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We show that the Ambro–Kawamata nonvanishing conjecture holds true for a
quasismooth WCI X which is Fano or Calabi–Yau, i.e., we prove that, if H is an
ample Cartier divisor on X , then |H | is not empty. If X is smooth, we further
show that the general element of |H | is smooth. We then verify the Ambro–
Kawamata conjecture for any quasismooth weighted hypersurface. We also verify
Fujita’s freeness conjecture for a Gorenstein quasismooth weighted hypersurface.

For the proofs, we introduce the arithmetic notion of regular pairs and highlight
some interesting connections with the Frobenius coin problem.

1. Introduction

Complete intersections in weighted projective spaces (WCIs for short) form a
natural class of varieties which are particularly interesting from the point of view
of higher dimensional algebraic geometry. We refer to [Dolgachev 1982], [Mori
1975] and [Dimca 1986] for a general treatment of these varieties.

Reid [1980; 1987] and Iano-Fletcher [2000] systematically investigated notable
examples of WCIs and started their classification. Several results have since been
obtained concerning boundedness and classification; see for example [Johnson and
Kollár 2001; Chen et al. 2011; Ballico et al. 2013; Chen 2015; Przyjalkowski and
Shramov 2016].

The main motivation of this paper is to study the following conjecture in the realm
of WCIs, in particular for what concerns the case of Fano and Calabi–Yau varieties.

Conjecture 1.1 (Ambro–Kawamata). Let (X,1) be a klt pair and H be an ample
Cartier divisor on X such that H − KX −1 is ample. Then |H | 6=∅.

For an introduction to this conjecture, see [Ambro 1999] and in particular [Kawa-
mata 2000] where the 2-dimensional case is proven. In the smooth setting, Ionescu
[Lanteri et al. 1993, p. 321] and Beltrametti and Sommese [1995] proposed related
conjectures.
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The Ambro–Kawamata conjecture is known to be true in full generality only in di-
mensions 1 and 2. Several cases have been studied, especially in dimension 3; see for
instance [Xie 2009; Broustet and Höring 2010; Höring 2012; Cao and Jiang 2016].

A fundamental divisor on a Fano variety X is an ample Cartier divisor H which
is primitive and proportional to −KX . In the classification of Fano varieties, it is
important to investigate the properties of the general member of the linear system
given by H ; see for instance [Ambro 1999]. The second purpose of this note is to
study this problem in the case of Fano and Calabi–Yau smooth WCIs.

The main result of this paper is the following.

Theorem 1.2. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed quasismooth
weighted complete intersection which is not a linear cone and H be an ample
Cartier divisor on X. Assume that X is Fano or Calabi–Yau. Then |H | 6=∅.

Moreover, if X is smooth, then the number of ai = 1 is at least c and the general
element of |OX (1)| is smooth.

For a smooth Fano WCI, it was already proved in [Przyjalkowski and Shramov
2016, Lemma 3.3] that at least two weights are 1, which implies the nonvanishing
for a smooth Fano WCI. In addition, it is easy to prove Conjecture 1.1 for any
smooth WCI of codimension 1 and 2, see Remark 4.9.

It is particularly interesting that, in the smooth case, we can prove the smoothness
of the general member of the fundamental linear system (Corollary 5.3(ii)).

Theorem 1.2 is a direct consequence of Corollaries 5.3 and 5.13. In particular,
in Corollary 5.3, we show that if X = Xd1,...,dc ⊂ P(a0, . . . , an) is a smooth well-
formed Fano WCI which is not a linear cone, then the number of i for which
ai = 1 is at least c+ 1. By using this, we can then show that the general element
of |OX (1)| is quasismooth (from which smoothness follows easily). One can not
expect a similar statement for a general member of the fundamental linear system
of a singular quasismooth WCI, as Example 5.8 shows. We also give a description
of the base locus of |OX (1)| in Remark 5.5 and an example whose base locus
Bs |OX (1)| is singular and not quasismooth in Example 5.6.

In [Przyjalkowski and Shramov 2017, Corollary 4.2], the authors show that
for a smooth well-formed Fano WCI X the number of ai equal to 1 is at least
I (X) =

∑
ai −

∑
d j when c ≤ 2 and write that they expect this to hold for any

codimension. As a consequence of Proposition 5.2, we can confirm this expectation;
see Corollary 5.11.

In the case of hypersurfaces, we can prove the following stronger result, which
is the combination of Propositions 6.2 and 6.3:

Theorem 1.3. Let X = Xd ⊂ P = P(a0, . . . , an) be a well-formed quasismooth
hypersurface of degree d which is not a linear cone.
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(1) If H is an ample Cartier divisor on X such that H − KX is ample, then |H | is
not empty.

(2) If X is Gorenstein and H is an ample Cartier divisor, then KX+m H is globally
generated for any m ≥ n.

The second part of the statement is known as Fujita’s freeness conjecture and it
has been proven in the smooth setting up to dimension 5; see [Reider 1988; Ein
and Lazarsfeld 1993; Kawamata 1997; Ye and Zhu 2015].

The methods. The above theorems are obtained by studying the arithmetic prop-
erties of quasismooth WCIs. More precisely, in Section 3, we prove a criterion
(Proposition 3.1) for a WCI to be quasismooth, which generalizes Iano-Fletcher’s cri-
terion in codimension 1 and 2 (see [Iano-Fletcher 2000, Section 8]). We then exploit
some arithmetic consequences of quasismoothness. In particular, Proposition 3.6
motivates the introduction of an h-regular pair (see Definition 4.1) which turns out
to be a key tool in our treatment.

Given a positive integer h, a pair (d;a) = (d1,...,dc;a0,...,an) ∈ Nc
× Nn+1

is said to be h-regular if for any I = {i1,...,ik} ⊂ {0,...,n} such that aI :=

gcd(ai1,...,aik ) > 1, either aI | h or there are distinct integers p1,..., pk such that

aI | dp1, . . . , dpk .

Set δ(d; a) :=
∑c

j=1 d j −
∑n

i=0 ai . By Proposition 3.6, any quasismooth (well-
formed) WCI X = Xd1,...,dc ⊂P(a0, . . . , an) gives rise to an h-regular pair (d; a)=
(d1, . . . , dc; a0, . . . , an), where h is the smallest positive integer for which OX (h) is
Cartier. Remembering that KX =OX (δ), the nonvanishing for a Fano or Calabi–Yau
WCI follows from Proposition 5.12, which says that, if (d; a) is h-regular such
that ai 6= d j and ai - h for any i, j, then δ(d; a) > 0. A more accurate statement
(Corollary 5.3) is needed to prove that, if X is smooth, then the general element of
|OX (1)| is also smooth.

We now spend some words for the case h = 1. In this case, the pair (d; a) is
simply called regular. A smooth WCI X gives rise to a regular pair (d; a). The
nonvanishing is then equivalent to prove that

δ(d; a)≥ G(a0, . . . , an),

where G(a0, . . . , an) is the Frobenius number of a0, . . . , an , i.e., the greatest integer
which is not a nonnegative integral combination of a0, . . . , an . In Conjecture 4.8,
we speculate that δ(d; a) ≥ G(a0, . . . , an) for a regular pair (d; a), under some
natural assumptions. This would imply the Ambro–Kawamata conjecture for any
smooth WCI.
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We believe that this conjecture is interesting also from the arithmetic point of
view, since it would give new bounds for the Frobenius number (see page 2382 for
details).

2. Preliminaries and notation

In this section, we recall some basic facts about weighted complete intersections
and fix our notation. See [Dolgachev 1982] or [Iano-Fletcher 2000] for further
details.

Let N (resp. N+) be the set of nonnegative (resp. positive) integers. Let a0,...,an ∈

N+. We define P := P(a0,...,an) to be the weighted projective space with weights
a0,...,an , i.e., P= ProjC[x0,...,xn], where xi has weight ai . We denote

P(b1, . . . , b1︸ ︷︷ ︸
k1

, . . . , bl, . . . , bl︸ ︷︷ ︸
kl

)

by P(b(k1)
1 , . . . , b(kl )

l ) for short.
Note that if we start with x0, . . . , xn to be affine coordinates on An+1 and C∗

acting on An+1 via

λ · (x0, . . . , xn)= (λ
a0 x0, . . . , λ

an xn)

for any λ ∈ C∗, then P is just the quotient (An+1
\ {0})/C∗.

We always assume that P is well-formed, i.e., the greatest common divisor of any
n weights is 1. For any I = {i1, . . . , ik} ⊂ {0, . . . , n}, the stratum 5I is defined as

5I := {xi = 0 : i /∈ I }.

The singular locus of P is the union of all strata 5I for which aI := gcd(ai )i∈I > 1.
Any point of the interior 50

I of a stratum 5I is locally isomorphic to a quotient
singularity of type

1
aI
(a0, . . . , âi1, . . . , âik , . . . , an)×Ck−1.

Here, for r ∈ N+ and a1, . . . , an ∈ N such that gcd(r, a1, . . . , an) = 1, a quotient
singularity of type 1/r(a1, . . . , an)means a quotient Cn/Zr by the action of a cyclic
group Zr of order r as g · zi = ζ

ai
r zi for i = 1, . . . , n, where g ∈ Zr is a generator

and ζr is an r-th primitive root of unity. We also denote by Cn/Zr (a1, . . . , ar )

this quotient affine variety. Let π : Cn
→U := Cn/Zr (a1, . . . , ar ) be the quotient

morphism. We have an eigendecomposition

π∗OCn =

r−1⊕
i=0

Fi ,
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where Fi := { f ∈ OCn | g · f = ζ i
r f } is the OU -submodule of π∗OCn consisting

of Zr -eigenfunctions of eigenvalue ζ i
r . Note that Fi ' OU (D f ), where a divisor

D f := ( f = 0)/Zr on U is defined by a function f ∈ Fi .

