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local Langlands correspondence

Tasho Kaletha

Adams, Vogan, and D. Prasad have given conjectural formulas for the behavior
of the local Langlands correspondence with respect to taking the contragredient
of a representation. We prove these conjectures for tempered representations
of quasisplit real K -groups and quasisplit p-adic classical groups (in the sense
of Arthur). We also prove a formula for the behavior of the local Langlands
correspondence for these groups with respect to changes of the Whittaker data.

1. Introduction

The local Langlands correspondence is a conjectural relationship between certain
representations of the Weil or Weil–Deligne group of a local field F and finite sets,
or packets, of representations of a locally compact group arising as the F-points of
a connected reductive algebraic group defined over F . In characteristic zero, this
correspondence is known for F = R and F = C by the work of Langlands [1989]
and was later generalized and reinterpreted geometrically by Adams, Barbasch, and
Vogan [Adams et al. 1992]. Furthermore, many cases are known when F is a finite
extension of the field Qp of p-adic numbers. Most notably, the correspondence over
p-adic fields is known when the reductive group is GLn by work of Harris and Taylor
[2001] and Henniart [2000], and has very recently been obtained for quasisplit
symplectic and orthogonal groups by Arthur [2013]. Other cases include the group
U3 by work of Rogawski, Sp4 and GSp4 by work of Gan–Takeda. For general con-
nected reductive groups, there are constructions of the correspondence for specific
classes of parameters, including the classical case of unramified representations,
the case of representations with Iwahori-fixed vector by work of Kazhdan–Lusztig,
unipotent representations by work of Lusztig, and more recently regular depth-
zero supercuspidal representations by [DeBacker and Reeder 2009], very cuspidal
representations [Reeder 2008], and epipelagic representations [Kaletha 2012].
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The purpose of this paper is to explore how the tempered local Langlands
correspondence behaves with respects to two basic operations on the group. The
first operation is that of taking the contragredient of a representation. In a recent
paper, Adams and Vogan [2012] studied this question for the general (not just
tempered) local Langlands correspondence for real groups. They provide a con-
jecture on the level of L-packets for any connected reductive group over a local
field F and prove this conjecture when F is the field of real numbers. One of
our main results is the fact that this conjecture holds for the tempered L-packets
of symplectic and special orthogonal p-adic groups constructed by Arthur. In
fact, inspired by the work of Adams and Vogan, we provide a refinement of their
conjecture to the level of representations, rather than packets, for the tempered
local Langlands correspondence. We prove this refinement when G is either a
quasisplit connected real reductive group (more generally, quasisplit real K -group),
a quasisplit symplectic or special orthogonal p-adic group, and in the context of
the constructions of [DeBacker and Reeder 2009] and [Kaletha 2012]. In the real
case, the results of Adams and Vogan are a central ingredient in our argument. To
obtain our results, we exploit the internal structure of real L-packets using recent
results of Shelstad [2008]. In the case of quasisplit p-adic symplectic and special
orthogonal groups, we prove a result similar to that of Adams and Vogan using
Arthur’s characterization of the stable characters of L-packets on quasisplit p-adic
classical groups as twisted transfers of characters of GLn . After that, the argument
is the same as for the real case. The constructions of [DeBacker and Reeder 2009]
and [Kaletha 2012] are inspected directly.

The second basic operation that we explore is that of changing the Whittaker
datum. To explain it, we need some notation. Let F be a local field and G a
connected reductive group defined over F . Let W ′ be the Weil group of F if
F = R or the Weil–Deligne group of F if F is an extension of Qp. Then, if G
is quasisplit, it is expected that there is a bijective correspondence (ϕ, ρ) 7→ π .
The target of this correspondence is the set of equivalence classes of irreducible
admissible tempered representations. The source of this correspondence is the set
of pairs (ϕ, ρ) where ϕ :W ′→ LG is a tempered Langlands parameter, and ρ is an
irreducible representation of the finite group π0(Cent(ϕ, Ĝ)/Z(Ĝ)0). Here Ĝ is
the complex (connected) Langlands dual group of G, and LG is the L-group of G.
However, it is known that such a correspondence can in general not be unique. In
order to hope for a unique correspondence, following Shahidi [1990, Section 9]
one must choose a Whittaker datum for G, which is a G(F)-conjugacy class of
pairs (B, ψ) where B is a Borel subgroup of G defined over F and ψ is a generic
character of the F-points of the unipotent radical of B. Then it is expected that
there exists a bijection (ϕ, ρ) 7→ π as above which has the property that π has a
(B, ψ)-Whittaker functional precisely when ρ = 1. Let us denote this conjectural
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correspondence by ιB,ψ . We are interested in how it varies when one varies the
Whittaker datum (B, ψ). We remark that there is a further normalization of ιB,ψ
that must be chosen. As described in [Kottwitz and Shelstad 2012, Section 4], it is
expected that there will be two normalizations of the local Langlands correspondence
for reductive groups, reflecting the two possible normalizations of the local Artin
reciprocity map. Related to these normalizations are the different normalizations
of the transfer factors 1, 1′, 1D and 1′D for ordinary and twisted endoscopy
described in [Kottwitz and Shelstad 2012, Section 5].

The reason we study these two questions together is that they appear to be related.
Indeed, when one studies how the pair (ϕ, ρ) corresponding to a representation π
changes when one takes the contragredient of π , one is led to consider ιB,ψ for
different Whittaker data.

We will now go into more detail and describe our expectation for the behavior
of the local Langlands correspondence with respect to taking contragredient and
changing the Whittaker datum. We emphasize that we claim no originality for
these conjectures. Our formula in the description of the contragredient borrows
greatly from the paper of Adams and Vogan, as well as from a conversation with
Robert Kottwitz, who suggested taking the contragredient of ρ. After the paper
was written, we were informed by Dipendra Prasad that an equation closely related
to (1) is stated as a conjecture in [Gan, Gross, and Prasad 2012, Section 9], and that
moreover (2) is part of a more general framework of conjectures currently being
developed by him under the name “relative local Langlands correspondence”. We
refer the reader to the draft [Prasad 2012].

We continue to assume that F is either real or p-adic, and G is a quasisplit
connected reductive group defined over F . Fix a Whittaker datum (B, ψ). For
any Langlands parameter ϕ : W ′→ LG, let Sϕ = Cent(ϕ, Ĝ). The basic form of
the expected tempered local Langlands correspondence is a bijection ιB,ψ from
the set of pairs (ϕ, ρ), where ϕ is a tempered Langlands parameter and ρ is an
irreducible representation of π0(Sϕ/Z(Ĝ)0) to the set of equivalence classes of irre-
ducible admissible tempered representations. A refinement of this correspondence
is obtained when one allows ρ to be an irreducible representation of π0(Sϕ) rather
than its quotient π0(Sϕ/Z(Ĝ)0). The right-hand side is then the set of equivalence
classes of tuples (G ′, ξ, u, π), where ξ : G→ G ′ is an inner twist, u ∈ Z1(F,G)
is an element with the property ξ−1σ(ξ) = Int(u(σ )) for all σ ∈ 0, and π is an
irreducible admissible tempered representation of G ′(F). The triples (G ′, ξ, u)
are called pure inner twists of G, and the purpose of this refined version of the
correspondence is to include connected reductive groups which are not quasisplit.
The idea of using pure inner forms is due to Vogan, and one can find a formulation
of this refinement of the correspondence in [Vogan 1993] or [DeBacker and Reeder
2009, Section 3]. A further refinement is obtained by allowing ρ to be an irreducible
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algebraic representation of the complex algebraic group Sϕ = Sϕ/[Sϕ ∩ Ĝder]
◦. The

right-hand side then is the set of equivalence classes of tuples (G ′, ξ, b, π), where
ξ : G→ G ′ is an inner twist and b is a basic element of Z1(W,G(L)), where L is
the completion of the maximal unramified extension of F , and where b gives rise
to ξ as in [Kottwitz 1997]. This further refinement was introduced by Kottwitz in
an attempt to include all connected reductive groups into the correspondence (it is
known that not every connected reductive group is a pure inner form of a quasisplit
group). Indeed, when the center of G is connected, all inner forms of G come from
basic elements of Z1(W,G(L)). Moreover, one can reduce the general case to that
of connected center. An exposition of this formulation of the correspondence can
be found in [Kaletha 2011].

We now let ιB,ψ denote any version of the above conjectural correspondence,
normalized so that ιB,ψ(ϕ, ρ) is (B, ψ)-generic precisely when ρ = 1. The set of
Whittaker data for G is a torsor for the abelian group Gad(F)/G(F). Dualizing
Langlands’ construction of a character on G(F) for each element of H 1(W, Z(Ĝ)),
one obtains from each element of Gad(F)/G(F) a character on the finite abelian
group ker(H 1(W, Z(Ĝsc))→ H 1(W, Z(Ĝ))). This groups accepts a map from
π0(Sϕ/Z(Ĝ)0) for every Langlands parameter ϕ. In this way, given a pair of
Whittaker data w and w′, the element of Gad(F)/G(F) which conjugates w to w′

provides a character on π0(Sϕ/Z(Ĝ)0), hence also on π0(Sϕ) and Sϕ . We denote
this character by (w,w′). Then we expect that

ιw′(ϕ, ρ)= ιw
(
ϕ, ρ⊗ (w,w′)ε

)
, (1)

where ε = 1 if ιw and ιw′ are compatible with endoscopic transfer via the transfer
factors 1′ or 1′D , and ε =−1 if ιw and ιw′ are compatible endoscopic transfer via
the transfer factors 1 or 1D .

