. Let M denote the degree of Q. Then Q.u0/˝Q.u0/ divides �.Q/DQ.u0˝u0/

in S , recalling that u0 D a is group-like. Since both Q.u0/˝Q.u0/ and Q.u0˝u0/ are polynomials of
total degree 2M in the variables u0˝ 1 and 1˝u0 and since they both have leading coefficient 1, we
see that they must be the same. In particular, Q.u0/˝Q.u0/ is a polynomial in u0˝u0 with leading
coefficient 1, which implies that Q.u0/ is of the form ur

0
. �

Proof of Proposition 3.5. Let .R; ı/, a, and the ui be as above. We need to show that u2 D c.1� a2/

for some c 2 k. By Lemma 3.7 we have that there is some n � 1, some r � 0 and some polynomial
P 2 kŒu0; : : : ;un�1� such that

un D
P .u0; : : : ;un�1/

ur
0

; (3-5)

for some polynomial P over k. Our first step is to show that n� 2.
Let S WD kŒu0; : : : ;un�1�˝k kŒu0; : : : ;un�1�. Let

I WD .u1; : : : ;un�1/
2kŒu0; : : : ;un�1�

and consider the ideal of S given by

J WD I ˝ kŒu0; : : : ;un�1�C kŒu0; : : : ;un�1�˝ I:
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So these are the elements of S in which each monomial has degree at least 2 in either the variables
u1˝ 1; : : : ;un�1˝ 1, or in the variables 1˝u1; : : : ; 1˝un�1. Using Lemma 3.6 we can compute that
for 1� i; j ; `� n� 1,

�.uiuj u`/ 2 J: (3-6)

Moreover, for 1� i; j � n� 1, Lemma 3.6 gives

�.uiuj /D u
j
0
ui ˝uj Cui

0uj ˝ui mod J: (3-7)

Now, write the polynomial P of (3-5) as

P D P0.u0/C

n�1X
iD1

Pi.u0/ui C

X
1�i�j�n�1

Pi;j .u0/uiuj CH;

where H is of degree at least three in u1; : : : ;un�1. Applying � to both sides of (3-5) we get
.u0˝u0/

r�.un/D�.P /. We therefore have

.u0˝u0/
r�.un/DP0.u0˝u0/C

n�1X
iD1

Pi.u0˝u0/�.ui/C
X
i�j

Pi;j .u0˝u0/�.uiuj /C�.H /: (3-8)

We claim that this forces Pi D 0 for all i D 1; : : : ; n�1. To prove this, note that by Lemma 3.6 and (3-5),
both sides of (3-8) are elements of the polynomial ring

k.u0˝ 1; 1˝u0/Œu1˝ 1; : : : ;un�1˝ 1; 1˝u1; : : : ; 1˝un�1�:

We first compute, for both sides of (3-8), the coefficient of ui ˝ 1. On the right-hand side, using
equations (3-6) and (3-7), the only term that contributes is Pi.u0 ˝ u0/�.ui/. By Lemma 3.6, that
contribution is Pi.u0 ˝ u0/. On the left-hand side, using Lemma 3.6 and (3-5), the coefficient of
ui ˝ 1 is .u0˝ u0/

r ..Pi.u0/=u
�r
0
/˝ 1/. So Pi.u0/˝ ur

0
D Pi.u0˝ u0/. This forces Pi D dur

0
for

some d 2 k. On the other hand, comparing the coefficient of 1˝ui on both sides of (3-8) we have that
urCn

0
˝Pi.u0/DPi.u0˝u0/.u

i
0
˝1/. Plugging in Pi D dur

0
we get that d.urCn

0
˝ur

0
/D d.urCi

0
˝ur

0
/.

As i < n, this forces d D 0 and hence Pi D 0.
Equation (3-8) therefore becomes

.u0˝u0/
r�.un/D P0.u0˝u0/ C

X
1�i�j�n�1

Pi;j .u0˝u0/.u
j
0
ui ˝uj Cui

0uj ˝ui/ mod J:

Assume towards a contradiction that n� 3. Then by Lemma 3.6 we must have u1˝un�1 appearing in
�.un/ on the left with a nonzero coefficient. So P1;n�1 ¤ 0. But then P1;n�1.u0˝u0/.u0un�1˝u1/

appears on the right, while it does not appear on the left since un�1˝u1 does not appear in �.un/ by
Lemma 3.6.

This contradiction proves that n� 2. Suppose nD 1. Then (3-5) says u1 D P .u0/=u
r
0
. Applying � to

both sides yields
P .u0/˝ur

0CurC1
0
˝P .u0/D P .u0˝u0/;

which is only possible if P0 D 0. Hence u1 D u2 D 0, as desired.
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So we are left to consider the case when nD 2. Equation (3-5) becomes

u2 D
1

ur
0

MX
jD0

Pj .u0/u
j
1

with M � 1, the Pj are polynomials over k, and PM is nonzero. Multiplying by ar (recall that u0 D a)
and applying � gives

.ar
˝ ar /.u2˝ 1C a2

˝u2/D

MX
jD0

Pj .a˝ a/.u1˝ 1C a˝u1/
j ;

which we can write as� MX
jD0

Pj .a/u
j
1
˝ ar

C

MX
jD0

arC2
˝Pj .a/u

j
1

�
D

MX
jD0

Pj .a˝ a/.u1˝ 1C a˝u1/
j :