Proposition 2.1. The divisor class group of U := Cn/Zr (a1, . . . , ar ) is

Cl U ' Zr ·F1. (1)

Proof. We have an inclusion ι : Zr · F1 ↪→ Cl U. It is enough to show that this
is surjective. Let D ⊂ U be a prime divisor. Then π−1(D) is a divisor on Cn

defined by some Zr -eigenfunction fD ∈ OCn . Let i(D) ∈ Zr be an element such
that g · fD = ζ

i(D)
r f . Then we can check that OU (D)' Fi(D). Since gi

·F1 ' Fi

for i ∈ Zr , we see that ι is surjective.
We can also check the isomorphism by toric computation. Since Cn/Zr (a1,...,an)

is a toric variety, we can compute its class group by using the information of the
cone and lattice. (cf., [Fulton 1993, p. 63, Proposition]) More precisely, it is the
quotient Zn/M, where M := {(m1,...,mn) ∈ Zn

|
∑n

i=1mi ai ≡ 0 modr}. �

Definition 2.2. Let X be a (closed) subvariety of codimension c in P. Then X is
well-formed if

codimX (X ∩Sing(P))≥ 2.

Let π :An+1
\{0}→P be the natural projection. Then X is quasismooth if π−1(X)

is smooth.
The variety X is said to be a weighted complete intersection (WCI for short)

of multidegree (d1, . . . , dc) if its weighted homogenous ideal in C[x0, . . . , xn]

is generated by a regular sequence of homogenous polynomials { f j } such that
deg f j = d j for j = 1, . . . , c. We denote by Xd1,...,dc a general element of the family
of WCIs of multidegree (d1, . . . , dc).

Finally, Xd1,...,dc ⊂ P is said to be a linear cone if d j = ai for some i and j.

Note that by [Dimca 1986, Proposition 8], if X is a well-formed quasismooth
WCI, then

Sing(X)= X ∩Sing(P).

Proposition 2.3. If X is a quasismooth WCI of dimension ≥ 3, then its divisor class
group is a free Z-module generated by OX (1), where OX (1) :=OP(1)|X . (We freely
mix the divisorial and the sheaf notation.)

Proof. The proof is the same as [Corti et al. 2000, Lemma 3.5]. This follows from
the parafactoriality of an l.c.i. local ring [Call and Lyubeznik 1994]. �

If X ⊂ P is a well-formed quasismooth WCI, then

ωX = KX =OX

( c∑
j=1

d j −

n∑
i=0

ai

)
,
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see [Dolgachev 1982, Theorem 3.3.4]. We usually write δ :=
∑c

j=1 d j −
∑n

i=0 ai .

The following result shows that the dimension of the linear system |OX (n)| can
be computed by the weights of the coordinates.

Lemma 2.4 [Iano-Fletcher 2000, Lemma 7.1]. Let X ⊂ P(a0, . . . , an) be a well-
formed quasismooth WCI. Let A := k[x0, . . . , xn]/( f1, . . . , fc) be the homogeneous
coordinate ring of X and Ak be the k-th graded part for k ∈ Z. Then

H 0(X,OX (k))' Ak .

Proof. See also [Dolgachev 1982, 3.4.3]. This follows since the homogeneous
coordinate ring A is Cohen–Macaulay and H 1

m(A)= 0, where m := (x0, . . . , xn) is
the maximal ideal. �

3. Properties of quasismooth WCIs

In the following proposition, we give a necessary and sufficient condition for
quasismoothness of a WCI.

Proposition 3.1. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) =: P be a quasismooth WCI
which is not a linear cone. Let x0, . . . , xn be the coordinates of P(a0, . . . , an). Fix
I := {i1, . . . , ik} ⊂ {0, . . . , n} and let ρI := min{c, k}. For m = (m1, . . . ,mk), let
xm

I :=
∏k

j=1 xm j
i j

. For a finite set A, let |A| be the number of its elements. Then one
of the following holds.

(Q1) There exist distinct integers p1, . . . , pρI ∈ {1, . . . , c} and M1, . . . ,MρI ∈ Nk

such that the monomial x M j
I has the degree dpj for j = 1, . . . , ρI .

(Q2) There exist a permutation p1, . . . , pc of {1, . . . , c}, an integer l < ρI , and
integers eµ, j ∈ {0, . . . , n} \ I for µ= 1, . . . , k− l and j = l + 1, . . . , c such
that there are monomials x M j

I of degree dpj for j = 1, . . . , l and distinct k− l
monomials {xeµ, j x

Mµ, j
I :µ=1, . . . , k−l} of degree dpj for each j= l+1, . . . , c

which satisfy the following: for any subset J ⊂ {l + 1, . . . , c}, we have
|{eµ, j : j ∈ J, µ= 1, . . . , k− l}| ≥ k− l + |J | − 1.

Conversely, if we have (Q1) or (Q2) for all I, then a general WCI Xd1,...,dc ⊂

P(a0, . . . , an) is quasismooth.

Remark 3.2. This generalizes [Iano-Fletcher 2000, Theorem 8.7] in codimension
2 case. A weaker necessary condition for the quasismoothness is written in [Chen
2015, Proposition 2.3]. Although we shall not use the new part of Proposition 3.1
in the main part of this paper, we believe it is an interesting result on its own.

Proof. The framework of the proof is similar to that of [Iano-Fletcher 2000,
Theorem 8.7].
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Let Fj := |OP(d j )| be the linear system of weighted homogeneous polynomials of
degree d j . For j = 1, . . . , c, let f j be a general homogeneous polynomial of degree
d j such that X = ( f1 = · · · = fc = 0)⊂P(a0, . . . , an). Let C∗X ⊂An+1

\ {0} be the
cone over X defined by the polynomials f1, . . . , fc with the following diagram

C∗X
� � //

��

An+1
\ {0}

��

X �
�

// P

Without loss of generality, we may assume I = {0, . . . , k− 1} in the statement. Let
5 := (xk = · · · = xn = 0)⊂ An+1 be the stratum corresponding to I and 50

⊂5

be the open toric stratum. By expanding fλ for λ= 1, . . . , c in terms of xk, . . . , xn ,
we can write

fλ = hλ(x0, . . . , xk−1)+

n∑
i=k

xi gi
λ(x0, . . . , xk−1)+ Rλ(x0, . . . , xn),

where hλ, gi
λ ∈ C[x0, . . . , xk−1] and Rλ ∈ C[x0, . . . , xn] satisfies degxk ,...,xn

Rλ ≥ 2.
Note that X is quasismooth if and only if C∗X is smooth along all the coordinate

strata. We shall show that C∗X is smooth along 50 when either (Q1) or (Q2) holds
for I. Let ρ := ρI for short.

Suppose that (Q1) holds. Then h p1, . . . , h pρ are nonzero on 50. If some of h pj

involves only one monomial, then we have 50
∩C∗X =∅. So we may assume that

each of h p1, . . . , h pρ involves at least 2 monomials. Thus we see that the linear
systems Fdp1

, . . . , Fdpρ
do not have base locus on 50. By Bertini’s theorem, we see

that ( fp1 = · · · = fpρ = 0)⊂ An+1 is smooth along 50 when k ≥ c. When k < c,
we have ( fp1 = · · · = fpρ = 0)∩50

=∅. Therefore C∗X is nonsingular along 50.
Next suppose that (Q2) holds. By permutation, we may assume that pi = i . Then

h1, . . . , hl are nonzero on 50. Hence the base locus of Fdλ is disjoint with 50 for
λ= 1, . . . , l. By Bertini’s theorem, we see that ( f1 = · · · = fl = 0) is nonsingular
along 50. We may assume that the Jacobian of ( f1 = · · · = fc = 0) ⊂ An+1 at
P ∈50 is of the form 

∂ f1
∂x0
· · ·

∂ f1
∂xk−1

...
... *

∂ fl
∂x0
· · ·

∂ fl
∂xk−1

gk
l+1 · · · g

n
l+1

0 ...
...

gk
c · · · gn

c


(P),

since we have hλ = 0 for λ= l + 1, . . . , c. Note that the block matrix
∂ f1
∂x0
· · ·

∂ f1
∂xk−1

...
...

∂ fl
∂x0
· · ·

∂ fl
∂xk−1

 (P)
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has maximal rank l at P ∈50 since ( f1 = · · · = fl = 0) is nonsingular along
50. Hence it is enough to show that the matrix

MP :=

gk
l+1 · · · g

n
l+1

...
...

gk
c · · · gn

c

 (P) (2)

has maximal rank c− l.
Note that there are at least k − l elements of Kλ := {i ∈ {k, . . . , n} : gi

λ 6= 0}
for each λ= l + 1, . . . , c. By |Kλ| ≥ k− l, we see that each row vector of MP is
nonzero for P ∈50. Indeed, for each λ′ = l + 1, . . . , c, the intersection

l⋂
λ=1

(hλ = 0)∩
n⋂

i=k

(gi
λ′ = 0)∩50

is contained in at least k = l+ (k− l) free linear systems on k-dimensional 50, and
it is empty. Thus we may assume that gk

l+1(P) 6= 0. We shall make elementary
matrix operations on MP to calculate the rank of MP .

For λ= l + 2, . . . , c, let

Zλ(P) := {Q ∈ ( f1 = · · · = fl = 0)∩50
:

gk
l+1(P)g

i
λ(Q)− gk

λ(P)g
i
l+1(Q)= 0 (i = k+ 1, . . . , n)}.

Note that the first row M1
P and the (λ−l)-th row Mλ−l

P of MP are linearly dependent
if and only if P ∈ Zλ(P). By condition (Q2) for J with |J | = 2, there are at least
k − l nonzero elements of Gλ(P) := {gk

l+1(P)g
i
λ− gk

λ(P)g
i
l+1 : i = k + 1, . . . , n}

and they define k − l free linear systems on 50. Hence we obtain Zλ(P) = ∅
and the two rows M1

P and Mλ−l
P are linearly independent. Thus, by elementary

operations on MP , we obtain a matrix of the following form;
gk

l+1 · · · · · · g
n
l+1

0 hk+1
l+2 · · · h

n
l+2

...
...

...
0 hk+1

c · · · hn
c

 (P).
By column exchange operations, we may assume that hk+1

l+2 (P) 6= 0 and repeat the
process to

M ′P :=

hk+1
l+2 · · · hn

l+2
...

...

hk+1
c · · · hn

c

 (P).
Let G ′λ(P) := {h

k+1
l+2 (P)h

i
λ−hk+1

λ (P)hi
l+2 : i = k+2, . . . , n}. By condition (Q2)

for J with |J | = 3, there are at least k − l nonzero elements of G ′λ(P) and they
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define free linear systems on 50. By this, we again see that the first row and another
row of M ′P are linearly independent.

After repeating these elementary operations, we obtain a matrix of the form
αl+1

. . . * *
0 αc


for some αl+1, . . . , αc ∈ C \ {0} and see that the rank of MP is c− l. Thus C∗X is
nonsingular at P ∈50.

