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Preperiodic points for families of
polynomials

Dragos Ghioca, Liang-Chung Hsia and Thomas J. Tucker

Let a(λ), b(λ) ∈C[λ], and let fλ(x) ∈C[x] be a one-parameter family of polyno-
mials indexed by all λ ∈ C. We study whether there exist infinitely many λ ∈ C

such that both a(λ) and b(λ) are preperiodic for fλ.

1. Introduction

The classical Manin–Mumford conjecture for abelian varieties (now a theorem due
to Raynaud [1983a; 1983b]) predicts that the set of torsion points of an abelian
variety A defined over C is not Zariski dense in a subvariety V of A unless V is a
translate of an algebraic subgroup of A by a torsion point. Pink and others have
suggested extending the Manin–Mumford conjecture to a more general question
regarding unlikely intersections between a subvariety V of a semiabelian scheme A
and algebraic subgroups of the fibers of A having codimension greater than the
dimension of V [Bombieri et al. 1999; Habegger 2009; Masser and Zannier 2010;
Masser and Zannier 2012; Pink 2005]. Here we state a special case of the question
when V is a curve:

Question 1.1. Let S be a semiabelian scheme over a variety Y defined over C, and
let V ⊂ S be a curve that is not contained in any proper algebraic subgroup of S.
We define

S[2] :=
⋃
y∈Y

By,

where By is the union of all algebraic subgroups of the fiber Sy of codimension at
least equal to 2. Must the intersection of V with S[2] be finite?
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Bertrand [2011] recently showed that the answer to Question 1.1 is sometimes
“no”. The question may, however, have a positive answer in many instances. For
example, Masser and Zannier [2010; 2012] study Question 1.1 when S is the square
of the Legendre family of elliptic curves Eλ (over the base A1

\ {0, 1}) given by the
equation y2

= x(x − 1)(x − λ). They show that for any two independent points P
and Q on the generic fiber, there are at most finitely many λ ∈ C such that the
specializations Pλ and Qλ are both torsion points for Eλ. Their work thus gives a
positive answer to Question 1.1 in this special case.

The result of Masser and Zannier has a distinct dynamical flavor. Indeed, one
may consider the following more general problem. Let {Xλ} be an algebraic family
of quasiprojective varieties defined over C, let8λ : Xλ→ Xλ be an algebraic family
of endomorphisms, and let Pλ ∈ Xλ and Qλ ∈ Xλ be two algebraic families of
points. Under what conditions do there exist infinitely many λ such that both Pλ
and Qλ are preperiodic for 8λ? Indeed, the problem from [Masser and Zannier
2010; 2012] fits into this general dynamical framework by letting Xλ = Eλ be the
Legendre family of elliptic curves and letting 8λ be the multiplication-by-2 map
on each elliptic curve in this family.

Baker and DeMarco [2011] study an interesting special case of the general
dynamical question above first suggested by Zannier at an American Institute
of Mathematics workshop in 2008. Given complex numbers a and b and an
integer d ≥ 2, when do there exist infinitely many λ ∈ C such that both a and
b are preperiodic for the action of fλ(x) := xd

+ λ on C? They show that
this happens if and only if ad

= bd . We prove this generalization of the main
result of [Baker and DeMarco 2011]:

Theorem 1.2. Let f ∈ C[x] be any polynomial of degree d ≥ 2, and let a, b ∈ C.
Then there exist infinitely many λ ∈ C such that both a and b are preperiodic for
f (x)+ λ if and only if f (a)= f (b).

We will derive Theorem 1.2 from a more technical result, Theorem 2.3, which
also treats the case of “nonconstant starting points” a and b, a topic that was raised
in [Baker and DeMarco 2011].

One might hope to formulate a general dynamical version of Question 1.1 for
polarizable endomorphisms of projective varieties more general than multiplication-
by-m maps on abelian varieties (an endomorphism 8 of a projective variety X is
polarizable if there exists d ≥ 2 and a line bundle L on X such that8∗(L) is linearly
equivalent to L⊗d in Pic(X)) by using the analogy between abelian subschemes and
preperiodic subvarieties. Because of the results of Baker and DeMarco, along with
the results of this paper, we believe it is reasonable to ask the following dynamical
analog of Question 1.1:
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Question 1.3. Let Y be any quasiprojective curve defined over C, and let F be
the function field of Y . Let a, b ∈ P1(F), and let V ⊂ X := P1

F ×F P1
F be the

C-curve (a, b). Let f : P1
→ P1 be a rational map of degree d ≥ 2 defined

over F . Then for all but finitely many λ ∈ Y , f induces a well-defined rational
map fλ : P1

→ P1 defined over C. If there exist infinitely many λ ∈ Y such that
both a(λ) and b(λ) are preperiodic points of P1(C) under the action of fλ, then
must V be contained in a proper preperiodic subvariety of X under the action of
8 := ( f , f )?

Theorem 1.2 is a special case of Question 1.3 for fλ(x)= f (x)+λ and constant
starting points a(λ)= a and b(λ)= b. Theorem 2.3 also allows us to prove some
other special cases of Question 1.3 such as the following:

Theorem 1.4. Let f ∈ C[x] be any polynomial of degree d ≥ 2, let g ∈ C[x] be
any nonconstant polynomial, and let c ∈ C∗. Then there exist at most finitely many
λ ∈ C such that either

(1) both g(λ) and g(λ+ c) are preperiodic for f (x)+ λ or

(2) both g(λ) and g(λ)+ c are preperiodic for f (x)+ λ.

The next result is for the case when the family of maps f is constant:

Theorem 1.5. Let f ∈C[x] be a polynomial of degree d ≥ 2, and let a, b∈C[λ] be
two polynomials of same degree and with the same leading coefficient. If there exist
infinitely many λ∈C such that both a(λ) and b(λ) are preperiodic for f , then a= b.

A special case of Theorem 1.5 is that for any fixed c ∈ C∗, there can be only
finitely many λ ∈ C such that both λ and λ+ c are preperiodic for f . In fact,
more generally it provides a positive answer to a special case of Zhang’s dynamical
Manin–Mumford conjecture, which states that for a polarizable endomorphism
8 : X→ X on a projective variety, the only subvarieties of X containing a dense set
of preperiodic points are those subvarieties that are themselves preperiodic under
f ; see [Zhang 1995, Conjecture 2.5; 2006, Conjecture 1.2.1, Conjecture 4.1.7] for
details. This conjecture turns out to be false in general [Ghioca et al. 2011], but it
may be true in many cases. For example, let X :=P1

×P1,8(x, y) := ( f (x), f (y))
for a polynomial f of degree d ≥ 2, and Y be the Zariski closure in X of the set
{ (a(z), b(z)) : z ∈ C }, where a, b ∈ C[x] are polynomials of same degree and with
the same leading coefficient; Theorem 1.5 implies that if Y contains infinitely many
points preperiodic under 8, then Y is the diagonal subvariety of X and thus is itself
preperiodic under 8. Theorem 1.5 also has consequences for a case of a revised
dynamical Manin–Mumford conjecture [Ghioca et al. 2011, Conjecture 1.4]; see
Section 11 for details.

The plan of our paper is as follows. In Section 2, we state our main result,
Theorem 2.3, and some of its consequences and then describe the method of
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our proof. In Section 3, we set up our notation while in Section 4 we give a
brief overview of Berkovich spaces. Then in Section 5, we introduce some basic
preliminaries regarding the iterates of a generic starting point c under a family
of maps f . Section 6 contains computations of the capacities of the generalized
v-adic Mandelbrot sets associated with a generic point c under the action of f . In
Section 7, we prove an explicit formula for the Green function for the generalized
v-adic Mandelbrot sets when v is an archimedean valuation. We proceed with our
proof of the direct implication in Theorem 2.3 in Section 8 (for the case fλ ∈Q[x]
and a, b∈Q[x]) and in Section 10 (for the general case). In Section 9, we prove the
converse implication from Theorem 2.3. Then in Section 11, we conclude our paper
by proving Corollary 2.7 and discussing the connections between our Question 1.3
and the dynamical Manin–Mumford conjecture formulated by Ghioca, Tucker, and
Zhang [2011].

2. Statement of the main results

A special case of Question 1.3 is when Y = A1, f ∈ R[x], where R = C[λ], and
a, b ∈ R. In Theorem 2.3, we provide a positive answer to Question 1.3 for any
family of polynomials of the form

fλ(x)= xd
+

d−2∑
i=0

ci (λ)x i , where ci (λ) ∈ C[λ] for i = 0, . . . , d − 2, (2.1)

together with some mild restriction on the polynomials a and b.
We say that a polynomial f (x) of degree d is in normal form if it is monic and

its coefficient of xd−1 equals 0. (Note that any polynomial of degree d > 1 can
be put in normal form after a change of coordinates.) As a matter of notation, we
rewrite (2.1) as

fλ(x)= P(x)+
r∑

i=1

Qi (x) · λmi (2.2)

for some polynomial P ∈ C[x] in normal form of degree d, some nonnegative
integer r , integers m0 := 0< m1 < · · ·< mr , and some polynomials Qi ∈ C[x] of
degrees 0≤ ei ≤ d−2. We do not exclude the case r = 0, in which case the sum in
the sigma notation is empty and { fλ}λ is a constant family of polynomials.

Let a(λ), b(λ) ∈ C[λ]. If a is preperiodic for f , that is, f k(a) = f `(a) for
some k 6= `, then for each b, one can show that there are infinitely many λ ∈ C

such that b(λ) (and thus also a(λ)) is preperiodic for fλ (see also Proposition 9.1).
Therefore, we may assume that a and b are not preperiodic for f . Assuming there
exist infinitely many λ ∈ C such that both a(λ) and b(λ) are preperiodic for fλ,
then Question 1.3 predicts that there exist ϕ1 and ϕ2 commuting with f such that
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ϕ1(a) = ϕ2(b). A natural possibility is for ϕ1 and ϕ2 to be iterates of f ; under a
mild condition on a and b, we prove that this is the only possibility.