Notice that if M > 1 then the right-hand side involves terms with ui
1
˝ u

j
1

with i; j � 1, while the
left-hand side does not, and so we cannot have equality. Thus M D 1. Writing out the above equation
with this in mind we get that

P0.a/˝ar
CP1.a/u1˝ar

CarC2
˝P0.a/CarC2

˝P1.a/u1DP0.a˝a/CP1.a˝a/.u1˝1Ca˝u1/:

We look at this as an equation in kŒa˝ 1; 1˝ a� Œu1˝ 1; 1˝u1�. Then taking the coefficient of u1˝ 1

gives that
P1.a/˝ ar

D P1.a˝ a/;

which can only occur if P1 D dar for some d 2 k. Then computing the coefficient of 1˝ u1 gives
arC2˝dar D d.arC1˝ar /, and so d D 0. Hence P1D 0. Now taking the constant coefficient (regarding
constants as being in kŒa˝ 1; 1˝ a�) gives that

P0.a/˝ ar
C arC2

˝P0.a/D P0.a˝ a/:

Now write P0.t/D
PL

jD0 pj tj . Then we have

LX
jD0

pj .a
j
˝ ar

C arC2
˝ aj

� aj
˝ aj /D 0:

Notice that if j 62 fr; r C 2g then we have that the coefficient of aj ˝ aj on the left-hand side is equal to
pj whereas the right-hand side is zero and so pj D 0. It follows that P0.t/D pr tr CprC2trC2. Then

0D

LX
jD0

pj .a
j
˝ ar

C arC2
˝ aj

� aj
˝ aj /D pr arC2

˝ ar
CprC2arC2

˝ ar :

This forces pr D prC2 and so we see that P0.t/ D c.tr � trC2/ for some constant c 2 k. Thus,
u2 D

1
ur

0

.P0.u0/CP1.u0/u1/D c.1�u2
0
/D c.1� a2/, as desired. �
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The following is a geometric interpretation of the proposition.

Proposition 3.8. Suppose k � Kı and .G; s/ is an affine connected a-twisted D-group over k, where
a 2 kŒG� is group-like. Then

g 7!

�
a.g/ ıa.g/

a.g/

0 1

�
defines a homomorphism � W G! E, where E � GL2 is the algebraic subgroup made up of matrices
of the form

�
x
0

y
1

�
. Moreover, there exists some c 2 k such that if .E; tc/ is the a-twisted D-group from

Example 3.4, then � W .G; s/! .E; tc/ is a D-morphism.

Proof. Recall that as a 2 kŒG� is group-like, a W G ! Gm is a homomorphism of algebraic groups. It
follows immediately that � is well-defined and does indeed map G to E. We check that it is a group
homomorphism. Given g; h 2 G, note first of all that as �.a/D a˝ a and ı is an a-coderivation, we
have �.ıa/D ıa˝ aC a2˝ ıa and so

ıa.gh/D�.ıa/.g; h/D ıa.g/a.h/C a.g/2ıa.h/: (3-9)

We can therefore compute

�.g/�.h/D

�
a.g/ ıa.g/

a.g/

0 1

��
a.h/ ıa.h/

a.h/

0 1

�
D

�
a.gh/ a.g/ ıa.h/

a.h/
C
ıa.g/
a.g/

0 1

�

D

�
a.gh/ a.g/2ıa.h/Cıa.g/a.h/

a.gh/

0 1

�
D

�
a.gh/ ıa.gh/

a.gh/

0 1

�
D �.gh/;

where we have used a.gh/D a.g/a.h/ repeatedly and (3-9) in the penultimate equality. We note that
we have not up until this point used the parameter c 2 k; the reason for this is that the groups Ec are
isomorphic as algebraic groups.

It remains to show that � is a D-morphism from .G; s/ to some .E; tc/. Let c be as given by
Proposition 3.5. It suffices to show that � takes D-points to D-points. That is, if g 2 .G; s/].K/ then�

a.g/ ıa.g/
a.g/

0 1

�
should be a D-point of .E; tc/. Writing tc D .id; Ntc/ we have that

Ntc

�
a.g/ ıa.g/

a.g/

0 1

�
D

�
ıa.g/ ıa.g/2

2a.g/2
C c.1� a.g/2/

0 0

�

D

�
ıa.g/ a.g/ı2a.g/�ıa.g/2�c.a.g/2�a.g/4/

a.g/2
C c.1� a.g/2/

0 0

�

D ı

�
a.g/ ıa.g/

a.g/

0 1

�
;
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where the first step comes from Example 3.4, the second step follows from Proposition 3.5 telling us that
aı2aD 3

2
.ıa/2C c.a2� a4/, and in the final equality we are using the fact that as g is a D-point of G,

ı.r.g//D .ır/.g/ for all r 2 kŒG�. This shows that �.g/ 2 .E; tc/].K/, as desired. �

We can now complete the proof of the theorem.