Suppose that conditions (Q1) and (Q2) do not hold for some I. We shall show
that X is not quasismooth. We may again assume that I = {0, . . . , k − 1} and
5 = (xk = · · · = xn = 0). Moreover, since (Q1) and (Q2) do not hold, we may
assume that, for some l<ρI , we have5 6⊂ ( fλ=0) for λ=1, . . . , l and5⊂ ( fλ=0)
for λ= l + 1, . . . , c. Then the singular locus of C∗X on 50 can be described as

Z := {P ∈ ( f1 = · · · = fl = 0)∩50
: rk MP < c− l},

where MP is the matrix defined in (2). By the hypothesis, we may also assume that
there exists J ⊂ {l + 1, . . . , c} such that there are at most k− l + |J | − 2 nonzero
elements among {gi

λ : λ ∈ J, i = k, . . . , n}. This implies that there are at most
k− l+|J |−2 nonzero columns of the matrix M J

P :=
(
gi
λ(P)

)k≤i≤n
λ∈J . We can choose

J so that the number |J | is minimal among such subsets of {l+1, . . . , c}. Then, by
elementary operations as in the first part of the proof, we can transfer M J

P to the form
hk

l+1 · · · · · · hk+|J |
l+1 · · · hn

l+1
. . .

...
...

0 hk+|J |−1
l+|J | hk+|J |

l+|J | · · · hn
l+|J |

 (P).
Note that on the bottom row we have at most k− l − 1 nonzero entries. Hence we
obtain

dim( f1 = · · · = fl = 0)∩ (hk+|J |−1
l+|J | = · · · = hn

l+|J | = 0)∩50

≥ k− l − (k− l − 1)= 1.

Since the rank of M J
P is not maximal on the subset (hk+|J |−1

l+|J | = · · · = hn
l+|J |= 0),

we see that C∗X is singular along the above positive dimensional subset. Hence X
is not quasismooth in this case. This concludes the proof of Proposition 3.1. �

In the following example, we use Proposition 3.1 to check quasismoothness of a
given WCI.

Example 3.3. Let X8,8,8 ⊂ P(2(4), 3(5), 5(3)) be a general WCI of codimension 3.
We can check the quasismoothness of X8,8,8 by Proposition 3.1 as follows. Consider
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I = {4, 5, 6, 7, 8}, that is, a4= · · · = a8= 3. Then (Q1) does not hold for this I and
we have k = 5, l = 0 in (Q2). We can choose {eµ, j : j = 1, 2, 3, µ= 1, . . . , 5} ⊂
{0, 1, 2, 3, 9, 10, 11} so that (Q2) is satisfied for this I. We can similarly check
that (Q2) holds for I = {9, 10, 11}. For other I, we have (Q1), thus we see the
quasismoothness of X8,8,8.

On the other hand, we see that X ′8,8,8 ⊂ P(2(3), 3(4), 5(3)) is not quasismooth.
Indeed, for I = {7, 8, 9}, that is, a7 = a8 = a9 = 5, neither (Q1) nor (Q2) hold.

The following proposition treats the special situation where some weight of P

divides none of the degrees of a WCI.

Proposition 3.4. Let X = Xd1,...,dc ⊂P(a0, . . . , an) be a (well-formed) quasismooth
WCI which is not a linear cone. Assume that there exists i0 such that ai0 does not
divide d j for all j. Let H = OX (h) be the fundamental divisor on X, that is, an
ample Cartier divisor on X which generates Pic X. Then

(i) X has a quotient singularity of type 1/ai0(c1,...,cn−c) for some c1,...,cn−c ∈

Z≥0 such that gcd(ai0,c1,...,cn−c)= 1;

(ii) ai0 | h. As a consequence, we have |H | 6=∅.

Proof. Let f1, . . . , fc ∈ C[x0, . . . , xn] be the defining equations of X such that
deg f j = d j for 1 ≤ j ≤ c and X = ( f1 = · · · = fc = 0) ⊂ P(a0, . . . , an), where
deg xi = ai for 0 ≤ i ≤ n. By applying Proposition 3.1 to I = {i0}, we see that
there exist distinct integers e1, . . . , ec ∈ {0, . . . , î0, . . . , n} and positive integers
k1, . . . , kc such that d j = k j ai0 + aej for 1≤ j ≤ c, i.e., we can write

f j = xk j
i0

xej + g j

for 1≤ j ≤ c, where g j is a weighted homogeneous polynomial of degree d j .
By the inverse function theorem, we see that X has a quotient singularity of type

1/ai0(a0, . . . , âi0, . . . , âe1, . . . , âec , . . . , an) at Pi0 := [0 : · · · : 1 : · · · : 0]. We shall
show that g := gcd(a0, . . . , âe1, . . . , âec , . . . , an)= 1. Suppose that g > 1.

Claim 3.5. Up to a permutation on {1, . . . , c}, we may choose 0≤ c′ ≤ c with the
following properties:

(*) For j = 1, . . . , c′, some monomial in g j does not contain any element of
{xej , . . . , xec}.

(**) For j = c′+ 1, . . . , c, every monomial in g j contain some of {xec′+1
, . . . , xec}.

Proof of the claim. If (**) holds for all j = 1, . . . , c and {xe1, . . . , xec}, then we
put c′ := 0. Otherwise there is some j such that 1 ≤ j ≤ c and (*) holds for
{xe1, . . . , xec}. We then exchange ( f1, e1) and ( f j , ej ) and repeat the same process
starting from j = 2 till we obtain the claim, that is, check whether (**) holds for
new { f2, . . . , fc} and {e2, . . . , ec} and so on. �
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Hence, for 1≤ j≤c′, there exists a monomial in g j of the form h j=
∏

i 6=ej ,...,ec
xbi

i .
Then we have aej ≡

∑
i 6=ej ,...,ec

bi ai mod ai0 . Thus we can check one by one that

g | aej for 1≤ j ≤ c′. (3)

Now let 5 := (xec′+1
= · · · = xec = 0)⊂ P. We have 5⊂ Sing P, in particular

5 6= P.
We also have f j |5 ≡ 0 for c′+ 1 ≤ j ≤ c by the property (**) of c′. Thus we

obtain
dim5∩ X ≥ dim5− c′ = dim P− c.

This contradicts the fact that X 6⊂5 since X is not a linear cone. Hence we obtain
g = 1, concluding the proof of Proposition 3.4. �

The following proposition is useful for calculating the fundamental divisor of a
WCI and is the motivation of the definition of h-regular pair (see Definition 4.1).

Proposition 3.6. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a quasismooth well-formed
WCI which is not a linear cone. Let H = OX (h) be the fundamental divisor of X.
Assume that there exists I = {i1, . . . , ik} such that aI := gcd(ai1, . . . , aik ) > 1.

Then one of the following holds:

(i) There exist distinct integers p1, . . . , pk such that aI | dp1, . . . , dpk ;

(ii) aI | h.

Proof. We apply Proposition 3.1 to I = {i1, . . . , ik}. Let

PI := (x0 = · · · x̂i1 = · · · = x̂ik = · · · = xn = 0)⊂ P

be the (k− 1)-dimensional stratum corresponding to I and P0
I ⊂ PI be the open

toric stratum.
Suppose that condition (Q1) in Proposition 3.1 holds, that is, there exist distinct

integers p1, . . . , pk and nonnegative integers k j,i for j = 1, . . . , k and i ∈ I such
that dpj =

∑
i∈I k j,i ai . Then we have (i) in this case.

Suppose that (Q2) holds. Then there exist a permutation p1, . . . , pc of {1, . . . , c},
an integer l < ρ :=min{c, k}, nonnegative integers k j,i for j = 1, . . . , c and i ∈ I,
and distinct integers el+1, . . . , ec, which satisfy the following:

• for j = 1, . . . , l, we have
∑

i∈I k j,i ai = dpj ,

• for j = l + 1, . . . , c, we have aej +
∑

i∈I k j,i ai = dpj .

We may assume that ( fpj = 0)∩ P0
I 6= ∅ since X is irreducible and the linear

system |OP(dpj )| does not have a fixed component. Hence, on p ∈ X ∩ P0
I , the

variety X is analytic locally isomorphic to a quotient singularity of type
1
aI
(a0, . . . , âi1, . . . , âik , . . . , âel+1, . . . , âec , . . . , an)×Ck−l .
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Now the proof is reduced to the following claim:

Claim 3.7. We have g := gcd(a0, . . . , âel+1, . . . , âec , . . . , an)= 1.

Proof of Claim. Suppose that g > 1. We shall have a similar contradiction as in the
proof of Proposition 3.4. As in Claim 3.5, up to a permutation of {1, . . . , c}, we
may choose c′ with l + 1≤ c′ ≤ c with the following properties:

(*) For j = l + 1, . . . , c′, some monomial in g j does not contain any element of
{xej , . . . , xec}.

(**) For j = c′+ 1, . . . , c, every monomial in g j contain some of {xec′+1
, . . . , xec}.

Let 5 := (xec′+1
= · · · = xec = 0) ⊂ P. Then, as in Proposition 3.6, we see

that f j |5 ≡ 0 for j = c′ + 1, . . . , c and 5 ⊂ Sing P(a0, . . . , an) since g | ai for
i /∈ {ec′+1, . . . , ec}. Thus we have dim5∩X ≥ dim P−c as before and it contradicts
that X 6⊂5 since X is not a linear cone. Thus we obtain the claim. �

The sheaf OX (1) induces a generator of the class group of a quotient singularity
of the above type. Since the class group is a cyclic group of order aI as in (1), we
see that aI | h. Thus we have finished the proof of Proposition 3.6. �

The following corollary restricts Proposition 3.6 to the smooth case.

Corollary 3.8 [Przyjalkowski and Shramov 2016, Lemma 2.15]. Let X= Xd1,...,dc⊂

P(a0, . . . , an) be a smooth WCI. Assume that there exists I = {i1, . . . , ik} such that
aI := gcd(ai1, . . . , aik ) > 1.

Then there exist distinct integers p1, . . . , pk such that aI | dp1, . . . , dpk .

Proof. Since X is smooth, the fundamental divisor of X is OX (1), that is h = 1 in
the notation of Proposition 3.6. Thus the statement follows from Proposition 3.6. �

4. Regular pairs and Frobenius coin problem

The following definition is motivated by Proposition 3.6 and Corollary 3.8.