Theorem 2.3. Let f := fλ be the family of one-parameter polynomials (indexed
by all λ ∈ C) given by

fλ(x) := xd
+

d−2∑
i=0

ci (λ)x i
= P(x)+

r∑
j=1

Q j (x) · λm j

as above (see (2.1) and (2.2)). Let a, b ∈ C[λ], and assume there exist nonnegative
integers k and ` such that the following conditions hold:

(i) f k
λ (a(λ)) and f `λ (b(λ)) have the same degree and the same leading coefficient

as polynomials in λ, and

(ii) if m = degλ( f k
λ (a(λ))) degλ( f `λ (b(λ))), then m ≥ mr .

Then there exist infinitely many λ ∈ C such that both a(λ) and b(λ) are preperiodic
points for fλ if and only if f k

λ (a(λ))= f `λ (b(λ)).

Remarks 2.4. (a) The one-dimensional C-scheme (a, b)⊂ X := P1
C(λ)×C(λ) P1

C(λ)

in Theorem 2.3 is contained in the two-dimensional C-subscheme Y of X given by
the equation

f k(x)= f `(y),

where (x, y) are the coordinates of X. Such a Y is fixed by the action of ( f , f )
on X as predicted by Question 1.3.

(b) It follows from the Lefschetz principle that the same statements in Theorem 2.3
hold if we replace C by any other algebraically closed complete valued field of
characteristic 0.

(c) We note that if c ∈ C[λ] has the property that there exists k ∈ N such that
degλ( f k

λ (c(λ)))=m has the property (ii) from Theorem 2.3, then c is not preperiodic
for f (see Lemma 5.2).

(d) If f is not a constant family, then it follows from Benedetto’s theorem [2005]
that c ∈ C[λ] is not preperiodic for f if and only if there exists k ∈ N such that
degλ( f k

λ (c(λ)))≥ mr . On the other hand, if f is a constant family of polynomials
defined over C, that is, r = 0 and m0 = 0 in Theorem 2.3, then implicitly m > 0.
(Otherwise the conclusion holds trivially.)

Theorem 2.3 generalizes known results regarding “unlikely intersections” in
the dynamical setting including the dynamical Manin–Mumford questions (see
Section 11). First, Theorem 2.3 generalizes the main result of [Baker and DeMarco
2011] in two ways. On one hand, in the case when a and b are both constant, we
can prove a generalization of the main result from [ibid.] as follows:
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Theorem 2.5. Let a, b ∈ C, let d ≥ 2, and let c0, . . . , cd−2 ∈ C[λ] such that
deg(c0) > deg(ci ) for each i = 1, . . . , d− 2. If there are infinitely many λ ∈ C such
that both a and b are preperiodic for

fλ(x) := xd
+

d−2∑
i=0

ci (λ)x i ,

then fλ(a)= fλ(b).

Proof. We apply Theorem 2.3 for a(λ) := fλ(a) and b(λ) := fλ(b). �

Consequently, Theorem 2.5 yields the proof of Theorem 1.2.

Proof of Theorem 1.2. Note that in this case, we may drop the hypothesis that f (x)
is in normal form since we may conjugate f (x) by some linear polynomial δ ∈C[x]
such that g := δ−1

◦ f ◦δ+δ−1(λ) is a family of polynomials in normal form. Then
apply Theorem 2.5 to the pair of points δ−1(a) and δ−1(b). �

On the other hand, using our Theorem 2.3 we are able to treat the case when
the pair of points a and b depend algebraically on the parameter. This answers a
question raised by Silverman mentioned in [Baker and DeMarco 2011, Section 1.1].
For instance, as an application of Theorem 2.3, by taking f = f (x)+ λ for any
nonconstant polynomial f (x) ∈ C[x] of degree at least 2, we have the following:

Corollary 2.6. Let f ∈C[x] be any polynomial of degree d ≥ 2, and let a, b∈C[λ]

be polynomials such that a and b have the same degree and the same leading
coefficient. Then there are infinitely many λ ∈ C such that both a(λ) and b(λ) are
preperiodic under the action of f (x)+ λ if and only if a(λ)= b(λ).
Proof. First, the theorem is vacuously true if a and b are constant polynomials since
then they are automatically equal because they have the same leading coefficient.
So we may assume that deg(a)= deg(b)≥ 1.

Second, we conjugate f (x) by some linear polynomial δ ∈ C[x] such that
g := δ−1

◦ f ◦ δ is a polynomial in normal form. Then we apply Theorem 2.3
to the family of polynomials g(x)+ δ−1(λ) and to the starting points δ−1(a(λ))
and δ−1(b(λ)). Since a and b are polynomials of the same positive degree and
same leading coefficient, it is immediate to check that conditions (i) and (ii) of
Theorem 2.3 hold for k = `= 0. Therefore, a(λ)= b(λ) as desired. �

An important special case of Corollary 2.6 is Theorem 1.4. Using Theorem 2.3
when f is a constant family of polynomials, we obtain a proof of Theorem 1.5.

Proof of Theorem 1.5. The result is an immediate consequence of Theorem 2.3
once we observe, as before, that we may replace f with a conjugate δ−1

◦ f ◦ δ of
itself that is a polynomial in normal form. (Note that in this case, we also replace a
and b by δ−1(a) and δ−1(b), respectively, which are also polynomials in λ of the
same degree and same leading coefficient.) �



Preperiodic points for families of polynomials 707

On the other hand, assuming each ci and also a and b have algebraic coefficients,
the exact same proof we have yields stronger statements of Theorems 2.3, 1.5, and
Corollary 2.6, allowing us to replace the hypothesis that there are infinitely many
λ∈Q such that both a(λ) and b(λ) are preperiodic for fλ with the weaker condition
that there exists an infinite sequence of λn ∈Q such that

lim
n→∞

ĥ fλn
(a(λn))+ ĥ fλn

(b(λn))= 0,

where for each λ ∈Q, ĥ fλ is the canonical height constructed with respect to the
polynomial fλ. (For the precise definition of the canonical height with respect to a
polynomial map, see Section 3.) Therefore, we can prove a special case of Zhang’s
dynamical Bogomolov conjecture [2006].

Corollary 2.7. Let Y ⊂ P1
×P1 be a curve that admits a parametrization given by

(a(z), b(z)) for z ∈ C, where a, b ∈Q[x] are polynomials of the same degree and
with the same leading coefficient. Let f ∈Q[x] be a polynomial of degree at least
equal to 2, and let8(x, y) := ( f (x), f (y)) be the diagonal action of f on P1

×P1.
If there exists an infinite sequence of points (xn, yn) ∈ Y (Q) such that

lim
n→∞

ĥ f (xn)+ ĥ f (yn)= 0,

then a = b. In particular, Y is the diagonal subvariety of P1
× P1 and thus is

preperiodic under the action of 8.

Remark 2.8. In fact, this result holds not only over Q but also over the algebraic
closure of any global function field L (whose subfield of constants is K ) as long as
f is not conjugate to a polynomial with coefficients in K .

Note that the second author, together with Baker, proved a similar result [Baker
and Hsia 2005, Theorem 8.10] in the case when Y is a line; that is, if a line in
P1
×P1 contains an infinite set of points of small canonical height with respect

to the coordinatewise action of the polynomial f on P1
×P1, then the line Y is

preperiodic under the action of ( f, f ) on P1
×P1.

Laura DeMarco communicated to us that our Theorem 2.3 yields the proof of
the first case of a conjecture she made as a dynamical analogue of the André–
Oort conjecture. Essentially, the dynamical André–Oort conjecture envisioned by
DeMarco aims to characterize subvarieties in the moduli space Md of complex
rational maps f : P1

→ P1 (of degree d > 1) that contain a Zariski dense subset of
postcritically finite rational maps. A rational map is postcritically finite (PCF) if all
of its critical points are preperiodic. The PCF rational maps play an important role
in complex dynamics; for example, the Lattès maps are PCF.
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Our Theorem 2.3 has the following consequence. Let f = fλ be a family of
polynomials in normal form of degree d with polynomial coefficients in λ. Further-
more, assume the critical points c1(λ), . . . , cd−1(λ) of fλ are also polynomials in λ.
Let I be the collection of indices i such that ci is not preperiodic for f . Suppose
for each i ∈ I , there exist iterates f mi

λ (ci (λ)) with the same degree and leading
coefficients in λ and that this degree is large enough (that is, satisfies the hypothesis
from Theorem 2.3). Then there are infinitely many PCF maps in this family if and
only if all f mi (ci ) (for i ∈ I ) are equal.

We prove Theorem 2.3 first for the case when both a and b and also each of the ci

have algebraic coefficients, and then we extend our proof to the general case. For
the extension to C, we use a result of Benedetto [2005] (see also Baker’s extension
[2009] to arbitrary rational maps), which states that for a polynomial f of degree
at least equal to 2 defined over a function field K of finite transcendence degree
over a subfield K0, if f is not isotrivial (that is, f is not conjugate to a polynomial
defined over K0), then each x ∈ K is preperiodic if and only if its canonical height
ĥ f (x) equals 0. Strictly speaking, Benedetto’s result is stated for function fields
of transcendence degree 1, but a simple inductive argument on the transcendence
degree yields the result for function fields of arbitrary finite transcendence degree.
(See also [Baker 2009, Corollary 1.8], where Baker extends Benedetto’s result to
rational maps defined over function fields of arbitrary finite transcendence degree.)