Proof of Theorem 3.1. We have already established that .R; ı/ is the coordinate ring of an affine connected
a-twisted D-group .G; s/, where a 2 kŒG� is group-like. Here recall that k �Kı . By Proposition 2.3, it
suffices to show that every irreducible ı-rational D-subvariety of G over k is ı-locally-closed.

Let � W .G; s/! .E; tc/ be the D-morphism from Proposition 3.8. We first show that every fibre of this
map has the property that all its D-subvarieties, over arbitrary ı-field extensions, are compound isotrivial.

Let us start with the fibre above the identity, that is, H D ker.�/. Since � is a D-morphism, .H; s/
is a D-subvariety of .G; s/. Here, by abuse of notation, we write .H; s/ instead of .H; s�H /. Since
� is an algebraic group homomorphism H is an algebraic subgroup of G. It follows that .H; s/ is an
a�H -twisted D-group also. On the other hand, a�H D 1 by the definition of � . So .H; s/ is an actual
D-group. By Proposition 2.16, every irreducible D-subvariety of H , over any ı-field extension of k, is
compound isotrivial.

What about other fibres of � over D-points of .E; tc/? Any such fibre is a D-subvariety of .G; s/ of
the form Hg, for some g 2 .G; s/].K/. Since .G; s/ is not necessarily a D-group, the multiplication-by-
g-on-the-right map, �g WG!G, is not necessarily a D-automorphism. Nevertheless, when we restrict
this map to H we do get a D-isomorphism between H and Hg. To see this we need only check that �g

takes D-points of H to D-points of Hg. Letting h 2 .H; s/].K/ we compute

Ns.hg/D Ns.h/gC a.h/hNs.g/ by (3-2)

D Ns.h/gC hNs.g/ as a�H D 1

D ı.h/gC hı.g/ as h and g are D-points

D ı.hg/ as r WG! TG is a group homomorphism

as desired. So H and Hg are D-isomorphic over k.g/. It follows that every fibre of � above a D-point
has the property that all its D-subvarieties, over arbitrary ı-field extensions, are compound isotrivial.

Now suppose that V �G is an irreducible ı-rational D-subvariety over k. We need to prove that it has
a maximum proper D-subvariety over k. Let W �E be the D-subvariety obtained by taking the Zariski
closure of the image of V under � , and consider the dominant D-morphism ��V W .V; s/! .W; tc/.
Since k.W / � k.V /, W is also ı-rational. Since .E; tc/ is of dimension two, it satisfies the ı-DME
by Proposition 2.5. Hence W has a maximum proper D-subvariety over k. Next, let � be a k-generic
D-point of W and consider the fibre V�. Note that V� is ı-rational since k.�/.V�/D k.V /. But V� is
a D-subvariety of the fibre of � W .G; s/! .E; tc/ above the D-point �, and hence, as we have argued
above, is compound isotrivial. So, by Proposition 2.13, V� has a maximum proper D-subvariety over k.�/.
We have shown that both the image and the generic fibre have maximum proper D-subvarieties, and so
by Lemma 2.6, .V; s/ has a maximum proper D-subvariety over k, as desired. �
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Remark 3.9. In the end of the above proof we could also have used the fact that .E; tc/, while not in
general isotrivial, is compound isotrivial in two steps. This was observed by Ruizhang Jin, in whose Ph.D.
thesis this example will be worked out. In any case, using the compound isotriviality of .E; tc/ the above
arguments actually give that every D-subvariety of .G; s/ is compound isotrivial (in at most five steps)
from which it follows by Corollary 2.14 that .G; s/ satisfies the ı-DME.

4. The DME for Ore extensions of commutative Hopf algebras

We now apply the results of the previous sections to the classical study of certain (noncommutative) Hopf
algebras. Recall that if A is a noetherian associative algebra over a field k of characteristic zero, then
we say that the Dixmier–Moeglin equivalence (DME) holds for A if for every (two-sided) prime ideal P

of A, the following are equivalent:

(i) P is primitive: it is the annihilator of a simple left A-module.

(ii) P is locally closed: the intersection of all the prime ideals of A that properly contain P is a proper
extension of P .

(iii) P is rational: the centre of the Goldie quotient ring3 Frac.A=P / is an algebraic field extension of k.

Of course, for commutative algebras the DME always holds as the notions of primitive, locally closed,
and rational all coincide with maximal.

It is known that in any algebra that satisfies the Nullstellensatz locally closed implies primitive and
primitive implies rational; see [Brown and Goodearl 2002, II.7.16]. Thus, the central question is when
does rational imply locally closed? Certainly this is not always the case; even in finite Gelfand–Kirillov
dimension a counterexample was found in [Bell et al. 2017a]. In [Bell and Leung 2014] the DME was
conjectured specifically about all Hopf algebras of finite Gelfand–Kirillov dimension.

We show here that the DME holds for Hopf algebras that arise as certain twisted polynomial rings
over commutative Hopf algebras. Recall that if R is a k-algebra equipped with an automorphism � then
a k-linear � -derivation is a k-linear map ı satisfying the twisted Leibniz rule:

ı.rs/D �.r/ı.s/C ı.r/s:

Given � and ı, the Ore extension of R, denoted by RŒxI �; ı� is the ring extension of R with the property
that it is a free left R-module with basis fxn W n� 0g and such that xr D �.r/xC ı.r/ for all r 2R. We
aim to prove the DME for Hopf algebras that arise as the Ore extensions of commutative Hopf algebras.
The next theorem makes this precise.

