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We prove that the ideal of the variety of secant lines to a Segre–Veronese variety
is generated in degree three by minors of flattenings. In the special case of a
Segre variety this was conjectured by Garcia, Stillman and Sturmfels, inspired
by work on algebraic statistics, as well as by Pachter and Sturmfels, inspired by
work on phylogenetic inference. In addition, we describe the decomposition of
the coordinate ring of the secant line variety of a Segre–Veronese variety into a
sum of irreducible representations under the natural action of a product of general
linear groups.

1. Introduction

Spaces of matrices (or 2-tensors) are stratified according to rank by the secant
varieties of Segre products of two projective spaces. The defining ideals of these
secant varieties are known to be generated by minors of generic matrices. It is
an important problem, with applications in algebraic statistics, biology, signal
processing, complexity theory etc., to understand (border) rank varieties of higher
order tensors. These are (upon taking closure) the classical secant varieties to Segre
varieties, whose equations are far from being understood. To get an idea about
the boundary of our knowledge, note that the Salmon problem [Allman 2007],
which asks for the generators of the ideal of σ4(P

3
×P3
×P3), the variety of secant

3-planes to the Segre product of three projective 3-spaces, is still unsolved (although
its set-theoretic version has been recently resolved in [Friedland 2010; Friedland
and Gross 2012]; see also [Bates and Oeding 2011]).

Flattenings (see Section 2D) provide an easy tool for obtaining some equations
for secant varieties of Segre products, but they are not sufficient in general, as can
be seen for example in the case of the Salmon problem. Inspired by the study of
Bayesian networks, Garcia, Stillman and Sturmfels conjectured [Garcia et al. 2005,
Conjecture 21] that flattenings give all the equations of the first secant variety of
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the Segre variety. This conjecture also appeared at the same time in a biological
context, namely in work of Pachter and Sturmfels on phylogenetic inference [2004,
Conjecture 13].

Conjecture 1.1 (Garcia–Stillman–Sturmfels). The ideal of the secant line variety
of a Segre product of projective spaces is generated by 3× 3 minors of flattenings.

The set-theoretic version of this conjecture was obtained by Landsberg and
Manivel [2004], as well as the case of a 3-factor Segre product. The 2-factor case
is classical, while the 4-factor case was resolved by Landsberg and Weyman [2007].
The 5-factor case was proved by Allman and Rhodes [2008]. We prove the GSS
conjecture in Corollary 4.2 as a consequence of our main result, Theorem 4.1, which
is the corresponding statement for Segre–Veronese varieties.

It is a general fact that for a subvariety X in projective space which is not
contained in a hyperplane, the ideal of the variety σk(X) of secant (k−1)-planes to
X has no equations in degree less than k+1. If X =G/P is a rational homogeneous
variety, a theorem of Kostant (see [Landsberg 2012, Chapter 16] or the remark
preceding [Landsberg and Manivel 2004, Proposition 3.3]) states that the ideal of X
is generated in the smallest possible degree (that is, in degree two), and Landsberg
and Manivel [2004] asked whether this is also true for the first secant variety of X .
It turns out that when X is the D7-spinor variety, there are in fact no cubics in the
ideal of σ2(X) (see [Landsberg and Weyman 2009; Manivel 2009]). In Theorem 4.1,
we provide a class of G/P’s, the Segre–Veronese varieties for which the answer
to the question of Landsberg and Manivel is positive. This generalizes a result of
Kanev [1999] stating that the ideal of the secant line variety of a Veronese variety
is generated in degree three. We obtain furthermore an explicit decomposition into
irreducible representations of the homogeneous coordinate ring of the secant line
variety of a Segre–Veronese variety, thus making it possible to compute the Hilbert
function for this class of varieties. This can be regarded as a generalization of the
computation of the degree of these secant varieties in [Cox and Sidman 2007].

Before stating the main theorem, we establish some notation. For a vector space
V , V ∗ denotes its dual, and PV denotes the projective space of lines in V . If
µ= (µ1 ≥ µ2 ≥ · · · ) is a partition, Sµ denotes the corresponding Schur functor (if
µ2 = 0 we get symmetric powers, whereas if all µi = 1, we get exterior powers).
For positive integers d1, . . . , dn , SVd1,...,dn denotes the Segre–Veronese embedding
of a product of n projective spaces via the complete linear system of the ample line
bundle O(d1, . . . , dn). σ2(X) denotes the variety of secant lines to X .

Theorem 4.1. Let X = SVd1,...,dn (PV ∗1 ×PV ∗2 × · · ·×PV ∗n ) be a Segre–Veronese
variety, where each Vi is a vector space of dimension at least 2 over a field K of
characteristic zero. The ideal of σ2(X) is generated by 3× 3 minors of flattenings,
and moreover, for every nonnegative integer r we have the decomposition of the
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degree r part of its homogeneous coordinate ring

K [σ2(X)]r =
⊕

λ=(λ1,...,λn)

λi
`rdi

(Sλ1 V1⊗ · · ·⊗ Sλn Vn)
mλ,

where mλ is obtained as follows. Set

fλ = max
i=1,...,n

⌈
λi

2
di

⌉
, eλ = λ1

2+ · · ·+ λ
n
2.

If some partition λi has more than two parts, or if eλ < 2 fλ, then mλ = 0. If
eλ ≥ r − 1, then mλ = br/2c− fλ+ 1, unless eλ is odd and r is even, in which case
mλ = br/2c − fλ. If eλ < r − 1 and eλ ≥ 2 fλ, then mλ = b(eλ + 1)/2c − fλ + 1,
unless eλ is odd, in which case mλ = b(eλ+ 1)/2c− fλ.

The ideal of the Segre–Veronese variety itself was proved to be generated by
2× 2 minors of flattenings by Bernardi [2008], generalizing previously known
results on the Segre and Veronese varieties. The corresponding result for a Segre
variety was obtained by Grone [1977] in the set-theoretic version and proved by Hà
[2002] ideal-theoretically. The set-theoretic version of the result for the Veronese
variety goes back to Wakeford [1919], while the ideal-theoretic version was only
obtained much later by Pucci [1998]. Even though the higher secant varieties are
not always generated by minors of flattenings, Catalisano, Geramita and Gimigliano
[Catalisano et al. 2008] describe a large class of examples where this is in fact
the case. In their examples the k-th secant variety of a Segre (or Segre–Veronese)
variety is cut out by the (k+ 1)-minors of a single matrix of flattenings.