Our results and proofs are inspired by the results of [Baker and DeMarco 2011]
so that the strategy for the proof of Theorem 2.3 essentially follows their ideas.
However, there are significantly more technical difficulties in our proofs. The plan
of our proof is to use the v-adic generalized Mandelbrot sets introduced therein
for the family of polynomials fλ and then use the equidistribution result of Baker
and Rumely [2010]. A key ingredient is Proposition 6.8, which says that the
canonical local height of the point in question at the place v is a constant multiple
of the Green function associated with the v-adic generalized Mandelbrot set. Then
the condition that a(λ) and b(λ) are preperiodic is translated to the condition
that the heights hMa(λ) and hMb(λ), respectively, are zero for the corresponding
parameter λ. Therefore, the equidistribution result of Baker–Rumely can be applied
to conclude that the v-adic generalized Mandelbrot sets for a(λ) and b(λ) are the
same for each place v. Finally, we need to use an explicit formula for the Green
function associated with the v-adic generalized Mandelbrot set corresponding to
an archimedean valuation v to conclude that the desired equality of f k

λ (a(λ)) and
f `λ (b(λ)) holds. Extra work is needed for the explicit description of the Green
function for a v-adic generalized Mandelbrot set (when v is an archimedean place)
due to the fact that in our case, the polynomial fλ has arbitrary (finitely) many
critical points that vary with λ in contrast to the family of polynomials xd

+λ from
[Baker and DeMarco 2011], which has only one critical point for the entire family.
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3. Notation and preliminary

For any quasiprojective variety X endowed with an endomorphism 8, we call a
point x ∈ X preperiodic if there exist two distinct nonnegative integers m and n
such that 8m(x) = 8n(x), where by 8i we always denote the i-iterate of the
endomorphism 8. If n = 0, then, by convention, 80 is the identity map.

Let K be a field of characteristic 0 equipped with a set of inequivalent absolute
values (places) �K , normalized so that the product formula holds; more precisely,
for each v ∈�K there exists a positive integer Nv such that for all α ∈ K ∗ we have∏
v∈� |α|

Nv
v = 1, where for v ∈ �K , the corresponding absolute value is denoted

by | · |v. Let Cv be a fixed completion of the algebraic closure of a completion of
(K , | · |v). When v is an archimedean valuation, then Cv = C. We fix an extension
of | · |v to an absolute value of (Cv, | · |v). Examples of product formula fields (or
global fields) are number fields and function fields of projective varieties that are
regular in codimension 1 [Lang 1983, Section 2.3; Bombieri and Gubler 2006,
Section 1.4.6].

Let f ∈Cv[x] be any polynomial of degree d ≥ 2. Following Call and Silverman
[1993], for each x ∈ Cv, we define the local canonical height of x by

ĥ f,v(x) := lim
n→∞

log+ | f n(x)|v
dn ,

where log+ z always denotes log max{z, 1} (for any real number z).
It is immediate that ĥ f,v( f i (x))= d i ĥ f,v(x), and thus, ĥ f,v(x)= 0 whenever x

is a preperiodic point for f . If v is nonarchimedean and f (x) =
∑d

i=0ai x i , then
| f (x)|v = |ad xd

|v > |x |v when |x |v > rv, where

rv :=max
{
|ad |
−1/(d−1)
v , max

0≤i<d

{∣∣∣ ai

ad

∣∣∣1/(d−i)}}
. (3.1)

Moreover, if |x |v > rv, then ĥv(x) = log|x |v + log|ad |v/(d − 1) > 0. For more
details, see [Ghioca and Tucker 2008; Hsia 2008]. (Although these results are
for canonical heights associated with Drinfeld modules, all the proofs go through
for any local canonical height associated with any polynomial with respect to
any nonarchimedean place.)

Now, if v is archimedean, again it is easy to see that if |x |v is sufficiently large,
then | f (x)|v � |x |dv , and moreover, | f n(x)|v→∞ as n→∞.

We fix an algebraic closure K of K , and for each v ∈�K we fix an embedding
K ↪→ Cv. Assume f ∈ K [x]. Call and Silverman [1993] also defined the global
canonical height ĥ(x) for each x ∈ K as

ĥ f (x)= lim
n→∞

h( f n(x))
dn ,
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where h is the usual (logarithmic) Weil height on K . Call and Silverman show
that the global canonical height decomposes into a sum of the corresponding local
canonical heights.

For each σ ∈Gal(K/K ), we denote by ĥ f σ the global canonical height computed
with respect to f σ , which is the polynomial obtained by applying σ to each coeffi-
cient of f . Similarly, for each v ∈�K we denote by ĥ f σ ,v the corresponding local
canonical height constructed with respect to the polynomial f σ . For x ∈ K , we
have ĥ f (x)= 0 if and only if ĥ f σ (xσ )= 0 for all σ ∈ Gal(K/K ). More precisely,
for x ∈ K we have

ĥ f (x)= 0 ⇐⇒ ĥ f σ ,v(xσ )= 0 for all v ∈�K and all σ ∈ Gal(K/K ). (3.2)

Essentially, (3.2) says that ĥ f (x) = 0 if and only if the orbits of xσ under each
polynomial f σ (for σ ∈ Gal(K/K )) are bounded with respect to each absolute
value | · |v for v ∈�K .

Benedetto [2005] proved that if a polynomial f defined over a function field K
(endowed with a set �K of absolute values) is not isotrivial (that is, it cannot be
conjugated to a polynomial defined over the constant subfield of K ), then each point
c ∈ K is preperiodic for f if and only if its global canonical height (computed with
respect to f ) equals 0. In particular, if c ∈ K , then c is preperiodic if and only if

ĥ f σ ,v(cσ )= 0 for all σ ∈ Gal(K/K ) and for all places v ∈�K . (3.3)

Let

f = fλ := xd
+

d−2∑
i=0

ci (λ)x i ,

where ci (λ) ∈ C[λ] for i = 0, . . . , d− 2, and let c(λ) ∈ C[λ]. We let K be the field
extension of Q generated by all coefficients of each ci (λ) and of c(λ). Assume
K is a global field; that is, it has a set �K of inequivalent absolute values with
respect to which the nonzero elements of K satisfy a product formula. For each
place v ∈�K , we define the v-adic Mandelbrot set Mc,v for c with respect to the
family of polynomials f as the set of all λ ∈ Cv such that ĥ fλ,v(c(λ))= 0, that is,
the set of all λ ∈ Cv such that the iterates f n

λ (c(λ)) are bounded with respect to the
v-adic absolute value.

4. Berkovich spaces

We now introduce Berkovich spaces and state the equidistribution theorem of Baker
and Rumely [2010], which will be key for the proofs of Theorems 2.3 and 2.5.

Let K be a global field of characteristic 0, and let�K be the set of its inequivalent
absolute values. For each v ∈ �K , we let Cv be the completion of an algebraic
closure of the completion of K at v. Let A1

Berk,Cv denote the Berkovich affine
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line over Cv; see [Berkovich 1990; Baker and Rumely 2010, Section 2.1] for
details. Then A1

Berk,Cv is a locally compact, Hausdorff, path-connected space con-
taining Cv as a dense subspace (with the topology induced from the v-adic absolute
value). As a topological space, A1

Berk,Cv is the set consisting of all multiplicative
seminorms, denoted by [·]x , on Cv[T ] extending the absolute value | · |v on Cv

endowed with the weakest topology such that the map z 7→ [ f ]z is continuous for
all f ∈ Cv[T ]. It follows from the Gelfand–Mazur theorem that if Cv is the field
of complex numbers C, then A1

Berk,C is homeomorphic to C. In the following, we
will also use A1

Berk,Cv to denote the complex line C whenever Cv = C. If (Cv, | · |v)
is nonarchimedean, then the set of seminorms can be described as follows. If
{D(ai , ri )}i is any decreasing nested sequence of closed disks D(ci , ri ) centered
at points ci ∈ Cv of radius ri ≥ 0, then the map f 7→ limi→∞ [ f ]D(ci ,ri ) defines a
multiplicative seminorm on Cv[T ], where [ f ]D(ci ,ri ) is the sup norm of f over the
closed disk D(ai , ri ). Berkovich’s classification theorem says that there are exactly
four types of points: types I, II, III, and IV. The first three can be described in terms of
closed disks ζ := D(c, r)=

⋂
D(ci , ri ), where c∈Cv and r ≥0. The corresponding

multiplicative seminorm is just f 7→ [ f ]D(c,r) for f ∈ Cv[T ]. Then ζ is of type I,
II or III if and only if r = 0, r ∈ |C∗v|v or r 6∈ |C∗v|v, respectively. As for type IV
points, they correspond to sequences of decreasing nested disks D(ci , ri ) such that⋂

D(ci , ri ) = ∅ and the multiplicative seminorm is f 7→ limi→∞[ f ]D(ci ,ri ) as
described above. For details, see [Berkovich 1990; Baker and Rumely 2010]. For
ζ ∈ A1

Berk,Cv , we sometimes write |ζ |v instead of [T ]ζ .
In order to apply the main equidistribution result from [Baker and Rumely 2010,

Theorem 7.52], we recall the potential theory on the affine line over Cv. We will
focus on the case when Cv is a nonarchimedean field; the case Cv = C is classical.
(We refer the reader to [Ransford 1995].) The right setting for nonarchimedean
potential theory is the potential theory on A1

Berk,Cv developed in [Baker and Rumely
2010]. We quote part of a nice summary of the theory from [Baker and DeMarco
2011, Section 2.2 and Section 2.3] without going into details. We refer the reader to
[Baker and DeMarco 2011; Baker and Rumely 2010] for all the details and proofs.
Let E be a compact subset of A1

Berk,Cv . Then analogous to the complex case, the
Green function G E of E relative to∞ and the logarithmic capacity γ(E) := e−V (E)

can be defined, where V (E) is the infimum of the energy integral with respect to
all possible probability measures supported on E . More precisely,

V (E)= inf
µ

∫∫
E×E
− log δ(x, y) dµ(x) dµ(y),

where the infimum is computed with respect to all probability measures µ supported
on E while for x, y ∈ A1

Berk,Cv , the function δ(x, y) is the Hsia kernel [Baker and
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Rumely 2010, Proposition 4.1]:

δ(x, y) := lim sup
z,w∈Cv

z→x,w→y

|z−w|v.

The following are basic properties of the logarithmic capacity of E .

• If E1 and E2 are two compact subsets of A1
Berk,Cv such that E1 ⊂ E2, then

γ(E1)≤ γ(E2).

• If E = {ζ }, where ζ is a type II or III point corresponding to a closed
disk D(c, r), then γ(E) = r > 0 [Baker and Rumely 2010, Example 6.3].
(This can be viewed as an analogue of the fact that a closed disk D(c, r) of
positive radius r in Cv has logarithmic capacity γ(D(c, r))= r .)