To describe how we expect ιB,ψ to behave with respect to taking contragredients,
we follow [Adams and Vogan 2012] and consider the Chevalley involution on Ĝ: As
is shown in [Adams and Vogan 2012], there exists a canonical element of Out(Ĝ)
which contains all automorphisms of Ĝ that act as inversion on some maximal torus.
This canonical element provides a canonical Ĝ-conjugacy class of L-automorphisms
of LG as follows. Fix a 0-invariant splitting of Ĝ and let Ĉ ∈Aut(Ĝ) be the unique
lift of the canonical element of Out(Ĝ) which sends the fixed splitting of Ĝ to
its opposite. Then Ĉ commutes with the action of 0, and we put LC to be the
automorphism of Ĝ o W given by Ĉ o id. If we change the splitting of Ĝ, there
exists [Kottwitz 1984, Corollary 1.7] an element g ∈ Ĝ0 which conjugates it to
the old splitting. This element also conjugates the two versions of Ĉ , and hence
also the two versions of LC . We conclude that Ĝ-conjugacy class of LC is indeed
canonical. Thus, for any Langlands parameter ϕ :W ′→ LG, we have a well-defined
(up to equivalence) Langlands parameter LC ◦ϕ. The automorphism Ĉ restricts to
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an isomorphism Sϕ→ SLC◦ϕ and for each representation ρ of Sϕ we can consider
the representation ρ ◦ Ĉ−1 of SLC◦ϕ . When ϕ is tempered, we expect

ιB,ψ(ϕ, ρ)
∨
= ιB,ψ−1

(LC ◦ϕ, ρ∨ ◦ Ĉ−1). (2)

For this formula it is not important whether ιB,ψ is normalized with respect to the
classical or Deligne’s normalization of the local Artin map, as long as ιB,ψ−1 is
normalized in the same way.

We will now briefly describe the contents of this paper. In Section 3, we recall
the fundamental results of Arthur and Shelstad on the endoscopic classification of
tempered representations of real and classical p-adic groups. In Section 4 we will
describe more precisely the construction of the character (w,w′) alluded to in this
introduction, and will then prove (1). Section 5 is devoted to the proof of (2) for
tempered representations of quasisplit real K -groups and quasisplit symplectic and
special orthogonal p-adic groups. Finally, in Section 6 we consider depth-zero and
epipelagic L-packets on general p-adic groups and prove (2) for those cases as well.

The arguments in Sections 4 and 5 are quite general and we expect them to
provide a proof of (1) and (2) for other p-adic groups besides symplectic and
orthogonal, as soon as Arthur’s work has been extended to them. For example, we
expect that the case of unitary groups will follow directly from our arguments.

2. Notation

Throughout this paper, F will denote either the field R or a finite extension of the
field Qp. We write W for the absolute Weil group of F , and 0 for the absolute
Galois group. We let W ′ stand for the Weil group of F when F = R and for the
Weil–Deligne group of F if F is an extension of Qp.

Given a connected reductive group G defined over F , we will write Ĝ for the
complex connected Langlands dual group of G, and LG for the L-group. Given a
maximal torus S ⊂ G, we write R(S,G) for the set of roots of S in G, N (S,G)
for the normalizer of S in G, and �(S,G) for the Weyl group N (S,G)/S. We will
write Z(G) for the center of G, and Gsc and Gad for the simply connected cover
and the adjoint quotient of the derived subgroup Gder of G.

Given a finite group S, we will write Irr(S) for the set of isomorphism classes
of irreducible representations of S. The subset consisting of the one-dimensional
representations will be called SD . Given a complex algebraic group S, we will write
Irr(S) for the set of isomorphism classes of irreducible algebraic representations
of S.

We will use freely the language and basic constructions in the theory of endoscopy.
We refer the reader to [Langlands and Shelstad 1987] and [Kottwitz and Shelstad
1999] for the foundations of the theory.
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3. Results of Arthur and Shelstad

In this section we will recall the results of Arthur and Shelstad on endoscopic
transfer and its inversion, which will be an essential ingredient in our proofs.
The formulation in the real case is slightly more complicated due to the fact that
semisimple simply connected real groups can have nontrivial Galois cohomology,
so we will describe the p-adic case first.

Let F be a p-adic field. Arthur’s results apply to groups G which are either the
symplectic group, or the split special odd orthogonal group, or the split or quasisplit
special even orthogonal groups, as well as to products of such groups with copies
of GLn . If G is such a group, Arthur fixes a maximal compact subgroup K of G(F)
and denotes by H(G) the Hecke algebra of smooth, compactly supported, right and
left K -finite functions on G(F). To describe the results of his that we’ll need, let us
first assume that G has no even orthogonal factors, as the case of even orthogonal
groups is slightly more subtle. Fix a Whittaker datum (B, ψ). Let ϕ :W ′→ LG be
a tempered Langlands parameter and put Sϕ = π0(Cent(ϕ, Ĝ)/Z(Ĝ)0). Arthur’s
recent results [2013, Section 2] imply that there exists an L-packet 5ϕ of represen-
tations of G(F) and a canonical bijection

ιB,ψ : Irr(Sϕ)→5ϕ, ρ 7→ πρ,

which sends the trivial representation to a (B, ψ)-generic representation. This
bijection can also be written as a pairing 〈 · , · 〉 : Sϕ ×5ϕ → C, and this is the
language adopted by Arthur. A semisimple element s ∈ Cent(ϕ, Ĝ) gives rise to
an endoscopic datum e = (H,H, s, ξ) for G. We briefly recall the construction,
following [Kottwitz and Shelstad 1999, Section 2]: Ĥ = Ĝ◦s , H= Ĥ ·ϕ(W ), and ξ
is the inclusion map H→ LG. The group H can be shown to be a split extension of
W by Ĥ , and hence provides a homomorphism 0→ Out(Ĥ). The group H is the
unique quasisplit group with complex dual Ĥ for which the homomorphism 0→

Out(H) given by the rational structure coincides under the canonical isomorphism
Out(H)∼= Out(Ĥ) with the homomorphism 0→ Out(Ĥ) given by H. In addition
to the datum (H,H, s, ξ), Arthur chooses [2013, Section 1.2] an L-isomorphism
ξH1 : H→

LH . By construction, ϕ factors through ξ and we obtain ϕs = ξH1 ◦ ϕ

which is a Langlands parameter for H . The group H is again of the same type as
G — a product of symplectic, orthogonal, and general linear groups (it can also
have even orthogonal factors, which we will discuss momentarily). Associated
to the Langlands parameter ϕs is an L-packet on H , whose stable character we
denote by S2ϕs (this is the stable form (2.2.2) in [Arthur 2013]). Let ze denote
the pair (H, ξH1). This is strictly speaking not a z-pair in the sense of [Kottwitz
and Shelstad 1999, Section 2.2], because H will in general not have a simply
connected derived group, but this will not cause any trouble. Let 1[ψ, e, ze] denote
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the Whittaker normalization of the Langlands–Shelstad transfer factor. Arthur
shows that if f ∈H(G) and f s

∈H(H) have 1[ψ, e, ze]-matching orbital integrals,
then

S2ϕs ( f s)=
∑

ρ∈Irr(Sϕ)

〈s, ρ〉2πρ ( f ).

The group Sϕ is finite and abelian, and Irr(Sϕ) is the set of characters of Sϕ , which
is also a finite abelian group. Performing Fourier-inversion on these finite abelian
groups one obtains

2πρ ( f )= |Sϕ|−1
∑
s∈Sϕ

〈s, ρ〉S2ϕs ( f s).

This formula is the inversion of endoscopic transfer in the p-adic case.
If G is an even orthogonal group, the following subtle complication occurs: the

group Z/2Z acts on both G and Ĝ by outer automorphisms, and Theorem 8.4.1
of [Arthur 2013] associates to a given tempered Langlands parameter ϕ not one,
but two L-packets 5ϕ,1 and 5ϕ,2. Each of them comes with a canonical bijection
ιB,ψ,i : Irr(Sϕ)→5ϕ,i , and for each ρ ∈ Irr(Sϕ) the two representations ιB,ψ,1(ρ)
and ιB,ψ,2(ρ) are an orbit under the action of Z/2Z. For each ϕ, there is a dichotomy:
either 5ϕ,1 =5ϕ,2, and Z/2Z acts trivially on this L-packet; or 5ϕ,1 ∩5ϕ,2 =∅,
and the action of 1 ∈ Z/2Z interchanges 5ϕ,1 and 5ϕ,2. In this situation, we will
take ιB,ψ(ρ) to mean the pair of representations {ιB,ψ,1(ρ), ιB,ψ,2(ρ)}. Following
Arthur, we will use the notation H̃(G) to denote the subalgebra of Z/2Z-fixed
functions in H(G) if G is a p-adic even orthogonal group. For all other simple
groups G, we set H̃(G) equal to H(G). If G is a product of simple factors Gi ,
then H̃(G) is determined by H̃(Gi ). All constructions, as well as the two character
identities displayed above, continue to hold, but only for functions f ∈ H̃(G). Notice
that on f ∈ H̃(G), the characters of the two representations ιB,ψ,1(ρ) and ιB,ψ,2(ρ)
evaluate equally, and moreover f s

∈ H̃(H), so the above character relations do
indeed make sense.