Theorem 4.1 above has further consequences to deriving certain plethystic formu-
las for decomposing (in special cases) symmetric powers of triple tensor products
(Corollary 4.3a) and Schur functors applied to tensor products of two vector spaces
(Corollary 4.3b), or even symmetric plethysm (Corollary 4.4).

The main technique introduced in our work does not seek to employ the par-
ticularities of specific instances of Segre–Veronese varieties, but instead tries to
capture only the essential features that are shared between all these varieties. We
work in some sense with spaces of “generic tensors”, and rather concentrate on their
“generic equations”. The latter are representations of products of symmetric groups,
which can be defined abstractly with no relation to spaces of tensors (although
what led us to them was their realization as zero-weight spaces of particular tensor
representations). The main point is that the generic equations yield, by a process
of specialization, the equations of any specific secant variety of a Segre–Veronese
variety. One can also go back, via polarization, from the equations of a specific
secant variety to (a subset of) the generic equations. The main tools that we employ
in analyzing the generic equations of the varieties of secant lines are combinatorial:
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graph theory and tableau combinatorics. We hope that similar methods, particularly
replacing graph theory with the theory of simplicial complexes, could be used to
give an analogous picture for higher secant varieties. The main goal of our work is
to set up a general framework that would help understand arbitrary secant varieties,
and illustrate how insights from combinatorics occur naturally in this framework,
providing new results in the case of the varieties of secant lines.

The general representation theoretic approach to the study of projective varieties
with a group action has been successful in providing algorithms for computing the
equations and homogeneous coordinate rings of these varieties degree by degree.
The main caveat of these algorithms was their failure to provide a good stopping
condition that would allow one to decide when the full set of minimal generators of
the ideal of a variety has been computed. Our combinatorial methods try to fill this
gap by allowing one to identify a specific structure that characterizes the vanishing
of a (generic) polynomial on the variety. This structure has the property that is
inherited as the degree of the polynomial increases, and also that its presence in any
high degree is manifestly a consequence of the inheritance from a finite set of small
degrees. Concretely, for the ideal of the secant line variety of a Segre–Veronese
variety, we will see that (generic) polynomials of degree r are represented by graphs
(Section 4B) with r vertices. The structure that makes a polynomial the equation of
the secant variety is the presence in the associated graph of a complete subgraph
on three vertices (a triangle; see Remark 4.5). This is clearly a structure that is
inherited by adding new vertices and edges to the graph, and also it is a structure
that’s inherited from degree three — the smallest degree where a complete graph
on three vertices could exist. In [Oeding and Raicu 2011], we employ similar
ideas to give a proof of a conjecture of Landsberg and Weyman regarding the
generators of the ideal of the tangential variety of a Segre variety. The structure
that makes a polynomial the equation of the tangential variety turns out to be more
involved, represented by a finite list of subgraphs on two, three or four vertices
[ibid., Section 3.5].

Finding equations for higher secant varieties of Segre–Veronese varieties turns
out to be a delicate task, even in the case of two factors (n= 2) with not too positive
embeddings (small d1, d2). Recent progress in this direction has been obtained by
Cartwright, Erman and Oeding [Cartwright et al. 2012].

Since finding precise descriptions of the equations, and more generally syzygies,
of secant varieties to Segre–Veronese varieties constitutes such an intricate project,
much of the current effort is directed to finding more qualitative statements. Draisma
and Kuttler [2011] prove that for each k, there is an uniform bound d(k) such that
the (k − 1)-st secant variety of any Segre variety is cut out (set-theoretically)
by equations of degree at most d(k). Theorem 4.1 implies that d(2) = 3, even
ideal-theoretically.
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For higher syzygies, Snowden [2010] proves that all the syzygies of Segre
varieties are obtained from a finite amount of data via an iterative process. It would
be interesting to know if the same result holds for the secant varieties. This would
generalize the result of Draisma and Kuttler. For Veronese varieties, the asymptotic
picture of the Betti tables is described in work of Ein and Lazarsfeld [2012]. Again,
it would be desirable to have analogous results for secant varieties.

The structure of the paper is as follows. In Section 2 we give the basic definitions
for secant varieties and Segre–Veronese varieties. We introduce the basic notions
from representation theory that are used throughout the work, and describe the
process of flattening a tensor, which leads to the notion of a flattening matrix.
Section 3 builds the framework for analyzing the equations and homogeneous
coordinate rings of arbitrary secant varieties of Segre–Veronese varieties. Even
though we were only able to work out the details of this analysis in the case of the
first secant variety, we believe that the general method of approach may be used
to shed some light on the case of higher secant varieties. In particular, the new
insight of concentrating on the “generic equations” is presented in detail and in the
generality needed to deal with arbitrary secant varieties. Section 4 is inspired by
a conjecture of Garcia, Stillman and Sturmfels, describing the generators of the
ideal of the variety of secant lines to a Segre variety. We prove more generally
that this description holds for the first secant variety of a Segre–Veronese variety.
We also give a representation theoretic decomposition of the coordinate ring of
this variety, which allows us to deduce certain plethystic formulas based on known
computations of dimensions of secant varieties of Segre varieties.

2. Preliminaries

Throughout this work, K denotes a field of characteristic 0. All the varieties we
study are of finite type over K , and are reduced and irreducible. PN denotes the
N -dimensional projective space over K . We write PW for PN when we think of PN

as the space of 1-dimensional subspaces (lines) in a vector space W of dimension
N +1 over K . Given a nonzero vector w ∈W , we denote by [w] the corresponding
line. The coordinate ring of PW is Sym(W ∗), the symmetric algebra on the vector
space W ∗ of linear functionals on W .

2A. Secant varieties.

Definition 2.1. Given a subvariety X ⊂ PN , the (k − 1)-st secant variety of X ,
denoted σk(X), is the closure of the union of linear subspaces spanned by k points
on X :

σk(X)=
⋃

x1,...,xk∈X

Px1,...,xk .
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Alternatively, if we write PN
= PW for some vector space W , and let X̂ ⊂W

denote the cone over X , then we can define σk(X) by specifying its cone σ̂k(X).
This is the closure of the image of the map

s : X̂ × · · ·× X̂ −→W, defined by s(x1, . . . , xk)= x1+ · · ·+ xk .

The main problem we are concerned with is this:

Problem. Given (the equations of ) X , determine (the equations of ) σk(X).