Theorem 4.1. Suppose k is a field of characteristic zero and R is a commutative affine Hopf k-algebra
equipped with a k-algebra automorphism � and a k-linear � -derivation ı. Assume that the Ore extension
A WDRŒxI �; ı� admits a Hopf algebra structure extending that of R. Then A satisfies the DME.

3The Goldie quotient is an artinian ring of quotients for any prime noetherian ring that imitates the field of fractions
construction for integral domains in the commutative case. See [McConnell and Robson 2001, Chapter 2] for details.
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This is Theorem B2 of the introduction. Its proof is preceded by a number of preliminaries.

4A. Hopf Ore extensions. In this section we prove a result (Corollary 4.4, below) that severely restricts
what .R; �; �; ı/ can be if A D RŒxI �; ı� is to admit a Hopf algebra structure extending that on R.
Actually this was already done in [Brown et al. 2015], answering a question of Panov [2003], in a more
general context where R is not necessarily commutative, but under the additional assumption on A that

�.x/D a˝xCx˝ bC v.x˝x/Cw (4-1)

for some a; b 2R and v;w 2R˝k R. When (4-1) holds, possibly after a change of the variable x, Brown
et al. call RŒxI �; ı� a Hopf Ore extension. They ask if every Ore extension admitting a Hopf algebra
structure extending that on R is a Hopf Ore extension. We prove that this is the case, in a strong way,
when R is commutative and affine (this is Theorem C of the introduction):

Theorem 4.2. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-algebra automorphism � and a k-linear �-derivation ı. If
RŒxI �; ı� admits a Hopf algebra structure extending that of R then, after a linear change of the variable x,

�.x/D a˝xCx˝ bCw

for some a; b 2R, each of which is either 0 or group-like, and some w 2R˝k R.

Proof. Our starting point is [Brown et al. 2015, ~2:2, Lemma 1] which says that if R˝k R is a domain
(which is true here as R is a commutative domain and k is algebraically closed) then

�.x/D s.1˝x/C t.x˝ 1/C v.x˝x/Cw; (4-2)

where s; t; v; w 2 R˝k R. We let A D RŒxI �; ı� and let S denote the antipode of A. By making a
substitution x 7! x � � for some � 2 k, we may assume that �.x/D 0, where � W A! k is the counit.
This substitution does not change the form of �.x/ given in (4-2).

Our first goal is to show that v D 0. Recall that since R is commutative it is of the form RD kŒG� for
a connected affine algebraic group G. We can therefore view v 2R˝k R as a regular function on G�G.
We show first that v.g�1;g/D 0 for all g 2G, and then that in fact v D 0.

We now consider the antipode S . By [Skryabin 2006, Corollary 1], S is bijective on A and its restriction
to R is bijective on R. Thus we can write

S.x/D a0C a1xC � � �C adxd

for some d � 1 and a0; : : : ; ad 2 R with ad ¤ 0. Writing m W A˝k A! A for the homomorphism
induced by multiplication, we have the identity

m ı .S ˝ id/ ı�.x/D �.x/:

So, as �.x/D 0, we may let �Dm ı .S ˝ id/ and use (4-2) to write

0D �.s/xCS.x/�.t/CS.x/�.v/xC�.w/:
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Notice that mı .S˝ id/.R˝R/�R and so if we look at the coefficient of xdC1 on the right-hand side,
we see that it is ad�

d .�.v//. Since R˝R is a domain and ad is nonzero and � is an automorphism,
we see that �.v/ D m ı .S ˝ id/.v/ D 0. Geometrically, this means precisely that v.g�1;g/ D 0 for
all g 2G.

Next we apply coassociativity, which tells us that .�˝id/.�.x//D .id˝�/.�.x// in R˝k R˝k RD

kŒG �G �G�. Writing this out using (4-2), and equating the coefficients of x˝x˝x, yields

.�˝ id/.v/ � .v˝ 1/D .id˝�/.v/ � .1˝ v/:

Evaluating at .g; h�1; h/ for any fixed g; h 2G we get

v.gh�1; h/v.g; h�1/D v.g; 1G/v.h
�1; h/D 0;

where the final equality uses what we proved in the previous paragraph. Now, if v ¤ 0 then for a Zariski
dense set of .g; h/ 2G�G, v.g; h�1/¤ 0. But then for each such .g; h/ the above equation implies that
v.gh�1; h/D 0. Hence, in fact, v.gh�1; h/D 0 for all .g; h/ 2G �G. As every element of G �G can
be written in the form .gh�1; h/, we have shown that v D 0.