We will now describe the analogous formulas in the real case, which are results
of Shelstad [2008]. Let G be a quasisplit connected reductive group defined over
F =R and fix a Whittaker datum (B, ψ). Let ϕ :W→ LG be a tempered Langlands
parameter, and Sϕ as above. One complicating factor in the real case is that, while
there is a canonical map

5ϕ→ Irr(Sϕ),

it is not bijective, but only injective. It was observed by Adams, Barbasch, and
Vogan that, in order to obtain a bijective map, one must replace 5ϕ by the disjoint
union of multiple L-packets. All these L-packets correspond to ϕ, but belong to
different inner forms of G. The correct inner forms to take are the ones parametrized
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by H 1(F,Gsc). The disjoint union of these inner forms is sometimes called the
K -group associated to G, and denoted KG. For an exposition on K -groups we refer
the reader to [Arthur 1999, Section 2] and [Shelstad 2008]. Writing 5ϕ for the
disjoint union of L-packets over all inner forms in the K -group, one now has again
a bijection

5ϕ→ Irr(Sϕ)

(see [Shelstad 2008, Section 11]) whose inverse we will denote by ιB,ψ , and we
denote by 〈 · , · 〉 again the pairing between Sϕ and 5ϕ given by this bijection.
Note that Shelstad uses a variant of Sϕ involving the simply connected cover of Ĝ.
Since we are only considering quasisplit K -groups (that is, those which contain a
quasisplit form), this variant will not be necessary and the group Sϕ will be enough.

From a semisimple element s ∈ Cent(ϕ, Ĝ) we obtain an endoscopic datum e

by the same procedure as in the p-adic case just described. A second complicat-
ing factor is that, contrary to p-adic case discussed above, there will in general
be no L-isomorphism H → LH . Instead, one chooses a z-extension H1 of H .
Then there exists an L-embedding ξH1 : H→

LH 1. We let ze denote the datum
(H1, ξH1). Then ϕs = ξH1◦ϕ is a tempered Langlands parameter for H1 and Shelstad
[2008, Section 11] shows that for any two functions f ∈H(K G) and f s

∈H(H1)

whose orbital integrals are 1[ψ, e, ze]-matching, one has

S2ϕs ( f s)=
∑

ρ∈Irr(Sϕ)

〈s, ρ〉2πρ ( f )

and

2πρ ( f )= |Sϕ|−1
∑
s∈Sϕ

〈s, ρ〉S2ϕs ( f s).

In the following sections, we will not use the notation KG for a K -group and the
boldface symbols for objects associated with it. Rather, we will treat it like a regular
group and denote it by G, in order to simplify the statements of the results. We also
note that the finite abelian groups Sϕ occurring here are in fact 2-groups, so we
may remove the complex conjugation from 〈s, ρ〉 in the inversion formulas.

4. Change of Whittaker data

Let G be a quasisplit connected reductive group defined over a real or p-adic field F .
Given a finite abelian group A, we will write AD for its group of characters. To
save notation, we will write Ẑ for the center of Ĝ, and Ẑsc for the center of Ĝsc.

Lemma 4.1. There exists a canonical injection (bijection, if F is p-adic)

Gad(F)/G(F)→ ker
(
H 1(W, Ẑsc)→ H 1(W, Ẑ)

)D
.
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Proof. We will write G(F)D̃ for the set of continuous characters on G(F) which
are trivial on the image of Gsc(F). Recall that Langlands [1989] has constructed
surjective homomorphisms H 1(W, Ẑ)→ G(F)D̃ and H 1(W, Ẑsc)→ Gad(F)D̃

(see [Borel 1979, Section 10] for an exposition of the construction). If F is p-adic,
they are also bijective and the statement follows right away, because the finite
abelian group Gad(F)/G(F) is Pontryagin dual to

ker
(
Gad(F)D̃

→ G(F)D̃). (3)

If F is real, the kernel of H 1(W, Ẑsc)→ Gad(F)D̃ maps onto the kernel of
H 1(W, Ẑ)→ G(F)D̃ (this is obvious from the reinterpretation of these homo-
morphisms given in [Kaletha 2012, Section 3.5]). This implies that the kernel
of

H 1(W, Ẑsc)→ H 1(W, Ẑ)

surjects onto (3). �

Let w,w′ be two Whittaker data for G. We denote by (w,w′) the unique element
of Gad(F)/G(F) which conjugates w to w′. We view this element as a character
on the finite abelian group

ker
(
H 1(W, Ẑsc)→ H 1(W, Ẑ)

)
(4)

via Lemma 4.1. Given a Langlands parameter ϕ : W ′ → LG, we consider the
composition

H 0(W, ϕ, Ĝ)→ H 0(W, ϕ, Ĝad)→ H 1(W, Ẑsc),

where H 0(W, ϕ,−) denotes the set of invariants of W with respect to the action
given by ϕ. This map is continuous, hence it kills the connected component of the
algebraic group H 0(W, ϕ, Ĝ). Furthermore, it kills H 0(W, Ẑ). Thus we obtain
a map

π0
(
Cent(ϕ(W ), Ĝ)/Z(Ĝ)0

)
→ ker

(
H 1(W, Ẑsc)→ H 1(W, Ẑ)

)
.

Composing this map with the map

π0
(
Sϕ/Z(Ĝ)0

)
→ π0

(
Cent(ϕ(W ), Ĝ)/Z(Ĝ)0

)
induced by the inclusion Sϕ→ Cent(ϕ(W ), Ĝ), we see that (w,w′) gives rise to a
character on π0(Sϕ/Z(Ĝ)0), which we again denote by (w,w′).

Now let s ∈ Sϕ . Consider the endoscopic datum e = (H,H, s, ξ) determined
by s, as described in Section 3. Let ze be any z-pair for e. We denote by 1[w, e, ze]
the Langlands–Shelstad transfer factor [Langlands and Shelstad 1987], normalized
with respect to w (whose definition we will briefly recall in the following proof).
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Lemma 4.2.
1[w′, e, ze] =

〈
(w,w′), s

〉
·1[w, e, ze].

Proof. Write w= (B, ψ). Let spl= (T, B, {Xα}) be a splitting of G containing the
Borel subgroup B given by w and ψF : F→ C× be a character with the property
that spl and ψF give rise to ψ as in [Kottwitz and Shelstad 1999, Section 5.3]. Then
1[w, e, ze] is defined as the product

ε(VG,H , ψF ) ·1[spl, e, ze],

where 1[spl, e, ze] is the normalization of the transfer factor relative to the splitting
spl as constructed in [Langlands and Shelstad 1987, Section 3.7] (where it is denoted
by 10), and ε(VG,H , ψF ) is the epsilon factor (with Langlands’ normalization; see
for example [Tate 1979, (3.6)]) of the degree-zero virtual 0 representation

VG,H = X∗(T )⊗C− X∗(T H )⊗C,

where T H is any maximally split maximal torus of H .
Let g ∈ Gad(F) be an element with Ad(g)w = w′. Put spl′ = Ad(g)spl. Then

spl′ and ψF give rise to the Whittaker datum w′, and consequently we have

1[w′, e, ze] = ε(VG,H , ψF ) ·1[spl′, e, ze].

Let z = g−1σ(g) ∈ H 1(F, Z(Gsc)). Choose any maximal torus S of G coming
from H (that is, S is the image of an admissible embedding into G of a maximal
torus of H ). According to [Langlands and Shelstad 1987, Section 2.3], we have

1[spl′, e, ze] = 〈z, s〉1[spl, e, ze],

where z is mapped under H 1(F, Z(Gsc))→ H 1(F, Ssc) and s is mapped under
Z(Ĥ)0→ Ŝ0→[Ŝad]

0 , and the pairing uses Tate–Nakayama duality. The number
〈z, s〉 can also be obtained by mapping s under

H 0(W, Z(Ĥ))→ H 0(W, ϕ, Ĝ)→ H 0(W, ϕ, Ĝad)→ H 1(W, Z(Ĝsc))

and pairing it with z, using the duality between H 1(F, Z(Gsc))= H 1(F, Ssc→ Sad)

and H 1(W, Z(Ĝsc))= H 1(W, Ŝsc→ Ŝad). Using [Kaletha 2012, Section 3.5], one
sees that this is the same as the number 〈(w,w′), s〉. �

Theorem 4.3. Let G be a quasisplit real K -group, or a quasisplit symplectic or spe-
cial orthogonal p-adic group. For any tempered Langlands parameter ϕ :W ′→ LG
and every ρ ∈ Irr(Sϕ), we have

ιw′(ϕ, ρ)= ιw(ϕ, ρ⊗ (w,w
′)−1),

provided that ιw and ιw′ are normalized to satisfy the endoscopic character identities
with respect to the transfer factors 1[w,−,−] and 1[w′,−,−].
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Proof. Fix a semisimple s ∈ Sϕ . As described in Section 3, the pair (ϕ, s) gives
rise to an endoscopic datum e, and after a choice of a z-pair ze = (H1, ξH1) for e, it
further gives rise to a Langlands parameter ϕs for H1. If the functions f ∈ H̃(G)
and f s

∈ H̃(H1) have 1[w, e, ze]-matching orbital integrals, then by Lemma 4.2
the functions f and 〈(w,w′), s〉 · f s have 1[w′, e, ze]-matching orbital integrals.
Thus ∑

ρ

〈s, ρ〉2ιw′ (ϕ,ρ)( f )= 〈(w,w′), s〉 S2ϕs ( f s)

= 〈(w,w′), s〉
∑
ρ

〈s, ρ〉2ιw(ϕ,ρ)( f )

=
∑
ρ

〈s, ρ⊗ (w,w′)〉2ιw(ϕ,ρ)( f )

=
∑
ρ

〈s, ρ〉2ιw(ϕ,ρ⊗(w,w′)−1)( f ),

where the sums run over ρ ∈ Irr(Sϕ). Since this is true for all s, Fourier inversion
gives the result. �

5. Tempered representations and their contragredient

In this section, we will prove formula (2) for quasisplit real K -groups and quasisplit
p-adic symplectic and special orthogonal groups. The bulk of the work lies in an
analysis of some properties of transfer factors. We refer the reader to [Langlands
and Shelstad 1987, Sections 2–3] and [Kottwitz and Shelstad 1999, Sections 3–4]
for the construction of transfer factors and the associated cohomological data.