Definition 4.1. Let c ∈ N and n ∈ Z≥−1 be integers and (d; a) be a pair, where
d = (d1, . . . , dc) ∈ Nc

+
and a = (a0, . . . , an) ∈ Nn+1

+ . Let c+ := {1, . . . , c} and
n := {0, . . . , n}.

We say that (d; a) is h-regular for a positive integer h if, for any subset I =
{i1, . . . , ik} ⊂ n such that aI := gcd(ai1, . . . , aik ) > 1, one of the following holds:

(i) There exist distinct integers p1, . . . , pk ∈ c+ such that aI | dp1, . . . , dpk ;

(ii) aI | h.

If a pair is h-regular for h = 1, we simply call it regular.

Remark 4.2. For technical reasons, in Definition 4.1 we admit the cases c = 0 or
n =−1, i.e., pairs of the form (d;∅), (∅; a) and (∅,∅).



Effective nonvanishing for Fano weighted complete intersections 2381

We need to fix some notation. If (d; a) is a pair with d = (d1, . . . , dc) ∈Nc
+

and
a = (a0, . . . , an) ∈ Nn+1

+ , then we define

δ(d; a) :=
c∑

j=1

d j −

n∑
i=0

ai .

In the case where the pair (d; a) comes from a well-formed quasismooth WCI
X = Xd1,...,dc ⊂ P(a0, . . . , an), we have ωX ∼=OX (δ(d; a)).

Let q be a prime number. Set Iq := {i ∈ n : q |ai } and Jq := { j ∈ c+ : q |d j }. We
consider two new pairs obtained from (d; a). The pair (dq

; aq) is given by

dq
:= ((d j/q) j∈Jq , (d j ) j∈c+\Jq ), aq

:= ((ai/q)i∈Iq , (ai )i∈n\Iq )

in which we divided by q all the divisible d j and ai and the pair (d(q), a(q)) is
given by

d(q) := (d j ) j∈Jq , a(q) := (ai )i∈Iq

in which only the divisible d j and ai appear. Note that

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)).

Definition 4.3. For a pair (d; a), we may choose subsets J(d;a) = { j1,..., jl} ⊂ c+

and I(d;a) = {i1,...,il} ⊂ n uniquely for some l ∈N so that d jk = aik for k = 1,...,l
and d j 6= ai for all j ∈ c+ \ J(d;a) and i ∈ n \ I(d;a). We define a pair (d̃; ã) by

(d̃; ã) := ((d j ) j∈c+\J(d;a); (ai )i∈n\I(d;a)), (4)

that is, we cancel the doubles (d j , ai ) with d j = ai .

Lemma 4.4. The pair (d̃; ã) is h-regular if (d; a) is h-regular.

Proof. Let I := {i1, . . . , ik} ⊂ n \ I(d;a) be a subset with aI > 1. Since (d; a) is
h-regular, either (i) holds for some {p1, . . . , pk} ⊂ c+ or (ii) holds. In the latter
case, there is nothing to check. Thus we consider the former case and need to find
p′1, . . . , p′k ∈ c+ \ J(d;a) such that aI | dp′j for j = 1, . . . , k. Let

J ′ := { j ∈ J(d;a) : aI | d j }, I ′ := {i ∈ I(d;a) : aI | ai }.

Then we have |I ′| = |J ′| =: l ′. Let I ′′ := I ∪ I ′. By aI = aI ′′ , there exist distinct
integers p1, . . . , pk+l ′ ∈ c+ such that aI | dpj for j = 1, . . . , k + l ′. Then the set
{p1, . . . , pk+l ′} \ J ′ contains k elements p′1, . . . , p′k ∈ c+ \ J(d;a) such that aI | dp′j
for j = 1, . . . , k. Thus (i) holds for (d̃; ã) and I. Hence we see that (d̃; ã) is
h-regular. �

The following straightforward lemmas show how h-regular pairs are very suitable
for inductive arguments.
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Lemma 4.5. Let (d; a) be an h-regular pair and q be a prime not dividing h. Then
the pairs (dq

; aq) and (d(q); a(q)) are h-regular. Hence (d(q)/q; a(q)/q) is also
h-regular.

Proof. We write the details for the pair (dq
; aq). The proof for (d(q); a(q)) is

easier.
Let I ={i1, . . . , ik}⊂ n such that aI := gcd(ai1, . . . , aik )> 1. By the h-regularity

of (d; a), we have either condition (i) of Definition 4.1, i.e., there exist distinct
integers p1, . . . , pk such that

aI | dp1, . . . , dpk

or (ii), i.e., aI | h.
If q | aI , then we have q | ai` for all i` ∈ I and aI - h. Thus we have (i) and

gcd
(ai1

q
, . . . ,

aik

q

)
=

aI

q

∣∣∣ dp1

q
, . . . ,

dpk

q

as we wanted.
If q - aI , then

gcd((ai/q)i∈I ′q , (ai )i∈(I\I ′q ))= aI

where I ′q := {i ∈ I : q | ai }. If aI | h, then there is nothing to prove, so we can
assume that aI - h and that (i) holds. Since q - aI , we get that aI divides (dq)pj for
j = 1, . . . , k. This concludes the proof. �

Lemma 4.6. Let (d; a) be an h-regular pair and q be a prime dividing h. Then
(dq
; aq) is h/q-regular and (d(q); a(q)) is h-regular, hence (d(q)/q; a(q)/q) is

h/q-regular.

Proof. We give the proof for the pair (dq
; aq). Consider a set I = {i1, . . . , ik} ⊂ n

such that aI := gcd(ai1, . . . , aik ) > 1 and let aq
I := gcd(aq

i )i∈I be the gcd of the ai

in (dq
; aq).

Assume first that gcd(aI , q)= 1, so that aq
I = aI . If aI |h, we obtain that aq

I |h/q
and we are done. If aI - h, then there exist distinct integers p1, . . . , pk such that
aI | dp1, . . . , dpk . We have aq

I - h/q and the dq
pj work.

If aI = qt for some positive integer t , then aq
I = t . If qt | h, we have t | h/q. If

qt -h, then there exist distinct integers p1, . . . , pk such that aI |dp1, . . . , dpk . For the
same integers, we have aq

I |dp1/q, . . . , dpk/q so the first condition of h/q-regularity
is satisfied and we are done. �

The Frobenius coin problem. In this subsection we want to enlighten some inter-
esting connections among the Ambro–Kawamata conjecture, regular pairs and the
Frobenius coin problem.
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Question 4.7 (Frobenius coin problem). Given positive integers a0, . . . , an such
that gcd(a0, . . . , an)= 1, find the largest integer G = G(a0, . . . , an) so that there
do not exist nonnegative integers x0, . . . , xn satisfying

G = a0x0+ . . .+ anxn.

Such G is called the Frobenius number of a0, . . . , an .

For n = 1, it is classically known that

G(a0, a1)= a0a1− a0− a1.

For n≥ 2, the problem is considerably harder: precise methods have been developed
to compute G(a0, a1, a2) and some algorithms and (lower and upper) bounds are
known for the general case (see for instance [Johnson 1960] and [Brauer and
Shockley 1962]).

By Lemma 2.4, the Ambro–Kawamata conjecture for smooth WCI would fol-
low from the following purely arithmetic statement, which we believe to be of
independent interest.

Conjecture 4.8. Let (d; a) = (d1, . . . , dc; a0, . . . , an) ∈ Nc
×Nn+1 be a regular

pair such that ai 6= 1 and d j 6=ai for any i, j. Assume c≤n and gcd(a0, . . . , an)= 1.
Then

δ(d; a)≥ G(a0, . . . , an).

One of the best known lower bounds for G is given in [Brauer 1942]. Let
a0, . . . , an be positive coprime integers, set g j := gcd(a0, . . . , a j ) for j = 0, . . . , n
and consider

Br(a0, . . . , an) :=

n∑
j=1

a j
g j−1

g j
−

n∑
i=0

ai .

Brauer proved that Br(a0, . . . , an) ≥ G(a0, . . . , an). Set d j := a j g j−1/g j for
j = 1, . . . , n. Then it is easy to check that (d; a) := (d1, . . . , dn; a0, . . . , an) is
actually a regular pair.

On the other hand, it is not difficult to see that, considering big prime numbers
p and q , the pair (pq, 6p, 6q; 2p, 3p, 2q, 3q) is regular, δ(d; a)≥ G(a0, . . . , an),
but δ(d; a) < Br(a0, . . . , an).

This shows that regular pairs can give better bounds for the Frobenius number
with respect to the known ones. For this reason, it seems to be a challenge and
interesting problem to study Conjecture 4.8.

Remark 4.9. It is not difficult to check that Conjecture 4.8 is true for c = 1, 2,
which implies that the nonvanishing holds for a smooth WCI of codimension 1 or 2.
For simplicity, we omit the detail in the codimension 2 case.
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For c = 1, a stronger and more general result is given in Lemma 6.1, which is
the key step to prove Theorem 1.3.

5. Proof of Theorem 1.2

Theorem 1.2 is the combination of Corollary 5.3 and Corollary 5.13 below.

Smooth case. The pair (d; a) in the following lemma does not come from a
nonempty WCI. Nevertheless this lemma is important in the proof of Proposition 5.2.

Lemma 5.1. Let (d; a)∈Nc
+
×Nn+1
+ be a regular pair such that ai 6= d j for any i, j.

Let q be a prime number such that q | ai and q | d j for any i, j. Then

δ(d; a)≥ cq.

Moreover, if the equality holds, then c = n+ 1.

Proof. Note that c ≥ n+ 1 which does not occur for a nonempty WCI.
Assume first that q is the only prime dividing the ai , that is for any i = 0, . . . , n,

we have ai = qαi for some αi ≥ 1. We can assume that a0 ≥ a1 ≥ . . . ≥ an . We
can also order the d j in such a way that vq(ds) ≥ vq(dt) for any s ≤ t , where
vq(d j )=max{e ∈ N : qe

| d j }. Then we have ai | di+1 for any i = 0, . . . , n and so

c∑
j=1

d j −

n∑
i=0

ai =

c−n−1∑
k=1

dn+1+k +

n∑
i=0

(di+1− ai )≥ cq

and the equality is possible only if c = n+ 1, d j = 2q and ai = q for any i, j.
Assume now that q 6= 2 and that q and 2 are the only primes dividing the ai ,

that is for any i = 0, . . . , n we have ai = 2αi qβi for some αi ≥ 0 and βi ≥ 1 such
that αi > 0 for at least one i . We proceed by induction on t =max0≤i≤n{βi }, the
greatest power of q dividing at least one ai .