We have thus proven that
�.x/D s.1˝x/C t.x˝ 1/Cw (4-3)

for some s; t; w 2R˝k R.
We claim now that either t D 0 or t D 1˝b for some group-like b 2R. We again apply coassociativity

to x, this time using (4-3) and equating the coefficients of x˝ 1˝ 1, to get

.�˝ id/.t/ � .t ˝ 1/D .id˝�/.t/

The geometric interpretation is that

t.fg; h/t.f;g/D t.f;gh/ (4-4)

for all f;g; h 2G.
Suppose t.1G ;g0/D 0 for some g0 2 G. We show in this case that t D 0. Indeed, for all h 2 G we

have 0D t.g0; h/t.1G ;g0/D t.1G ;g0h/, by (4-4) with f D 1G . Hence, t.1G ; h/D 0 for all h 2G. But
then, by (4-4) with f D g�1, we get 0D t.1G ; h/D t.g�1g; h/t.g�1;g/D t.g�1;gh/ for all g; h 2G.
As every element of G �G is of the form .g�1;gh/ for some g; h 2G, we have t D 0, as desired.

Suppose on the contrary that t.1G ;g/¤ 0 for every g 2 G. Then t.g; h/D t.1G ;gh/=t.1G ;g/ is a
never vanishing regular function on G �G, and hence t D �t 0, where � 2 k� and t 0 WG �G! Gm is an
algebraic group homomorphism (see [Rosenlicht 1961, Theorem 3]). So t 0 D b0˝ b, where b0; b 2R are
group-like. But then we have

�b0.g/b.h/D t.g; h/D
t.1G ;gh/

t.1G ;g/
D
�b.gh/

�b.g/
D
�b.g/b.h/

�b.g/

for all g; h 2G. It follows that b0 D �D 1 and t D 1˝ b, as desired.
A similar argument shows that in (4-3) either s D 0 or s D a˝ 1 for some group-like a 2 R. This

proves the theorem. �
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Remark 4.3. It may be worth pointing out that our proof of Theorem 4.2 made no use of ı. We used
only the properties of a Hopf algebra extension and the fact that � is injective, as well as the fact that
every element of A can be written as a left polynomial in x over R.

Corollary 4.4. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-algebra automorphism � and a k-linear �-derivation ı. If
RŒxI �; ı� admits a Hopf algebra structure extending that of R then .R; �; �; ı/ must satisfy the following
two conditions:

(1) There exists w 2R˝k R and a group-like a 2R such that, for all r 2R,

�.ı.r//D
X

.ı.r1/˝ r2C ar1˝ ı.r2//Cw.�.r/��.�.r///:

(2) There is a character � WR! k such that for all r 2R,

�.r/D
X

�.r1/r2 D

X
r1�.r2/:

In the above we are using Sweedler notation, writing �.r/D
P

r1˝ r2 for all r 2R.

Proof. Statements (1) and (2) are proven for Hopf Ore extensions in [Brown et al. 2015]. Indeed,
remembering that in our case R is commutative, statement (2) is just part (i)(c) of the main theorem of
[Brown et al. 2015] (see also their Theorem 2.4(d)), and statement (1) is the identity labelled (21) in
[Brown et al. 2015] which is asserted in part (i)(d) of their main theorem. So to prove the corollary it
suffices to show that ADRŒxI �; ı� is a Hopf Ore extension, that is, after a change of variable �.x/ has
the form (4-1) discussed above. But Theorem 4.2 gives us an even stronger form for �.x/. �

Remark 4.5. The main theorem of [Brown et al. 2015] also includes a converse; namely, assuming that
.R; �; �; ı/ satisfies (1) and (2), with w 2R˝k R satisfying two other identities, one can always extend
in a natural way the Hopf algebra structure from R to RŒxI �; ı�. This gives many examples to which our
Theorem 4.1 will apply.

4B. The case when � is the identity. When � D id note that a �-derivation is just a derivation. In
this case we write the Ore extension as RŒxI ı�; it is the skew polynomial ring in x over R where
xr D rxC ı.r/ for all r 2 R. Statement (1) of Corollary 4.4 now says that if RŒxI ı� admits a Hopf
algebra structure extending that on R, then ı must have been an a-coderivation on R. So Theorem 3.1
applies and we have that .R; ı/ satisfies the ı-DME. The following proposition relates the ı-DME for
.R; ı/ to the DME for RŒxI ı�.

Proposition 4.6. Suppose k is a field of characteristic zero and R is a commutative affine k-algebra
equipped with a k-linear derivation ı. If the ı-rational prime ı-ideals of .R; ı/ are ı-locally-closed, then
the rational prime ideals of RŒxI ı� are locally closed.

In particular, if the ı-DME holds for .R; ı/ then the DME holds for RŒxI ı�.
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Proof. Suppose P is a rational prime ideal of RŒxI ı�. Let I WD P \ R. Then I is a prime ideal
of R (see [Fisher 1975, Corollary to Lemma 2]). Moreover, I is a ı-ideal since if a 2 P \R then
ı.a/ D Œx; a� 2 P \R. It follows easily that J WD IRŒxI ı� is an ideal of RŒxI ı� that is contained in
P and that RŒxI ı�=J Š .R=I/ŒxI ı�, where we use ı to denote the induced derivation on S WD R=I .
Let F D Frac.S/ be the field of fractions of S and extend ı to F . We claim that the ı-constants of
F are all algebraic over k. Indeed, note that if f 2 F with ı.f / D 0 then f is a central element
of F ŒxI ı�. We let QP denote the prime ideal in S ŒxI ı� corresponding to P under the isomorphism
RŒxI ı�=J ŠS ŒxI ı�. As P\RD I , we have that QP\S D 0, so that QP lifts to a prime ideal P0 of F ŒxI ı�.
The image of f in B WD F ŒxI ı�=P0 is again a central element of B. By construction B is a localization
of S ŒxI ı�=eP ŠRŒxI ı�=P and thus passing to the full localization gives that f is a central element of
Frac.RŒxI ı�=P /. As P is rational f must be algebraic over k.