Let F be R or a finite extension of Qp, and G a quasisplit connected reductive
group over F . We fix an F-splitting spl= (T, B, {Xα}) of G. We write Ĝ for the
complex dual of G and fix a splitting ŝpl= (T̂ , B̂, {X α̂}). We assume that the action
of 0 on Ĝ preserves ŝpl, and that there is an isomorphism X∗(T )∼= X∗(T̂ ) which
identifies the B-positive cone with the B̂-positive cone. Let Ĉ be the Chevalley
involution on Ĝ which sends ŝpl to the opposite splitting [Adams and Vogan
2012, Section 2]. The automorphism Ĉ commutes with the action of 0 and thus
LC = Ĉ × idW is an L-automorphism of LG.

Consider a function c : R(T,G) → F× which is invariant under the action
of �(T,G) × {±1} on R(T,G) and equivariant under the action of 0. Then
(T, B, {cαXα}) is another F-splitting of G, which we will denote by c · spl. Given
any maximal torus S⊂G and any Borel subgroup BS containing S and defined over
F , the admissible isomorphism T→ S which sends B to BS transports c to a function
c : R(S,G)→ F× which is again (�(S,G)×{±1})-invariant and 0-equivariant.
Moreover, the latter function is independent of the choice of BS (and also of B).
If A = (aα)α∈R(S,G) is a set of a-data for R(S,G), then c · A = (cαaα)α∈R(S,G) is
also a set of a-data.



2458 Tasho Kaletha

Let λ denote the splitting invariant constructed in [Langlands and Shelstad 1987,
Section 2.3].

Lemma 5.1. λ(S, A, c · spl)= λ(S, c · A, spl).

Proof. We begin by recalling the construction of the splitting invariant. For a simple
root α ∈ R(T,G), let ηspl

α : SL2 → G be the homomorphism determined by the
splitting spl. We put

nspl(sα)= ηspl
α

(
0 1
−1 0

)
.

For any w ∈�(T,G) choose a reduced expression w = sα1 · · · sαn and set

nspl(w)= nspl(sα1) · · · nspl(sαn ).

By [Springer 1981, Section 11.2.9], this product is independent of the choice of
reduced expression.

We choose a Borel subgroup BS ⊂ G defined over F and containing S, and an
element h ∈ G(F) such that Ad(h)(T, B) = (S, BS). Then, for σ ∈ 0 and s ∈ S,
we have

Ad(h−1)[σs] = wS(σ )σAd(h−1)[s]

for some wS(σ ) ∈ �(T,G). Then λ(S, A, spl) ∈ H 1(F, S) is the element whose
image under Ad(h−1) is represented by the cocycle

σ 7→
∏
α>0

(wS(σ )σ )
−1α<0

α∨(aAd(h)α) · nspl(wS(σ )) · σ(h−1)h, (5)

where α > 0 means that α ∈ R(T,G) is B-positive.
We now examine the relationship between nspl and nc·spl. Recall the standard

triple (E, H, F) in Lie(SL2), where

E =
[

0 1
0 0

]
, H =

[
1 0
0 −1

]
, and F =

[
0 0
1 0

]
.

The differential dηspl
α sends (E, H, F) to (Xα, Hα, X−α), where Hα = dα∨(1) and

X−α ∈ g−α is determined by [Xα, X−α] = Hα. On the other hand, the differential
dηc·spl

α sends (E, H, F) to (cα · Xα, Hα, c−1
α X−α). Thus

ηc·spl
α = ηspl

α ◦Ad
[√

cα 0
0
√

cα
−1

]
for an arbitrary choice of a square root of cα. It follows that

nc·spl(sα)= α∨(cα) · nspl(sα).
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Using induction and [Bourbaki 2002, Chapter VI, Section 1.6, Corollary 2], we
conclude that for any w ∈�(T,G), we have

nc·spl(w)=
∏
α>0

w−1α<0

α∨(cα) · nspl(w).

From this equation and the fact that any σ ∈ 0 preserves the sets of B-positive and
B-negative roots, we see that

nc·spl(wS(σ ))=
∏
α>0

(wS(σ )σ )
−1α<0

α∨(cα) · nspl(wS(σ )).

The statement follows by comparing (5) for λ(S, A, c · spl) and λ(S, c · A, spl). �

Given a torus S defined over F , we will denote by−1 the homomorphism S→ S
which sends s ∈ S to s−1. It is of course defined over F . Its dual LS→ LS is given
by (s, w) 7→ (s−1, w) and will also be denoted by −1. Given a maximal torus
S ⊂ G and a set of χ -data X = {χα | α ∈ R(S,G)} for R(S,G), we denote by −X
the set {χ−1

α | α ∈ R(S,G)}. This is also a set of χ -data. It is shown in [Langlands
and Shelstad 1987, Section 2.6] that X provides a canonical Ĝ-conjugacy class of
L-embeddings LξX :

LS→ LG.

Lemma 5.2. Let S⊂G be a maximal torus defined over F , and let X be χ -data for
R(S,G). Let LξX :

LS→ LG be the canonical Ĝ-conjugacy class of embeddings
associated to X. Then the Ĝ-conjugacy classes of maps LξX ◦ (−1) and LC ◦ Lξ−X

are equal.

Remark. Intuitively, we can express the statement of Lemma 5.2 by the following
diagram, whose commutativity is to be understood up to Ĝ-conjugacy:

LG
LC // LG

LS

LξX

OO

−1 // LS

Lξ−X

OO

Proof. We choose a representative LξX within its Ĝ-conjugacy class by following
the constructions in [Langlands and Shelstad 1987, Section 2.6]. For this, we choose
a Borel subgroup defined over F and containing S. This provides an admissible
isomorphism ξ̂ : Ŝ→ T̂ . For w ∈W , let σS(w) ∈�(T̂ , Ĝ) be defined by

ξ̂ ( ws)= σS(w)w ξ̂ (s).

Then a representative of LξX is given by

LξX (s, w)=
[
ξ̂ (s) r B̂,X (w) n ŝpl(σS(w)), w

]
,
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where r B̂,X denotes the cochain rp constructed in [Langlands and Shelstad 1987,
Section 2.6] from the χ-data X and the gauge p determined by B̂, and n ŝpl is the
section �(T̂ , Ĝ)→ N (T̂ , Ĝ) determined by the splitting ŝpl as described in the
proof of the previous lemma. Using the fact that Ĉ acts by inversion on T̂ and
[Adams and Vogan 2012, Lemma 5.8], we see that

LC ◦ LξX (s, w)=
[
ξ̂ (s)−1 r B̂,X (w)

−1 n ŝpl(σS(w)
−1)−1, w

]
.

One sees that r B̂,X (w)
−1
= r B̂,−X (w). Moreover, by [Adams and Vogan 2012,

Lemma 5.4] we have

nspl(σS(w)
−1)−1

=
[
t · σS(w)t−1]nspl(σS(w)),

where t ∈ T̂ is any lift of ρ∨(−1)∈ T̂ad, ρ∨ being half the sum of the positive coroots.
We can choose t ∈ T̂ 0 by choosing a root i of −1 and putting t =

∏
α∈R(T̂ ,B̂)

α∨(i).
Then we see that

LC ◦ LξX (s, w)= Ad(t) ◦ Lξ−X ◦ (−1)(s, w). �

Let θ be an automorphism which preserves spl, and let a ∈ H 1(W, Z(Ĝ)). The
class a corresponds to a character ω : G(F)→ C×. Let θ̂ be the automorphism
dual to θ , which preserves ŝpl. Note that θ̂ commutes with the action of 0. We will
write Lθ for θ × idW .

Let us recall some basic facts from [Kottwitz and Shelstad 1999, Section 1].
Let Ĝ1 be the connected component of the group Ĝ θ̂ , let T̂ 1

= T̂ ∩ Ĝ1, and let
B̂1
= B̂∩ Ĝ1. Then Ĝ1 is a reductive group and (T̂ 1, B̂1) is a Borel pair for it. The

set 1(T̂ 1, B̂1) of B̂1-simple roots for T̂ 1 is the set of restrictions to T̂ 1 of the set
1(T̂ , B̂) of B̂-simple roots for T̂ . Moreover, the fibers of the restriction map

res :1(T̂ , B̂)→1(T̂ 1, B̂1)

are precisely the 〈θ̂〉-orbits in 1(T̂ , B̂). We denote the image of α under res by αres.
We can extend the pair (T̂ 1, B̂1) to a 0-splitting ŝpl1 = (T̂ 1, B̂1, {Xαres}) of Ĝ1

by setting for each αres ∈1(T̂ 1, B̂1)

Xαres =

∑
β∈1(T̂ ,B̂)
βres=αres

Xβ .

