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W. Zhang’s arithmetic fundamental lemma (AFL) is a conjectural identity between
the derivative of an orbital integral on a symmetric space with an arithmetic
intersection number on a unitary Rapoport–Zink space. In the minuscule case,
Rapoport, Terstiege and Zhang have verified the AFL conjecture via explicit
evaluation of both sides of the identity. We present a simpler way for evaluating
the arithmetic intersection number, thereby providing a new proof of the AFL
conjecture in the minuscule case.

1. Introduction

1.1. Zhang’s arithmetic fundamental lemma. The arithmetic Gan–Gross–Prasad
conjectures (arithmetic GGP) generalize the celebrated Gross–Zagier formula to
higher-dimensional Shimura varieties [Gan et al. 2012, §27; Zhang 2012, §3.2]. The
arithmetic fundamental lemma (AFL) conjecture arises from Zhang’s relative trace
formula approach for establishing the arithmetic GGP for the group U (1, n− 2)×
U (1, n− 1). It relates a derivative of orbital integrals on symmetric spaces to an
arithmetic intersection number of cycles on unitary Rapoport–Zink spaces,

O ′(γ, 1Sn(Zp))=−ω(γ )〈1(Nn−1), (id×g)1(Nn−1)〉. (1.1.0.1)

For the precise definitions of quantities appearing in the identity, see [Rapoport
et al. 2013, Conjecture 1.2]. The left-hand side of (1.1.0.1) is known as the analytic
side and the right-hand side is known as the arithmetic-geometric side. The AFL
conjecture has been verified for n = 2, 3 [Zhang 2012], and for general n in the
minuscule case (in the sense that g satisfies a certain minuscule condition) by
Rapoport, Terstiege and Zhang [2013]. In all these cases, the identity (1.1.0.1) is
proved via explicit evaluation of both sides. When g satisfies a certain inductive
condition, Mihatsch [2016] has recently developed a recursive algorithm which
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reduces the identity (1.1.0.1) to smaller n, thus establishing some new cases of the
AFL conjecture.

In the minuscule case, the evaluation of the analytic side is relatively straightfor-
ward. The bulk of [Rapoport et al. 2013] is devoted to a highly nontrivial evaluation
of the arithmetic-geometric side, which is truly a tour de force. Our main goal
in this short note is to present a new (and arguably simpler) way to evaluate the
arithmetic-geometric side in [Rapoport et al. 2013], henceforth abbreviated [RTZ].

1.2. The main results. Let p be an odd prime. Let F =Qp, k = Fp, W = W (k)
and K =W [1/p]. Let σ be the p-Frobenius acting on Fp, W and K . Let E =Qp2

be the unramified quadratic extension of F . The unitary Rapoport–Zink space Nn

is the formal scheme over Spf W parametrizing deformations up to quasi-isogeny
of height 0 of unitary p-divisible groups of signature (1, n−1) (definitions recalled
in Section 2.1). Fix n ≥ 2 and write N =Nn and M=Nn−1 for short. There is a
natural closed immersion δ :M→N . Denote by1⊆M×W N the image of (id, δ) :
M→M×W N , known as the (local) diagonal cycle or GGP cycle on M×W N .

Let Cn−1 be a nonsplit σ -Hermitian E-space of dimension n − 1. Let Cn =

Cn−1⊕ Eu (where the direct sum is orthogonal and u has norm 1) be a nonsplit
σ -Hermitian E-space of dimension n. The unitary group J = U(Cn) acts on N in
a natural way (see Section 2.2). Let g ∈ J (Qp). The arithmetic-geometric side of
the AFL conjecture (1.1.0.1) concerns the arithmetic intersection number of the
diagonal cycle 1 and its translate by id×g, defined as

〈1, (id×g)1〉 := log p ·χ(M×W N ,O1⊗L O(id×g)1).

When 1 and (id×g)1 intersect properly, namely when the formal scheme

1∩ (id×g)1∼= δ(M)∩N g (1.2.0.1)

is an Artinian scheme (where N g denotes the fixed points of g), the intersection
number is simply log p times the W-length of the Artinian scheme (1.2.0.1).

Recall that g ∈ J (Qp) is called regular semisimple if

L(g) :=OE · u+OE · gu+ · · ·+OE · gn−1u

is an OE -lattice in Cn . In this case, the invariant of g is the unique sequence of
integers

inv(g) := (r1 ≥ r2 ≥ · · · ≥ rn)

characterized by the condition that there exists a basis {ei } of the lattice L(g) such
that {p−ri ei } is a basis of the dual lattice L(g)∨. It turns out that the “bigger” inv(g)
is, the more difficult it is to compute the intersection. With this in mind, recall that a
regular semisimple element g is called minuscule if r1 = 1 and rn ≥ 0 (equivalently,
pL(g)∨ ⊆ L(g)⊆ L(g)∨). In this minuscule case, the intersection turns out to be
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proper, and one of the main results of [RTZ] is an explicit formula for the W-length
of (1.2.0.1) at each of its k-point.

To state the formula, assume g is regular semisimple and minuscule, and suppose
N g is nonempty. Then g stabilizes both L(g)∨ and L(g) and thus acts on the
Fp2-vector space L(g)∨/L(g). Let P(T ) ∈ Fp2[T ] be the characteristic polynomial
of g acting on L(g)∨/L(g). For any irreducible polynomial R(T ) ∈ Fp2[T ], we
denote its multiplicity in P(T ) by m(R(T )) and define its reciprocal by

R∗(T ) := T deg R(T )
· σ
(
R
( 1

T

))
.

We say R(T ) is self-reciprocal if R(T )= R∗(T ). By [RTZ, 8.1], if (δ(M)∩N g)(k)
is nonempty, then P(T ) has a unique self-reciprocal monic irreducible factor
Q(T ) | P(T ) such that m(Q(T )) is odd. We denote

c :=
1
2
(m(Q(T ))+ 1).

Then 1≤ c ≤ 1
2(n+ 1). Now we are ready to state the intersection length formula.

Theorem A [RTZ, Theorem 9.5]. Assume g is regular semisimple and minuscule.
Assume p > c. Then for any x ∈ (δ(M) ∩ N g)(k), the complete local ring of
δ(M)∩N g at x is isomorphic to k[X ]/X c, and hence has W-length equal to c.

We will present a simpler proof of Theorem A in Theorem 4.3.5. Along the way,
we will also give a simpler proof of the following Theorem B in Corollary 3.2.3,
which concerns minuscule special cycles (recalled in Section 2.10) on unitary
Rapoport–Zink spaces and may be of independent interest.

Theorem B [RTZ, Theorems 9.4 and 10.1]. Let v = (v1, . . . , vn) be an n-tuple
of vectors in Cn . Assume it is minuscule in the sense that L(v) := spanOE

v is
an OE -lattice in Cn satisfying pL(v)∨ ⊆ L(v) ⊆ L(v)∨. Let Z(v) ⊆ N be the
associated special cycle. Then Z(v) is a reduced k-scheme.

1.3. Novelty of the proof. The original proofs of Theorems A and B form the
technical heart of [RTZ] and occupy its two sections §10–§11. As explained below,
our new proofs presented here have the merit of being much shorter and more
conceptual.