We have shown that the prime ı-ideal I is ı-rational. By assumption it is therefore ı-locally-closed.
Consequently, there is some g 2R n I such that every prime ı-ideal of R properly containing I must
contain g.

In order to prove that P is locally closed it now suffices to show that whenever Q© P is prime then
Q\R© P \RD I . Indeed, if this is the case, then we have that

g 2
T
fQ\R WQ© P primeg:

Since g … P , we have in particular thatT
fQ WQ© P primeg ¤ P:

That is, P is locally closed.
Towards a contradiction, therefore, let us assume that there exists a prime ideal Q © P such that

Q\RD P \RD I . It follows that F ŒxI ı� is not simple: under the isomorphism RŒxI ı�=J Š S ŒxI ı�,
Q corresponds to a nonzero prime ideal eQ in S ŒxI ı� whose intersection with S DR=I is trivial, so thateQ lifts to a nonzero prime ideal Q0 in F ŒxI ı�. On the other hand, it is well-known that, as F is a field of
characteristic zero, if ı is nontrivial on F then F ŒxI ı� is a simple ring (indeed this is a consequence of
the fact that F ŒxI ı� is a left and right PID; see [van der Put and Singer 2003, §2.1]). Thus, ı is trivial
on F and so F ŒxI ı� D F Œx� is a PID. So P0, the lift of eP from S ŒxI ı� to F ŒxI ı�, must be 0, as it is
properly contained in Q0. That is, F ŒxI ı� is a localisation of RŒxI ı�=P . Hence, Frac.RŒxI ı�=P /DF.x/,
contradicting the rationality of P .

For the “in particular” clause, note RŒxI ı� satisfies the Nullstellensatz — by [Irving 1979, Theorem 2]
for example — and hence we already know that local-closedness implies primitivity and primitivity implies
rationality. �

Corollary 4.7. Suppose k is an algebraically closed field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-linear derivation ı that is also an a-coderivation for some
group-like a 2R. Then RŒxI ı� satisfies the DME.

Proof. Theorem 3.1 together with Proposition 4.6. �
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A special case of Corollary 4.7 is when R is a differential Hopf k-algebra — this yields Theorem B1
of the introduction. But the DME for RŒxI ı� in that case is easier: one uses only Theorem 2.20 and the
material in Section 3 is not necessary.

4C. The case when ı is inner. If � is an automorphism of R, and a 2R, then the map r 7! a.r ��.r//

is a � -derivation on R. Such � -derivations are called inner. Here is a sufficient criterion for a � -derivation
ı being inner.4

Lemma 4.8. Suppose R is a commutative ring with an automorphism � and a �-derivation ı. Suppose
there exists an element f 2R such that f � �.f / is a unit. Then ı is inner.

Proof. It is easy to see, using the commutativity of R, that a WD ı.f /=.f ��.f // witnesses the innerness
of .R; �; ı/. �

When ı is inner the Dixmier–Moeglin equivalence for RŒxI �; ı� follows easily from known results. It
makes use however of one more notion:

Definition 4.9. Let A be a finitely generated algebra over a field k. We say that a k-vector subspace V

of A is a frame for A if V is finite-dimensional, contains 1A, and generates A as a k-algebra.

Lemma 4.10. Suppose R is a commutative affine Hopf algebra over a field k of characteristic zero and �
is a k-algebra automorphism of R satisfying statement (2) of Corollary 4.4. Then there is a frame for R

such that �.V /D V .

Proof. Suppose RDkŒG�, where G is an affine algebraic group. Then G is linear and hence we may embed
G into GLn. This gives us a frame V of R spanned by the restriction to G of 1, the coordinate functions
xi;j , and 1

det . Now, �.xi;j /D
P

xi;k ˝xk;j and �
�

1
det

�
D

1
det ˝

1
det . So �.V /� V ˝V . Statement (2)

of Corollary 4.4 then implies that �.V /� V , and hence by finite-dimensionality �.V /D V .5 �

Proposition 4.11. Suppose k is an uncountable algebraically closed field of characteristic zero, R is a
finitely generated commutative k-algebra, � is a k-algebra automorphism of R that preserves a frame,
and ı is an inner � -derivation on R. Then RŒxI �; ı� satisfies the DME.