Since θ̂ commutes with 0, the group Ĝ1 and the splitting just constructed is
preserved by 0. Thus, Ĝ1 o W is the L-group of a connected reductive group G1.
Moreover, since θ̂ also commutes with Ĉ , the automorphism Ĉ preserves the group
Ĝ1 and acts by inversion on its maximal torus T̂ 1. Thus, Ĉ is a Chevalley involution
for Ĝ1.
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Although it will not concern us, we want to remark that it is in general not true
that Ĉ sends the splitting ŝpl1 to its opposite. Rather, it sends ŝpl1 to the splitting of
Ĝ1 constructed from the opposite of ŝpl by the same procedure as above. That this
splitting differs from the opposite of ŝpl1 is due to the fact that for αres ∈ R(T̂ 1, Ĝ1),
the coroot Hαres is not always the sum of Hβ for all β in the 0-orbit corresponding
to αres. In fact, we have

Hαres = cαres ·

∑
β∈1(T̂ ,B̂)
βres=αres

Hβ,

where cα = 1 if αres is of type R1 and cα = 2 if αres is of type R2.
Let e= (H, s,H, ξ) be an endoscopic datum for (G, θ, a). Let

(
T̂ H , B̂ H , {X̂ H

β }
)

be a 0-fixed splitting of Ĥ , and denote by Ĉ H the corresponding Chevalley involu-
tion of Ĥ and by LC H the corresponding L-automorphism of LH . Let ze= (H1, ξH1)

be a z-pair for e. The splitting of Ĥ provides a unique one for Ĥ1 and the involutions
Ĉ H1 and LC H1 restricted to Ĥ and LH equal Ĉ H and LC H .

We write LC(e) for the quadruple (H, s ′,H′, ξ ′), where s ′ = Ĉ(s−1), H′ is
the same group as H but with the embedding Ĥ → H composed with Ĉ H , and
ξ ′ = LC ◦ Lθ ◦ ξ . We write LC H (ze) for the pair (H1,

LC H1 ◦ ξH1).

Fact 5.3. The quadruple LC(e) is an endoscopic datum for (G, θ−1, a), and LC H (ze)

is a z-pair for it. If e′ is an endoscopic datum for (G, θ, a) equivalent to e, then
LC(e′) is equivalent to LC(e). An isomorphism SH

→ Sθ from a maximal torus of
H to a maximal torus of G1 is e-admissible if and only if it is LC(e)-admissible.

Proof. The proof is straightforward, but we include it for the convenience of
the reader. We need to check [Kottwitz and Shelstad 1999, (2.1.1–2.1.4b)]. It is
clear that H′ remains a split extension of Ĥ by W . To check that s ′ is θ̂−1-quasi-
semisimple, one observes that the automorphism Int(Ĉ(s−1)) ◦ θ̂−1 is conjugate to
(Int(s)θ̂)−1 by Ĉ ◦ Int(s−1). The fact that ξ ′ is an isomorphism onto its image is
inherited from ξ , and the image is

Ĉ
(
θ̂
(
ξ(Ĥ)

))
= Ĉ

(
θ̂
(
Cent

(
Int(s) ◦ θ̂ , Ĝ

)◦))
= Ĉ

(
θ̂
(
Cent

(
θ̂−1
◦ Int(s−1), Ĝ

)◦))
= Cent

(
Int(s ′) ◦ θ̂−1, Ĝ

)◦
.

Finally, we have

Int(s ′) ◦ Lθ−1
◦ ξ ′ = LC ◦ Int(s−1) ◦ ξ

=
LC ◦ ((a′)−1

·
Lθ ◦ ξ)

= a′ · ξ ′.
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This shows that LC(e) is indeed an endoscopic datum for (G, θ−1, a). A direct
computation shows that if g ∈ Ĝ is an isomorphism e → e′, then Ĉ θ̂ (g) is an
isomorphism LC(e)→ LC(e′). To check that LC H (ze) is a z-pair for LC(e), we only
need to observe that, since the restriction of LC H1 to Ĥ equals Ĉ H , the composition
of LC H1 ◦ ξH1 : H1 →

LH 1 with the inclusion Ĥ → H1 is indeed the natural
inclusion Ĥ → Ĥ1→

LH 1. To compare the notions of admissible isomorphisms,
replace e by an equivalent datum so that s ∈ T̂ and ξ(T̂ H )⊂ T̂ . Then ξ restricts to
an isomorphism T̂ H

→ T̂ 1. Recalling the definitions of H′ and ξ ′, we see that ξ ′

restricts to the same isomorphism. Thus the notion of admissibility of isomorphisms
of tori remains unchanged when we pass from e to LC(e). �

Assume now that spl is θ-stable and augment B to a θ-stable Whittaker datum
(B, ψ). Then, associated to (G, θ, a), (B, ψ), e, and ze, we have the Whittaker
normalization of the transfer factor for G and H1. In fact, as explained in [Kottwitz
and Shelstad 2012], there are two different such normalizations — one adapted to the
classical local Langlands correspondence for tori [ibid., (5.5.2)], and one adapted to
the renormalized correspondence [ibid., (5.5.1)]. To be consistent with their notation,
we will call these transfer factors 1′[ψ, e, ze] (for the classical local Langlands
correspondence), and 1D[ψ, e, ze] (for the renormalized correspondence). On the
other hand, associated to (G, θ−1, a), (B, ψ−1), LC(e), and LC H (ze), we also have
the Whittaker normalization of the transfer factor, again in the two versions. We
will call these1′[ψ−1, LC(e), LC H (ze)] and1D[ψ

−1, LC(e), LC H (ze)]. In the case
θ = 1 and a = 1 (that is, ordinary endoscopy), one also has the normalizations 1
and 1′D [Section 5.1]. The normalization 1 is the one compatible with [Langlands
and Shelstad 1987].

Proposition 5.4. Let γ1 ∈ H1(F) be a strongly G-regular semisimple element, and
let δ ∈ G(F) be a strongly θ -regular θ -semisimple element. We have

1′[ψ, e, ze](γ1, δ)=1
′
[
ψ−1, LC(e), LC H (ze)

](
γ−1

1 , θ−1(δ−1)
)
.

The same equality holds with1D in place of1′. Moreover, in the setting of ordinary
endoscopy, the equality also holds for 1 and 1′D .

Proof. Let us first discuss the different versions of the transfer factor. In ordinary
endoscopy, one obtains 1 from 1′ by replacing s with s−1. Thus it is clear that the
above equality will hold for the one if and only if it holds for the other. The same
is true for 1D and 1′D. Returning to twisted endoscopy, the difference between
1′ and 1D is more subtle, and the statement for the one does not formally follow
from the statement for the other. However, the proof for both cases is the same, and
we will give it for the case of 1D .

One sees easily that γ is a θ-norm of δ precisely when γ−1 is a θ−1-norm of
θ−1(δ−1). We assume that this is the case. Let SH1 ⊂ H1 be the centralizer of
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γ1, let SH ⊂ H be the image of SH1 . The torus SH is the centralizer of the image
γ ∈ H(F) of γ1. We choose a θ-admissible maximal torus S ⊂ G, an admissible
isomorphism ϕ : SH → Sθ , an element δ∗ ∈ S(F) whose image in Sθ equals ϕ(γ ),
and an element g ∈ Gsc(F) with δ∗ = gδθ(g−1). The objects ϕ, g and δ∗ will enter
into the construction of the transfer factor 1D[ψ, e, ze](γ1, δ).

As already remarked, γ−1 is a θ−1-norm for θ−1(δ−1). By Fact 5.3, ϕ is an
LC(e)-admissible isomorphism of tori, and it is clear that ϕ(γ−1) equals the image
of θ−1(δ−1) in Sθ . Moreover θ−1(δ∗−1) = g · θ−1(δ−1) · θ−1(g−1). Thus we
may use the objects ϕ, g and θ−1(δ∗−1) when constructing the transfer factor
1D[ψ

−1, LC(e), LC H (ze)](γ
−1
1 , θ−1(δ−1)).

We will also need θ -invariant a-data A for R(S,G) and χ -data X for Rres(S,G).
Moreover, we fix an additive character ψF : F→ C× and assume that the splitting
spl = (T, B, Xα) and the character ψF give rise to the fixed Whittaker datum
(B, ψ). Up to equivalence of endoscopic data we may assume s ∈ T̂ . This implies
Ĉ(s−1)= s. Then, by [Kottwitz and Shelstad 2012, Equation 5.5.1], we have

1D[ψ, e, ze] = ε(VG,H , ψF ) ·1
new
I [spl, A] ·1−1

II [A, X ] ·1III[e, ze, X ] ·1IV. (6)

The factor ε(VG,H , ψF ) is the epsilon factor (with Langlands’ normalization; see
for example [Tate 1979, (3.6)]) for the virtual 0-representation

VG,H = X∗(T )θ ⊗C− X∗(T H )⊗C,

where T H is any maximally split maximal torus of H . It does not depend on any
further data and is thus the same for both sides of the equality we are proving. One
also sees immediately from the definition that

1IV
(
γ−1

1 , θ−1(δ−1)
)
=1IV(γ1, δ). (7)

We now examine the factors 1I, 1II and 1III, the latter requiring the bulk of
the work. These factors depend on most of the objects chosen so far. We have
indicated in brackets the more important objects on which they depend, as it will be
necessary to keep track of them. These are not all the dependencies. For example,
all factors 1i depend on the datum e, but except for 1III, this dependence is only
through the datum s, which we have arranged to be equal for e and LC(e), and so
we have not included e in the notation for these factors.