1.3.1. Theorem A. The original proof of Theorem A uses Zink’s theory of windows
to compute the local equations of (1.2.0.1). It requires explicitly writing down
the window of the universal deformation of p-divisible groups and solving quite
involved linear algebra problems. Theorem B ensures that the intersection is entirely
concentrated in the special fiber so that each local ring has the form k[X ]/X`. The
assumption p > c ensures ` < p so that the ideal of local equations is admissible
(see the last paragraph of [RTZ, p. 1661]), which is crucial in order to construct the
frames for the relevant windows needed in Zink’s theory.
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Our new proof of Theorem A does not use Zink’s theory and involves little
explicit computation. Our key observation is that Theorem B indeed allows us
to identify the intersection (1.2.0.1) as the fixed point scheme V(3)g of a finite
order automorphism g on a generalized Deligne–Lusztig variety V(3) (Section 4.1),
which becomes purely an algebraic geometry problem over the residue field k.
When p > c, it further simplifies to a more elementary problem of determining the
fixed point scheme of a finite order automorphism g ∈ GLd+1(k) on a projective
space Pd over k (Section 4.2). This elementary problem has an answer in terms
of the sizes of the Jordan blocks of g (Lemma 4.3.4), which explains conceptually
why the intersection multiplicity should be equal to c. Notice that our method
completely avoids computation within Zink’s theory, and it would be interesting to
explore the possibility of removing the assumption p > c using this method.

1.3.2. Theorem B. The original proof of Theorem B relies on showing two things
(by [RTZ, Lemma 10.2]): (1) the minuscule special cycle Z(v) has no W/p2-
points and (2) its special fiber Z(v)k is regular. Step (1) is relatively easy using
Grothendieck–Messing theory. Step (2) is more difficult: for super-general points
x on Z(v)k , the regularity is shown by explicitly computing the local equation of
Z(v)k at x using Zink’s theory; for points which are not super-general, the regularity
is shown using induction and reduces to the regularity of certain special divisors,
whose local equations can again be explicitly computed using Zink’s theory.

Our new proof of Theorem B does not use Zink’s theory either and involves
little explicit computation. Our key observation is that to show both (1) and (2)
it suffices to consider the thickenings O of k which are objects of the crystalline
site of k. These O-points of Z(v) then can be understood using only Grothendieck–
Messing theory (Theorem 3.1.3). We prove a slight generalization of (1) which
applies to possibly nonminuscule special cycles (Corollary 3.2.1). We then prove
the tangent space of the minuscule special cycle Z(v)k has the expected dimension
(Corollary 3.2.2). The desired regularity (2) follows immediately.

1.3.3. Our new proofs are largely inspired by our previous work on arithmetic
intersections on GSpin Rapoport–Zink spaces [Li and Zhu 2017]. The GSpin
Rapoport–Zink spaces considered there are not of PEL type, which makes them
technically more complicated. So the unitary case treated here can serve as a
guide to [Li and Zhu 2017]. We have tried to indicate similarities between certain
statements and proofs, for both clarity and the convenience of the readers.

1.4. Structure of the paper. In Section 2, we recall necessary backgrounds on
unitary Rapoport–Zink spaces and the formulation of the arithmetic intersection
problem. In Section 3, we study the local structure of the minuscule special cycles
and prove Theorem B. In Section 4, we provide an alternative moduli interpretation
of the generalized Deligne–Lusztig variety V(3) and prove Theorem A.
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2. Unitary Rapoport–Zink spaces

In this section we review the structure of unitary Rapoport–Zink spaces. We refer
to [Vollaard 2010; Vollaard and Wedhorn 2011; Kudla and Rapoport 2011] for the
proofs of these facts.

2.1. Unitary Rapoport–Zink spaces. Let p be an odd prime. Let F =Qp, k = Fp,
W =W (k) and K =W [1/p]. Let σ be the p-Frobenius acting on Fp, and we also
denote by σ the canonical lift of the p-Frobenius to W and K . For any Fp-algebra
R, we also denote by σ the Frobenius x 7→ x p on R.

Let E = Qp2 be the unramified quadratic extension of F . Fix a Qp-algebra
embedding φ0 :OE ↪→W and denote by φ1 the embedding σ ◦φ0 :OE ↪→W . The
embedding φ0 induces an embedding between the residue fields Fp2 ↪→ k, which
we shall think of as the natural embedding. For any OE -module 3 we shall write
3W for 3⊗OE ,φ0 W .

Let r and s be positive integers and let n = r + s. We denote by Nr,s the unitary
Rapoport–Zink spaces of signature (r, s), a formally smooth formal W-scheme,
parametrizing deformations up to quasi-isogeny of height 0 of unitary p-divisible
groups of signature (r, s). More precisely, for a W-scheme S, a unitary p-divisible
groups of signature (r, s) over S is a triple (X, ι, λ), where

(1) X is a p-divisible group of dimension n and height 2n over S,

(2) ι :OE → End(X) is an action satisfying the signature (r, s) condition, i.e., for
α ∈OE ,

char
(
ι(α) : Lie X

)
(T )= (T −φ0(α))

r (T −φ1(σ ))
s
∈OS[T ],

(3) λ : X→ X∨ is a principal polarization such that the associated Rosati involution
induces α 7→ σ(α) on OE via ι.

Over k, there is a unique such triple (X, ι, λ) such that X is supersingular, up to
OE -linear isogeny preserving the polarization up to scalars. Fix such a framing
triple and denote it by (X, ιX, λX).

Let NilpW be the category of W-schemes on which p is locally nilpotent. Then
the unitary Rapoport–Zink space Nr,s represents the functor NilpW → Sets which
sends S ∈NilpW to the set of isomorphism classes of quadruples (X, ι, λ, ρ), where
(X, ι, λ) is a unitary p-divisible group over S of signature (r, s) and ρ : X×S Sk→

X×k Sk is an OE -linear quasi-isogeny of height zero which respects λ and λX up
to a scalar c(ρ) ∈O×F = Z×p (i.e., ρ∨ ◦ λX ◦ ρ = c(ρ) · λ).

In the following we denote N :=N1,n−1, M :=N1,n−2 and N 0 :=N0,1∼= Spf W .
They have relative dimension n− 1, n and 0 over Spf W respectively. We denote
by Y = (Y, ιY, λY) the framing object for N 0 and denote by Y = (Y , ιY , λY ) the
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universal p-divisible group over N 0. We may and shall choose framing objects
X = (X, ιX, λX) and X[

= (X[, ιX[, λX[) for N and M respectively such that

X = X[
×Y

as unitary p-divisible groups.

2.2. The group J. The covariant Dieudonné module M = D(X) of the framing
unitary p-divisible group is a free W-module of rank 2n together with an OE -action
(induced by ι) and a perfect symplectic W-bilinear form 〈 · , · 〉 : M × M → W
(induced by λ), see [Vollaard and Wedhorn 2011, §2.3]. Let N = M ⊗W K be the
associated isocrystal and extend 〈 · , · 〉 to N bilinearly. Let F and V be the usual
operators on N . We have

〈Fx, Fy〉 = pσ(〈x, y〉), ∀x, y ∈ N . (2.2.0.1)

The E-action decomposes N into a direct sum of two K -vector spaces of dimen-
sion n,

N = N0⊕ N1, (2.2.0.2)

where the action of E on Ni is induced by the embedding φi . Both N0 and N1 are
totally isotropic under the symplectic form. The operator F is of degree one and
induces a σ -linear bijection N0 −→

∼ N1. Since the isocrystal N is supersingular, the
degree 0 and σ 2-linear operator

8= V−1 F = p−1 F2

has all slopes zero [Kudla and Rapoport 2011, §2.1]. We have a K -vector space N0

together with a σ 2-linear automorphism 8.1 The space of fixed points

C = N8
0

is an E-vector space of dimension n and N0 = C ⊗E,φ0 K . Fix δ ∈ O×E such that
σ(δ)=−δ. Define a nondegenerate σ -sesquilinear form on N0 by

{x, y} := (pδ)−1
〈x, Fy〉. (2.2.0.3)

Using (2.2.0.1) it is easy to see that

σ({x, y})= {8y, x}, ∀x, y ∈ N0. (2.2.0.4)

In particular, when restricted to C , the form { · , · } is σ -Hermitian, namely

σ({x, y})= {y, x}, ∀x, y ∈ C. (2.2.0.5)

1Such a pair (N0,8) is sometimes called a relative isocrystal.
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In fact, (C, { · , · }) is the unique (up to isomorphism) nondegenerate nonsplit σ -
Hermitian E-space of dimension n. Let J =U(C) be the unitary group of (C, { · , · }).
It is an algebraic group over F =Qp. By Dieudonné theory, the group J (Qp) can
be identified with the automorphism group of the framing unitary p-divisible group
(X, ιX, λX) and hence acts on the Rapoport–Zink space N .