If γ(E)> 0, then there exists a unique probability measure µE attaining the infimum
of the energy integral. Furthermore, the support of µE is contained in the boundary
of the unbounded component of A1

Berk,Cv \ E .
The Green function G E(z) of E relative to infinity is a well-defined nonnegative

real-valued subharmonic function on A1
Berk,Cv that is harmonic on A1

Berk,Cv \E (in the
sense of [Baker and Rumely 2010, Chapter 8] for the nonarchimedean setting; see
[Ransford 1995] for the archimedean case). If γ(E)= 0, then there exists no Green
function associated with the set E (see [Ransford 1995, Exercise 1, page 115]
in the case when | · |v is archimedean; a similar argument works when | · |v is
nonarchimedean). Indeed, as shown in [Baker and Rumely 2010, Proposition 7.17,
page 151], if γ(∂E) = 0, then there exists no nonconstant harmonic function on
A1

Berk,Cv \ E that is bounded below. (This is the strong maximum principle for
harmonic functions defined on Berkovich spaces). The following result is [Baker
and DeMarco 2011, Lemmas 2.2 and 2.5], and it gives a characterization of the
Green function of the set E :

Lemma 4.1. Let (Cv, |·|v) be either an archimedean or a nonarchimedean field. Let
E be a compact subset of A1

Berk,Cv and U the unbounded component of A1
Berk,Cv \ E.

(1) If γ(E) > 0 (that is, V (E) <∞), then G E(z)= V (E)+ log |z|v+o(1) for all
z ∈A1

Berk,Cv such that |z|v is sufficiently large. Furthermore, the o(1) term may
be omitted if v is nonarchimedean.

(2) If G E(z)=0 for all z∈ E , then G E is continuous on A1
Berk,Cv , Supp(µE)= ∂U ,

and G E(z) > 0 if and only if z ∈U.

(3) If G : A1
Berk,Cv → R is a continuous subharmonic function that is harmonic

on U , identically zero on E , and such that G(z)− log+ |z|v is bounded, then
G = G E . Furthermore, if G(z)= log |z|v + V + o(1) (as |z|v→∞) for some
V <∞, then V (E)= V , so γ(E)= e−V .
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To state the equidistribution result from [Baker and Rumely 2010], we consider
the compact Berkovich adelic sets, which are of the form

E :=
∏
v∈�

Ev,

where Ev is a nonempty compact subset of A1
Berk,Cv for each v ∈ � and where

Ev is the closed unit disk D(0, 1) in A1
Berk,Cv for all but finitely many v ∈�. The

logarithmic capacity γ(E) of E is defined by

γ(E) :=
∏
v∈�

γ(Ev)Nv ,

where the positive integers Nv are the ones associated with the product formula on
the global field K . Note that this is a finite product since γ(Ev)= γ(D(0, 1))= 1
for all but finitely many v ∈�. Let Gv = G Ev be the Green function of Ev relative
to∞ for each v ∈�. For every v ∈�, we fix an embedding K ↪→ Cv . Let S ⊂ K
be any finite subset that is invariant under the action of the Galois group Gal(K/K ).
We define the height hE(S) of S relative to E by

hE(S) :=
∑
v∈�

Nv
( 1
|S|

∑
z∈S

Gv(z)
)
. (4.2)

Note that this definition is independent of any particular embedding K ↪→ Cv that
we choose at v ∈�. The following is a special case of the equidistribution result
[Baker and Rumely 2010, Theorem 7.52].

Theorem 4.3. Let E=
∏
v∈� Ev be a compact Berkovich adelic set with γ(E)= 1.

Suppose that Sn is a sequence of Gal(K/K )-invariant finite subsets of K with
|Sn| →∞ and hE(Sn)→ 0 as n→∞. For each v ∈ � and for each n, let δn be
the discrete probability measure supported equally on the elements of Sn . Then the
sequence of measures {δn} converges weakly to µv , the equilibrium measure on Ev .

5. General results about the dynamics of polynomials fλ

In this section, we work with a family of polynomials fλ as given in Section 2, that
is,

fλ(x)= xd
+

d−2∑
i=0

ci (λ)x i

with ci (λ) ∈ C[λ] for i = 0, . . . , d − 2. As before, we may rewrite our family of
polynomials as

fλ(x)= P(x)+
r∑

j=1

Q j (x) · λm j ,
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where P(x) is a polynomial of degree d in normal form, each Qi has degree at
most equal to d− 2, r is a nonnegative integer, and m0 := 0<m1 < · · ·<mr . Let
c(λ) ∈ C[λ] be given, and let K be the field extension of Q generated by all the
coefficients of ci (λ) for i = 0, . . . , d − 2 and of c(λ).

We define gc,n(λ) := f n
λ (c(λ)) for each n ∈N. Assume m := deg(c) satisfies the

property (ii) from Theorem 2.3, that is,

m = deg(c)≥ mr . (5.1)

Furthermore, if r = 0, we assume m ≥ 1 (see also Remarks 2.4(c)). We let qm be
the leading coefficient of c(λ). In the next lemma, we compute the degrees of all
polynomials gc,n for all positive integers n.

Lemma 5.2. With the hypothesis above, the polynomial gc,n(λ) has degree m · dn

and leading coefficient qdn

m for each n ∈ N.

Proof. The assertion follows easily by induction on n using (5.1) since the term of
highest degree in λ from gc,n(λ) is c(λ)dn

. �

We immediately obtain as a corollary of Lemma 5.2 the fact that c is not prepe-
riodic for f . The set of all λ ∈ C such that c(λ) is preperiodic for fλ is denoted
by Prep(c). The following result is an immediate consequence of Lemma 5.2:

Corollary 5.3. Prep(c)⊂ K .

6. Capacities of generalized Mandelbrot sets

We continue with the notation from Sections 4 and 5. Let c := c(λ) ∈ C[λ] be
a nonconstant polynomial, and let K be a product formula field containing the
coefficients of each ci (λ) for i = 0, . . . , d − 2 and of c. We let �K be the set of
inequivalent absolute values of the global field K , and let v ∈ �K . Assume that
c(λ)= qmλ

m
+ (lower terms), where m = deg(c) satisfies the condition (5.1).

Our goal is to compute the logarithmic capacities of the v-adic generalized
Mandelbrot sets Mc,v defined in Section 3. Following [Baker and DeMarco 2011],
we extend the definition of our v-adic Mandelbrot set Mc,v to be a subset of the
affine Berkovich line A1

Berk,Cv as follows:

Mc,v := { λ ∈ A1
Berk,Cv : supn[gc,n(T )]λ <∞}.

Note that if Cv is a nonarchimedean field, then our present definition for Mc,v yields
more points than our definition from Section 3. Let λ ∈ Cv, and recall the local
canonical height ĥλ,v(x) of x ∈ Cv is given by the formula

ĥλ,v(x) := ĥ fλ,v(x)= lim
n→∞

log+ | f n
λ (x)|v

dn .
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Notice that ĥλ,v(x) is a continuous function of both λ and x (see [Branner and
Hubbard 1988, Proposition 1.2] for polynomials over complex numbers; the proof
for the nonarchimedean case is similar). As Cv is a dense subspace of A1

Berk,Cv ,
continuity in λ implies that the canonical local height function ĥλ,v(c(λ)) has a
natural extension on A1

Berk,Cv . (Since the topology on Cv is the restriction of the
weak topology on A1

Berk,Cv , any continuous function on Cv automatically has a
unique extension to A1

Berk,Cv .) We will view ĥλ,v(c(λ)) as a continuous function
on A1

Berk,Cv in the following. It follows from the definition of Mc,v that λ ∈ Mc,v if
and only if ĥλ,v(c(λ))= 0. Thus, Mc,v is a closed subset of A1

Berk,Cv . In fact, the
following is true:

Proposition 6.1. Mc,v is a compact subset of A1
Berk,Cv .

We already showed that Mc,v is a closed subset of the locally compact space
A1

Berk,Cv , and thus, in order to prove Proposition 6.1, we only need to show that
Mc,v is a bounded subset of A1

Berk,Cv . If f is a constant family of polynomials,
then Proposition 6.1 follows from our assumption that deg(c)≥ 1. Indeed, if |λ|v
is large, then |c(λ)|v is large, and thus, | f n(c(λ))|v →∞ as n →∞. Further-
more, for nonarchimedean place v, if |λ|v is sufficiently large, then (assuming v is
nonarchimedean)

| f n(c(λ))|v = |c(λ)|d
n

v = |qmλ
m
|
dn

v . (6.2)

So now we are left with the case that f is not a constant family, that is, r ≥ 1.

Lemma 6.3. Assume r ≥ 1, that is, f is not a constant family of polynomials. Then
Mc,v is a bounded subset of A1

Berk,Cv .

Proof. First we rewrite as before

fλ(x)= P(x)+
r∑

j=1

Q j (x) · λm j

with P(x) in normal form of degree d and each polynomial Q j of degree e j ≤ d−2;
also, 0< m1 < · · ·< mr . We know m = deg(c)≥ mr .

Since qmλ
m is the leading monomial in c, there exists a positive real number C1

depending only on v, coefficients of ci (λ) for i = 0, . . . , d − 2, and c such that if
|λ|v > C1, then |c(λ)|v > 1

2 |qm |v · |λ|
m
v .

Let α := maxr
i=1 mi/(d − ei ); then α ≤ mr/2 since ei ≤ d − 2 for all i . There

exist positive real numbers C2 and C3 (depending only on v and the coefficients
of ci (λ)) such that if |λ|v > C2 and |x |v > C3|λ|

α
v , then

| fλ(x)|v > 1
2 |x |

d
v > |x |v,

and thus, | f n
λ (x)|v→∞ as n→∞.
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However, since m≥mr ≥ 2α>α, we conclude that if |λ|v>(2C3/|qm |v)
1/(m−α),

then
1
2 |qm |v · |λ|

m
v > C3|λ|

α
v .