The factor 1new
I [e, spl, A] does not depend directly on γ1 and δ, but rather only

on the choices of S and ϕ. As we have remarked in the preceding paragraphs, these
choices also serve γ−1

1 and θ−1(δ−1), and we see that

1new
I [spl, A]

(
γ−1

1 , θ−1(δ−1)
)
=1new

I [spl, A](γ1, δ). (8)

We turn to 1II[A, X ]. Let −A denote the a-data obtained from A by replacing each
aα by −aα. Let −X denote the χ-data obtained from X by replacing each χα by
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χ−1
α . Then one checks that

1II[A, X ]
(
γ−1

1 , θ−1(δ−1)
)
=1II[−A,−X ](γ1, δ). (9)

Before we can examine1III[e, ze, X ], we need to recall its construction, following
[Kottwitz and Shelstad 1999, Section 4.4 and Section 5.3]. We define an F-torus
S1 as the fiber product

S1

��

// S

��
SH1

// SH
ϕ
// Sθ .

The element δ∗1 = (γ1, δ
∗) belongs to S1. The automorphism id×θ of SH1 × S

induces an automorphism θ1 of S1. This automorphism restricts trivially to the
kernel of S1→ S, and hence 1− θ1 induces a homomorphism S→ S1, which we
can compose with Ssc→ S to obtain a homomorphism Ssc→ S1, which we still
denote by 1− θ1.

The element (σ (g)g−1, δ∗1) belongs to H 1(F, Ssc
1−θ1
−−→ S1) and is called inv(γ1, δ).

Kottwitz and Shelstad [1999, A.3] construct a pairing 〈 · , · 〉KS between the abelian
groups

H 1(F, Ssc
1−θ1
−−→ S1) and H 1(W, Ŝ1

1−θ̂1
−−→ Ŝad).

Using this pairing, they define

1III[e, ze, X ](γ1, δ)=
〈
inv(γ1, δ), A0[e, ze, X ]

〉
KS,

where A0[e, ze, X ] is an element of H 1(F, Ŝ1
1−θ̂1
−−→ Ŝad) constructed as follows:

The χ -data X provides an Ĥ -conjugacy class of embeddings LSH →
LH and a

Ĝ1-conjugacy class of embeddings LSθ→ LG1, where Ĝ1 is the connected stabilizer
of θ̂ . Conjugating within Ĥ and Ĝ1 we arrange that these embeddings map ŜH

to T̂ H and Ŝθ to T̂ 1. Composing with the canonical embeddings LH → LH 1 and
LG1
→

LG, we obtain embeddings ξ1[X ] : LSθ → LG and ξSH [X ] :
LSH →

LH 1.
There is a unique embedding ξ 1

1 [X ] :
LS → LG extending ξ1[X ], and there is a

unique embedding ξ 1
SH
[X ] : LSH1 →

LH 1 extending ξSH [X ].
Letting x̄ denote the image of x ∈H under the projection H→W , define

U=
{

x ∈H
∣∣ Ad(ξ(x))|T̂ 1 = Ad(ξ1[X ](1× x̄))|T̂ 1

}
.

Then U is an extension of W by T̂ H . One can show that ξ(U) ⊂ ξ 1
1 [X ](

LS)
and ξH1(U) ⊂ ξ

1
SH
[X ](LSH1). Then we can define, for any w ∈ W , an element

aS[X ](w) ∈ Ŝ1, by choosing a lift u(w) ∈ U and letting aS[X ](w) = (t−1
1 , t) ∈

ŜH1 × Ŝ � Ŝ1, where t1 ∈ ŜH1 and t ∈ Ŝ are the unique elements satisfying

ξ 1
1 [X ](t ×w)= ξ(u(w)) and ξ 1

SH
[X ](t1×w)= ξH1(u(w)). (10)



Genericity and contragredience in the local Langlands correspondence 2465

We can further define sS = [ξ
1
1 ]
−1(s) ∈ Ŝ and also view it as an element of Ŝad.

Then

A0[e, ze, X ] =
(
aS[X ]−1, sS

)
∈ H 1(W, Ŝ1→ Ŝad

)
.

We are now ready to examine 1III[e, ze, X ]. We have

inv
(
γ−1

1 , θ−1(δ−1)
)
=
(
σ(g)g−1, θ−1

1 (δ∗−1
1 )

)
. (11)

This is an element of H 1(F, Ssc
1−θ−1

1
−→ S1). We have

1III
[LC(e), LC H (ez), X

](
γ−1

1 , θ−1(δ−1)
)

=

〈
inv
(
γ−1

1 , θ−1(δ−1)
)
, A0

[LC(e), LC H (ez), X
]〉

KS
.

Here A0
[

LC(e), LC H (ez), X
]

is the element of H 1(W, Ŝ1
1−θ̂−1

1
−→ Ŝad), constructed as

above, but with respect to the endoscopic datum LC(e) and the z-pair LC H (ze), rather
than e and ze. Thus A0

[
LC(e), LC H (ez), X

]
= (ãS[X ]−1, sS), with ãS[X ](w) =

(t̃−1
1 , t̃), and

ξ 1
1 [X ](t̃ ×w)=

Lθ ◦ LC ◦ ξ(u(w)),

ξ 1
SH
[X ](t̃1×w)= LC H

◦ ξH1(u(w)).

Using (10) we see that

ξ 1
1 [X ](t̃ ×w)=

Lθ ◦ LC ◦ ξ 1
1 [X ](t ×w),

ξ 1
SH
[X ](t̃1×w)= LC H

◦ ξ 1
SH
[X ](t1×w).

According to Lemma 5.2 this is equivalent to

ξ 1
1 [X ](t̃ ×w)=

Lθ ◦ ξ 1
1 [−X ](t−1

×w),

ξ 1
SH
[X ](t̃1×w)= ξ 1

SH
[−X ](t−1

1 ×w).

We conclude that

ãS[X ](w)= θ̂1
(
aS[−X ](w)−1). (12)

The isomorphism of complexes

Ssc

1−θ−1
1
��

id // Ssc

1−θ1
��

S1
θ1◦( )

−1
// S1
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induces an isomorphism H 1(F, Ssc
1−θ−1

1
−→ S1)→ H 1(F, Ssc

1−θ1
−→ S1) which, by (11),

sends inv(γ−1
1 , θ−1(δ−1)) to inv(γ1, δ). The dual isomorphism of complexes

Ŝ1

1−θ̂−1
1 ��

Ŝ1

1−θ̂1
��

θ̂1◦( )
−1

oo

Ŝad Ŝad
idoo

induces an isomorphism H 1(W, Ŝ1
1−θ̂1
−→ Ŝad)→ H 1(W, Ŝ1

1−θ̂−1
1
−→ Ŝad)which, by (12),

sends A0[e, ze,−X ] to A0[
LC(e), LC H (ze), X ]. We conclude that

1III
[LC(e), LC H (ze), X

](
γ−1

1 , θ−1(δ−1)
)
=1III[e, ze,−X ](γ1, δ). (13)

Combining (6), (7), (8), (9), and (13), we obtain

1D
[
ψ, LC(e), LC H (ze)

](
γ−1

1 , θ−1(δ−1)
)

= ε(VG,H , ψF ) ·1
new
I [spl, A]

(
γ−1

1 , θ−1(δ−1)
)
·1−1

II [A, X ]
(
γ−1

1 , θ−1(δ−1)
)

·1III
[LC(e), LC H (ze), X

](
γ−1

1 , θ−1(δ−1)
)
·1IV

(
γ−1

1 , θ−1(δ−1)
)

= ε(VG,H , ψF ) ·1
new
I [spl, A](γ1, δ) ·1

−1
II [−A,−X ](γ1, δ)

·1III[e, ze,−X ](γ1, δ) ·1IV(γ1, δ).

Since −X and −A are valid choices of χ-data and a-data, according to (6) the
second product is almost equal to 1ψ [ψ, e, ze](γ1, δ). The only difference is that
the a-data occurring in 1I is A, while the one occurring in 1II is −A. Let −spl be
the splitting (T, B, {−Xα}); then −spl and the character ψ−1

F give rise to the fixed
Whittaker datum (B, ψ), just like the splitting spl and the character ψF did. Thus

ε(VG,H , ψF ) ·1I[spl, A] = ε(VG,H , ψ
−1
F ) ·1I[−spl, A]

= ε(VG,H , ψ
−1
F ) ·1I[spl,−A],

with the first equality following from the argument of [Kottwitz and Shelstad 1999,
Section 5.3], and the second from Lemma 5.1. Noting that spl and ψ−1

F give rise to
the Whittaker datum (B, ψ−1), we obtain

1D
[
ψ, LC(e), LC H (ze)

](
γ−1

1 , θ−1(δ−1)
)
=1D[ψ

−1, e, ze](γ1, δ). �

Corollary 5.5. Let f ∈H(G) and f H1 ∈H(H1) be functions such that the (θ−1, ω)-
twisted orbital integrals of f match the stable orbital integrals of f H1 with respect
to 1̃[ψ−1, LC(e), LC H (ze)]. Then the (θ, ω)-twisted orbital integrals of f ◦ θ−1

◦ i
match the stable orbital integrals of f H1 ◦ i with respect to 1̃[ψ, e, ze]. Here 1̃
stands for any of the two (respectively, four) Whittaker normalizations of the transfer
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factor for twisted (respectively, standard ) endoscopy, and i is the map on G(F) or
H1(F) sending every element to its inverse.