2.3. Special homomorphisms. By definition, the space of special homomorphisms
is the OE -module HomOE (Y,X). There is a natural OE -valued σ -Hermitian form
on HomOE (Y,X) given by

(x, y) 7→ λ−1
Y
◦ ŷ ◦ λX ◦ x ∈ EndOE (Y)−→

∼ OE .

By [Kudla and Rapoport 2011, Lemma 3.9], there is an isomorphism of σ -Hermitian
E-spaces

HomOE (Y,X)⊗OE E −→∼ C. (2.3.0.1)

Therefore we may view elements of C as special quasi-homomorphisms.

2.4. Vertex lattices. For any OE -lattice 3⊂ C , we define the dual lattice 3∨ :=
{x ∈ C : {x,3} ⊆OE }. It follows from the σ -Hermitian property (2.2.0.5) that we
have (3∨)∨ =3.

A vertex lattice is an OE -lattice 3⊆ C such that p3⊆3∨ ⊆3. Such lattices
correspond to the vertices of the Bruhat–Tits building of the unitary group U(C).
Fix a vertex lattice 3. The type of 3 is defined to be t3 := dimFp2 3/3

∨, which is
always an odd integer such that 1≤ t3 ≤ n (see [Vollaard 2010, Remark 2.3]).

We define �0(3) :=3/3
∨ and equip it with the perfect σ -Hermitian form

( · , · ) :�0(3)×�0(3)→ Fp2, (x, y) := p{x̃, ỹ} mod p,

where { · , · } is the Hermitian form on C defined in (2.2.0.3), and x̃, ỹ ∈3 are lifts
of x and y.

We define

�(3) :=�0(3)⊗Fp2 k.

Remark 2.4.1. Our �0(3) is the space V in [Vollaard 2010, (2.11)], and our
pairing ( · , · ) differs from the pairing ( · , · ) defined in [loc. cit.] by a factor of the
reduction δ ∈ F×p2 of δ.

2.5. The variety V(3). Let 3 be a vertex lattice and let �0=�0(3). Recall from
Section 2.4 that �0 is an Fp2-vector space whose dimension is equal to the type
t = t3 of 3, an odd number. Let d := (t − 1)/2. We define V(�0) to be the closed
Fp2-subscheme of the Grassmannian Grd+1(�0) (viewed as a scheme over Fp2) such
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that for any Fp2-algebra R,

V(�0)(R)= {R-module local direct summands U ⊆�0⊗Fp2 R :

rank U = d + 1 and U⊥ ⊆U }. (2.5.0.1)

Here U⊥ is by definition {v ∈ �0 ⊗ R : (v, u)R = 0,∀u ∈ U }, where ( · , · )R is
the R-sesquilinear form on �0⊗ R obtained from ( · , · ) by extension of scalars
(linearly in the first variable and σ -linearly in the second variable). Then V(�0) is a
smooth projective Fp2-scheme of dimension d by [Vollaard 2010, Proposition 2.13]
and Remark 2.4.1. In fact, V(�0) can be identified as a (generalized) Deligne–
Lusztig variety, by [Vollaard and Wedhorn 2011, §4.5] (though we will not use this
identification in the following).

We write V(3) for the base change of V(�0) from Fp2 to k.

2.6. Structure of the reduced scheme N red. For each vertex lattice 3 ⊆ C , we
define N3 ⊆ N to be the locus where ρ−1

X ◦3
∨
⊆ Hom(Y , X), i.e., where the

quasi-homomorphisms ρ−1
◦v lift to actual homomorphisms for any v ∈3∨. Then

N3 is a closed formal subscheme by [Rapoport and Zink 1996, Proposition 2.9].
By [Vollaard and Wedhorn 2011, §4] we have an isomorphism of k-varieties

N red
3 −→

∼ V(3). (2.6.0.1)

2.7. Some invariants associated to a k-point of N . We follow [Kudla and Rapo-
port 2011, §2.1].

Let x be a point in N (k). Then x represents a tuple (X, ι, λ, ρ) over k as recalled
in Section 2.1. Via ρ, we view the Dieudonné module of X as a W-lattice Mx in N ,
which is stable under the operators F and V . The endomorphism structure ι induces
an action of OE ⊗Zp W ∼=W ⊕W on Mx , which is equivalent to the structure of a
Z/2Z-grading on Mx (into W-modules). We denote this grading by

Mx = gr0 Mx ⊕ gr1 Mx .

This grading is compatible with (2.2.0.2) in the sense that

gri Mx = Mx ∩ Ni , i = 0, 1.

Moreover both gr0 Mx and gr1 Mx are free W-modules of rank n.
Consider the k-vector space Mx,k := Mx ⊗W k. It has an induced Z/2Z-grading,

as well as a canonical filtration Fil1(Mx,k) ⊂ Mx,k . Explicitly, Fil1(Mx,k) is the
image of V (Mx)⊆ Mx under the reduction map Mx → Mx,k . Define

Fil1(gri Mx,k) := Fil1(Mx,k)∩ gri Mx,k .

Then
Fil1(Mx,k)= Fil1(gr0 Mx,k)⊕Fil1(gr1 Mx,k),
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and by the signature (1, n−1) condition we know that Fil1(gr0 Mx,k) is a hyperplane
and Fil1(gr1 Mx,k) is a line in gr0 Mx,k and gr1 Mx,k , respectively.

The symplectic form 〈 · , · 〉 on N takes values in W on Mx , and hence induces a
symplectic form on Mx,k by reduction. The latter restricts to a k-bilinear nondegen-
erate pairing

gr0 Mx,k × gr1 Mx,k→ k.

Under the above pairing, the spaces Fil1(gr0 Mx,k) and Fil1(gr1 Mx,k) are annihila-
tors of each other. Equivalently, Fil1(Mx,k) is a totally isotropic subspace of Mx,k .

2.8. Description of k-points by special lattices. For a W-lattice A in N0, we define
its dual lattice to be A∨ := {x ∈ N0 : {x, A} ⊆W }. If 3 is an OE -lattice in C , then
we have (3W )

∨
= (3∨)W . In the following we denote both of them by 3∨W .

Definition 2.8.1. A special lattice is a W-lattice A in N0 such that

A∨ ⊆ A ⊆ p−1 A∨

and such that A/A∨ is a one-dimensional k-vector space.

Remark 2.8.2. The apparent difference between the above definition and the con-
dition in [Vollaard 2010, Proposition 1.10] (for i = 0) is caused by the fact that we
have normalized the pairing { · , · } on N0 differently from [loc. cit.], using an extra
factor (pδ)−1 (see (2.2.0.3)). Our normalization is the same as that in [RTZ].

Recall the following result.