More precisely, given the homogeneous ideal I (X) of the subvariety X ⊂ PW ,
we would like to describe the generators of I (σk(X)). Alternatively, we would
like to understand the homogeneous coordinate ring of σk(X), which we denote by
K [σk(X)]. As we will see, this is a difficult problem even in the case when X is
simple, that is, isomorphic to a projective space (or a product of such). There is thus
little hope of giving an uniform satisfactory answer in the generality with which
we posed the problem. However, the following observation provides a general
approach to the problem, which we exploit in the future sections.

The ideal/homogeneous coordinate ring of a subvariety Y ⊂ PW coincides with
the ideal/affine coordinate ring of its cone Ŷ ⊂W , hence our problem is equivalent to
understanding I (σ̂k(X)) and K [σ̂k(X)]. The morphism s of affine varieties defined
above corresponds to a ring map

s#
: Sym(W ∗)→ K [X̂ × · · ·× X̂ ] = K [X̂ ]⊗ · · ·⊗ K [X̂ ].

We have that I (σ̂k(X)) and K [σ̂k(X)] are the kernel and image respectively of s#.
The main focus for us will be on the case when X is a Segre–Veronese variety
(described in the following section), and k = 2.

2B. Segre–Veronese varieties. Consider vector spaces V1, . . . , Vn of dimensions
m1, . . . ,mn ≥ 2, respectively, with duals V ∗1 , . . . , V ∗n , and fix positive integers
d1, . . . , dn . We let

X = PV ∗1 × · · ·×PV ∗n

and think of it as a subvariety in projective space via the embedding determined by
the line bundle OX (d1, . . . , dn). Explicitly, X is the image of the map

SVd1,...,dn : PV ∗1 × · · ·×PV ∗n → P(Symd1 V ∗1 ⊗ · · ·⊗Symdn V ∗n )

given by
([e1], . . . , [en]) 7→ [e

d1
1 ⊗ · · ·⊗ edn

n ].

We call X a Segre–Veronese variety.
For such X we prove that I (σ2(X)) is generated in degree 3 and we describe

the decomposition of K [σ2(X)] into a sum of irreducible representations of the
product of general linear groups GL(V1)× · · ·×GL(Vn) (Theorem 4.1).
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When n = 1 we set d = d1, V = V1. The image of SVd is the d-th Veronese
embedding, or d-uple embedding of the projective space PV ∗, which we denote by
Verd(PV ∗). When d1 = · · · = dn = 1, the image of SV1,1,...,1 is the Segre variety
Seg(PV ∗1 × · · · × PV ∗n ). An element of Symd1 V ∗1 ⊗ · · · ⊗ Symdn V ∗n is called a
(partially symmetric) tensor. The points in the cone over the Segre–Veronese variety
are called pure tensors.

2C. Representation theory. We refer the reader to [Fulton and Harris 1991] for
the basic representation theory of symmetric and general linear groups. Given a
positive integer r , a partition µ of r is a nonincreasing sequence of nonnegative
integers µ1≥µ2≥ · · · with r =

∑
µi . We write µ= (µ1, µ2, . . .). Alternatively, if

µ is a partition having i j parts equal to µ j for all j , then we write µ= (µi1
1 µ

i2
2 · · · ).

To a partition µ= (µ1, µ2, . . .) we associate a Young diagram which consists of
left-justified rows of boxes, with µi boxes in the i-th row. For µ = (5, 2, 1), the
corresponding Young diagram is

For a vector space W , a positive integer r and a partition µ of r , we denote by
SµW the corresponding irreducible representation of GL(W ): Sµ are commonly
known as Schur functors, and we make the convention that S(d) denotes the sym-
metric power functor, while S(1d ) denotes the exterior power functor. We write Sr

for the symmetric group on r letters, and [µ] for the irreducible Sr -representation
corresponding to µ: [(d)] denotes the trivial representation and [(1d)] denotes the
sign representation.

Given a positive integer n and a sequence of nonnegative integers r = (r1, . . . , rn),
we define an n-partition of r to be an n-tuple of partitions λ= (λ1, . . . , λn), with
λ j a partition of r j , j = 1, . . . , n. We write λ j

` r j and λ`n r . Given vector spaces
V1, . . . , Vn as above, we often write GL(V ) for GL(V1)× · · ·×GL(Vn). We write
SλV for the irreducible GL(V )-representation Sλ1 V1⊗ · · ·⊗ Sλn Vn . Similarly, we
write [λ] for the irreducible representation [λ1

]⊗ · · ·⊗ [λn
] of the n-fold product

of symmetric groups Sr = Sr1 × · · ·× Srn . We have:

Lemma 2.2 (Schur–Weyl duality).

V⊗r1
1 ⊗ · · ·⊗ V⊗rn

n =

⊕
λ`nr

[λ]⊗ SλV .

Most of the group actions we consider are left actions, denoted by · . We use the
symbol ∗ for right actions, to distinguish them from left actions.
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For a subgroup H ⊂ G and representations U of H and W of G, we write

IndG
H (U )= K [G]⊗K [H ]U and ResG

H (W )=WH ,

for the induced representation of U and restricted representation of W , where
K [M] denotes the group algebra of a group M , and WH is just W , regarded as an
H -module. We write W G for the G-invariants of the representation W , that is,

W G
= HomG(1,W )⊂ HomK (1,W )=W,

where 1 denotes the trivial representation of G.

Remark 2.3. If G is finite, let

sG =
∑
g∈G

g ∈ K [G].

We can realize W G as the image of the map W→W given by w 7→ sG ·w. Assume
furthermore that H ⊂G is a subgroup, and let sH denote the corresponding element
in K [H ]. We have a natural inclusion of the trivial representation of H

1 ↪→ K [H ], 1 7→ sH ,

which after tensoring with K [G] becomes

IndG
H (1)= K [G]⊗K [H ] 1 ↪→ K [G]⊗K [H ] K [H ] ' K [G],

so that we can identify IndG
H (1) with K [G] · sH .

Lemma 2.4 (Frobenius reciprocity).

W H
= HomH (1,ResG

H (W ))= HomG(IndG
H (1),W ).

Given an n-partition λ= (λ1, . . . , λn) of r , we define an n-tableau of shape λ to
be an n-tuple T = (T 1, . . . , T n), which we usually write as T 1

⊗ · · ·⊗ T n , where
each T i is a tableau of shape λi . A tableau is canonical if its entries index its boxes
consecutively from left to right, and top to bottom. We say that T is canonical
if each T i is, in which case we write Tλ for T . If T = (λ1, λ2), with λ1

= (3, 2),
λ2
= (3, 1, 1), then the canonical 2-tableau of shape λ is

1 2 3
4 5

⊗

1 2 3
4
5

.