We let C4 :=max{C1,C2, (2C3/|qm |v)
1/(m−α), |qm |

−1/m
v }. So if |λ|v > C4, then

|c(λ)|v > 1
2 |qm |v · |λ|

m
v > C3|λ|

α
v ,

and thus, | f n
λ (c(λ))|v→∞ as n→∞. We conclude that if λ∈Mc,v , then |λ|v≤C4,

as desired. �

Remark 6.4. It is possible to make the constants in the proof above explicit. More-
over, for a nonarchimedean place v, the estimate of the absolute values can be
precise. For example, if v is nonarchimedean, we can ensure that if |λ|v > C4, then

| f n
λ (c(λ))|v = |qmλ

m
|
dn

v for all n ≥ 1. (6.5)

Theorem 6.6. The logarithmic capacity of Mc,v is γ(Mc,v)= |qm |
−1/m
v .

The strategy for the proof of Theorem 6.6 is to construct a continuous subhar-
monic function Gc,v : A

1
Berk,Cv → R satisfying Lemma 4.1(3). Analogously to the

family fλ(x)= xd
+ λ treated in [Baker and DeMarco 2011], we let

Gc,v(λ) := lim
n→∞

1
deg(gc,n)

log+[gc,n(T )]λ. (6.7)

Then by a similar reasoning as in the proof of [ibid., Proposition 3.7], it can be
shown that the limit exists for all λ∈A1

Berk,Cv . In fact, by the definition of canonical
local height, for λ ∈ Cv we have

Gc,v(λ)= lim
n→∞

1
mdn log+| f n

λ (c(λ))|v since deg(gc,n)= mdn by Lemma 5.2,

=
1
m
· ĥ fλ,v(c(λ)) by the definition of canonical local height.

As a consequence of the computation above, we have the following:

Proposition 6.8 [Silverman 1994a, Theorem II.0.1; Silverman 1994b, Theorem
III.0.1 and Corollary III.0.3]. We have ĥ fλ,v(c(λ))= deg(c)Gc,v(λ).

Remark 6.9. The formula above holds in the more general case of Question 1.3;
for example, one may work with a rational function c ∈ C(λ).

Note that Gc,v(λ)≥ 0 for all λ ∈A1
Berk,Cv . Moreover, we see easily that λ ∈ Mc,v

if and only if Gc,v(λ)= 0.

Lemma 6.10. The function Gc,v is the Green function for Mc,v relative to∞.

The proof is essentially the same as the proof of [Baker and DeMarco 2011,
Proposition 3.7]; we simply give a sketch of the idea.
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Proof of Lemma 6.10. We deal with the case that v is nonarchimedean. (The case
when v is archimedean follows similarly.) So using the same argument as in the proof
of [Branner and Hubbard 1988, Proposition 1.2], we observe that as a function of λ,

log+[gc,n(T )]λ
deg(gc,n)

converges uniformly on compact subsets of A1
Berk,Cv . So this function is continuous

and subharmonic on A1
Berk,Cv and converges to Gc,v uniformly; hence, it follows

from [Baker and Rumely 2010, Proposition 8.26(c)] that Gc,v is continuous and
subharmonic on A1

Berk,Cv . Furthermore, as remarked above, Gc,v is 0 on Mc,v.
Arguing as in the proof of Lemma 6.3 (see (6.2) and (6.5)), if |λ|v > C4, then

for n ≥ 1 we have

|gc,n(λ)|v = | f n
λ (c(λ))|v = |qmλ

m
|
dn

v .

Hence, for |λ|v > C4 we have

Gc,v(λ)= lim
n→∞

1
mdn log|gc,n(λ)|v= log |λ|v +

log |qm |v

m
.

It follows from Lemma 4.1(3) that Gc,v is indeed the Green function of Mc,v. �

Now we are ready to prove Theorem 6.6.

Proof of Theorem 6.6. As in the proof of Lemma 6.10, we have

Gc,v(λ)= log |λ|v +
log |qm |v

m
+ o(1)

for |λ|v sufficiently large. By Lemma 4.1(3), we find that V (Mc,v)= log |qm |v/m.
Hence, the logarithmic capacity of Mc,v is

γ(Mc,v)= e−V (Mc,v) = 1/|qm |
1/m
v . �

Let Mc =
∏
v∈� Mc,v be the generalized adelic Mandelbrot set associated with c.

As a corollary to Theorem 6.6, we see Mc satisfies the hypothesis of Theorem 4.3.

Corollary 6.11. For all but finitely many nonarchimedean places v, we have that
Mc,v is the closed unit disk D(0; 1) in Cv; furthermore, γ(Mc)= 1.

Proof. For each place v where all coefficients of ci (λ) for i=0, . . . , d−2 and of c(λ)
are v-adic integral and moreover |qm |v = 1, we have that Mc,v = D(0, 1). Indeed,
D(0, 1) ⊂ Mc,v since then f n

λ (c(λ)) is always a v-adic integer. For the converse
implication, we note that each coefficient of gc,n(λ) is a v-adic integer while the
leading coefficient is a v-adic unit for all n ≥ 1; thus, |gc,n(λ)|v = |λ|

mdn

v →∞

if |λ|v > 1. Note that qm 6= 0, so the second assertion in Corollary 6.11 follows
immediately by the product formula in K . �
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Using Proposition 6.8 and the decomposition of the global canonical height as a
sum of local canonical heights, we obtain the following result:

Corollary 6.12. Let λ ∈ K , let S be the set of Gal(K/K )-conjugates of λ, and let
hMc be defined as in (4.2). Then deg(c) · hMc(λ)= ĥ fλ(c(λ)).

Remark 6.13. Let h(λ) denote a Weil height function corresponding to the divisor
∞ of the parameter space that is the projective line in our case. Then it follows
from [Call and Silverman 1993, Theorem 4.1] that

lim
h(λ)→∞

ĥ fλ(c(λ))
h(λ)

= ĥ f (c),

where ĥ f (c) is the canonical height associated with the polynomial map f over
the function field C(λ). Corollary 6.12 gives a precise relationship between the
canonical height function on the special fiber, the height of the parameter λ, and
ĥ f (c), which is equal to deg(c) in this case.

7. Explicit formula for the Green function

In this section, we work under the assumption that | · |v = | · | is archimedean,
and Cv simply denotes C in this case. We show that in this setting we have an
alternative way of representing the Green function Gc :=Gc,v for the Mandelbrot set
Mc := Mc,v . We continue to work under the same hypothesis on c(λ); in particular,
we assume that (5.1) holds. Furthermore, if r = 0 (that is, f is a constant family of
polynomials), then m = deg(c)≥ 1.

Since the degree in x of fλ(x) is d, there exists a unique function φλ that is an
analytic homeomorphism on the set URλ for some Rλ ≥ 1 (where for any positive
real number R, UR denotes the open set { z ∈C : |z|> R }) satisfying the following
conditions:

(1) φλ has derivative equal to 1 at ∞, or more precisely, the analytic function
ψλ(z) := 1/φλ(1/z) has derivative equal to 1 at z = 0, and

(2) φλ( fλ(z))= (φλ(z))d for |z|> Rλ.

We can make (1) above more precise by giving the power series expansion

φλ(z)= z+
∞∑

n=1

Aλ,n
zn . (7.1)

From (7.1) we immediately conclude that |φλ(z)| = |z| + Oλ(1), and thus,

log |φλ(z)| = log |z| + Oλ(1) for |z| large enough. (7.2)
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So using that φλ( fλ(z))= φλ(z)d , we conclude that if |z|> Rλ, then

lim
n→∞

log+ | f n
λ (z)|

dn = lim
n→∞

log |φλ( f n
λ (z))|

dn = log |φλ(z)|. (7.3)

Hence, (7.3) yields that the Green function Gλ for the (filled Julia set of the)
polynomial fλ equals

Gλ(z) := lim
n→∞

log | f n
λ (z)|

dn = log |φλ(z)| if |z|> Rλ.

For details on the Green function associated with any polynomial, see [Carleson
and Gamelin 1993], where Chapter III.4 says that the function log |φλ(z)| can be
extended to a well-defined harmonic function on the entire basin of attraction Aλ

∞

of the point at∞ for the polynomial map fλ. The set Aλ
∞

is the complement of the
filled Julia set of fλ; more precisely, it is the set of all z ∈ C such that the orbit of z
under fλ is unbounded. Thus, on Aλ

∞
we have

Gλ(z) := log |φλ(z)| (7.4)

is the Green function for (the filled Julia set of) the polynomial fλ. Also by [ibid.,
Chapter III.4], we know that

Rλ := max
f ′λ(x)=0

eGλ(x)
≥ 1.

In Proposition 7.6, we will show that if |λ| is sufficiently large, then c(λ) is in
the domain of analyticity for φλ. In particular, using (7.2) this would yield

Gc(λ)= lim
n→∞

log+ | f n
λ (c(λ))|

mdn =
log |φλ(c(λ))|

m
=

Gλ(c(λ))
m

(7.5)

for |λ| sufficiently large.

Proposition 7.6. There exists a positive constant C0 such that if |λ|>C0, then c(λ)
belongs to the analyticity domain of φλ.

Proof. The proof is similar to that of [Baker and DeMarco 2011, Lemma 3.2]. If f
is a constant family of polynomials, then the conclusion is immediate since Rλ is
constant (independent of λ), and thus, for |λ| sufficiently large, clearly |c(λ)|> Rλ.
So from now on assume f is not a constant family of polynomials, which in
particular yields that r ≥ 1 and 0< m1 < · · ·< mr .

First we recall that

Rλ = eGλ(x0) := max
f ′λ(x)=0

eGλ(x).

Next we show that Rλ→∞ as |λ| →∞, which will be used later in our proof.

Lemma 7.7. As |λ| →∞, we have Rλ→∞.
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Proof. We recall that

fλ(x)= P(x)+
r∑

i=1

λmi · Qi (x),

where P(x) is a polynomial in normal form of degree d and 0 < m1 < · · · < mr

are positive integers while the Qi are nonzero polynomials of degrees ei ≤ d − 2.
We have two cases.