Suppose t = 1. We can assume that v2(ai )≥ v2(a j ) and v2(di )≥ v2(d j ) for any
i ≤ j. Then again ai | di+1 for any i = 0, . . . , n and we conclude as before.

Suppose t ≥ 2. Let Iq t := {i ∈ n : q t
| ai } and Jq t := { j ∈ c+ : q t

| d j }. We
consider the following pairs: (d ′; a′), where d ′ = ((d j/q) j∈Jqt , (d j ) j∈c+\Jqt ) and
a′ = ((ai/q)i∈Iqt , (ai )i∈n\Iqt )) and (d ′′; a′′), where d ′′ = (d j/q) j∈Jqt and a′′ =
(ai/q)i∈Iqt . It is straightforward to check as in Lemma 4.5 that (d ′; a′) and (d ′′; a′′)
are regular. Consider the regular pair (d̃ ′; ã′) constructed in (4) which satisfies
d̃ ′j 6= ã′i for any i ∈ n \ I(d ′;a′), j ∈ c+ \ J(d ′;a′), where I(d ′;a′) ⊂ n and J(d ′;a′) ⊂ c+

are the subsets defined in Definition 4.3.
Let

m := |{ j ∈ Jq t : d j/q = ai | for some i ∈ n \ Iq t }|,

m := |{i ∈ Iq t : d j = ai/q | for some j ∈ c+ \ Jq t }|.
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Note that |I(d ′;a′)| = |J(d ′;a′)| ≤m+m. Let k := |Jq t |. By induction on t , we may as-
sume that we have δ(d ′; a′)= δ(d̃ ′; ã′)≥ (c−m−m)q and δ(d ′′; a′′)≥ kq . We have
that |Iq t | ≤ |Jq t | since (d; a) is regular. Since m ≤ k and m ≤ |Iq t | ≤ k, we obtain

δ(d; a)= δ(d ′; a′)+ (q − 1)δ(d ′′; a′′)≥ (c− 2k)q + (q − 1)kq

= cq − 2kq + kq2
− kq

= cq + kq(q − 3)≥ cq (5)

because q ≥ 3. The equality is possible only if we have it for both (d̃ ′; ã′) and
(d ′′; a′′). This implies by induction on t that c = n+ 1 in this case.

We now pass to the general case. For any prime p, different from q and 2, let
ep := max{e ∈ N : pe

| ai for some i}. The proof is by induction on D =
∑

p ep,
where the index varies over all prime numbers different from q and 2. The case
D = 0 has already been treated in the first part of the proof. So assume D ≥ 1 and
that the inequality holds up to D− 1. Consider (d p

; a p) and let

m p := |{ j ∈ c+ : d j/p = ai for some i ∈ n \ Ip}|,

m p := |{i ∈ n : d j = ai/p for some j ∈ c+ \ Jp}|.

Let us again consider the pair (d̃ p
; ã p) as in Definition 4.3 by removing subsets

J(d p;a p) ⊂ c+ and I(d p;a p) ⊂ n. Then this satisfies the hypothesis (d̃ p) j 6= (ã p)i for
any i and j. We again have that |J(d p;a p)| ≤m p+m p. By induction on D, we obtain
δ(d p
; a p)= δ(d̃ p

; ã p)≥ (c−m p−m p)q . Now consider the pair (d(p)/p; a(p)/p).
Again by induction on D, we obtain δ(d(p)/p; a(p)/p) ≥ sq, where s := |{ j ∈
c+ : p|d j }|. We see that m p ≤ s by the definition of m p. Let s ′ := |{i ∈ n : p | ai }|.
We see that s ′ ≤ s by the regularity of (d; a) and that m p ≤ s ′ by the definition of
m p. Thus we have m p ≤ s. By these inequalities and p ≥ 3, we conclude that

δ(d; a)= δ(d p
; a p)+ (p− 1)δ(d(p)/p; a(p)/p)

≥ (c−m p −m p)q + (p− 1)sq

= cq + psq −m pq −m pq − sq ≥ cq + psq − 3sq ≥ cq

as we wanted. Again, the equality is possible only if c = n+ 1. �

By using Lemma 5.1, we prove the following key proposition.

Proposition 5.2. Let (d; a) ∈ Nc
+
×Nn+1

+ be a regular pair such that ai > 1 and
ai 6= d j for any i, j. Then the following holds.

(i) We have
δ(d; a)≥ c. (6)

(ii) If gcd(a0, . . . , an) = 1, then the equality holds only if (d; a) is of the form
(6(s), 1(c−s)

; 2(s), 3(s)) for some integer s.
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Proof. (i) The proof is by induction on n, the case n = 0 being obvious. We can
assume that no prime divides every ai , otherwise we are in the case of Lemma 5.1.
In particular, we may assume that there is a prime q 6= 2 which divides some ai . Let

m := |{ j ∈ c+ : d j/q = ai for some i ∈ n \ Iq}|,

m := |{i ∈ n : d j = ai/q for some j ∈ c+ \ Jq , d j 6= 1}|,

` := |{i ∈ n : ai = q}|, s := |{ j ∈ c+ : q|d j }| = |Jq |.

We note that m ≤ s by definition and `+m ≤ s by the regularity.

Case 1: Suppose that `+m+m ≥ 1. Then the pair (dq
; aq) has some redundant

ai , in the sense that ai/q = 1, d j/q = ai or d j = ai/q for some i, j. That is, we
consider a regular pair (d̃q , ãq) and, by removing all ãq

i = 1, we obtain a new
regular pair (d̂q

; âq) ∈ Nĉ
+
×Nn̂+1

+ for some ĉ ≤ c and n̂ ≤ n. Note that n̂ < n by
the hypothesis `+m +m ≥ 1. Let `1 := |{ j ∈ c+ : d j = 1}| and `′ := min{`, `1}.
Then we see that ĉ ≥ c−m −m − `′ by the construction of (d̃q

; ãq). Since we
have |{i ∈ n \ I(dq ;aq ) : ã

q
i = 1}| = `− `′, we obtain, by induction on n, that

δ(dq
; aq)= δ(d̂q

; âq)− (`− `′)≥ ĉ− (`− `′)≥ c− `−m−m.

By applying Lemma 5.1 to (d(q), a(q)), we obtain

δ(d(q); a(q))≥ sq.

By these and `+m+m ≤ 2s, we obtain

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q))≥ c− `−m−m+ (q − 1)s

≥ c+ qs− 3s ≥ c (7)

since q ≥ 3.

Case 2: Suppose now that `+m +m = 0. Then the pair (dq
; aq) satisfies the

assumptions of the proposition. We note that

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)) > δ(dq
; aq)

since we have δ(d(q); a(q)) > 0 by Lemma 5.1. So we can replace the pair
(d; a) with (dq

; aq) without changing the number c of the j and we can repeat the
argument from the beginning of the proof (possibly changing the prime q) till either
we end up in Case 1 or we reach the situation of Lemma 5.1. In both cases, we
are done and obtain (6).

(ii) We now study when the identity holds in the case gcd(a0, . . . , an)= 1.
Note that the case n = 1 is clear, being equivalent to asking a0a1− a0− a1 = 1.
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Assume n ≥ 2 and let q 6= 2 be a prime number such that q | ai for some i . We
shall follow the proof of the inequality. In particular, we look at

δ(d; a)= δ(dq
; aq)+

q − 1
q

δ(d(q); a(q)).

With the same notation as above, we note that the equality can hold only if we
are in Case 1 and, by Lemma 5.1, the number |{i ∈ n : q | ai }| must be equal to
s = |Jq |. Moreover we obtain q = 3 by (7). This implies that the only possible
prime numbers that divide at least one ai are 2 and 3.

We must also have m = s and `+m = s. By m = s, we see that any d j/3 ∈ N

must be equal to some ai which is not divisible by 3. Hence we can write

(d;a)= (3 · 2β1,...,3 · 2βs ,2βs+1,...,2βc;2β1,...,2βs ,3 · 2αs+1,...,3 · 2αn+1)

for some nonnegative integers αi and βi . Then

δ(d;a)= δ(2βs+1,...,2βc;2αs+1,...,2αn+1)+ 2
3δ(3·2

β1,...,3·2βs ;3·2αs+1,...,3·2αn+1).

Also note that `+m = s implies that n+ 1− s = |{i ∈ n : 3 |ai }| = `+m = s, thus
n+ 1= 2s. By the regularity of (d(3); a(3)) and the assumption d j 6= ai for any
i, j, to have the equality δ(d(3); a(3))= 3s we need β j = 1 for j = 1, . . . , s and
αi = 0 for i = s+ 1, . . . , n+ 1, which implies

δ(d; a)= δ(2βs+1, . . . , 2βc; 1, . . . , 1)+ 2s =
c−s∑
i=1

2βs+i − (n+ 1− s)+ 2s,

i.e., c = δ(d; a)=
∑c−s

i=1 2βs+i + s.
Hence, we must have β j = 0 for j = s+ 1, . . . , c, which finishes the proof. �

As a corollary of Proposition 5.2, we obtain the nonemptiness of |O(1)| and the
smoothness of its general member on a smooth Fano or Calabi–Yau WCI.

Corollary 5.3. Let X := Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed smooth Fano
or Calabi–Yau WCI which is not a linear cone. Let c1 := |{i ∈ n : ai = 1}|. Then the
following hold.

(i) We have c1 ≥ c. Moreover the equality is possible only if X is Calabi–Yau of
type X6,...,6 ⊂ P(1(c), 2(c), 3(c)).

(ii) The linear system |OX (1)| is nonempty and its general member H is smooth.

Proof. (i) We may assume that a0 ≤ · · · ≤ an . Thus we have a0 = · · · = ac1−1 = 1.
Since X is smooth, we see that (d1, . . . , dc; ac1, . . . , an) is regular. By this and
Proposition 5.2(i), we obtain

δ(d1, . . . , dc; ac1, . . . , an)≥ c.