Proof. When ı D 0 this is [Bell et al. 2017b, Theorem 1.6]; while the theorem there is stated for k D C it
holds for any uncountable algebraically closed field. But if a 2R is such that ı.r/D a.r � �.r// for all
r 2R, then RŒxI �; ı�DRŒt I �; 0�, where t WD x� a. Indeed,

t r D .x� a/r D �.r/xC ı.r/� ar D �.r/x� a�.r/D �.r/t

for all r 2R, and ftn W n� 0g can be seen to be another left R-basis for RŒxI �; ı� using the fact that, for
any polynomial P , P .t/ is equal to P .x/ plus terms of strictly lower degree. So the inner case reduces to
the case when ı D 0. �

4For a more general statement in the noncommutative case, see [Goodearl 1992, Lemma 2.4(b)].
5As a referee pointed out to us, the existence of a frame V with�.V /�V ˝V can be deduced for arbitrary finitely generated

Hopf algebras by starting with any frame W and extending it to a finite-dimensional subcoalgebra V by the finiteness theorem
for coalgebras [Montgomery 1993, Theorem 5.1.1].
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4D. The general case. We fix from now on a field k of characteristic zero. Our proof of Theorem 4.1 will
go via reducing to the case either when � D id or when ı is inner. It will require some preparatory lemmas.
First, let us point out that statement (2) of Corollary 4.4 forces .R; �/ to be of a very restricted form.

Lemma 4.12. Let G be a connected affine algebraic group over k and � WG!G an automorphism of G

over k. Let RD kŒG�, and � D �� the corresponding k-algebra automorphism of R. If .R; �/ satisfies
statement (2) of Corollary 4.4 then � WG!G is translation by some central element of G.k/.

Proof. Since � W R ! k is a homomorphism, there is some c 2 G.k/ such that �.f / D f .c/ for
all f 2 R. If we write �.f / D

P
f1 ˝ f2, then by the definition of the coproduct on R we have

f .ab/D
P
f1.a/f2.b/ for all a; b 2G. Now, property (2) gives us that for all a 2G,

�.f /.a/D
X

�.f1/f2.a/D
X

f1.c/f2.a/D f .ca/:

The other half of the equality in (2) gives �.f /.a/D f .ac/. So f .ca/D f .ac/ for all f 2R, and hence
c is central in G. On the other hand, f .ca/D �.f /.a/D f .�a/ for all f 2R, so � is translation by c. �

We will make use of the following notion.

Definition 4.13. Suppose � is an automorphism of a commutative ring R. A � -prime ideal is a � -ideal
I such that whenever J and K are � -ideals with JK � I then either J � I or K � I .

Note that a �-prime ideal need not be prime. But, at least in the case when R is a commutative
noetherian ring, a �-prime ideal is radical; this follows from the fact that the nilpotent radical of I is a
� -ideal and some power of it is contained in I . We will sometimes need to quotient out by � -prime ideals
that we do not know are prime, which means we will have to work with reduced difference rings that are
not necessarily integral domains. The following lemma about such difference rings will be very useful.

Lemma 4.14. Suppose R is a commutative ring endowed with an automorphism � such that .0/ is
� -prime. If 0¤ f 2R satisfies �.f / 2Rf then f is not a zero divisor in R.

Proof. Let J DRf . Then J is a �-ideal of R. It follows that K WD fr 2R W rf D 0g is also a �-ideal
of R. Then by construction, JK D .0/. Since .0/ is � -prime and J is nonzero, we see that K D .0/ and
so we obtain the desired result. �

Finally, we will make use of the following fundamental result on Ore extensions of commutative
noetherian rings.

Fact 4.15 [Goodearl 1992]. Suppose R is a commutative noetherian ring, � is an automorphism of R,
and ı is a �-derivation. Suppose P is a prime ideal of the Ore extension RŒxI �; ı�, and let I D P \R.
Then one of the following three statements must hold:

(I) RŒxI �; ı�=P is commutative.

(II) I is a .�; ı/-ideal of R — that is, I is preserved under � and ı— and there is a prime ideal I 0 of R

containing I such that �.r/� r 2 I 0 for all r 2R.

(III) I is a � -prime .�; ı/-ideal of R and IRŒxI �; ı� is a prime ideal of RŒxI �; ı�.
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Proof of Theorem 4.1. We have that R is a commutative affine Hopf k-algebra equipped with a k-algebra
automorphism � and a k-linear � -derivation ı, and that the Ore extension A WDRŒxI �; ı� admits a Hopf
algebra structure extending that of R. We wish to show that A satisfies the DME. By [Irving 1979,
Theorem 2] we have that A satisfies the Nullstellensatz, and so it suffices to prove that if P is a rational
prime ideal of A then P is locally closed.

We first reduce to the case when k is algebraically closed. Since R D kŒG�, where G is an affine
algebraic group, and hence smooth, R is integrally closed. Let F denote the field of fractions of R and
let F0 WD kalg\F . Since R is integrally closed, F0 �R. Since F is a finitely generated extension of k,
F0 is a finite extension of k. Let R0 WDR˝F0

kalg. Since F0 is relatively algebraically closed in F , we
see that R0 is again an integral domain. Thus R0 is a commutative affine Hopf kalg-algebra to which we
extend � and ı by kalg-linearity. Suppose we have proven the DME for R0ŒxI �; ı�. Then Irving–Small
reduction techniques (see [Irving and Small 1980] and also [Rowen 1988, Theorem 8.4.27]) give that
ADRŒxI �; ı� satisfies the DME over F0. But since F0 is a finite extension of k, we get the DME over
k also.