Case 1. Each Qi (x) is a constant polynomial. Then the critical points of fλ
are independent of λ, that is, x0 = O(1). We let x1 ∈ C such that fλ(x1) = x0.
Since each Qi is a nonzero constant polynomial, we immediately conclude that
|x1| � |λ|

mr/d . On the other hand, since U2Rλ ⊂ φ
−1
λ (URλ) [Branner and Hubbard

1988, Corollary 3.3], we conclude that |x1| ≤ 2Rλ, so Rλ � |λ|mr/d . Indeed, if
|x1|> 2Rλ, then there exists z1 ∈URλ such that φ−1

λ (z1)= x1. Using the fact that
φλ is a conjugacy map at∞ for fλ, we would obtain that

x0 = fλ(x1)= fλ(φ−1
λ (z1))= φ

−1
λ (zd

1) ∈URλ,

which contradicts the fact that x0 is not in the analyticity domain of φλ.

Case 2. There exists i = 1, . . . , r such that Qi (x) is not a constant polynomial.
Then the critical points of fλ vary with λ. In particular, there exists a critical point xλ
of maximum absolute value such that |xλ| � |λ|m j/(d−e j ) (for some j = 1, . . . , r ),
where for each i = 1, . . . , r , we have ei = deg(Qi )≤ d − 2. Now, xλ is not in the
domain of analyticity of φλ, and thus, |xλ| ≤ Rλ, which again shows that Rλ→∞
as |λ| →∞. �

Using that Rλ→∞, we will finish our proof. First we note that

|φλ( fλ(x0))| = eGλ( fλ(x0)) = edGλ(x0) = Rd
λ . (7.8)

Note that φλ(z) is analytic on URλ while log |φλ(z)| is continuous for |z| ≥ Rλ.
Moreover, whenever it is defined, Gλ( fλ(z)) = dGλ(z), so also using (7.4), we
obtain (7.8).

Now for |λ| sufficiently large, we have that Rd
λ/2> Rλ (since Rλ→∞ according

to Lemma 7.7). So URd
λ
⊂ φλ(URd

λ/2
) [Branner and Hubbard 1988, Corollary 3.3],

and thus,
| fλ(x0)| ≥

1
2 Rd

λ . (7.9)

Case 1. We have deg(Qi )= 0 for each i . Then x0= O(1) as noticed in Lemma 7.7,
and thus, using (7.9) we obtain that |λ|mr � Rd

λ . Since deg(c)=m ≥mr , we obtain

|c(λ)| ≥ |qm | · |λ|
m
− |O(λm−1)| � Rd

λ > Rλ

if |λ| is sufficiently large.
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Case 2. If not all of the Qi are constant polynomials, then we still know that

|x0| � |λ|
maxr

i=1 mi/(d−ei )� |λ|mr/2

because ei ≤ d − 2 for each i . Therefore,

Rd
λ � | fλ(x0)| � |λ|

dmr/2. (7.10)

On the other hand, |c(λ)| ∼ |λ|m and m ≥ mr , which yield that

|c(λ)| � |λ|m � R2
λ� Rλ

by (7.10). This concludes the proof of Proposition 7.6. �

Therefore, for large |λ|, the point c(λ) is in the domain of analyticity for φλ,
which allows us to conclude that (7.5) holds.

We know from [Carleson and Gamelin 1993] that for each λ ∈ C and for each
z ∈ C sufficiently large in absolute value, we have

φλ(z)= z
∞∏

n=0

( f n+1
λ (z)
f n
λ (z)d

)1/dn+1

, (7.11)

and thus,

φλ(z)= z
∞∏

n=0

(
1+

Q0( f n
λ (z))+

∑r
i=1 Qi ( f n

λ (z)) · λ
mi

f n
λ (z)d

)1/dn+1

, (7.12)

where Q0(x) := P(x)− xd is a polynomial of degree at most equal to d − 2. We
showed in Proposition 7.6 that φλ(c(λ)) is well-defined; furthermore, the function
φλ(c(λ))/c(λ) can be expressed near∞ as the infinite product above. Indeed, for
each n ∈N, the order of magnitude of the numerator in the n-th fraction from the
product appearing in (7.12) when we substitute z = c(λ) is at most

|λ|m+(d−2)mdn
≤ |λ|m(d−1)dn

while the order of magnitude of the denominator is |λ|mdn+1
. This guarantees

the convergence of the product from (7.12) corresponding to φλ(c(λ))/c(λ). We
conclude that

φλ(c(λ)) is an analytic function of λ (for large λ) and moreover (7.13)

φλ(c(λ))= qmλ
m
+ O(λm−1). (7.14)
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8. Proof of Theorem 2.3: Algebraic case

We work under the hypothesis of Theorem 2.3, and we continue with the notation
from the previous sections. Furthermore, we prove Theorem 2.3 under the extra
assumptions that

a, b ∈Q[λ] and ci ∈Q[λ] for each i = 0, . . . , d − 2. (8.1)

Recall that fλ(x) = xd
+
∑d−2

i=0 ci (λ)x i , where we require that ci ∈ Q[λ] for
i = 0, . . . , d−2. Let a, b ∈Q[λ] satisfy the hypotheses (i) and (ii) of Theorem 2.3.
Let K be the number field generated by the coefficients of ci (λ) for i = 0, . . . , d−2
and of a(λ) and b(λ). Let �K be the set of all inequivalent absolute values on K .

Next, assume there exist infinitely many λ such that both a(λ) and b(λ) are
preperiodic for fλ. At the expense of replacing a(λ) by f k

λ (a(λ)) and b(λ) by
f `λ (b(λ)), we may assume that the polynomials

a(λ) and b(λ) have the same leading coefficient and degree m ≥ mr . (8.2)

Let hMa(z) and hMb(z) be the heights of z ∈ K relative to the adelic generalized
Mandelbrot sets Ma :=

∏
v∈�K

Ma,v and Mb as defined in Section 6. Note that if
λ∈ K is a parameter such that a(λ) and b(λ) are preperiodic for fλ, then hMa(λ)= 0
by Corollary 6.12. So we may apply the equidistribution result from [Baker and
Rumely 2010, Theorem 7.52] (see our Theorem 4.3) and conclude that Ma,v =Mb,v
for each place v ∈ �K . Indeed, we know that there exists an infinite sequence
{λn}n∈N of distinct numbers λ ∈ K such that both a(λ) and b(λ) are preperiodic
for fλ. So for each n ∈ N, we may take Sn to be the union of the sets of Galois
conjugates for λm for all 1≤ m ≤ n. Clearly, #Sn→∞ as n→∞, and also each
Sn is Gal(K/K )-invariant. Finally, hMa(Sn)= hMb(Sn)= 0 for all n ∈N, and thus,
Theorem 4.3 applies in this case. We obtain that µMa =µMb , and since they are both
supported on Ma and Mb, respectively, we also get that Ma =Mb. The following
lemma applies in the generality of Theorem 2.3, and it will finish our proof. (Note
that since K is a number field, it has at least one archimedean valuation.)

Lemma 8.3. Let f , a, and b be as in Theorem 2.3; in particular, assume they are
all defined over C. Let | · | be the usual archimedean absolute value on C, and
let Ma and Mb be the corresponding complex Mandelbrot sets. If Ma = Mb, then
a = b.

Proof. Since Ma = Mb, then the corresponding Green functions are also the same,
that is, (using (7.5) and (8.2))

|φλ(a(λ))| = |φλ(b(λ))| for all |λ| sufficiently large.

On the other hand, for |z| large, the function h(z) :=φz(a(z))/φz(b(z)) is an analytic
function of constant absolute value. (Note that the denominator does not vanish
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since φλ is a homeomorphism for a neighborhood of∞.) By the open mapping
theorem, we conclude that h(z) := u is a constant (for some u ∈C of absolute value
equal to 1); that is,

φλ(a(λ))= u ·φλ(b(λ)). (8.4)

Using (7.13) and (7.14) (also note that a(λ) and b(λ) have the same leading coeffi-
cient), we have u = 1. Using that φλ is a homeomorphism on a neighborhood of
the infinity, we conclude that a(λ)= b(λ) for λ sufficiently large in absolute value
and thus for all λ as desired. (Note that a and b are polynomials.) �

Remark 8.5. Our proof (similar to the proof from [Baker and DeMarco 2011]) only
uses in an essential way the information that Ma = Mb, that is, that the Mandelbrot
sets over the complex numbers corresponding to a and b are equal, even though we
know that Ma,v = Mb,v for all places v.

9. Proof of Theorem 2.3: The converse implication

Now we prove the converse implication in Theorem 2.3 in the general case, that is,
for polynomials c0, . . . , cd−2, a, and b with arbitrary complex coefficients. Again
at the expense of replacing a(λ) by f k

λ (a(λ)) and replacing b(λ) by f `λ (b(λ)), we
may assume a(λ)= b(λ). The following result will finish the converse statement
in Theorem 2.3:

Proposition 9.1. Let c ∈ C[λ] of degree m ≥ mr . Let Prep(c) be the set consisting
of all λ∈C such that c(λ) is preperiodic under fλ, and let Mc be the set of all λ∈C

such that the orbit of c(λ) under the action of fλ is bounded with respect to the
usual archimedean metric on C. Then the closure in C of the set Prep(c) contains
∂Mc. In particular, Prep(c) is infinite.

Proof. We first claim that the equation fz(c(z)) = c(z) has only finitely many
solutions. Indeed, according to Lemma 5.2, the degree in z of fz(c(z))− c(z)
is dm, which means that there are at most dm solutions z ∈ C for the equation
fz(c(z))= c(z).

Let x0 ∈ ∂Mc, which is not a solution z to fz(c(z)) = c(z); we will show that
x0 is contained in the closure in C of Prep(c). Since we already know that if
fz(c(z))= c(z), then z ∈ Prep(c), we will be done once we prove that each open
neighborhood U of x0 contains at least one point from Prep(c).

Now, let U be an open neighborhood of x0, and let hi :U→P1(C) for i = 1, 2, 3
be three analytic functions with values taken in the compact Riemann sphere, given
by

h1(z) :=∞, h2(z) := c(z), and h3(z) := gc,1(z)= fz(c(z)).