Proof. SO(γ1, f H1 ◦ i)

= SO(γ−1
1 , f H1)

=

∑
δ∈G(F)/θ−1-∼

1̃
[
ψ−1, LC(e), LC H (ze)

]
(γ−1

1 , δ) Oθ−1,ω(δ, f )

=

∑
δ∈G(F)/θ−1-∼

1̃
[
ψ−1, LC(e), LC H (ze)

]
(γ−1

1 , δ) Oθ,ω
(
θ(δ−1), f ◦ θ−1

◦ i
)

=

∑
δ′∈G(F)/θ -∼

1̃[ψ, e, ze](γ1, δ
′) Oθ,ω(δ′, f ◦ θ−1

◦ i).

The last line follows from Proposition 5.4, with the substitution δ′ = θ(δ−1). �

Fact 5.6. Assume that θ has finite order. Let π be an irreducible admissible
tempered (B, ψ)-generic θ-stable representation of G(F), and let A : π→ π ◦ θ

be the unique isomorphism which preserves a (B, ψ)-Whittaker functional. Then
the dual map A∨ : (π ◦ θ)∨→ π∨ preserves a (B, ψ−1)-Whittaker functional.

Proof. Let V be the vector space on which π acts. Since π is tempered, it is unitary.
Let 〈 · , · 〉 be a π -invariant nondegenerate Hermitian form on V . Then

V → V∨, w 7→ 〈 · , w〉

is a π–π∨-equivariant isomorphism, and it identifies A∨ with the 〈 · , · 〉-adjoint
of A, which we will call A∗. We claim that A∗= A−1. Indeed, (v,w) 7→ 〈Av, Aw〉
is another π-invariant scalar product, hence there exists a scalar c ∈ C× with
〈Av, Aw〉 = c〈v,w〉. On the one hand, since both sides are Hermitian, this scalar
must belong to R>0. On the other hand, since θ has finite order, so does A, and
thus c must be a root of unity. This shows that c = 1, hence A∗ = A−1. Let
σ denote complex conjugation. If λ : V → C is a (B, ψ)-Whittaker functional
preserved by A, then σ ◦ λ : V → C is a (B, ψ−1)-Whittaker functional preserved
by A∨ = A∗ = A−1. �

Corollary 5.7. If π̃ is the unique extension of π to a representation of G(F)o 〈 θ 〉
so that π̃(θ) is the isomorphism π→π◦θ which fixes a (B, ψ)-Whittaker functional,
then π̃∨ is the unique extension of π∨ to a representation of G(F)o 〈 θ 〉 so that
π̃∨(θ) is the isomorphism π∨→π∨◦θ which fixes a (B, ψ−1)-Whittaker functional.

Let us recall Theorem 7.1(a) of [Adams and Vogan 2012]. For any Langlands
parameter ϕ :W → LG for a real connected reductive group G with corresponding
L-packet 5ϕ , the theorem shows that the set {π∨ | π ∈ 5ϕ} is also an L-packet,
and its parameter is LC ◦ ϕ. Assume that ϕ is tempered, and denote by S2ϕ
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the stable character of the L-packet 5ϕ . Then an immediate corollary is that
S2ϕ ◦ i = S2LC◦ϕ . We will now prove this equality for quasisplit symplectic and
special orthogonal p-adic groups. After that, we will use it to derive formula (2).
With this formula at hand, we will derive the precise p-adic analog of Adams and
Vogan’s Theorem 7.1(a) as a corollary.

Theorem 5.8. Let H be a quasisplit symplectic or special orthogonal group and
ϕ :W ′→ LH a tempered Langlands parameter. Write S2ϕ for the stable character
of the L-packet attached to ϕ. Then we have an equality of linear forms on H̃(H):

S2ϕ ◦ i = S2LC H◦ϕ.

Proof. We recall very briefly the characterizing property of S2ϕ , following
Arthur [2013, Section 1 and Section 2]. Let G =GLn/F and let spl= (T, B, {Xα})
be the standard splitting consisting of the subgroup T of diagonal matrices, the
subgroup B of upper triangular matrices, and the set {Xα} of elementary matrices
whose entries are zero except for one entry in the first superdiagonal, which is equal
to 1. Let θ be the outer automorphism of G preserving spl. Equip Ĝ = GLn(C)

with its standard splitting (T̂ , B̂, {X̂α}) and let θ̂ be the outer automorphism of Ĝ
preserving that splitting. The standard representation Ĥ → Ĝ can be extended to
an L-embedding ξ : LH → LG and augmented by an element s ∈ T̂ to provide
an endoscopic datum e = (H, LH , s, ξ) for the triple (G, θ, 1). Then ξ ◦ ϕ is a
Langlands parameter for G invariant under θ̂ . Let π be the representation of G(F)
assigned to ξ ◦ϕ by the local Langlands correspondence [Harris and Taylor 2001;
Henniart 2000]. We have π ∼= π ◦ θ . Choosing an additive character ψF : F→ C×

we obtain from the standard splitting of G a θ-stable Whittaker datum (B, ψ).
There is a unique isomorphism A : π → π ◦ θ which preserves one (hence all)
(B, ψ)-Whittaker functionals. Then we have the distribution

f 7→ T2ψξ◦ϕ( f )= tr
(
v 7→

∫
G(F)

f (g)π(g)Av dg
)
.

By construction, S2ϕ is the unique stable distribution on H̃(H) with the property
that

S2ϕ( f H )= T2ψξ◦ϕ( f )

for all f ∈ H̃(G) and f H
∈ H̃(H) such that the (θ, 1)-twisted orbital integrals of f

match the stable orbital integrals of f H with respect to 1′[ψ, e, ze]. Here ze stands
for the tautological pair (H, id).

Now consider the transfer factor1′[ψ−1, LC(e), LC H (ze)]. We have chosen both
Ĉ and Ĉ H to preserve the standard tori in Ĝ and Ĥ and act as inversion on those.
Moreover the endoscopic element s belongs to T̂ . Using the datum LC(e) and the
pair LC H (ze) has the same effect as using the datum

(
H,H, s, LC ◦ Lθ ◦ξ ◦ LC H−1)
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and the pair ze. We have Lθ ◦ ξ = Int(s−1)ξ , so replacing Lθ ◦ ξ by ξ changes the
above datum to an equivalent one. An easy computation shows furthermore that
LC ◦ ξ ◦ LC H−1

= Int(t) ◦ ξ for a suitable t ∈ T̂ . All in all, up to equivalence, we
see that replacing e and ze by LC(e) and LC H (ze) has no effect, and this implies that

1′
[
ψ−1, LC(e), LC H (ze)

]
=1′

[
ψ−1, e, ze

]
.

Let us abbreviate this factor to 1′[ψ−1
].

We have S2LC H◦ϕ( f H ) = T2ψ
ξ◦LC H◦ϕ

( f ). As we just argued, ξ ◦ LC H is Ĝ-
conjugate to LC◦ξ . Thus, the Galois representation ξ ◦ LC H

◦ϕ is the contragredient
to the Galois representation ξ ◦ϕ. As the local Langlands correspondence for GLn

respects the operation of taking the contragredient, Corollary 5.7 implies that

T2ψ
ξ◦LC H◦ϕ

( f )= T2ψ
−1

ξ◦ϕ ( f ◦ θ−1
◦ i).

By construction of S2ξ◦ϕ , we have

T2ψ
−1

ξ◦ϕ ( f ◦ θ−1
◦ i)= S2ξ◦ϕ(′ f H )

whenever ′ f H is an element of H̃(H) whose stable orbital integrals match the (θ, 1)-
orbital integrals of f ◦ θ−1

◦ i with respect to 1′[ψ−1
]. By Corollary 5.5, f H

◦ i is
such a function, and we see that the distribution f 7→ S2ξ◦ϕ( f H

◦ i) satisfies the
property that characterizes S2LC H◦ϕ , hence must be equal to the latter. �

Theorem 5.9. Let G be a quasisplit real K -group or a quasisplit symplectic or
special orthogonal p-adic group, and let (B, ψ) be a Whittaker datum. Let ϕ :
W ′→ LG be a tempered Langlands parameter, and ρ ∈ Irr(Sϕ). Then

ιB,ψ(ϕ, ρ)
∨
= ιB,ψ−1

(LC ◦ϕ, [ρ ◦ Ĉ−1
]
∨
)
.

Proof. Put π = ιB,ψ(ϕ, ρ). For each semisimple s ∈ Sϕ , let es = (H,H, s, ξ) be the
corresponding endoscopic datum (see Section 3), and choose a z-pair zs = (H1, ξH1).
We have the Whittaker normalization 1[ψ, es, zs] of the transfer factor compatible
with [Langlands and Shelstad 1987] (see the discussion before Proposition 5.4).