Proposition 2.8.3 [Vollaard 2010, Proposition 1.10]. There is a bijection from N (k)
to the set of special lattices, sending a point x to gr0 Mx considered in Section 2.7.

�

Remark 2.8.4. Let x ∈ N (k) and let A be the special lattice associated to it by
Proposition 2.8.3. Let 3 be a vertex lattice. Then x ∈N3(k) if and only if A⊆3W ,
if and only if 3∨W ⊆ A∨. (See also Remark 3.1.5 below.)

2.9. Filtrations. We introduce the following notation:

Definition 2.9.1. Let A be a special lattice. Write Ak := A⊗W k. Let x ∈ N (k)
correspond to A under Proposition 2.8.3. Thus Ak = gr0 Mx,k . Define Fil1(Ak) :=

Fil1(gr0 Mx,k) (see Section 2.7). It is a hyperplane in Ak .

Lemma 2.9.2. Let A be a special lattice. Then 8−1(A∨) is contained inside A,
and its image in Ak is equal to Fil1(Ak).

Proof. Let A correspond to x ∈N (k) under Proposition 2.8.3. Then F and V both
preserve the W-lattice Mx in N (see Section 2.7). By definition, Fil1(Mx,k) is the
image of V (Mx)⊆ Mx under the reduction map Mx→ Mx,k . Since the operator V
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is of degree 1 with respect to the Z/2Z-grading, we see that Fil1(Ak) is the image
of V (gr1 Mx)⊆ A under A→ Ak . It suffices to prove that

8−1(A∨)= V (gr1 Mx). (2.9.2.1)

By the proof of [Vollaard 2010, Proposition 1.10], we have gr1 Mx = F−1 A∨.
(Note that because of the difference of normalizations as discussed in Remark 2.8.2,
what is denoted by A∨ here is denoted by p A∨ in [loc. cit.]. Also note that the
integer i appearing [loc. cit.] is 0 in our case.) Therefore V (gr1 Mx)= V (F−1 A∨).
But V F−1

= (V−1 F)−1
=8−1 because V F = FV = p. Thus (2.9.2.1) holds as

desired. �

2.10. Special cycles. Let v be an arbitrary subset of C . We define the special
cycle Z(v) ⊆ N to be the locus where ρ−1

◦ v ∈ Hom(Y , X) for all v ∈ v, i.e.,
all the quasi-homomorphisms ρ−1

◦ v lift to actual homomorphisms. Note that
Z(v) only depends on the OE -submodule L(v) spanned by v in C , and we have
Z(v)= Z(L(v)).

We say v is minuscule if L(v) is an OE -lattice in C satisfying pL(v)∨ ⊆ L(v)⊆
L(v)∨, or equivalently, if L(v) is the dual of a vertex lattice. When this is the case
we have Z(v)=NL(v)∨ by definition.

2.11. The intersection problem. Let C[ be the analogue for M of the Hermitian
space C . Then C ∼= C[

⊕ Eu for some vector denoted by u which is of norm 1 and
orthogonal to C[. We have a closed immersion

δ :M→N ,

sending (X, ι, λ, ρ) to (X×Y , ι× ιY , λ×λY , ρ× id). We have δ(M)=Z(u). The
closed immersion δ induces a closed immersion of formal schemes

(id, δ) :M→M×W N .

Denote by 1 the image of (id, δ), which we call the (local) GGP cycle. For any
g ∈ J (Qp), we obtain a formal subscheme

(id×g)1⊆M×W N ,

via the action of g on N . Let g ∈ J (Qp) and let N g
⊆N be the fixed locus of g.

Then by definition we have

1∩ (id×g)1∼= δ(M)∩N g.

Our goal is to compute the arithmetic intersection number

〈1, (id×g)1〉,
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when g is regular semisimple and minuscule (as defined in the introduction). Notice
that g ∈ J (Qp) is regular semisimple if and only if v(g) := (u, gu, . . . , gn−1u) is
an E-basis of C . Also notice that a regular semisimple element g is minuscule if
and only if v(g) is minuscule in the sense of Section 2.10.

3. Reducedness of minuscule special cycles

3.1. Local structure of special cycles.

Definition 3.1.1. Let C be the following category:

• Objects in C are triples (O,O→ k, δ), where O is a local Artinian W-algebra,
O→ k is a W-algebra map, and δ is a nilpotent divided power structure on
ker(O→ k) (see [Berthelot and Ogus 1978, Definitions 3.1, 3.27]).

• Morphisms in C are W-algebra maps that are compatible with the structure
maps to k and the divided power structures.

3.1.2. Let x ∈N (k) correspond to a special lattice A under Proposition 2.8.3. Let
O ∈ C. By a hyperplane in AO := A⊗W O we mean a free direct summand of
AO of rank n− 1. We define the Z/2Z-grading on Mx,O := Mx ⊗W O by linearly
extending that on Mx (see Section 2.7). Denote by N̂x the completion of N at x .
For any x̃ ∈ N̂x(O), we have a unitary p-divisible group of signature (1, n−1) over
O deforming that over k defined by x . By Grothendieck–Messing theory, we obtain
the Hodge filtration Fil1x̃ Mx,O ⊆ Mx,O. Define fO(x̃) to be the intersection

Fil1x̃ Mx,O ∩ gr0 Mx,O

inside Mx,O. By the signature (1, n−1) condition, fO(x̃) is a hyperplane in AO. It
also lifts Fil1 Ak (see Definition 2.9.1) by construction. Thus we have defined a
map

fO : N̂x(O)−→∼ {hyperplanes in AO lifting Fil1 Ak}. (3.1.2.1)

By construction, fO is functorial in O in the sense that the collection ( fO)O∈C is a
natural transformation between two set-valued functors on C. Here we are viewing
the right hand side of (3.1.2.1) as a functor in O using the base change maps.

The following result is the analogue of [Li and Zhu 2017, Theorem 4.1.7]. As
a direct consequence of the PEL moduli problem, it should be well known to the
experts and is essentially proved in [Kudla and Rapoport 2011, Proposition 3.5].

Theorem 3.1.3. Keep the notations in Section 3.1.2:

(1) The natural transformation ( fO)O∈C is an isomorphism.
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(2) Let v be a subset of C. If x ∈Z(v)(k), then v⊆ A. Suppose x ∈Z(v)(k). Then
for any O ∈ C the map fO induces a bijection

Ẑ(v)x(O)−→∼

{hyperplanes in AO lifting Fil1 Ak and containing the image of v in AO}.

Proof. (1) We need to check that for all O ∈ C the map fO is a bijection. Let
x̃ ∈ N̂x(O). This represents a deformation over O of the p-divisible group at x .
Similarly to the situation in Section 2.7, the compatibility with the endomorphism
structure implies that

Fil1x̃ Mx,O =

1⊕
i=0

Fil1x̃ Mx,O ∩ gri Mx,O.

By the compatibility with the polarization, we know that Fil1x̃ Mx,O is totally
isotropic under the symplectic form on Mx,O. It follows that the two modules
Fil1x̃ Mx,O ∩ gr1 Mx,O and Fil1x̃ Mx,O ∩ gr0 Mx,O are annihilators of each other if
we identify gr1 Mx,O as the O-linear dual of gr0 Mx,O using the symplectic form
on Mx,O. Therefore, Fil1x̃ Mx,O can be recovered from fO(x̃). This together with
Grothendieck–Messing theory proves the injectivity of fO. The surjectivity of fO
also follows from Grothendieck–Messing theory and the above way of reconstructing
Fil1x̃ Mx,O from its intersection with gr0 Mx,O. Note that the unitary p-divisible
groups reconstructed in this way do satisfy the signature condition because we have
started with hyperplanes in AO.