We consider the subgroups of Sr given by

Rλ = {g ∈ Sr : g preserves each row of Tλ},

Cλ = {g ∈ Sr : g preserves each column of Tλ}
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and define the symmetrizers

aλ =
∑
g∈Rλ

g, bλ =
∑
g∈Cλ

sgn(g) · g, cλ = aλ · bλ,

with sgn(g) =
∏

i sgn(gi ) for g = (g1, . . . , gn) ∈ Sr , where sgn(gi ) denotes the
signature of the permutation gi .

The GL(V )- (or Sr -) representations W that we consider decompose as a direct
sum of SλV ’s (or [λ]’s) with λ `n r . We write

W =
⊕
λ

Wλ,

where Wλ ' (SλV )mλ (or Wλ ' [λ]
mλ) for some nonnegative integer mλ = mλ(W ),

called the multiplicity of SλV (or [λ]) in W . We call Wλ the λ-part of the represen-
tation W .

Recall that m j denotes the dimension of V j , j = 1, . . . , n. We fix bases

B j = {xi j : i = 1, . . . ,m j }

for V j ordered by xi j > xi+1, j . We choose the maximal torus T = T1× · · ·× Tn ⊂

GL(V ), with T j the set of diagonal matrices with respect to B j . We choose the Borel
subgroup of GL(V ) to be B = B1× · · ·× Bn , where B j is the subgroup of upper
triangular matrices in GL(V j ) with respect to B j . Given a GL(V )-representation
W , a weight vector w with weight a = (a1, . . . , an), ai ∈ T ∗i , is a nonzero vector in
W with the property that for any t = (t1, . . . , tn) ∈ T ,

t ·w = a1(t1) · · · an(tn)w.

The vectors with this property form a vector space called the a-weight space of W ,
which we denote by wta(W ).

A highest weight vector of a GL(V )-representation W is an element w ∈ W
invariant under B. W = SλV has a unique (up to scaling) highest weight vector w
with corresponding weight λ= (λ1, . . . , λn). In general, we define the λ-highest
weight space of a GL(V )-representation W to be the set of highest weight vectors
in W with weight λ, and denote it by hwtλ(W ). If W is an Sr -representation, the
λ-highest weight space of W is the vector space hwtλ(W )= cλ ·W ⊂W , where cλ
is the Young symmetrizer defined above. In both cases, hwtλ(W ) is a vector space
of dimension mλ(W ).

2D. Flattenings. Given decompositions di = ai +bi , with ai , bi ≥ 0, i = 1, . . . , n,
we let A = (a1, . . . , an), B = (b1, . . . , bn), so that d = (d1, . . . , dn) = A + B,
and embed

Symd1 V ∗1 ⊗ · · ·⊗Symdn V ∗n ↪→ V ∗A ⊗ V ∗B
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in the usual way, where

VA = Syma1 V1⊗ · · ·⊗Syman Vn, VB = Symb1 V1⊗ · · ·⊗Symbn Vn.

This embedding allows us to flatten any tensor in Symd1 V ∗1 ⊗ · · ·⊗Symdn V ∗n to a
2-tensor, that is, a matrix, in V ∗A⊗V ∗B . We call such a matrix an (A, B)-flattening of
our tensor. If |A|= a1+· · ·+an then we also say that this matrix is an |A|-flattening,
or a |B|-flattening, by symmetry.

We obtain an inclusion

SVd1,...,dn (PV ∗1 × · · ·×PV ∗n ) ↪→ Seg(PV ∗A ×PV ∗B),

and consequently

σk(SVd1,...,dn (PV ∗1 × · · ·×PV ∗n )) ↪→ σk(Seg(PV ∗A ×PV ∗B)),

where the latter secant variety coincides with (the projectivization of) the set of
matrices of rank at most k in V ∗A ⊗ V ∗B . This set is cut out by the (k+ 1)× (k+ 1)
minors of the generic matrix in V ∗A ⊗ V ∗B . This observation yields equations for the
secant varieties of Segre–Veronese varieties (see also [Landsberg 2012, Chapter 7]).

Lemma 2.5. For any decomposition d = A + B and any k ≥ 1, the ideal of
(k + 1)× (k + 1) minors of the generic matrix given by the (A, B)-flattening of
Symd1 V ∗1 ⊗ · · ·⊗Symdn V ∗n is contained in the ideal of

σk(SVd1,...,dn (PV ∗1 × · · ·×PV ∗n )).

Definition 2.6. We write Fk+1,r
A,B (V )= Fk+1,r

A,B (V1, . . . , Vn) for the degree r part of
the ideal of (k+ 1)× (k+ 1) minors of the (A, B)-flattening. We call the elements
of Fk+1,r

A,B (V ) flattening equations.

Note that the invariant way of writing the generators of the ideal of (k+1)×(k+1)
minors of the (A, B)-flattening in the preceding lemma (Fk+1,k+1

A,B (V )) is as the
image of the composition

k+1∧
VA⊗

k+1∧
VB ↪→ Symk+1(VA⊗VB)−→ Symk+1(Symd1 V1⊗· · ·⊗Symdn Vn),

where the first map is the usual inclusion map, while the last one is induced by the
multiplication maps Symai Vi ⊗Symbi Vi → Symdi Vi .

2E. The ideal and coordinate ring of a Segre–Veronese variety. If

X = SVd1,...,dn (PV ∗1 × · · ·×PV ∗n ),

then the ideal I (X) is generated by 2× 2 minors of flattenings [Bernardi 2008],
that is, when k = 1 the equations described in Lemma 2.5 are sufficient to generate
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the ideal of the corresponding variety. As for the homogeneous coordinate ring of a
Segre–Veronese variety, we have the decomposition

K [X ] =
⊕
r≥0

(Symrd1 V1⊗ · · ·⊗Symrdn Vn). (*)

This decomposition will turn out to be useful in the next section, in conjunction
with the map s# defined in Section 2A. In Section 4 we give a description of
K [σ2(X)] analogous to (*), and prove that the 3× 3 minors of flattenings generate
the homogeneous ideal of σ2(X).

The statements above regarding the ideal and coordinate ring of a Segre–Veronese
variety hold more generally for rational homogeneous varieties (G/P), and have
been obtained in unpublished work by Kostant; see [Landsberg 2012, Chapter 16].