By the assumptions, 0≥ δ(d; a)≥ c− c1, and this implies the former statement.
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Let (d; a) be a regular pair which satisfies c1 = c. Let (d̂; â) be the regular
pair obtained by removing all ai = 1. Then (d̂; â) satisfies the hypothesis of
Proposition 5.2(ii) since (d; a) defines a smooth WCI. Hence, by Proposition 5.2(ii),
we see that (d̂; â)= (6(c); 2(c), 3(c)) and (d; a)= (6(c); 2(c), 3(c), 1(c)).

(ii) By the latter part of Proposition 5.2, we can assume that X is not of the form
X6,...,6 ⊂ P(2(c), 3(c), 1(c)); otherwise the conclusion is immediate. In particular,
we may assume c1 ≥ c+ 1.

By (i), we see that |OX (1)| 6=∅. Since X is smooth and well-formed, we have
Sing P(a0, . . . , an)∩X =∅. Thus H∩Sing P(a0, . . . , an)=∅. Hence it is enough
to check H is quasismooth at P :=5(p), where p∈5−1((x0= . . .= xc1−1=0)∩X)
and 5 : An+1

\ {0} → P(a0, . . . , an) is the quotient map.
Set Hi := X∩(xi =0) for i=0, . . . , c1−1. We shall look at the Jacobi matrices of

X and Hi ⊂P(a0, . . . , ai−1, ai+1, . . . , an). Let f1, . . . , fc be the defining equations
of X such that deg f j = d j . For i = 0, . . . , n, set

vi (p) :=

(
∂ f1/∂xi

...
∂ fc/∂xi

)
(p).

The Jacobi matrix JX (p) and JHi (p) of X and Hi can be written as

JX (p)= (v0(p),...,vn(p)), JHi (p)= (v0(p),...,vi−1(p),vi+1(p),...,vn(p)).

Since X is quasismooth, there exist linearly independent vectors

vi1(p), . . . , vic(p).

Since c1 ≥ c+ 1, we can choose i so that i /∈ {i1, . . . , ic}. Then we see that Hi is
quasismooth at P :=5(p). Thus a general member H is also quasismooth at P. �

Remark 5.4. Let X ⊂ P(a0, . . . , an) be a smooth WCI as in Corollary 5.3. For
I ⊂ n such that aI = 1, it may a priori happen that (Q1) does not hold, but (Q2)
holds. That is why we make an argument as in Corollary 5.3 (ii).

Remark 5.5. Let Xd1,...,dc be a smooth WCI as in Corollary 5.3. Motivated by
a question by Andreas Höring, we consider the description of the base locus
Bs |OX (1)|.

Up to reordering d1, . . . , dc, we can assume that there is an integer c′≤ c with the
following properties: for 1≤ j ≤ c′, there are weighted homogeneous polynomials
f j (xc1, . . . , xn) of degree d j and, for c′ + 1 ≤ j ≤ c, all monomials of degree
d j contain one of the variables x0, . . . , xc1−1 of weights 1. Since the base locus
Bs |OX (1)| is (x0 = · · · = xc1−1 = 0)∩ Xd1,...,dc , it is isomorphic to a general WCI
Yd1,...,dc′

⊂ P(ac1, . . . , an).
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Thus the base locus is again a WCI. However this is not necessarily (quasi)smooth
in general. We shall see this in Example 5.6.

Example 5.6. Let X := X231,231,26 ⊂P :=P(3, 3, 7, 7, 11, 11, 1(447)) be a general
WCI. We can check that this is a smooth Fano WCI as follows: for I = {0, 1}, {2, 3}
or {4, 5}, (that is, two variables of weights 3, 7 or 11), we have (Q1) for d1 = 231,
d2 = 231. Also, for I = {0, 1, 2, 3} or {0, 1, 4, 5}, we have (Q1) for d1 = 231,
d2 = 231, d3 = 26 since 26= 7 ·2+3 ·4= 11+3 ·5. For I = {2, 3, 4, 5}, we have
(Q2) for d1 = 231, d2 = 231, d3 = 26= 7 · 2+ 11+ 1. By Proposition 3.1, we see
that X is quasismooth, and smooth since X ∩Sing P=∅.

The base locus Bs |OX (1)| is a WCI Y := Y231,231,26⊂P′ :=P(3, 3, 7, 7, 11, 11).
This is not quasismooth. Indeed, for I = {2, 3, 4, 5}, neither (Q1) nor (Q2) holds
because of the lack of suitable degree 26 polynomials. In fact, Y is a nonnormal
surface singular along a curve (x0 = x1 = f1 = f2 = 0)⊂ P′, where f1, f2 are part
of defining polynomials of degrees 231 and x0, x1 are the variables of weights 3.

Hence we can not expect smoothness of the base locus of the fundamental linear
system even if it contains a smooth member.

Remark 5.7. Let W =Wd1,...,dc ⊂ P(a0, . . . , an) be a smooth WCI which is not a
linear cone, where ai > 1 for any i = 0, . . . , n. By Corollary 5.3 we know that W
is not Fano. Then we can consider a WCI

X = Xd1,...,dc ⊂ P(a0, . . . , an, 1(`))

where ` = δ(W )+ 1. In this way X is a smooth Fano with −KX = OX (1) and
Bs |OX (1)| is exactly W.

In Corollary 5.3 we showed that for a smooth Fano WCI, the general member of
the fundamental divisor is quasismooth. This is not true in general for a quasismooth
Fano WCI as the following example shows.

Example 5.8. Let X = X35 ⊂ P(5, 7, 2(k), 3(k)) where k ≥ 5. Then X is a quasi-
smooth Fano WCI with fundamental divisor OX (6), but X35,6 ⊂ P(5, 7, 2(k), 3(k))
is not quasismooth. However, we see that a general member of |OX (6)| has only
terminal singularities. Indeed it has an isolated singularity at [∗ : ∗ : 0 : · · · : 0]
which is locally isomorphic to 0 ∈ (x3

1 + · · ·+ x3
k + x2

k+1+ · · ·+ x2
2k = 0)⊂ C2k.

It is also natural to look at the general element of | − KX | in the case of a Fano
variety X. For instance, Shokurov [1979] and Reid [1983] proved that a Fano 3-fold
with only canonical Gorenstein singularities admits an anticanonical member with
only Du Val singularities. Here we give an example of a smooth Fano WCI whose
anticanonical members are singular (and not quasismooth). See also [Höring and
Voisin 2011, 2.12] for an example of a Fano 4-fold with singular fundamental divisor.
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Example 5.9. (cf., [Sano 2014, Example 2.9]) For m ∈ Z>0, let X be a weighted
hypersurface X = X(2m+1)(2m+2) ⊂ P(1(1+2m(2m+1)), 2m + 1, 2m + 2) of degree
(2m+ 1)(2m+ 2). Then we see that −KX =OX (2) and the linear system |−i KX |

does not contain a smooth member for i = 1, . . . ,m. Thus we can not expect a
smooth element of the plurianticanonical system on a Fano manifold. However,
in the above example, we can find a member with only terminal singularities.
Moreover, the base locus of |H | consists of a point.

Remark 5.10. It is well known that following the arguments in [Ambro 1999, Sec-
tion 5] or [Kawamata 2000, Section 5] and assuming Conjecture 1.1, it is possible to
show that the general element of |−mKX | has always only klt singularities for m>0
such that −mKX is Cartier (we thank Chen Jiang for pointing this fact out to us).

Finally, we also get the following corollary, which generalizes [Przyjalkowski
and Shramov 2017, Corollary 4.2] to any codimension.

Corollary 5.11. Let X := Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed smooth Fano
or Calabi–Yau WCI which is not a linear cone. Let c1 := |{i ∈ n : ai = 1}|. Then
c1 > I (X) := −δ(d; a)=

∑n
i=0 ai −

∑c
j=1 d j .

Proof. Consider the regular pair (d; a) associated with X. We may assume that
a0 ≤ · · · ≤ an , so that a0 = · · · = ac1−1 = 1. Let (d ′; a′) be the pair (d; ac1, . . . , an),
where we took away every 1 from (d; a). This pair is regular with no ai = 1 and so
by Proposition 5.2 we get

δ(d ′; a′)≥ c > 0,

which implies
δ(d; a)= δ(d ′; a′)− c1 >−c1,

i.e., I (X) < c1, as we wanted. �

General case. The following is a key proposition to deduce the nonvanishing in
the quasismooth Fano case.

Proposition 5.12. Let h ∈ N+ and (d; a) ∈ Nc
+
×Nn+1

+ be an h-regular pair with
c ≥ 1. If ai - h for any i = 0, . . . , n and ai 6= d j for any i, j, then

δ(d; a) > 0.

Proof. Let us write h = pα1
1 · · · p

αk
k , where the pi are distinct prime numbers. The

proof is by induction on α =
∑k

i=1 αi ≥ 0. If α = 0, then the pair (d; a) is regular
and the statement follows from Proposition 5.2, so we assume α ≥ 1.

Let p be a prime number dividing h and consider (d p
; a p). As usual,

δ(d; a)= δ(d p
; a p)+

p− 1
p

δ(d(p); a(p)).
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By Lemma 4.6, (d p
; a p) and (d(p)/p; a(p)/p) are h/p-regular. Note that there

does not exist i such that ai/p = 1 by the hypothesis ai -h. Thus, after cancellation
on (d p

; a p) (see Definition 4.3), we see that (d̃ p; ã p) and (d(p)/p; a(p)/p) are
h/p-regular and satisfy the hypothesis of the proposition.

If p | ai or p | d j for some i or j, then we obtain δ(d(p)/p; a(p)/p) > 0 by the
induction hypothesis and conclude δ(d; a) > 0 by induction since we have either
δ(d p
; a p)= δ(d̃ p; ã p) > 0 or (d̃ p; ã p) is empty.

If p - ai and p - d j for any i, j, then δ(d p
; a p) > 0 by the induction hypothesis

since (d p
; a p) = (d; a) is h/p-regular. Moreover (d(p); a(p)) is empty. Hence

we can again conclude that δ(d; a) > 0. �

Corollary 5.13. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a well-formed quasismooth
WCI which is Fano or Calabi–Yau and which is not a linear cone. Then |H | 6=∅
for any ample Cartier divisor H on X.

Proof. Write H = OX (h). If there exists i ∈ n such that ai | h, then we are done.
Otherwise, we are in the situation of Proposition 5.12, and so the variety can not be
Fano or Calabi–Yau since (d; a) is h-regular by Proposition 3.6. �

6. Weighted hypersurfaces

The following lemma gives a proof of a generalized version of Conjecture 4.8 in
the case c = 1.