(2) The statements follow from the proof of [Kudla and Rapoport 2011, Proposi-
tion 3.5] and the definition of (2.3.0.1) in [Kudla and Rapoport 2011, Lemma 3.9].
We briefly recall the arguments here. If φ ∈ HomOE (Y,X)⊗OE E is a special
quasi-homomorphism, the element v ∈ C corresponding to φ under (2.3.0.1) is by
definition the projection to N0 of φ∗(10) ∈ N , where φ∗ is the map D(Y)⊗W K →
D(X)⊗W K = N induced by φ, and 10 is a certain fixed element in D(Y). In fact,
10 is chosen such that

• W 10 = gr0 D(Y), where the grading is with respect to the OE -action on Y,

• W 10 = Fil1
Y

D(Y), the Hodge filtration for the deformation Y of Y over W .

In particular v and φ are related by the formula v = φ∗(10), as the projection to N0

is not needed.
From now on we assume without loss of generality that v = {v}, with v corre-

sponding to φ as in the above paragraph. If x ∈ Z(v)(k), then φ∗ has to map D(Y)

into Mx , so v ∈ Mx . Since φ∗ is compatible with the Z/2Z-gradings, we further
have v ∈ A. We have shown that if x ∈ Z(v)(k), then v ∈ A.
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Now suppose x ∈ Z(v)(k). Let O ∈ C. Write vO := v⊗ 1 ∈ AO ⊂ Mx,O. For
all x̃ ∈ N̂x(O), by Grothendieck–Messing theory we know that x̃ ∈ Ẑ(v)x(O) if
and only if the base change of φ∗ to O (still denoted by φ∗) preserves the Hodge
filtrations, i.e.,

φ∗(Fil1Y D(Y))⊆ Fil1x̃ Mx,O.

Since W 10 = Fil1
Y

D(Y), this last condition is equivalent to vO ∈ Fil1x̃ Mx,O. Again,
because φ∗ is compatible with the Z/2Z-gradings, the last condition is equivalent
to vO ∈ fO(x̃). In conclusion, we have shown that x̃ ∈ N̂x(O) is in Ẑ(v)x(O) if
and only if vO ∈ fO(x̃), as desired. �

Corollary 3.1.4. Let x ∈N (k) correspond to the special lattice A. Let v be a subset
of C. Then x ∈ Z(v)(k) if and only if v ⊆ A∨.

Proof. By part (2) of Theorem 3.1.3 applied to O = k, we see that x ∈ Z(v)(k) if
and only if v ⊆ A and the image of v in Ak is contained in Fil1(Ak). The corollary
follows from Lemma 2.9.2 and the 8-invariance of v. �

Remark 3.1.5. Note that Remark 2.8.4 is a special case of Corollary 3.1.4.

3.2. Proof of the reducedness.

Corollary 3.2.1. Let3 be an OE -lattice in C with pi3⊆3∨⊆3 for some i ∈Z≥1.
Then the special cycle Z(3∨) defined by3∨ has no (W/pi+1)-points. In particular,
taking i = 1 we see that N3(W/p2)=∅ for any vertex lattice 3.

Proof. Let O = W/pi+1, equipped with the reduction map W/pi+1
→ k and the

natural divided power structure on the kernel pO. Then O ∈ C. Assume Z(3∨)
has an O-point x̃ reducing to a k-point x . Let A be the special lattice corresponding
to x (see Section 2.8). By Theorem 3.1.3, there exists a hyperplane P in AO lifting
Fil1(Ak), such that P ⊇3∨⊗OE O. Since P is a hyperplane in AO, there exists an
element l ∈ HomO(AO,O) such that

l(P)= 0 and l(AO)=O. (3.2.1.1)

We may find an element l̃ ∈ A∨ ⊆ N0 to represent l, in the sense that for all
a⊗ 1 ∈ AO with a ∈ A, we have

l(a⊗ 1)= the image of {a, l̃} under W →O.

Since l(3∨⊗O)⊆ l(P)= 0, we know that {v, l̃} ∈ pi+1W for all v ∈3∨. Since
3∨ ⊆ C = N8

0 , applying (2.2.0.4) we see that {l̃, v} ∈ pi+1W for all v ∈ 3∨.
Therefore

p−i−1l̃ ∈ (3∨W )
∨
=3W ,
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and thus l̃ ∈ pi+13W , which is contained in p3∨W by hypothesis. Since 3 is
8-invariant, we also have 8(l̃) ∈ p3∨W . But 3∨W ⊆ A∨ by Corollary 3.1.4, so
8(l̃) ∈ p A∨. It follows that for all a ∈ A, we have {8(l̃), a} ∈ pW , and therefore

{a, l̃}
(2.2.0.4)
= σ−1({8(l̃), a}) ∈ pW,

contradicting the second condition in (3.2.1.1). �

Corollary 3.2.2. Let 3 be a vertex lattice of type t and let x ∈ N3(k). Then the
tangent space TxN3,k to N3,k at x , where N3,k is the special fiber (i.e., base change
to k) of N3, is of k-dimension (t−1)/2.

Proof. This can be deduced from Theorem 3.1.3 elementarily, in the same way as in
[Li and Zhu 2017, §4.2]. Here we provide a shorter proof. Firstly we make an easy
observation. Denote by Ck the full subcategory of C consisting of characteristic p ob-
jects. Let W1 and W2 be two formal schemes over k. For i = 1, 2 fix yi ∈Wi (k) and
define the set-valued functor Fi on Ck sending O to the set of O-points of Wi which
induce yi under the structure map O→ k. Assume F1∼=F2. Then the tangent spaces
TxiWi are isomorphic. In fact, this observation is a direct consequence of the defini-
tion of the vector space structure on the tangent spaces from the point of view of func-
tor of points, as recalled in the proof of [Li and Zhu 2017, Lemma 4.2.6] for instance.

Denote by B the k-subspace of Ak spanned by the image of 3∨ in Ak . Consider
the Grassmannian Grn−1(Ak) parametrizing hyperplanes in the n-dimensional k-
vector space Ak . Let W1 be the subvariety of Grn−1(Ak) defined by the condition that
the hyperplane should contain B, and let y1∈W1(k) corresponding to Fil1(Ak)⊆ Ak .
Let W2 :=N3,k and y2 := x . By Theorem 3.1.3, the assumption on (Wi , yi ), i =1, 2
in the previous paragraph is satisfied. Hence it suffices to compute the dimension of
Ty1W1. Note that W1 is itself a Grassmannian, parametrizing hyperplanes in Ak/B.
The proof is finished once we know that Ak/B has k-dimension (t + 1)/2. But this
is true by the (σ -linear) duality between the k-vector spaces Ak/B = A/3∨W and
3W/A∨ under the σ -sesquilinear form on �(3) obtained by extension of scalars
from the σ -Hermitian form ( · , · ) on �0(3) (see Section 2.4) and the fact that
A/A∨ is a 1-dimensional k-vector space (see Definition 2.8.1). �

In the following corollary we reprove [RTZ, Theorems 9.4 and 10.1].

Corollary 3.2.3. Let 3 be a vertex lattice. Then N3 = N3,k = N red
3 and it is

regular.