Next we reduce to the case when k is uncountable (in order to be able to use Proposition 4.11). Let
L be an uncountable algebraically closed extension of k. Then since k is algebraically closed we see
that R˝k L is a commutative affine Hopf L-algebra, to which we extend � and ı by L-linearity, and
B WD A˝k LŠ .R˝k L/ŒxI �; ı�. Assume the DME holds for B. Let P be a rational prime ideal of
A and let QD P ˝k L. Since k is algebraically closed, Q is a prime ideal of B. Since P is rational and
B=QD .A=P /˝kL, we see that Q is rational. Hence Q is locally closed. Since the primes in A containing
P lift to primes in B containing Q, it follows that P is locally closed in A. So A satisfies the DME.

We may therefore assume that k is uncountable and algebraically closed.
If � D id then ı is a k-linear derivation on R and statement (1) of Corollary 4.4 tells us that it is also

an a-coderivation for some group-like a 2R. It follows by Corollary 4.7 that ADRŒxI ı� satisfies the
DME. So we may assume � ¤ id.

We may also assume that A=P is not commutative. Indeed, if it were, as P is rational, we would have
that Frac.A=P /� k, so that P is a maximal ideal and hence locally closed.

Write RD kŒG�, where G is a connected affine algebraic group over k. By Lemma 4.12 we know that
� D �� where � WG!G is translation by a central (nonidentity) element c 2G.k/.

Our next goal is to reduce to the case that P \RD .0/, though in order to obtain this we will have to
give up on R being an integral domain. Let I DR\P . We have already ruled out case (I) of Fact 4.15.
On the other hand, case (II) cannot hold: � would induce the identity map on R=I 0, implying that �
is the identity on V .I 0/, which contradicts the fact that it is translation on G by a nonidentity element.
Hence case (III) holds; I is a � -prime .�; ı/-ideal of R and J WD IA is a prime ideal of A. Consider now
the reduced quotient ring R WDR=I with the induced automorphism, which we continue to denote by � ,
and the induced �-derivation, which we continue to denote by ı. Let ADA=J ŠRŒxI �; ı� and P the
image of P in A. Since J is contained in P , P is rational in A and it suffices to show that P is locally
closed in A. Note that we have achieved P \RD .0/.
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Next, we claim that there is some non-zero-divisor f 2 R such that .�; ı/ extends to eR WD RŒ1=f �

and ı is inner on eR. To see this, consider the frame V for R, given by Lemma 4.10, that is preserved
by � . The image V of V in R is then a frame for R that is also preserved by � . Using k D kalg, let f
be an eigenvector for the action of � on V , say �.f /D �f for some � 2 k�. By Lemma 4.14, f is not
a zero divisor. Moreover, the multiplicatively closed subset f1; f; f 2; : : :g of R is preserved by � , and
hence by [Goodearl 1992, Lemma 1.3], .�; ı/ extends uniquely to the localisation at this set, namely toeR WD RŒ1=f �. It remains to show that f can be chosen so that ı is inner on eR. If the eigenvalue � is
not equal to 1, then f � �.f /D .1��/f is a unit in eR, and we get ı inner by Lemma 4.8. So suppose
that 1 is the only eigenvalue for � on V . Note that � is not the identity operator on R because � is not
the identity on V .I/. Since V generates R as a k-algebra, � is not the identity on V either. Hence there
must be some Jordan block that is of size greater than one, but with eigenvalue 1. So we can choose the
eigenvector f in such a way that there exists nonzero g 2 V with �.g/D gCf . Hence g� �.g/ is a
unit in eRDRŒ1=f �, and so by Lemma 4.8 again, ı is inner on eR.

To prove that P is locally closed let us consider the following partition of the set of prime ideals of A

that properly extend P :

S1 WD fQ© P WQ prime, and no power of f is in Qg;

S2 WD fQ© P WQ prime, not in S1, and Q\R is a � -prime .�; ı/-idealg;

S3 WD fQ© P WQ prime, and not in S1 or S2g:

It suffices to show that for each of i D 1; 2; 3,
T

Si ¤ P .
For i D 2, note that as �-prime implies radical, we have that f 2 Q for all Q 2 S2, but f … P as

P \RD .0/.
For i D 3, applying Fact 4.15 to Q 2 S3, we have that either A=Q is commutative or there is in

R D R=I a prime ideal I WD I 0=I extending Q\R, and such that � is the identity on R=I D R=I 0.
The latter case is impossible using again that � D �� and � is translation on G by a nonidentity element.
So A=Q is commutative for all Q 2 S3. As A=P DA=P is not commutative there exist a; b 2A such
that g WD Œa; b� … P . But g 2Q for all Q 2 S3.

It remains therefore to consider S1. Let

eAD eRŒxI �; ı�DR
h

1

f

i
ŒxI �; ı�:

As ı is inner on eR, Proposition 4.11 tells us that eA satisfies the Dixmier–Moeglin equivalence. As
P \R D .0/, we know that no power of f is in P , and hence eP WD P eA is a prime ideal. As eA is a
localisation of A we have that eP is rational, and hence locally closed. If Q 2 S1 then QeA is a prime
ideal properly extending eP . So there is ˛ 2 eA n eP such that ˛ 2QeA for all Q 2 S1. For some n� 0, we
have f n˛ 2A. So

f n˛ 2QeA\ADQ:

But f n˛ … P . So
T

S1 ¤ P , as desired. �
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