3. Equations of the secant varieties of a Segre–Veronese variety

This section introduces the main new tool for understanding the equations and
coordinate rings of the secant varieties of Segre–Veronese varieties, from a repre-
sentation theoretic/combinatorial perspective. All the subsequent work is based on
the ideas described here. The usual method for analyzing the secant varieties of
Segre–Veronese varieties is based on the representation theory of general linear
groups. We review some of its basic ideas, including the notion of inheritance,
in Section 3A. The new insight of restricting the analysis to special equations of
the secant varieties, the “generic equations”, is presented in Section 3B. More
precisely, we use Schur–Weyl duality to translate questions about representations
of general linear groups into questions about representations of symmetric groups
and tableau combinatorics. The relationship between the two situations is made
precise in Section 3C. One should think of the “generic equations” as a set of
equations that give rise by specialization to all the equations of the secant varieties
of Segre–Veronese varieties. Similarly, we have the “generic flattening equations”
which by specialization yield the usual flattening equations.

3A. Multiprolongations and inheritance. In this section V1, . . . , Vn are (as al-
ways) vector spaces over a field K of characteristic zero. We switch from the Symd

notation to the more compact Schur functor notation S(d) described in Section 2C.
The homogeneous coordinate ring of P(S(d1)V

∗

1 ⊗ · · ·⊗ S(dn)V
∗
n ) is

S = Sym(S(d1)V1⊗ · · ·⊗ S(dn)Vn),

the symmetric algebra of the vector space S(d1)V1⊗· · ·⊗ S(dn)Vn . This vector space
has a natural basis B=Bd1,...,dn consisting of tensor products of monomials in the el-
ements of the bases B1, . . . ,Bn of V1, . . . , Vn . We write this basis, suggestively, as
B = Symd1 B1 ⊗ · · · ⊗ Symdn Bn . We can index the elements of B by n-tuples
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α = (α1, . . . , αn) of multisets αi of size di with entries in {1, . . . ,mi = dim(Vi )},
as follows. The α-th element of the basis B is

zα =
( ∏

i1∈α1

xi1,1

)
⊗ · · ·⊗

( ∏
in∈αn

xin,n

)
,

and we think of zα as a linear form in S.
We can therefore identify S with the polynomial ring K [zα]. One would like

to have a precise description of the ideal I ⊂ S of polynomials vanishing on
σk(SVd1,...,dn (PV ∗1 ×· · ·×PV ∗n )), but this is a very difficult problem, as mentioned
in the introduction. We obtain such a description for the case k = 2 in Theorem 4.1.
The case k = 1 was already known, as described in Section 2E.

Given a positive integer r and a partition µ= (µ1, . . . , µt) ` r , we consider the
set Pµ of all (unordered) partitions of {1, . . . , r} of shape µ, that is,

Pµ =
{

A = {A1, . . . , At } : |Ai | = µi and
t⊔

i=1
Ai = {1, . . . , r}

}
,

as opposed to the set of ordered partitions where we take instead A= (A1, . . . , At).

Definition 3.1. For a partition µ= (µi1
1 · · ·µ

is
s ) of r , we consider the map

πµ : S(r)(S(d1)V1⊗ · · ·⊗ S(dn)Vn)−→

s⊗
j=1

S(i j )(S(µ j d1)V1⊗ · · ·⊗ S(µ j dn)Vn),

given by

z1 · · · zr 7→
∑

A∈Pµ

s⊗
j=1

∏
B∈A
|B|=µ j

m(zi : i ∈ B),

where m : (S(d1)V1⊗ · · ·⊗ S(dn)Vn)
⊗µ j → S(µ j d1)V1⊗ · · ·⊗ S(µ j dn)Vn denotes the

usual componentwise multiplication map.
We write πµ(V ) or πµ(V1, . . . , Vn) for the map πµ just defined, when we want

to distinguish it from its generic version (Definition 3.11). We also write

U d
r (V )=U d

r (V1, . . . , Vn) and U d
µ(V )=U d

µ(V1, . . . , Vn)

for the source and target of πµ(V ), respectively (see Definitions 3.7 and 3.10 for
the generic versions of these spaces).

A more invariant way of stating Definition 3.1 is as follows. If µ= (µ1, . . . , µt),
then the map πµ is the composition between the usual inclusion

S(r)(S(d1)V1⊗ · · ·⊗ S(dn)Vn) ↪→ (S(d1)V1⊗ · · ·⊗ S(dn)Vn)
⊗r

= (S(d1)V1⊗ · · ·⊗ S(dn)Vn)
⊗µ1 ⊗ · · ·⊗ (S(d1)V1⊗ · · ·⊗ S(dn)Vn)

⊗µt ,
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and the tensor product of the natural multiplication maps

m : (S(di )Vi )
⊗µ j −→ S(µ j di )Vi .

Example 3.2. Let n = 2, d1 = 2, d2 = 1, r = 4, µ = (2, 2) = (22), dim(V1) = 2,
dim(V2)= 3. Take

z1 = z({1,2},{1}), z2 = z({1,1},{3}), z3 = z({1,1},{1}), z4 = z({2,2},{2}).

We have

πµ(z1 ·z2 ·z3 ·z4)=m(z1, z2)·m(z3, z4)+m(z1, z3)·m(z2, z4)+m(z1, z4)·m(z2, z3)

= z({1,1,1,2},{1,3}) · z({1,1,2,2},{1,2})+ z({1,1,1,2},{1,1}) · z({1,1,2,2},{2,3})
+z({1,2,2,2},{1,2}) · z({1,1,1,1},{1,3}).

A more “visual” way of representing the monomials in

Sym(Symd1 V1⊗ · · ·⊗Symdn Vn)= K [zα]

and the maps πµ is as follows. We identify each zα with an 1×n block with entries
the multisets αi :

zα = α1 α2 · · · αn .

We represent a monomial m = zα1 · · · zαr of degree r as an r × n block M , whose
rows correspond to the variables zαi in the way described above:

m ≡ M =

α1
1 α1

2 · · · α
1
n

α2
1 α2

2 · · · α
2
n

...
...
. . .

...

αr
1 αr

2 · · · α
r
n

.

The order of the rows is irrelevant, since the zαi commute. The way πµ acts on
an r × n block M is as follows: it partitions in all possible ways the set of rows
of M into subsets of sizes equal to the parts of µ, collapses the elements of each
subset into a single row, and takes the sum of all blocks obtained in this way. Here
by collapsing a set of rows we mean taking the columnwise union of the entries of
the rows. More precisely, if M is the r × n block corresponding to zα1 · · · zαr and
µ= (µ1, . . . , µt), then

πµM =
∑

A∈Pµ

A={A1,...,At }

· · ·
⋃

i∈A1
αi

k · · ·

· · ·
⋃

i∈A2
αi

k · · ·

...
. . .