Proof. Let t be the type of 3. Recall from Section 2.6 that N red
3 is a smooth

k-scheme of dimension (t − 1)/2. By Corollary 3.2.2, all the tangent spaces of
N3,k have k-dimension (t − 1)/2, and so N3,k is regular. In particular N3,k is
reduced, namely N3,k =N red

3 . Knowing that N3,k is regular, and that N3 has no
(W/p2)-points (Corollary 3.2.1), it follows that N3 =N3,k by the general criterion
[RTZ, Lemma 10.3]. �
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4. The intersection length formula

4.1. The arithmetic intersection as a fixed point scheme. Fix a regular semisimple
and minuscule element g ∈ J (Qp). Let L := L(v(g)) and 3 := L∨. They are both
OE -lattices in C . Recall from the end of Section 2.10 that 3 is a vertex lattice and
Z(L)=N3. From now on we assume N g(k) 6= ∅. As shown in [RTZ, §5], this
assumption implies that both L and 3 are g-cyclic and stable under g. In particular,
the natural action of g on N stabilizes N3.

Let �0 =�0(3) and �=�(3). Let t = t3 and d = (t−1)/2 as in Section 2.5.
Let g ∈ GL(�0)(Fp2) be the induced action of g on �0. Then g preserves the
Hermitian form ( · , · ) on �0 and hence acts on V(3). It is clear from the definition
of the isomorphism (2.6.0.1) given in [Vollaard and Wedhorn 2011, §4] that it is
equivariant for the actions of g and g on the two sides.

Remark 4.1.1. Since 3 and 3∨ are g-cyclic, the linear operator g ∈ GL(�0)(Fp2)

has equal minimal polynomial and characteristic polynomial. Equivalently, in the
Jordan normal form of g (over k) there is a unique Jordan block associated to any
eigenvalue.

Proposition 4.1.2. δ(M)∩N g is a scheme of characteristic p (i.e., a k-scheme)
isomorphic to V(3)g.

Proof. Recall from Section 2.11 that δ(M) = Z(u). Since the OE -module L
is generated by u, gu, · · · , gn−1u and stable under g, we have δ(M) ∩ N g

=

Z(L)g = N g
3. By Corollary 3.2.3, we know that N g

3 = (N
red
3 )g. But the latter is

isomorphic to the characteristic p scheme V(3)g under (2.6.0.1). �

4.2. Study of V(3)g . We start with an alternative moduli interpretation of V(�0).
The idea is to rewrite (in Lemma 4.2.2) the procedure of taking the complement
U 7→U⊥ with respect to the Hermitian form, in terms of taking the complement
with respect to some quadratic form and taking a Frobenius. The alternative moduli
interpretation is given in Corollary 4.2.3 below.

Let 20 be a t-dimensional nondegenerate quadratic space over Fp. Let [ · , · ] :
20×20→ Fp be the associated bilinear form. Since there is a unique isomorphism
class of nondegenerate σ -Hermitian spaces over Fp2 , we may assume that �0 =

20 ⊗Fp Fp2 and that the σ -Hermitian form ( · , · ) (see Section 2.5) is obtained
by extension of scalars (linearly in the first variable and σ -linearly in the second
variable) from [ · , · ].

Definition 4.2.1. Let R be an Fp-algebra. We define [ · , · ]R to be the R-bilinear
form on20⊗Fp R obtained from [ · , · ] by extension of scalars. For any R-submodule
L⊂20⊗Fp R, define

Llin⊥
:= {v ∈20⊗Fp R : [v, l]R = 0,∀l ∈ L}.
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Define σ∗(L) to be the R-module generated by the image of L under the map

σ :20⊗Fp R→20⊗Fp R, v⊗ r 7→ v⊗ r p.

Let R be an Fp2-algebra. Let U be an R-submodule of �0 ⊗Fp2 R. Since
�0⊗Fp2 R =20⊗Fp R, we may view U as an R-submodule of the latter and define
σ∗(U ) as in Definition 4.2.1.

Lemma 4.2.2. We have U⊥ = (σ∗(U ))lin⊥.

Proof. Consider two arbitrary elements

x =
∑

j

u j ⊗ r j and y =
∑

k

vk ⊗ sk

of 20⊗Fp R. We have

(y, x)R =
∑
j,k

skr p
j · [vk, u j ]R =

∑
j,k

skr p
j · [u j , vk]R = [σ(x), y]R.

Hence for y ∈20⊗Fp R, we have y ∈U⊥ if and only if (y, x)R = 0 for all x ∈U ,
if and only if [σ(x), y]R = 0 for all x ∈U , if and only if y ∈ (σ∗(U ))lin⊥. �

Corollary 4.2.3. For any Fp2-algebra R, the set V(�0)(R) is equal to the set of
R-submodules U of

�0⊗Fp2 R =20⊗Fp R,

such that U is an R-module local direct summand of rank d+1, satisfying

(σ∗(U ))lin⊥ ⊆U.

Proof. This is a direct consequence of (2.5.0.1) and Lemma 4.2.2. �

In the following we denote V(3) by V for simplicity, where 3 is always fixed
as in the beginning of Section 4.1. Denote 2 :=20⊗Fp k. Fix a point x0 ∈ Vg(k).
Let U0 correspond to x0 under (2.5.0.1) or Corollary 4.2.3. Define

Ld+1 :=U0 and Ld := (σ∗(U0))
lin⊥ Lemma 4.2.2

= U⊥0 .

They are subspaces of 2 stable under g, of k-dimensions d + 1 and d respectively.

Definition 4.2.4. Define I := P(2/Ld), a projective space of dimension d over k.

Then Ld+1 defines an element in I(k), which we still denote by x0 by abuse of
notation. We have a natural action of g on I that fixes x0. Let Rp and Sp be the
quotient of the local ring of Ig and of Vg at x0 divided by the p-th power of its
maximal ideal, respectively.

Lemma 4.2.5. There is a k-algebra isomorphism Rp ∼= Sp.
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Proof. The proof is based on exactly the same idea as [Li and Zhu 2017, Lemma
5.2.9]. Let R̃p and S̃p be the quotient of the local ring of I and of V at x0 divided
by the p-th power of its maximal ideal, respectively. Let R be an arbitrary local
k-algebra with residue field k such that the p-th power of its maximal ideal is zero.
Then by Lemma 4.2.2, the R-points of V lifting x0 classify R-module local direct
summands U of 2⊗k R of rank d+1 that lift Ld+1, and such that

U ⊇ (σ∗(U ))lin⊥.

But by the assumption that the p-th power of the maximal ideal of R is zero, we have

σR,∗(U )= (σk,∗(Ld+1))⊗k R,

where we have written σR and σk to distinguish between the Frobenius on R and
on k. Therefore

(σR,∗(U ))lin⊥ = ((σk,∗(Ld+1))⊗k R)lin⊥ = (σk,∗(Ld+1))
lin⊥
⊗k R = Ld ⊗k R.

Thus we see that the set of R-points of V lifting x0 is in canonical bijection with
the set of R-points of I lifting x0. We thus obtain a canonical R̃p-point of V lifting
x0 ∈ V(k), and a canonical S̃p-point of I lifting x0 ∈ I(k). These two points induce
maps S̃p→ R̃p and R̃p→ S̃p respectively. From the moduli interpretation of these
two maps we see that they are k-algebra homomorphisms inverse to each other and
equivariant with respect to the actions of g on both sides. Note that Sp and Rp are
the quotients of S̃p and R̃p by the augmentation ideal for the g-action, respectively.
It follows that Rp ∼= Sp. �

4.3. Study of I g .

Definition 4.3.1. Let λ be the eigenvalue of g on the 1-dimensional k-vector space
Ld+1/Ld =U0/U⊥0 , and let c be the size of the unique (see Remark 4.1.1) Jordan
block of g|Ld+1 associated to λ. Notice our c is denoted by c+ 1 in [RTZ, §9].