Lemma 6.1. Let a0, . . . , an be positive integers, n ≥ 1 and set

h := lcmi 6= j (gcd(ai , a j )).

Assume that ai - h for any i and set f := lcm(a0, . . . , an). Then

f −
n∑

i=0

ai ≥ lcm(as, at)− as − at

for any s and t.

Proof. We first note that, for any proper subset I of n := {0, . . . , n}, we have
f 6= lcmi∈I (ai ). In fact, suppose that the equality holds and let k ∈ n \ I. For any
prime power pe such that e ≥ 1 and pe

| ak , we have pe
| f . In particular, we have

pe
| a` for some ` ∈ I. This implies that pe

| gcd(ak, a`) and so ak | h, which is a
contradiction. In particular, f ≥ 2 lcmi∈I (ai ).

The proof of the lemma is by induction on n and the case n = 1 is trivial, so
assume n ≥ 2. Let s, t ∈ n be such that s 6= t . Then

f −
n∑

i=0

ai =
f
2
−as−at+

f
2
−

∑
i 6=s,t

ai ≥ lcm(as, at)−as−at+lcmi 6=s,t(ai )−
∑
i 6=s,t

ai .
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If n = 2, then we have

lcmi 6=s,t(ai )−
∑
i 6=s,t

ai = 0

and we are done.
If n ≥ 3, then we have

lcmi 6=s,t(ai )−
∑
i 6=s,t

ai ≥ lcm(as′, at ′)− as′ − at ′

for s ′, t ′ ∈ n\{s, t} such that s ′ 6= t ′ by induction on n and lcm(as′, at ′)−as′−at ′ ≥ 0
because we are assuming that ai - h for any i . �

Proposition 6.2. Let X = Xd ⊂ P= P(a0, . . . , an) be a well-formed, quasismooth
hypersurface of degree d which is not a linear cone. Let H be an ample Cartier
divisor on X such that H − KX is ample.

Then |H | is not empty.

Proof. Write OX (H)=OX (h) for a positive integer h.
By Proposition 3.4, we can assume that ai | d for any i . Then X is a Cartier

divisor which intersects any stratum P{i, j} in some interior point. The condition of
H to be Cartier is then equivalent to

lcmi 6= j (gcd(ai , a j )) | h.

If there exists ai such that ai | h, then we are done. So assume that ai - h for any
i and let f := lcm(a0, . . . , an). By Lemma 6.1, we get

f −
n∑

i=0

ai ≥ lcm(as, at)− as − at

for any s and t . Since h > f −
∑n

i=0 ai (because H − KX is ample and f | d) and
g := gcd(as, at)|h for any s 6= t , we can use the Frobenius number G(as/g, at/g)=
(1/g)(lcm(as, at)−as−at) as on page 2382 to conclude that there are nonnegative
integers λs, λt such that

λsas + λt at = h,

which implies that |H | is not empty by Lemma 2.4. �

In the following, we prove the basepoint freeness on a Gorenstein weighted
hypersurface.

Proposition 6.3. Let X = Xd ⊂ P= P(a0, . . . , an) be a well-formed, quasismooth
hypersurface of degree d which is not a linear cone such that KX is Cartier. Let H
be the fundamental divisor of X and h be the positive integer such that H =OX (h).

Then L = KX +m H is globally generated for any m ≥ n.
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Proof. Suppose by contradiction that there is a point p = [p0 : · · · : pn] ∈ Bs |L|
and take ` such that L =OX (`).

Note that if ps 6= 0 for some s, then as - h, otherwise xe
s ∈ |L| for some positive

integer e and so p /∈ Bs |L|. Also note that, for all i ∈ n such that ai - h, we have
ai | d by Proposition 3.4.

Assume first that there exists a unique s ∈ n such that ps 6= 0. Since p ∈ X and
as - h, we get that as | d . Let fd be the defining polynomial of Xd . If fd contains a
monomial xd/as

s , then we obtain p 6∈ Xd and this is a contradiction. If fd does not
contain such a monomial, then it should contain a monomial of the form xk

s xi for
some k > 0 and i 6= s by the quasismoothness of Xd . Then we see that as | ai by
as | d , and Xd has a quotient singularity of index as . Thus we obtain as | h and this
is a contradiction.

Hence we can assume that there exist s and t such that s 6= t , ps 6= 0 and pt 6= 0,
thus as, at - h. We have

`= d −
n∑

i=0

ai +mh = d −
∑
ai -h

ai −
∑
ai |h

ai +mh.

Assume that −
∑

ai |h ai +mh ≥ 1. Since ai | d for all i such that ai - h, we can
apply Lemma 6.1 to conclude that

` > lcm(as, at)− as − at ,

which implies that xes
s xet

t ∈ |L| for some nonnegative integers es and et . So we
again have p /∈ Bs |L|.

Assume now that −
∑

ai |h ai +mh ≤ 0. Then we can check that |{i : ai = h}| ≥
n − 1, because m ≥ n. Moreover, since P is well-formed, the greatest common
factor of any n weights is 1. By these, when |{i : ai = h}| = n, we have h = 1 and
P= P(a0, 1, . . . , 1) for some a0 > 1. When |{i : ai = h}| = n− 1, we have h = 2
and P = P(1, 1, 2, . . . , 2). In both cases, we can check that L is basepoint free,
and we have derived a contradiction. �

Acknowledgment

We thank D. Turchetti for many helpful conversations, C. Shramov for letting us
know of the recent preprint [Przyjalkowski and Shramov 2017], and A. Höring for
asking us a question on the base locus of the fundamental linear system. Part of this
project was realized while the Sano and Tasin were visiting the Max Planck Institute
for Mathematics and the Institute for Mathematical Science, NUS in Singapore.
We are happy to thank them for their support during our stays. Sano was also
partially supported by JST Tenure Track Program, JSPS KAKENHI Grant Numbers
JP15J03158, JP16K17573, JP24224001.



2394 Marco Pizzato, Taro Sano and Luca Tasin

References

[Ambro 1999] F. Ambro, “Ladders on Fano varieties”, J. Math. Sci. (New York) 94:1 (1999), 1126–
1135. MR Zbl

[Ballico et al. 2013] E. Ballico, R. Pignatelli, and L. Tasin, “Weighted Hypersurfaces with Either
Assigned Volume or Many Vanishing Plurigenera”, Communications in Algebra 41:10 (2013),
3745–3752.

[Beltrametti and Sommese 1995] M. C. Beltrametti and A. J. Sommese, The adjunction theory of
complex projective varieties, de Gruyter Expositions in Mathematics 16, de Gruyter, Berlin, 1995.
MR Zbl

[Brauer 1942] A. Brauer, “On a problem of partitions”, Amer. J. Math. 64 (1942), 299–312. MR Zbl

[Brauer and Shockley 1962] A. Brauer and J. E. Shockley, “On a problem of Frobenius”, J. Reine
Angew. Math. 211 (1962), 215–220. MR Zbl

[Broustet and Höring 2010] A. Broustet and A. Höring, “Effective non-vanishing conjectures for
projective threefolds”, Adv. Geom. 10:4 (2010), 737–746. MR Zbl

[Call and Lyubeznik 1994] F. Call and G. Lyubeznik, “A simple proof of Grothendieck’s theorem on
the parafactoriality of local rings”, pp. 15–18 in Commutative algebra: syzygies, multiplicities, and
birational algebra (South Hadley, MA, 1992), edited by W. J. Heinzer et al., Contemp. Math. 159,
American Mathematical Society, Providence, RI, 1994. MR Zbl

[Cao and Jiang 2016] Y. Cao and C. Jiang, “Remarks on Kawamata’s effective non-vanishing
conjecture for manifolds with trivial first Chern classes”, preprint, 2016. arXiv

[Chen 2015] J.-J. Chen, “Finiteness of Calabi–Yau quasismooth weighted complete intersections”,
Int. Math. Res. Not. 2015:12 (2015), 3793–3809. MR Zbl

[Chen et al. 2011] J.-J. Chen, J. A. Chen, and M. Chen, “On quasismooth weighted complete
intersections”, J. Algebraic Geom. 20:2 (2011), 239–262. MR Zbl

[Corti et al. 2000] A. Corti, A. Pukhlikov, and M. Reid, “Fano 3-fold hypersurfaces”, pp. 175–258 in
Explicit birational geometry of 3-folds, edited by A. Corti and M. Reid, London Math. Soc. Lecture
Note Ser. 281, Cambridge Univ. Press, 2000. MR Zbl

[Dimca 1986] A. Dimca, “Singularities and coverings of weighted complete intersections”, J. Reine
Angew. Math. 366 (1986), 184–193. MR Zbl

[Dolgachev 1982] I. Dolgachev, “Weighted projective varieties”, pp. 34–71 in Group actions and
vector fields (Vancouver, 1981), edited by J. B. Carrell, Lecture Notes in Math. 956, Springer, 1982.
MR Zbl

[Ein and Lazarsfeld 1993] L. Ein and R. Lazarsfeld, “Global generation of pluricanonical and adjoint
linear series on smooth projective threefolds”, J. Amer. Math. Soc. 6:4 (1993), 875–903. MR Zbl

[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Prince-
ton Univ. Press, 1993. MR Zbl

[Höring 2012] A. Höring, “On a conjecture of Beltrametti and Sommese”, J. Algebraic Geom. 21:4
(2012), 721–751. MR Zbl

[Höring and Voisin 2011] A. Höring and C. Voisin, “Anticanonical divisors and curve classes on Fano
manifolds”, Pure Appl. Math. Q. 7:4 (2011), 1371–1393. MR Zbl

[Iano-Fletcher 2000] A. R. Iano-Fletcher, “Working with weighted complete intersections”, pp. 101–
173 in Explicit birational geometry of 3-folds, edited by A. Corti and M. Reid, London Math. Soc.
Lecture Note Ser. 281, Cambridge Univ. Press, 2000. MR Zbl