...

· · ·
⋃

i∈At
αi

k · · ·

.
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Note that if two Ai have the same cardinality, then the variables corresponding to
their rows commute, so we can harmlessly interchange them.

Example 3.3. With these conventions, we can rewrite Example 3.2 as

1, 2 1
1, 1 3
1, 1 1
2, 2 2

π(2,2)
−→

1, 1, 1, 2 1, 3
1, 1, 2, 2 1, 2

+
1, 1, 1, 2 1, 1
1, 1, 2, 2 2, 3

+
1, 2, 2, 2 1, 2
1, 1, 1, 1 1, 3

.

Proposition 3.4 (multiprolongations [Landsberg 2012, Section 7.5]). For a positive
integer r , the polynomials of degree r vanishing on

σk(SVd1,...,dn (PV ∗1 × · · ·×PV ∗n ))

are precisely the elements of S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn) in the intersection of
the kernels of the maps πµ, where µ ranges over all partitions of r with (at most)
k parts.

Proof. Let X denote the Segre–Veronese variety SVd1,...,dn (PV ∗1 × · · ·×PV ∗n ). As
in Section 2A, there exists a map (s#, which we now denote π )

π : Sym(S(d1)V1⊗ · · ·⊗ S(dn)Vn)−→ K [X ]⊗k,

whose kernel and image coincide with the ideal and homogeneous coordinate ring
respectively, of σk(X). Using the description of K [X ] given in Section 2E, we
obtain that the degree r part of the target of π is

(K [X ]⊗k)r

=

⊕
µ1+···+µk=r

(S(µ1d1)V1⊗ · · ·⊗ S(µ1dn)Vn)⊗ · · ·⊗ (S(µkd1)V1⊗ · · ·⊗ S(µkdn)Vn).

The degree r component of π , which we call πr , is then a direct sum of maps πµ
as in Definition 3.1, where µ ranges over partitions of r with at most k parts. The
conclusion of the proposition now follows. To see that it’s enough to only consider
partitions with exactly k parts, note that if µ has fewer than k parts, and µ̂ is a parti-
tion obtained by subdividing µ (splitting some of the parts of µ into smaller pieces),
then πµ factors through (up to a multiplicative factor) πµ̂, hence ker(πµ)⊃ ker(πµ̂),
so the contribution of ker(πµ) to the intersection of kernels is superfluous. �

Definition 3.5 (multiprolongations). We write Iµ(V ) = I d
µ(V ) for the kernel of

the map πµ(V ), and Ir (V )= I d
r (V ) for the intersection of the kernels of the maps

πµ(V ) as µ ranges over partitions of r with k parts. that is, Ir (V ) is the degree r
part of the ideal of σk(SVd1,...,dn (PV ∗1 × · · ·×PV ∗n )).
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Given the description of the ideal of σk(X) as the kernel of the GL(V )-equivariant
map π , we now proceed to analyze π irreducible representation by irreducible
representation. That is, we fix a positive integer r and an n-partition λ= (λ1, . . . , λn)

of (rd1, . . . , rdn), and we restrict π to the λ-parts of its source and target. The map
π depends functorially on the vector spaces V1, . . . , Vn , and its kernel and image
stabilize from a representation theoretic point of view as the dimensions of the Vi

increase. More precisely, we have the following

Proposition 3.6 (inheritance [Landsberg 2012, Section 7.4]). Fix an n-partition
λ`n r ·(d1, . . . , dn). Let l j denote the number of parts of λ j , for j = 1, . . . , n. Then
the multiplicities of SλV in the kernel and image respectively of π are independent
of the dimensions m j of the V j , as long as m j ≥ l j . Moreover, if some l j is larger
than k, then SλV doesn’t occur as a representation in the image of π .

Proof. The last statement follows from the representation theoretic description of
the coordinate ring of a Segre–Veronese variety, and Pieri’s rule: every irreducible
representation SλV occurring in K [X ]⊗k must have the property that each λ j has
at most k parts.

As for the first part, note that π is completely determined by what it does on
the λ-highest weight vectors, and that the λ-highest weight vector of an irreducible
representation SλV only depends on the first l j elements of the basis B j , for
j = 1, . . . , n. �

We just saw in the previous proposition that (the λ-part of) π is essentially insen-
sitive to expanding or shrinking the vector spaces Vi , as long as their dimensions
remain larger than li . Also, the last part of the proposition allows us to concentrate
on n-partitions λ where each λi has at most k parts. To understand π , we thus
have the freedom to pick the dimensions of the Vi to be positive integers at least
equal to k. It might seem natural then to pick these dimensions as small as possible
(equal to k), and understand the kernel and image of π in that situation. However,
we choose not to do so, and instead we fix a positive degree r and concentrate our
attention on the map πr , the degree r part of π . We assume that

dim(Vi )= r · di , i = 1, . . . , n.

The reason for this assumption is that now the sl zero-weight spaces of the source and
target of πr are nonempty and generate the corresponding representations. Therefore
πr is determined by its restriction to these zero-weight spaces, which suddenly
makes our problem combinatorial: the zero-weight spaces are modules over the
Weyl group, which is just the product of symmetric groups Srd1×· · ·×Srdn , allowing
us to use the representation theory of the symmetric groups to analyze the map πr .
We call this reduction the “generic case”, because the sl zero-weight subspace of
S(r)(S(d1)V1⊗ · · ·⊗ S(dn)Vn) is the subspace containing the most generic tensors.
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3B. The “generic case”.

3B.1. Generic multiprolongations. We let d, r denote the sequences of numbers
(d1, . . . , dn) and r · d = (rd1, . . . , rdn) respectively. We let Sr denote the product
of symmetric groups Srd1 × · · ·× Srdn , the Weyl group of the Lie algebra sl(V ) of
GL(V ) (recall that dim(V j )= m j = rd j for j = 1, . . . , n).

Definition 3.7. We denote by U d
r the sl(V ) zero-weight space of the represen-

tation S(r)(S(d1)V1 ⊗ · · · ⊗ S(dn)Vn). U d
r has a basis consisting of monomials

m = zα1 · · · zαr , where for each j , the elements of {α1
j , . . . , α

r
j } form a partition

of the set {1, . . . , rd j }, with |αi
j | = d j . Alternatively, U d

r has a basis consisting of
r × n blocks M , where each column of M yields a partition of the set {1, . . . , rd j }

with r equal parts.