Remark 4.3.2. By the discussion before [Rapoport et al. 2013, Proposition 9.1], c
is the size of the unique Jordan block associated to λ of g on 2/Ld =�/U⊥0 , and
is also equal to the quantity 1

2(m(Q(T ))+ 1) introduced in the introduction.

Proposition 4.3.3. The local ring OIg,x0 of Ig at x0 is isomorphic to k[X ]/X c as
a k-algebra.

Proof. By Remark 4.3.2 and Definition 4.2.4, the proposition is a consequence of
the following general lemma applied to L=2/Ld and h = g. �

Lemma 4.3.4. Let L be a k-vector space of dimension d+1. Let P(L)= Pd be the
associated projective space. Let x0 ∈ P(L)(k), represented by a vector ` ∈ L. Let
h ∈ GL(L)(k)= GLd+1(k). Assume that:



2442 Chao Li and Yihang Zhu

(1) The natural action of h on P(L) fixes x0. Denote the eigenvalue of h on ` by λ.

(2) There is a unique Jordan block of h associated to the eigenvalue λ. Denote its
size by c.

Let R :=OP(L)h ,x0 be the local ring of the fixed point scheme P(L)h at x0. Then

R ∼= k[X ]/X c.

Proof. Extend ` to a basis {`0= `, `1, . . . , `d} of L such that the matrix (hi j )0≤i, j≤d

of h under this basis is in the Jordan normal form. Under this basis, the point x0

has projective coordinates [X0 : · · · : Xd ] = [1 : 0 : · · · : 0] ∈ Pd . Let Zi = X i/X0

(1 ≤ i ≤ d) and let Ad be the affine space with coordinates (Z1, . . . , Zd). Then
we can identify the local ring of Pd at x0 with the local ring of Ad at the origin.
Since h fixes x0, we know that h acts on the local ring of Ad at the origin (although
h does not stabilize Ad in general). Since (hi j ) is in the Jordan normal form, we
know that the action of h on the latter is given explicitly by

h Zi =
hi,i X i + hi,i+1 X i+1

h0,0 X0+ h0,1 X1
=

hi,i Zi + hi,i+1 Zi+1

h0,0+ h0,1 Z1
, 1≤ i ≤ d,

where hi,i+1 Zi+1 is understood as 0 when i = d. Hence the local equations at the
origin of Ad which cut out the h-fixed point scheme are given by

(h0,0− hi,i )Zi + h0,1 Z1 Zi = hi,i+1 Zi+1, 1≤ i ≤ d.

By hypothesis (2), we have h0,0− hi,i 6= 0 if and only if i ≥ c. Thus when i ≥ c,
we know that (h0,0− hi,i )+ h0,1 Z1 is a unit in the local ring of Ad at the origin,
and so Zi can be solved as a multiple of hi,i+1 Zi+1 when i ≥ c. It follows that

Zi = 0, i ≥ c.

If c = 1, then Z1 = · · · = Zd = 0 and the local ring R in question is isomorphic to
k as desired. If c > 1, then h0,1 = 1 and we find the equations for i = 1, · · · , c− 1
simplify to

Z1 Z1 = Z2, Z1 Z2 = Z3, · · · , Z1 Zc−2 = Zc−1, Z1 Zc−1 = 0.

Hence the local ring R in question is isomorphic to (the localization at the ideal
(Z1, Z2, · · · , Zc−1) or (Z1) of)

k[Z1, Z2, . . . , Zc−1]/(Z2
1 − Z2, Z3

1 − Z3, · · · , Z c−1
1 − Zc−1, Z c

1)
∼= k[Z1]/Z c

1,

as desired. �

Theorem 4.3.5. Let g ∈ J (Qp) be regular semisimple and minuscule. Let x0 be
a point in (δ(M) ∩N g)(k). Also denote by x0 the image of x0 in V(3)(k) as in



Remarks on the arithmetic fundamental lemma 2443

Proposition 4.1.2 and define λ and c as in Definition 4.3.1. Assume p > c. Then the
complete local ring of δ(M)∩N g at x0 is isomorphic to k[X ]/X c.

Proof. Let Ŝ be the complete local ring of δ(M)∩N g at x0. By Proposition 4.1.2
and by the fact that V(3) is smooth of dimension d (Section 2.5), we know that
Ŝ is a quotient of the power series ring k[[X1, · · · , Xd ]]. By Proposition 4.1.2,
Lemma 4.2.5 and Proposition 4.3.3, we know that Ŝ/mp

Ŝ
is isomorphic to k[X ]/X c

as a k-algebra. In such a situation, it follows from the next abstract lemma that
Ŝ ∼= k[X ]/X c. �

Lemma 4.3.6. Let I be a proper ideal of k[[X1, · · · , Xd ]] and let

Ŝ = k[[X1, · · · , Xd ]]/I.

Let m be the maximal ideal of k[[X1, · · · , Xd ]] and let mŜ be the maximal ideal of Ŝ.
Assume there is a k-algebra isomorphism β : Ŝ/mp

Ŝ
−→∼ k[X ]/X c for some integer

1≤ c < p. Then Ŝ is isomorphic to k[X ]/X c as a k-algebra.

Proof. We first notice that if R1 is any quotient ring of k[[X1, · · · , Xd ]] with its
maximal ideal m1 satisfying m1 = m2

1 (i.e., R1 has zero cotangent space), then
R1= k. In fact, R1 is noetherian and we have ml

1=m1 for all l ∈Z≥1, so by Krull’s
intersection theorem we conclude that m1 = 0 and R1 = k.

Suppose c = 1. Then Ŝ/mp
Ŝ
∼= k, so Ŝ has zero cotangent space and thus Ŝ = k

as desired. Next we treat the case c ≥ 2. Let α be the composite

α : k[[X1, · · · , Xd ]] → Ŝ/mp
Ŝ

β
−→ k[X ]/X c.

Let J = kerα. Since α is surjective, we reduce to prove that I = J . Note that
because β is an isomorphism we have

I +mp
= J. (4.3.6.1)

In the following we prove mp
⊂ I , which will imply I = J and hence the lemma.

The argument is a variant of [RTZ, Lemma 11.1].
Let Y ∈ k[[X1, · · · , Xd ]] be such that α(Y )= X . Since X generates the maximal

ideal in k[X ]/X c, we have
m= J + (Y ). (4.3.6.2)

Then by (4.3.6.1) and (4.3.6.2) we have m= I + (Y )+mp, and so the local ring
k[[X1, · · · , Xd ]]/(I + (Y )) has zero cotangent space. We have observed that the
cotangent space being zero implies that the ring has to be k, or equivalently

m= I + (Y ). (4.3.6.3)

Now we start to show mp
⊂ I . By (4.3.6.3) we have mp

⊂ I + (Y p), so we only
need to prove Y p

∈ I . We will show the stronger statement that Y c
∈ I . By Krull’s
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intersection theorem, it suffices to show that Y c
∈ I +mpl for all l ≥ 1. In the

following we show this by induction on l.
Assume l = 1. Note that α(Y c)= 0, so by (4.3.6.1) we have

Y c
∈ J = I +mp.

Suppose Y c
∈ I +mpl for an integer l ≥ 1. Write

Y c
= i +m, i ∈ I, m ∈mpl . (4.3.6.4)

By (4.3.6.2) we know

mpl
⊂ (J + (Y ))pl

⊂

pl∑
s=0

J s(Y )pl−s .