[Johnson 1960] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math. 12 (1960), 390–398.
MR Zbl

http://dx.doi.org/10.1007/BF02367253
http://msp.org/idx/mr/1703912
http://msp.org/idx/zbl/0948.14033
http://dx.doi.org/10.1080/00927872.2012.677079
http://dx.doi.org/10.1080/00927872.2012.677079
https://doi.org/10.1515/9783110871746
https://doi.org/10.1515/9783110871746
http://msp.org/idx/mr/1318687
http://msp.org/idx/zbl/0845.14003
http://dx.doi.org/10.2307/2371684
http://msp.org/idx/mr/0006196
http://msp.org/idx/zbl/0061.06801
http://dx.doi.org/10.1515/crll.1962.211.215
http://msp.org/idx/mr/0148606
http://msp.org/idx/zbl/0108.04604
https://doi.org/10.1515/ADVGEOM.2010.035
https://doi.org/10.1515/ADVGEOM.2010.035
http://msp.org/idx/mr/2733964
http://msp.org/idx/zbl/1229.14007
https://doi.org/10.1090/conm/159/01500
https://doi.org/10.1090/conm/159/01500
http://msp.org/idx/mr/1266175
http://msp.org/idx/zbl/0813.13017
http://msp.org/idx/arx/1612.00184
https://doi.org/10.1093/imrn/rnu049
http://msp.org/idx/mr/3356738
http://msp.org/idx/zbl/1327.14184
http://dx.doi.org/10.1090/S1056-3911-10-00542-4
http://dx.doi.org/10.1090/S1056-3911-10-00542-4
http://msp.org/idx/mr/2762991
http://msp.org/idx/zbl/1260.14060
http://tinyurl.com/3folds
http://msp.org/idx/mr/1798983
http://msp.org/idx/zbl/0960.14020
https://doi.org/10.1515/crll.1986.366.184
http://msp.org/idx/mr/833017
http://msp.org/idx/zbl/0576.14047
https://doi.org/10.1007/BFb0101508
http://msp.org/idx/mr/704986
http://msp.org/idx/zbl/0516.14014
http://dx.doi.org/10.1090/S0894-0347-1993-1207013-5
http://dx.doi.org/10.1090/S0894-0347-1993-1207013-5
http://msp.org/idx/mr/1207013
http://msp.org/idx/zbl/0803.14004
https://doi.org/10.1515/9781400882526
http://msp.org/idx/mr/1234037
http://msp.org/idx/zbl/0813.14039
http://dx.doi.org/10.1090/S1056-3911-2011-00573-0
http://msp.org/idx/mr/2957694
http://msp.org/idx/zbl/1253.14007
http://dx.doi.org/10.4310/PAMQ.2011.v7.n4.a13
http://dx.doi.org/10.4310/PAMQ.2011.v7.n4.a13
http://msp.org/idx/mr/2918165
http://msp.org/idx/zbl/1316.14022
http://dx.doi.org/10.1017/CBO9780511758942
http://msp.org/idx/mr/1798982
http://msp.org/idx/zbl/0960.14027
http://dx.doi.org/10.4153/CJM-1960-033-6
http://msp.org/idx/mr/0121335
http://msp.org/idx/zbl/0096.02803


Effective nonvanishing for Fano weighted complete intersections 2395

[Johnson and Kollár 2001] J. M. Johnson and J. Kollár, “Fano hypersurfaces in weighted projective
4-spaces”, Experiment. Math. 10:1 (2001), 151–158. MR Zbl

[Kawamata 1997] Y. Kawamata, “On Fujita’s freeness conjecture for 3-folds and 4-folds”, Math. Ann.
308:3 (1997), 491–505. MR Zbl

[Kawamata 2000] Y. Kawamata, “On effective non-vanishing and base-point-freeness”, Asian J.
Math. 4:1 (2000), 173–181. MR Zbl

[Lanteri et al. 1993] Lanteri et al., “Open problems”, pp. 321–325 in Geometry of complex pro-
jective varieties (Cetraro, Italy, 1990), edited by A. Lanteri et al., Seminars and Conferences 9,
Mediterranean Press, Rende, Italy, 1993. MR

[Mori 1975] S. Mori, “On a generalization of complete intersections”, J. Math. Kyoto Univ. 15:3
(1975), 619–646. MR Zbl

[Przyjalkowski and Shramov 2016] V. Przyjalkowski and C. Shramov, “Bounds for smooth Fano
weighted complete intersections”, preprint, 2016. arXiv

[Przyjalkowski and Shramov 2017] V. Przyjalkowski and C. Shramov, “Nef partitions for codimension
2 weighted complete intersections”, preprint, 2017. arXiv

[Reid 1980] M. Reid, “Canonical 3-folds”, pp. 273–310 in Journées de Géometrie Algébrique
(Angers, 1979), edited by A. Beauville, Sijthoff & Noordhoff, Germantown, MD, 1980. MR Zbl

[Reid 1983] M. Reid, “Projective morphisms according to Kawamata”, preprint, 1983, Available at
http://homepages.warwick.ac.uk/~masda/3folds/Ka.pdf.

[Reid 1987] M. Reid, “Young person’s guide to canonical singularities”, pp. 345–414 in Algebraic
geometry, I (Brunswick, ME, 1985), edited by S. J. Bloch, Proc. Sympos. Pure Math. 46, American
Mathematical Society, Providence, RI, 1987. MR Zbl

[Reider 1988] I. Reider, “Vector bundles of rank 2 and linear systems on algebraic surfaces”, Ann. of
Math. (2) 127:2 (1988), 309–316. MR Zbl

[Sano 2014] T. Sano, “Unobstructedness of deformations of weak Fano manifolds”, Int. Math. Res.
Not. 2014:18 (2014), 5124–5133. MR Zbl

[Shokurov 1979] V. V. Shokurov, “Smoothness of a general anticanonical divisor on a Fano variety”,
Izv. Akad. Nauk SSSR Ser. Mat. 43:2 (1979), 430–441. In Russian; translation in Math. USSR-Izv.
14:2 (1980), 395–405. MR Zbl

[Xie 2009] Q. Xie, “A note on the effective non-vanishing conjecture”, Proc. Amer. Math. Soc. 137:1
(2009), 61–63. MR Zbl

[Ye and Zhu 2015] F. Ye and Z. Zhu, “On Fujita’s freeness conjecture in dimension 5”, preprint, 2015.
arXiv

Communicated by Shigefumi Mori
Received 2017-03-29 Revised 2017-07-28 Accepted 2017-09-01

marco.pizzato1@gmail.com I-39100 Bolzano, Italy

tarosano@math.kobe-u.ac.jp Department of Mathematics, Graduate School of Science,
Kobe University, Kobe, Japan

ltasin@mat.uniroma3.it Dipartimento di Matematica e Fisica, Roma Tre University,
Rome, Italy

mathematical sciences publishers msp

http://projecteuclid.org/euclid.em/999188430
http://projecteuclid.org/euclid.em/999188430
http://msp.org/idx/mr/1822861
http://msp.org/idx/zbl/0972.14034
http://dx.doi.org/10.1007/s002080050085
http://msp.org/idx/mr/1457742
http://msp.org/idx/zbl/0909.14001
http://dx.doi.org/10.4310/AJM.2000.v4.n1.a11
http://msp.org/idx/mr/1802918
http://msp.org/idx/zbl/1060.14505
http://msp.org/idx/mr/1225603
http://dx.doi.org/10.1215/kjm/1250523007
http://msp.org/idx/mr/0393054
http://msp.org/idx/zbl/0332.14019
http://msp.org/idx/arx/1611.09556
http://msp.org/idx/arx/1702.00431
http://msp.org/idx/mr/605348
http://msp.org/idx/zbl/0451.14014
http://homepages.warwick.ac.uk/~masda/3folds/Ka.pdf
http://dx.doi.org/10.1090/pspum/046.1/927963
http://msp.org/idx/mr/927963
http://msp.org/idx/zbl/0634.14003
http://dx.doi.org/10.2307/2007055
http://msp.org/idx/mr/932299
http://msp.org/idx/zbl/0663.14010
http://dx.doi.org/10.1093/imrn/rnt116
http://msp.org/idx/mr/3264677
http://msp.org/idx/zbl/1310.14019
http://mi.mathnet.ru/eng/izv1720
http://iopscience.iop.org/article/10.1070/IM1980v014n02ABEH001123
http://iopscience.iop.org/article/10.1070/IM1980v014n02ABEH001123
http://msp.org/idx/mr/534602
http://msp.org/idx/zbl/0407.14017
https://doi.org/10.1090/S0002-9939-08-09539-7
http://msp.org/idx/mr/2439425
http://msp.org/idx/zbl/1158.14012
http://msp.org/idx/arx/1511.09154
mailto:marco.pizzato1@gmail.com
mailto:tarosano@math.kobe-u.ac.jp
mailto:ltasin@mat.uniroma3.it
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $325/year for the electronic version, and $520/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 11 No. 10 2017

2213Tate cycles on some unitary Shimura varieties mod p
DAVID HELM, YICHAO TIAN and LIANG XIAO

2289Complex conjugation and Shimura varieties
DON BLASIUS and LUCIO GUERBEROFF

2323A subspace theorem for subvarieties
MIN RU and JULIE TZU-YUEH WANG

2339Variation of anticyclotomic Iwasawa invariants in Hida families
FRANCESC CASTELLA, CHAN-HO KIM and MATTEO LONGO

2369Effective nonvanishing for Fano weighted complete intersections
MARCO PIZZATO, TARO SANO and LUCA TASIN

2397Generalized Kuga–Satake theory and good reduction properties of Galois
representations

STEFAN PATRIKIS

2425Remarks on the arithmetic fundamental lemma
CHAO LI and YIHANG ZHU

A
lgebra

&
N

um
ber

Theory
2017

Vol.11,
N

o.10

http://dx.doi.org/10.2140/ant.2017.11.2213
http://dx.doi.org/10.2140/ant.2017.11.2289
http://dx.doi.org/10.2140/ant.2017.11.2323
http://dx.doi.org/10.2140/ant.2017.11.2339
http://dx.doi.org/10.2140/ant.2017.11.2369
http://dx.doi.org/10.2140/ant.2017.11.2397
http://dx.doi.org/10.2140/ant.2017.11.2397
http://dx.doi.org/10.2140/ant.2017.11.2425

	1. Introduction
	The methods

	2. Preliminaries and notation
	3. Properties of quasismooth WCIs
	4. Regular pairs and Frobenius coin problem
	The Frobenius coin problem

	5. Proof of Theorem 1.2
	Smooth case
	General case

	6. Weighted hypersurfaces
	Acknowledgment
	References
	
	