Example 3.8. For n = 2, d1 = 2, d2 = 1, r = 4, a typical element of U d
r is

M =

1, 6 1
2, 3 4
4, 5 2
7, 8 3

= z({1,6},{1}) · z({2,3},{4}) · z({4,5},{2}) · z({7,8},{3}) = m.

Sr acts on U d
r by letting its j -th factor Srd j act on the j -th columns of the blocks

M described above. As an abstract representation, we have

U d
r ' Ind

Sr
(Sd1×···×Sdn )

r o Sr
(1),

where o denotes the wreath product of (Sd1 ×· · ·× Sdn )
r with Sr , and 1 denotes the

trivial representation (we will say more about this identification in Section 3C). For
now, recall that for a group H and positive integer r , the wreath product H r

o Sr of
H r with the symmetric group Sr is just the semidirect product H r o Sr , where Sr

acts on H r by permuting the r copies of H . The dimension of the space U d
r is

N = N d
r =

(rd1)!(rd2)! · · · (rdn)!

(d1!d2! · · · dn!)r · r !
.

Example 3.9. Continuing Example 3.8, let σ = (σ1, σ2) ∈ S8× S4, where, in cycle
notation, σ1 = (1, 2)(5, 3, 7), σ2 = (1, 4, 3). Then

σ ·M =

2, 6 4
1, 7 3
4, 3 2
5, 8 1

, or σ ·m = z({2,6},{4}) · z({1,7},{3}) · z({4,3},{2}) · z({5,8},{1}).

Definition 3.10. For a partitionµwritten in multiplicative notationµ= (µi1
1 · · ·µ

is
s )

as in Definition 3.1, we define the space U d
µ to be the sl zero-weight space of the
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representation
s⊗

j=1

S(i j )(S(µ j d1)V1⊗ · · ·⊗ S(µ j dn)Vn).

Writing µ = (µ1, . . . , µt) we can realize U d
µ as the vector space with a basis

consisting of t × n blocks M with the entry in row i and column j consisting of
µi · d j elements from the set {1, . . . , rd j }, in such a way that each column of M
represents a partition of {1, . . . , rd j }. As usual, we identify two blocks if they differ
by permutations of rows of the same size, that is, corresponding to equal parts of µ.
Note that when µ= (1r ) we get U d

µ =U d
r , recovering Definition 3.7.

We can now define the generic version of the map πµ from Definition 3.1:

Definition 3.11. For a partition µ ` r as in Definition 3.1, we define the map

πµ :U
d
r −→U d

µ,

to be the restriction of the map from Definition 3.1 to the sl zero-weight spaces of
the source and target.

Example 3.12. The generic analogue of Example 3.3 is:

1, 6 1
2, 3 4
4, 5 2
7, 8 3

π(2,2)
−→

1, 2, 3, 6 1, 4
4, 5, 7, 8 2, 3

+
1, 4, 5, 6 1, 2
2, 3, 7, 8 3, 4

+
1, 6, 7, 8 1, 3
2, 3, 4, 5 2, 4

.

If instead of the partition (2, 2) we take µ= (2, 1, 1)= (122), then we have

1, 6 1
2, 3 4
4, 5 2
7, 8 3

π(2,1,1)
−→

1, 2, 3, 6 1, 4
4, 5 2
7, 8 3

+

1, 4, 5, 6 1, 2
2, 3 4
7, 8 3

+

1, 6, 7, 8 1, 3
2, 3 4
4, 5 2

+

2, 3, 4, 5 2, 4
1, 6 1
7, 8 3

+

2, 3, 7, 8 3, 4
1, 6 1
4, 5 2

+

4, 5, 7, 8 2, 3
1, 6 1
2, 3 4

.

Note that if we compose π(2,1,1) with the multiplication map that collapses together
the last two rows of a block in U (2,1)

(2,1,1), then we obtain the map 2 ·π(2,2).

Definition 3.13 (generic multiprolongations). We write Iµ = I d
µ for the kernel of

the map πµ (introduced in Definition 3.11), and Ir = I d
r for the intersection of Iµ, as

µ ranges over partitions of r with at most (exactly) k parts. We refer to Ir as the set
of generic equations for σk(SVd(PV ∗1 ⊗· · ·⊗PV ∗n )), or generic multiprolongations
(see Proposition 3.4).
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3B.2. Tableaux. The maps πµ, for various partitions µ, are Sr -equivariant, so
to understand them it suffices to analyze them irreducible representation by irre-
ducible representation. Recall that irreducible Sr -representations are classified by
n-partitions λ `n r , so we fix one such. This gives rise to a Young symmetrizer cλ
as explained in Section 2C, and all the data of πµ (concerning the λ-parts of its
kernel and image) is contained in its restriction to the λ-highest weight spaces of
the source and target, that is, in the map

πµ = πµ(λ) : cλ ·U
d
r −→ cλ ·U

d
µ.

We now introduce the tableau formalism that’s fundamental for the proof of our
main results, giving a combinatorial perspective on the analysis of the kernels and
images of the maps πµ, which are the main objects we’re after.

The representations U d
µ are spanned by blocks M as in Definition 3.10, hence

the vector spaces cλ ·U
d
µ are spanned by elements of the form cλ · M , which we

shall represent as n-tableaux, according to the following definition.

Definition 3.14. Given a partition µ= (µ1, . . . , µt) ` r , an n-partition λ `n r and
a block M ∈U d

µ, we associate to the element cλ ·M ∈ cλ ·U
d
µ the n-tableau

T = (T 1, . . . , T n)= T 1
⊗ · · ·⊗ T n

of shape λ, obtained as follows. Suppose that the block M has the set αi
j in its i-th

row and j -th column. Then we set equal to i the entries in the boxes of T j indexed
by elements of αi

j (recall from Section 2C that the boxes of a tableau are indexed
canonically: from left to right and top to bottom). Note that each tableau T j has
entries 1, . . . , t , with i appearing exactly µi · d j times.

Note also that in order to construct the n-tableau T we have made a choice of the
ordering of the rows of M : interchanging rows i and i ′ when µi = µi ′ should yield
the same element M ∈U d

µ , therefore we identify the corresponding n-tableaux that
differ by interchanging the entries equal to i and i ′.