Thus we can decompose m ∈mpl into a sum

m =
pl∑

s=0

jsY pl−s, js ∈ J s . (4.3.6.5)

By (4.3.6.4) and (4.3.6.5), we have

Y c
= i +

pl∑
s=0

jsY pl−s,

and so

Y c
−

pl−c∑
s=0

jsY pl−s
= i +

pl∑
s=pl−c+1

jsY pl−s . (4.3.6.6)

Denote

A :=
pl−c∑
s=0

jsY pl−s−c.

Then the left hand side of (4.3.6.6) is equal to (1− A)Y c. Hence we have

(1− A)Y c
= i +

pl∑
s=pl−c+1

jsY pl−s
⊂ I + J pl−c+1

(4.3.6.1)
−−−−→ I + (I +mp)pl−c+1

= I +mp(pl−c+1)
⊂ I +mp(l+1),

where for the last inclusion we have used c < p. Since 1 − A is a unit in
k[[X1, · · · , Xd ]] (because c < p), we have Y c

∈ I + mp(l+1). By induction,
Y c
∈ I +mpl for all l ∈ Z≥1, as desired. �



Remarks on the arithmetic fundamental lemma 2445

Acknowledgments

We are very grateful to M. Rapoport and W. Zhang for helpful conversations and
comments. Our debt to [Rapoport et al. 2013] should be clear to the readers.

References

[Berthelot and Ogus 1978] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton
University Press, 1978. MR Zbl

[Gan et al. 2012] W. T. Gan, B. H. Gross, and D. Prasad, “Symplectic local root numbers, central
critical L values, and restriction problems in the representation theory of classical groups”, pp. 1–109
in Sur les conjectures de Gross et Prasad, I, Astérisque 346, Société Mathématique de France, Paris,
2012. MR Zbl

[Kudla and Rapoport 2011] S. Kudla and M. Rapoport, “Special cycles on unitary Shimura varieties,
I: Unramified local theory”, Invent. Math. 184:3 (2011), 629–682. MR Zbl

[Li and Zhu 2017] C. Li and Y. Zhu, “Arithmetic intersection on GSpin Rapoport–Zink spaces”,
preprint, 2017. arXiv

[Mihatsch 2016] A. Mihatsch, “Relative unitary RZ-spaces and the Arithmetic Fundamental Lemma”,
preprint, 2016. arXiv

[Rapoport and Zink 1996] M. Rapoport and T. Zink, Period spaces for p-divisible groups, Annals of
Mathematics Studies 141, Princeton University Press, 1996. MR Zbl

[Rapoport et al. 2013] M. Rapoport, U. Terstiege, and W. Zhang, “On the arithmetic fundamental
lemma in the minuscule case”, Compos. Math. 149:10 (2013), 1631–1666. MR Zbl

[Vollaard 2010] I. Vollaard, “The supersingular locus of the Shimura variety for GU(1, s)”, Canad. J.
Math. 62:3 (2010), 668–720. MR Zbl

[Vollaard and Wedhorn 2011] I. Vollaard and T. Wedhorn, “The supersingular locus of the Shimura
variety of GU(1, n−1), II”, Invent. Math. 184:3 (2011), 591–627. MR Zbl

[Zhang 2012] W. Zhang, “On arithmetic fundamental lemmas”, Invent. Math. 188:1 (2012), 197–252.
MR Zbl

Communicated by Michael Rapoport
Received 2017-05-26 Revised 2017-09-06 Accepted 2017-10-05

lichaocs@gmail.com Department of Mathematics, Columbia University,
New York, NY, United States

yihang@math.columbia.edu Department of Mathematics, Columbia University,
New York, NY, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/0491705
http://msp.org/idx/zbl/0383.14010
http://smf4.emath.fr/Publications/Asterisque/2012/346/html/smf_ast_346_.php
http://smf4.emath.fr/Publications/Asterisque/2012/346/html/smf_ast_346_.php
http://msp.org/idx/mr/3202556
http://msp.org/idx/zbl/1280.22019
http://dx.doi.org/10.1007/s00222-010-0298-z
http://dx.doi.org/10.1007/s00222-010-0298-z
http://msp.org/idx/mr/2800697
http://msp.org/idx/zbl/1229.14020
http://msp.org/idx/arx/1702.07848
http://msp.org/idx/arx/1611.06520
http://dx.doi.org/10.1515/9781400882601
http://msp.org/idx/mr/1393439
http://msp.org/idx/zbl/0873.14039
http://dx.doi.org/10.1112/S0010437X13007239
http://dx.doi.org/10.1112/S0010437X13007239
http://msp.org/idx/mr/3123304
http://msp.org/idx/zbl/1300.11069
http://dx.doi.org/10.4153/CJM-2010-031-2
http://msp.org/idx/mr/2666394
http://msp.org/idx/zbl/1205.14028
http://dx.doi.org/10.1007/s00222-010-0299-y
http://dx.doi.org/10.1007/s00222-010-0299-y
http://msp.org/idx/mr/2800696
http://msp.org/idx/zbl/1227.14027
http://dx.doi.org/10.1007/s00222-011-0348-1
http://msp.org/idx/mr/2897697
http://msp.org/idx/zbl/1247.14031
mailto:lichaocs@gmail.com
mailto:yihang@math.columbia.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 10 2017

2213Tate cycles on some unitary Shimura varieties mod p
DAVID HELM, YICHAO TIAN and LIANG XIAO

2289Complex conjugation and Shimura varieties
DON BLASIUS and LUCIO GUERBEROFF

2323A subspace theorem for subvarieties
MIN RU and JULIE TZU-YUEH WANG

2339Variation of anticyclotomic Iwasawa invariants in Hida families
FRANCESC CASTELLA, CHAN-HO KIM and MATTEO LONGO

2369Effective nonvanishing for Fano weighted complete intersections
MARCO PIZZATO, TARO SANO and LUCA TASIN

2397Generalized Kuga–Satake theory and good reduction properties of Galois
representations

STEFAN PATRIKIS

2425Remarks on the arithmetic fundamental lemma
CHAO LI and YIHANG ZHU

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.10

http://dx.doi.org/10.2140/ant.2017.11.2213
http://dx.doi.org/10.2140/ant.2017.11.2289
http://dx.doi.org/10.2140/ant.2017.11.2323
http://dx.doi.org/10.2140/ant.2017.11.2339
http://dx.doi.org/10.2140/ant.2017.11.2369
http://dx.doi.org/10.2140/ant.2017.11.2397
http://dx.doi.org/10.2140/ant.2017.11.2397
http://dx.doi.org/10.2140/ant.2017.11.2425

	1. Introduction
	1.1. Zhang's arithmetic fundamental lemma
	1.2. The main results
	1.3. Novelty of the proof
	1.3.1. 0=thmA.61=Theorem A 
	1.3.2. 0=thmB.71=Theorem B 
	1.3.3. 

	1.4. Structure of the paper

	2. Unitary Rapoport–Zink spaces
	2.1. Unitary Rapoport–Zink spaces
	2.2. The group J
	2.3. Special homomorphisms
	2.4. Vertex lattices
	2.5. The variety V()
	2.6. Structure of the reduced scheme Nred
	2.7. Some invariants associated to a k-point of N
	2.8. Description of k-points by special lattices
	2.9. Filtrations
	2.10. Special cycles
	2.11. The intersection problem

	3. Reducedness of minuscule special cycles
	3.1. Local structure of special cycles
	3.1.2. 

	3.2. Proof of the reducedness

	4. The intersection length formula
	4.1. The arithmetic intersection as a fixed point scheme
	4.2. Study of V() 3mu-3mu g-1mu1mu
	4.3. Study of I3mu-3mu g-1mu1mu

	Acknowledgments
	References
	
	