Furthermore, since x0 is not a solution for the equation h2(z)= h3(z), then we may
assume (at the expense of replacing U with a smaller neighborhood of x0) that the
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closures of h2(U ) and h3(U ) are disjoint. Therefore, the closures of h1(U ), h2(U ),
and h3(U ) in P1(C) are all disjoint.

As before, we let {gc,n}n≥2 be the set of polynomials gc,n(z) := f n
z (c(z)). Since

x0 ∈ ∂Mc, the family of analytic maps {gc,n}n≥2 is not normal on U . Therefore, by
Montel’s theorem [Beardon 1991, Theorem 3.3.6], there exists n ≥ 2 and z ∈ U
such that gc,n(z) = c(z) or gc,n(z) = fz(c(z)). (Clearly, it cannot happen that
gc,n(z)=∞.) Either way, we obtain that z ∈ Prep(c) as desired.

Since γ(Mc) > 0, we know that Mc is an uncountable subset of C, and thus, its
boundary is infinite; hence, Prep(c) is also infinite. �

10. Proof of Theorem 2.3: General case

In this section, we finish the proof of Theorem 2.3. With the same notation as in
Theorem 2.3, we replace a and b with f k

λ (a(λ)) and f `λ (b(λ)), respectively; thus,
a(λ) and b(λ) are polynomials with the same degree and same leading coefficient.
We assume there exist infinitely many λ ∈ C such that both a(λ) and b(λ) are
preperiodic for fλ; we will prove that a = b.

Let K denote the field generated over Q by adjoining the coefficients of each ci

(for i = 1, . . . , d − 2) and adjoining the coefficients of a and of b. According to
Corollary 5.3, if there exists λ ∈ C such that a(λ) (or b(λ)) is preperiodic for fλ,
then λ ∈ K , where K denotes the algebraic closure of K in C. Let �K be the set of
inequivalent absolute values of K corresponding to the divisors of a projective Q-
variety V regular in codimension 1; then the places in �K satisfy a product formula.

As in Section 8, we let hMa(z) and hMb(z) be the heights of z ∈ K relative to
the adelic generalized Mandelbrot sets Ma =

∏
v∈�K

Ma,v and Mb as defined in
Section 6. Note that if λ ∈ K is a parameter such that a(λ) is preperiodic for fλ,
then hMa(λ)= 0 and hMb(λ)= 0, respectively, by Corollary 6.12 again. So arguing
as in Section 8, we may apply the equidistribution result from [Baker and Rumely
2010, Theorem 7.52] (Theorem 4.3) and conclude that Ma,v = Mb,v for each
place v ∈�K .

As observed in our proof from Section 8 (see Remark 8.5), in order to finish the
proof of Theorem 2.3, it suffices to prove that Ma = Mb, where Ma and Mb are
the complex Mandelbrot sets corresponding to a and b, respectively. By complex
Mandelbrot sets Ma and Mb, we mean the Mandelbrot sets corresponding to a
and b constructed with respect to the usual archimedean metric on C.

As before, Prep(a) and Prep(b) denote the sets of all λ ∈ C such that a(λ)
and b(λ), respectively, are preperiodic for fλ. As proved in Corollary 5.3, we know
that both Prep(a) and Prep(b) are subsets of K . In order to prove that Ma = Mb, it
suffices to prove that Prep(a) differs from Prep(b) in at most finitely many points.
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To ease the notation, we define the symmetric difference of Prep(a) and Prep(b) as

PrepDiff(a, b) := (Prep(a) \Prep(b))∪ (Prep(b) \Prep(a)).

Proposition 10.1. If the set PrepDiff(a, b) is finite, then Ma = Mb.

Proof. Since Ma contains all points λ ∈ C such that limn→∞ log+ | f n
λ (a)|/d

n
= 0,

the maximum modulus principle yields that the complement of Ma in C is connected;
that is, Ma is a full subset of C; see also [Baker and DeMarco 2011]. So both Ma

and Mb are full subsets of C containing the sets Prep(a) and Prep(b) whose closures
contain the boundary of Ma and Mb, respectively (according to Proposition 9.1).
As Prep(a) and Prep(b) differ by at most finitely many elements, we conclude that
Ma = Mb. �

To prove that Prep(a) and Prep(b) differ by at most finitely many elements, we
observe first that if λ∈Prep(a), then ĥ fλ(a(λ))=0, and thus, λσ ∈Ma,v for all v and
all σ ∈Gal(K/K ). (See (3.3); note that a(λ)σ = a(λσ ) since a ∈ K [x].) Similarly,
if λ ∈ Prep(b), then λσ ∈ Mb,v for each place v ∈�K and each Galois morphism σ .
We would like to use the reverse implication, that is, characterize the elements
Prep(a) as the set of all λ ∈ K such that λσ ∈ Ma,v for each place v and for each
Galois morphism σ . This is true if fλ is not isotrivial over Q by Benedetto’s result
[2005]. In this case, Prep(a) and Prep(b) are exactly the sets of λ ∈ K such that
hMa(λ)= 0 and hMa(λ)= 0, respectively. However, notice that if fλ ∈Q[x], then

λσ ∈ Ma,v for all v ∈�K and σ ∈ Gal(K/K ) if and only if a(λ) ∈Q.

We see that in this case, Prep(a) is strictly smaller than the set of λ ∈ K such that
hMa(λ)= 0. So we will prove that Prep(a) and Prep(b) differ by at most finitely
many elements by splitting our analysis into two cases depending on whether
there exist infinitely many λ ∈ C such that fλ is conjugate to a polynomial with
coefficients in Q. The following easy result is key for our argument:

Lemma 10.2. For any λ ∈ C, the polynomial fλ(x) is conjugate to a polynomial
with coefficients in Q if and only if ci (λ) ∈Q for each i = 1, . . . , d − 2.

Proof. One direction is obvious. Now, assume fλ is conjugate to a polynomial with
coefficients in Q. Let δ(x) := ax + b be a linear polynomial so δ−1

◦ fλ ◦ δ ∈Q[x].
Since fλ is in normal form, we note that a, b∈Q for otherwise the leading coefficient
or the next-to-leading coefficient is not algebraic. Now, it is clear that each ci (λ)∈Q

as desired. �

Let S be the set of all λ ∈ C such that fλ is conjugate to a polynomial in Q[x].
Using Lemma 10.2, S ⊂ K since each polynomial ci has coefficients in K and
Q⊂ K . Also, S is Gal(K/K )-invariant since each coefficient of each ci is in K .

Proposition 10.3. PrepDiff(a, b)⊂ S.
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Proof. Let λ ∈ K \ S. Since fλ is not conjugate to a polynomial in Q, using
Benedetto’s result (see also (3.3)) we obtain that a(λ) is preperiodic for fλ if
and only if for each v ∈ �K and σ ∈ Gal(K/K ), the local canonical height of
a(λ)σ = a(λσ ) computed with respect to f σλ equals 0. Since each coefficient of
ci (λ) is defined over K , we get that f σλ = fλσ . Therefore, for each λ ∈ K \ S, we
see that a(λ) or b(λ) is preperiodic for fλ if and only if for all v ∈ �K and all
σ ∈ Gal(K/K ), we have λσ ∈ Ma,v or λσ ∈ Mb,v , respectively. Using the fact that
Ma,v = Mb,v for all v ∈�K , we conclude that if λ ∈ K \ S, then λ ∈ Prep(a) if and
only if λ ∈ Prep(b). Hence, PrepDiff(a, b)⊂ S as desired. �

Lemma 10.4. If λ ∈ S and a(λ) 6∈Q, then a(λ) is not preperiodic for fλ.

Proof. The assertion is immediate since for λ∈ S we have fλ∈Q[x] by the definition
of S (see also Lemma 10.2); hence, the set of preperiodic points of fλ is contained
in Q. By assumption a(λ) 6∈Q; therefore, a(λ) is not preperiodic for fλ. �

Proposition 10.5. The set PrepDiff(a, b) is finite.

Proof. If S is a finite set, then the assertion follows from Proposition 10.3. So in
the remaining part of the proof, we assume that S is an infinite set. By Lemma 10.2
we know that there exist infinitely many λ ∈ K such that ci (λ) ∈ Q for each
i = 0, . . . , d − 2. The following lemma will be key for our proof:

Lemma 10.6. Let L1 ⊂ L2 be algebraically closed fields of characteristic 0, and
let f1, . . . , fn ∈ L2[x]. If there exist infinitely many z ∈ L2 such that fi (z) ∈ L1 for
each i = 1, . . . , n, then there exists h ∈ L2[x], and there exist g1, . . . , gn ∈ L1[x]
such that fi = gi ◦ h for each i = 1, . . . , n.

Proof. Let C ⊂ An be the Zariski closure of the set

{ ( f1(z), . . . , fn(z)) : z ∈ L2 }. (10.7)

Then C is a rational curve that (by our hypothesis) contains infinitely many points
over L1. Therefore, C is defined over L1, and thus, it has a rational parametrization
over L1. Let

(g1, . . . , gn) : A
1
→ C

be a birational morphism defined over L1; we denote by ψ : C→ A1 its inverse.
(For more details, see [Shafarevich 1994, Chapter 1]). Since the closure of C in Pn

(by considering the usual embedding of An
⊂Pn) has only one point at infinity (due

to the parametrization (10.7) of C), we conclude that (perhaps after a change of
coordinates) we may assume each gi is also a polynomial; more precisely, gi ∈ L1[x].
We let h :A1

→A1 be the rational map (defined over L2) given by the composition

h := ψ ◦ ( f1, . . . , fn).
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Therefore, for each i = 1, . . . , n, we have fi = gi ◦ h, and since both fi and gi are
polynomials, we conclude that h is also a polynomial, as desired. �

As an immediate consequence of Lemma 10.6, we have the following result:

Corollary 10.8. Let L1 ⊂ L2 be algebraically closed fields of characteristic 0, and
let f1, . . . , fn ∈ L2[x]. If there exist infinitely many z ∈ L2 such that fi (z) ∈ L1 for
i = 1, . . . , n, then for any i, j ∈ {1, . . . , n} and any z ∈ L2, we have fi (z) ∈ L1 if
and only if f j (z) ∈ L1.