By construction, ϕ factors through ξ . Put ϕs = ϕ ◦ ξH1 . For any function
f ∈ H̃(G) let f s,ψ

∈ H̃(H1) be such that f and f s,ψ have 1[ψ, es, zs]-matching
orbital integrals. Then the distribution

f 7→ S2ϕs ( f s,ψ)

is independent of the choices of f s,ψ and zs . As discussed in Section 3, we have
the inversion of endoscopic transfer

2π ( f )= |Sϕ|−1
∑
s∈Sϕ

〈s, ρ〉S2ϕs ( f s,ψ).
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Thus, we need to show that

2π∨( f )= |SLC◦ϕ|
−1

∑
s′∈SLC◦ϕ

〈
Ĉ−1(s ′), ρ∨

〉
S2[LC◦ϕ]s′

(
f s′,ψ−1)

.

Reindexing the sum using s ′ = Ĉ(s−1), we can write the right-hand side as

|Sϕ|
−1
∑
s∈Sϕ

〈s, ρ〉S2[LC◦ϕ]s′
(

f s′,ψ−1)
.

The theorem will be proved once we show

S2ϕs

(
[ f ◦ i]s,ψ

)
= S2[LC◦ϕ]s′

(
f s′,ψ−1)

.

The endoscopic datum corresponding to LC ◦ϕ and s ′ is precisely LC(es) (in the
sense that 1∈GLn(C) is an isomorphism between the two). We are free to choose any
z-pair for it, and we choose LC H (zs). Then [LC ◦ϕ]s′ = LC H1 ◦ϕs and Theorem 5.8
in the p-adic case and [Adams and Vogan 2012, Theorem 7.1(a)] in the real case
imply

S2[LC◦ϕ]s′
(

f s′,ψ−1)
= S2ϕs

(
f s′,ψ−1

◦ i
)
.

The functions f and f s′,ψ−1
have 1[ψ−1, LC(es),

LC H (zs)]-matching orbital inte-
grals. By Corollary 5.5, the functions f ◦i and f s′,ψ−1

◦i have1[ψ, e, ze]-matching
orbital integrals. It follows that the functions [ f ◦ i]s,ψ and f s′,ψ−1

◦ i have the
same stable orbital integrals, and the theorem follows. �

We alert the reader that, as was explained in Section 3, the symbol ιB,ψ(ϕ, ρ)
refers to an individual representation of G(F) in all cases of Theorem 5.9, except
possibly when G is an even orthogonal p-adic group, in which case Arthur’s
classification may assign to the pair (ϕ, ρ) a pair of representations, rather than
an individual representation. In that case, the theorem asserts that if {π1, π2} is
the pair of representations associated with (ϕ, ρ), then {π∨1 , π

∨

2 } is the pair of
representations associated with ιB,ψ−1(LC ◦ϕ, [ρ ◦ Ĉ−1

]
∨).

The following is the p-adic analog of [Adams and Vogan 2012, Theorem 7.1(a)].

Corollary 5.10. Let G be a quasisplit symplectic or special orthogonal p-adic
group, and let ϕ : W ′ → LG be a tempered Langlands parameter. If 5 is an
L-packet assigned to ϕ, then

5∨ =
{
π∨ | π ∈5

}
is an L-packet assigned to LC ◦ϕ.

Proof. When G is either a symplectic or an odd orthogonal group, the statement
follows immediately from Theorem 5.9. However, if G is an even orthogonal group,
5 is one of two L-packets 51, 52 assigned to ϕ, and a priori we only know that
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the set 5∨ belongs to the union of the two L-packets 5′1,5
′

2 assigned to LC ◦ϕ.
We claim that in fact it equals one of these two L-packets. Indeed, let S2 be the
stable character of 5. This is now a stable linear form on H(G), not just on H̃(G).
The linear form S2 ◦ i is still stable. If S2′1 and S2′2 are the stable characters of
5′1 and 5′2 respectively, then the restrictions of S2′1 and S2′2 to H̃(G) are equal,
and moreover according to Theorem 5.8 these restrictions are equal to the restriction
of S2 ◦ i to H̃(G). From [Arthur 2013, Corollary 8.4.5] we conclude that

S2 ◦ i = λS2′1+µS2′2

for some λ,µ ∈ C with λ + µ = 1. However, each of the three distributions
S2 ◦ i, S2′1, S2′2 is itself a sum of characters of tempered representations. Since
5′1 and 5′2 are disjoint, the linear independence of these characters then forces one
of the numbers λ,µ to be equal to 1, and the other to 0. �

6. Depth-zero and epipelagic L-packets of p-adic groups

In this section, we are going to examine two constructions of L-packets on general
reductive p-adic groups and show that (2) is satisfied by these L-packets.

The first construction is that of [DeBacker and Reeder 2009], in which L-packets
consisting of depth-zero supercuspidal representations are constructed for each pure
inner form of an unramified p-adic group. This construction was then extended
to inner forms of p-adic groups arising from isocrystals with additional structure
[Kaletha 2011]. The second construction is that of [Kaletha 2012], in which L-
packets consisting of epipelagic representations are constructed for each tamely
ramified p-adic group. The notion of epipelagic representation was introduced and
studied by Reeder and Yu in [2012].

Fix a Langlands parameter ϕ : W → LG of the type considered in [DeBacker
and Reeder 2009] or [Kaletha 2012]. Fix a 0-invariant splitting (T̂ , B̂, {X α̂}) of
Ĝ and arrange that T̂ is the unique torus normalized by ϕ. Choose a Chevalley
involution Ĉ which sends the fixed splitting to its opposite. Then Ĉ commutes with
all automorphisms preserving the fixed splitting, in particular with the action of 0
on Ĝ, and hence LC = Ĉ×idW is an L-automorphism. Moreover, the action of Ĉ on
N (T̂ , Ĝ) preserves T̂ and thus induces an action on�(T̂ , Ĝ). Since Ĉ(X α̂)= X−α̂ ,
this action fixes each simple reflection and is therefore trivial.

In both constructions of L-packets the first step is to form the 0-module Ŝ
with underlying abelian group T̂ and 0-action given by the composition 0 →
�(T̂ , Ĝ)o0 of ϕ and the natural projection N (T̂ , Ĝ)→�(T̂ , Ĝ). By the argument
of the preceding paragraph, the 0-module Ŝ for LC ◦ϕ is the same as the one for ϕ.

The next step is to obtain from ϕ a character χ : S(F)→ C×. This is done
by factoring ϕ = L jX ◦ϕS , where L jX :

LS→ LG is an L-embedding constructed
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from ϕ, and ϕS :W → LS is a Langlands parameter for S, and then letting χ be the
character corresponding to ϕS . For the depth-zero case, this is the reinterpretation
given in [Kaletha 2011], and the L-embedding LS→ LG is obtained by choosing
arbitrary unramified χ-data X for R(Ŝ, Ĝ). Applying Lemma 5.2 to the equation
ϕ = L jX ◦ϕS we see that

LC ◦ϕ = L j−X ◦ (−1) ◦ϕS.

Since −X is another set of unramified χ-data, and it is shown in [Kaletha 2011,
Section 3.4] that ϕS is independent of the choice of X , we see that [LC ◦ ϕ]S =
(−1) ◦ϕS . In other words, the character of S(F) constructed from LC ◦ϕ is χ−1

S .
We claim that the same is true in the epipelagic case. That case is a bit more

subtle because L jX depends on ϕ more strongly — the χ-data X is chosen based
on the restriction of ϕ to wild inertia. What we need to show is that if X is chosen
for ϕ, then the choice for LC ◦ϕ is −X . This however follows right away from the
fact that the restriction of LC ◦ ϕ to wild inertia equals the composition of (−1)
with the restriction of ϕ to wild inertia.

The third step in the construction of both kinds of L-packets relies on a procedure
(different in the two cases) which associates to an admissible embedding j of S
into an inner form G ′ of G a representation π(χS, j) of G ′(F). We won’t recall
this procedure — for our current purposes it will be enough to treat it as a black box.
The only feature of this black box that is essential for us is that the contragredient of
π(χS, j) is given by π(χ−1

S , j). Now let (B, ψ) be a Whittaker datum for G. It is
shown in both cases that there exists an admissible embedding j0 : S→G, unique up
to G(F)-conjugacy, so that the representation π(χS, j0) of G(F) is (B, ψ)-generic.
Moreover, one has Sϕ = [Ŝ]0 , so that Irr(Sϕ)= X∗(Ŝ0)= X∗(S)0 = B(S), where
B(S) is the set of isomorphism classes of isocrystals with S-structure [Kottwitz
1997]. Using j0 one obtains a map Irr(Sϕ)= B(S)→ B(G)bas. Each ρ ∈ Irr(Sϕ)
provides in this way an extended pure inner twist (Gbρ , bρ, ξρ). The composition
jρ = ξρ ◦ j0 is an admissible embedding S→ Gbρ defined over F and provides by
the black box construction alluded to above a representation π(χS, jρ) of Gbρ (F).
The construction of L-packets and their internal parametrization is then realized by

ιB,ψ : Irr(Sϕ)→5ϕ, ρ 7→ π(χS, jρ).

The contragredient of π(χS, j0) is given by π(χ−1
S , j0), and the latter representation

is (B, ψ−1)-generic. Hence, the version of j0 associated to LC ◦ϕ and the Whittaker
datum (B, ψ−1) is equal to j0. Using SLC◦ϕ=[Ŝ0] and ρ∨◦Ĉ−1

=ρ, and reviewing
the procedure above, we see that

ιB,ψ−1
(LC ◦ϕ, ρ∨ ◦ Ĉ−1)

= π(χ−1
S , jρ)= π(χS, jρ)∨ = ιB,ψ(ϕ, ρ)∨.
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