There are two possibilities: Either there exist infinitely many λ ∈ S such that
a(λ) ∈Q or not.

Lemma 10.9. If there exist infinitely many λ ∈ S such that a(λ) ∈ Q, then a = b.
In particular, Prep(a)= Prep(b).

Proof. Using Corollary 10.8 we obtain that actually for all λ ∈ S we have that
a(λ) ∈ Q. So in this case each λσ belongs to each Ma,v for each place v of the
function field K/Q and for each σ ∈Gal(K/K ). (Note that for such λ ∈ S we have
that both fλ ∈ Q[x] and a(λ) ∈ Q, and also note that S is Gal(K/K )-invariant.)
Since Ma,v = Mb,v for each place v, we conclude that λσ ∈ Mb,v for each λ ∈ S,
for each v ∈�K , and for each σ ∈ Gal(K/K ). Since fλ ∈Q[x], we conclude that
b(λ)∈Q as well. Indeed, otherwise |b(λ)σ |v > 1 for some place v and some Galois
morphism σ , and thus, | f n

λ (b(λ
σ ))|v→∞ as n→∞, contradicting the fact that

λσ ∈ Mb,v. Hence, both a(λ) ∈Q and b(λ) ∈Q for λ ∈ S.
Therefore, applying Lemma 10.6 to the polynomials c0, . . . , cd−2, a, and b, we

conclude that there exist polynomials c′0, . . . , c′d−2, a′, b′ ∈Q[x] and h ∈ K [x] such
that

ci = c′i ◦ h for each i = 0, . . . , d − 2 and (10.10)

a = a′ ◦ h and b= b′ ◦ h. (10.11)

We let δ := h(λ) and define the family of polynomials

f ′δ(x) := xd
+

d−2∑
i=0

c′i (δ)x
i .

So we reduced the problem to the case studied in Section 8 for the family of
polynomials f ′δ ∈ Q[x] and to the starting points a′, b′ ∈ Q[δ]. Note that using
hypotheses (i) and (ii) from Theorem 2.3 and also relations (10.10) and (10.11),
a′(δ) and b′(δ) have the same leading coefficient and the same degree, which is
larger than the degrees of the c′i . So since we know there exist infinitely many δ ∈C

such that a′(δ) and b′(δ) are both preperiodic for f ′δ , we conclude that a′ = b′ as
proved in Section 8. Hence, a = b, and thus, Prep(a)= Prep(b). �
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Lemma 10.12. If finitely many λ ∈ S exist such that a(λ) ∈Q, then PrepDiff(a, b)
is finite.

Proof. First, note that there must be at most finitely many λ ∈ S such that b(λ) ∈Q.
Otherwise, arguing as in the proof of Lemma 10.9, we would obtain that for all the
infinitely many λ ∈ S, both a(λ) and b(λ) are in Q, which violates the lemma’s
hypothesis. So let T be the finite subset of S containing all λ such that either
a(λ) ∈Q or b(λ) ∈Q.

Let λ ∈ (K \ T ) ∩ Prep(a). If λ ∈ S, then by Lemma 10.4 we know that
λ 6∈ Prep(a), a contradiction. Therefore, λ 6∈ S, so by Proposition 10.3, we have
λ /∈ PrepDiff(a, b). Similarly, if λ ∈ (K \ T )∩ Prep(b), then λ /∈ PrepDiff(a, b).
Thus, PrepDiff(a, b) is contained in the finite set T . �

Lemmas 10.9 and 10.12 finish the proof of Proposition 10.5. �

Therefore, Proposition 10.5 yields that Prep(a) and Prep(b) differ by at most
finitely many elements. Then it follows from Proposition 10.1 that the corresponding
complex Mandelbrot sets Ma and Mb are equal, so we conclude our proof of
Theorem 2.3 using Lemma 8.3.

11. Connections to the dynamical Manin–Mumford conjecture

We first prove Corollary 2.7, and then we present further connections between our
Question 1.3 and the dynamical Manin–Mumford conjecture formulated by Ghioca,
Tucker, and Zhang [2011].

Proof of Corollary 2.7. At the expense of replacing f by a conjugate δ−1
◦ f ◦ δ

and replacing a and b by δ−1
◦ a and δ−1

◦ b, respectively, we may assume f is in
normal form. By the hypothesis of Corollary 2.7, we know that there are infinitely
many λn ∈Q such that

lim
n→∞

ĥ f (a(λn))+ ĥ f (b(λn))= 0.

We let f := fλ := f be the constant family of polynomials f indexed by λ∈Q. As
before, we let K be the field generated by coefficients of f , a, and b and let hMa(z)
and hMb(z) be the heights of z ∈ K relative to the adelic generalized Mandelbrot
sets Ma :=

∏
v∈�K

Ma,v and Mb, respectively, as defined in Section 6. So we may
apply the equidistribution result from [Baker and Rumely 2010, Theorem 7.52] (see
our Theorem 4.3) and conclude that Ma,v = Mb,v for each place v ∈�K . Indeed,
for each n ∈ N, we may take Sn to be the set of Galois conjugates of λn . Clearly
#Sn→∞ as n→∞ (since the points λn are distinct and their heights are bounded
because the heights of a(λn) and b(λn) are bounded). Finally, limn→∞ hMa(Sn)=

limn→∞ hMb(Sn)= 0 (by Corollary 6.12), and thus, Theorem 4.3 applies in this case.
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Using that Ma,v = Mb,v for an archimedean place v, the same argument as in
the proof of Theorem 2.3 yields that a = b as desired. �

Next we discuss the connection between our Question 1.3 and the dynamical
Manin–Mumford conjecture [Ghioca et al. 2011, Conjecture 1.4]. First we recall
that for a projective variety X and an endomorphism 8 of X , we say that 8 is
polarizable if there exists an integer d > 1 and there exists an ample line bundle L

on X such that 8∗(L)= L⊗d .

Conjecture 11.1 (Ghioca, Tucker, Zhang). Let X be a projective variety, define
ϕ : X → X to be a polarizable endomorphism defined over C, and let Y be a
subvariety of X that has no component included into the singular part of X. Then
Y is preperiodic under ϕ if and only if there exists a Zariski dense subset of smooth
points x ∈ Y ∩ Prepϕ(X) such that the tangent subspace of Y at x is preperiodic
under the induced action of ϕ on the Grassmannian Grdim(Y )(TX,x). (Here TX,x

denotes the tangent space of X at the point x.)

Ghioca, Tucker, and Zhang [2011] prove that Conjecture 11.1 holds whenever 8
is a polarizable algebraic group endomorphism of the abelian variety X and also
when X =P1

×P1, Y is a line, and8(x, y)= ( f (x), g(y)) for any rational maps f
and g. We claim that a positive answer to Question 1.3 yields the following special
case of Conjecture 11.1 that is not covered by the results from [Ghioca et al. 2011].
Note that we do not need the condition on preperiodicity of tangent spaces in the
Grassmannian, only an infinite family of preperiodic points; hence, what one would
obtain here is really a special case of Zhang’s original dynamical Manin–Mumford
conjecture (which did not require the extra hypothesis on tangent spaces).

Proposition 11.2. If Question 1.3 holds in the affirmative, then for any endo-
morphism 8 of P1

×P1 given by 8(x, y) := ( f (x), f (y)) for some rational map
f ∈C(x) of degree at least 2, a curve Y ⊂P1

×P1 will contain infinitely many prepe-
riodic points if and only if Y is preperiodic under 8. In particular, Question 1.3
implies Conjecture 11.1 for such Y and 8.

Proof. Let Y ⊂ P1
×P1 be a curve containing infinitely many points (x, y) such

that both x and y are preperiodic for f . Furthermore, we may assume Y projects
dominantly on each coordinate of P1

× P1 since otherwise it is immediate to
conclude that Y contains infinitely many preperiodic points for 8 if and only if
Y = {c}×P1 or Y = P1

×{c}, where c is a preperiodic point for f .
We let f = fλ := f be the constant family of rational functions (equal to f )

indexed by all points λ ∈ Y and let K be the function field of Y . Let (a, b) ∈
P1(K )×P1(K ) be a generic point for Y . By our assumption, there exist infinitely
many λ ∈ Y such that both a(λ) and b(λ) are preperiodic for fλ = f . Since Y
projects dominantly on each coordinate of P1

×P1, we get that neither a nor b
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is preperiodic under the action of f . (Otherwise, a or b would be constant.) So
assuming the answer to Question 1.3 is “yes”, we obtain that the curve Y (C) =
{ (a(λ), b(λ)) : λ ∈ Y } ⊂ P1

K ×K P1
K lies on a preperiodic proper subvariety Z

of P1
× P1 defined over a finite extension of K . More precisely, we get that

Z = Y ⊗C K , so Y must be itself preperiodic under the action of ( f, f ) on P1
×P1.

Conversely, suppose that Y is preperiodic under 8. Then some iterate of Y
contains a dense set of periodic points by [Fakhruddin 2003], so Y contains an
infinite set of preperiodic points. �

Remarks 11.3. (a) In the proof of Proposition 11.2, we did not use the full strength
of the hypothesis from Conjecture 11.1. Instead we used the weaker hypothesis of
[Zhang 1995, Conjecture 2.5] or [Zhang 2006, Conjecture 1.2.1, Conjecture 4.1.7]
(which was the original formulation of the dynamical Manin–Mumford conjecture).
This is not surprising since for curves contained in P1

×P1, the only counterexam-
ples to the original formulation of the dynamical Manin–Mumford conjecture are
expected to occur when 8 := ( f, g) for two distinct Lattès maps.

(b) Finally, we note that a positive answer to Conjecture 11.1 does not yield a
positive answer to Question 1.3. Instead, Question 1.3 goes in a different direction
that is likely to shed more light on the dynamical Manin–Mumford conjecture
especially in the case when Y is a curve in Conjecture 11.1.
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