Example 3.15. We let n = 2, d = (2, 1), r = 4, µ= (2, 2) as in Example 3.2, and
consider the 2-partition λ= (λ1, λ2), with λ1

= (5, 3), λ2
= (2, 1, 1). We have the

situation depicted in Figure 1.
Let’s write down the action of the map πµ on the tableaux of Figure 1:

πµ

 1 2 2 3 3
1 4 4

⊗

1 3
4
2


=

1 1 1 2 2
1 2 2

⊗

1 2
2
1
+

1 2 2 1 1
1 2 2

⊗

1 1
2
2
+

1 2 2 2 2
1 1 1

⊗

1 2
1
2

.
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cλ ·

1, 6 1
2, 3 4
4, 5 2
7, 8 3

1 2 2 3 3
1 4 4

⊗

1 3
4
2

cλ ·

2, 3 4
7, 8 3
1, 6 1
4, 5 2

3 1 1 4 4
3 2 2

⊗

3 4
2
1

Figure 1. (See Example 3.15.)

We collect in the following lemma the basic relations that n-tableaux satisfy.

Lemma 3.16. Fix an n partition λ `n r , and let T be an n-tableau of shape λ.

(1) If σ is a permutation of the entries of T that preserves the set of entries in each
column of T , then σ(T )= sgn(σ ) · T . In particular, if T has repeated entries
in a column, then T = 0.

(2) If σ is a permutation of the entries of T that interchanges columns of the same
size of some tableau T j , then σ(T )= T .

(3) Assume that one of the tableaux of T , say T j has a column C of size t with
entries a1, a2, . . . , at , and that b is an entry of T j to the right of C. Let σi

denote the transposition that interchanges ai with b. We have

T =
t∑

i=1

σi (T ).

We write this as

a1 b
...

ai
...

at

=

t∑
i=1

a1 ai
...

b
...

at

,

disregarding the entries of T that don’t get perturbed.

Proof. (1) follows from the fact that if σ ∈ Cλ is a column permutation, then
bλ · σ =−bλ.
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(2) follows from the fact that if σ permutes columns of the same size, then σ ∈ Rλ
is a permutation that preserves the rows of the canonical n-tableau of shape λ (so
in particular aλ · σ = aλ), and σ commutes with bλ. It follows that

cλ · σ = aλ · (bλ · σ)= aλ · (σ · bλ)= (aλ · σ) · bλ = aλ · bλ = cλ.

(3) follows from Corollary 3.22 (note the rest of the proof uses the formalism of
Section 3B.3 below). Let us assume first that all entries a1, . . . , at , b are distinct.
If T̃ is the n-tableau obtained by circling the entries a1, . . . , at , b, then

T̃ =

/.-,()*+a1 b
.../.-,()*+ai
.../.-,()*+at

−

t∑
i=1

/.-,()*+a1 ai
...'&%$ !"#b
.../.-,()*+at

.

By skew-symmetry on columns (part (1)), the effect of circling t entries in the same
column of a tableau T is precisely multiplying T by t ! . It follows that we can
rewrite the relation above as

T̃ = t ! ·


a1 b
...

ai
...

at

−

t∑
i=1

a1 ai
...

b
...

at

 .

By Corollary 3.22, T̃ = 0, which combined with the preceding equality yields the
desired relation.

Now if a1, . . . , at , b are not distinct, then either ai = a j for some i 6= j , or b= ai

for some i . If ai = a j , then T and σk(T ), k 6= i, j , have repeated entries in the
column C , hence they are zero. Relation (3) becomes then 0= σi (T )+σ j (T ). But
this is true by part (1), because σi (T ) and σ j (T ) differ by a column transposition.

Assume now that b=ai for some i . Then σ j (T ) has repeated entries in the column
C for j 6= i , thus relation (3) becomes T = σi (T ), which is true because ai = b. �

There is one last ingredient that we need to introduce in the generic setting,
namely generic flattenings.

3B.3. Generic flattenings.

Definition 3.17 (generic flattenings). For a decomposition d = A + B, where
A= (a1, . . . , an) and B = (b1, . . . , bn) (so di = ai+bi for i = 1, . . . , n), we define
a generic (A, B)-flattening to be an n× n matrix whose (i, j)-entry is zαi∪β j , for
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αi
= (αi

1, . . . , α
i
n), β

i
= (β i

1, . . . , β
i
n), with |αi

j | = a j , |β i
j | = b j , and such that for

fixed j , the sets αi
j , β

i
j form a partition of the set {1, . . . , rd j }.

We write Fk,r
A,B for the subspace of U d

r spanned by expressions of the form

[α1, . . . , αk
|β1, . . . , βk

] · zγ k+1 · · · zγ r ,

where [α1, . . . , αk
|β1, . . . , βk

]=det(zαi∪β j ), αi
=(αi

1, . . . , α
i
n), β

i
=(β i

1, . . . , β
i
n),

γ i
= (γ i

1 , . . . , γ
i
n), with |αi

j | = a j , |β i
j | = b j and |γ i

j | = d j , and such that for fixed j ,
the sets αi

j , β
i
j , γ

i
j form a partition of the set {1, . . . , rd j }. We refer to the elements

of Fk,r
A,B as generic flattening equations.

Example 3.18. Take n = 2, d = (2, 1) and r = 4, as usual. Take A = (1, 1),
B = (1, 0) and k = 3. A typical element of F3,4

A,B looks like

D = [({1}, {1}), ({3}, {4}), ({7}, {3})|({6}, {}), ({2}, {}), ({8}, {})] · z({4,5},{2})

= det

z({1,6},{1}) z({1,2},{1}) z({1,8},{1})
z({3,6},{4}) z({3,2},{4}) z({3,8},{4})
z({7,6},{3}) z({7,2},{3}) z({7,8},{3})

 · z({4,5},{2}).
Expanding the determinant, we obtain

D =

1, 6 1
3, 2 4
7, 8 3
4, 5 2

−

1, 2 1
3, 6 4
7, 8 3
4, 5 2

−

1, 8 1
3, 2 4
7, 6 3
4, 5 2

−

1, 6 1
3, 8 4
7, 2 3
4, 5 2

+

1, 8 1
3, 6 4
7, 2 3
4, 5 2

+

1, 2 1
3, 8 4
7, 6 3
4, 5 2

.

Notice that all the blocks in this expansion coincide, except in the entries 2, 6, 8
that get permuted in all possible ways. Let’s multiply now D with the Young
symmetrizer cλ for λ= (λ1, λ2), λ1

= (5, 3) and λ2
= (2, 1, 1). We get

cλ· D =
1 2 2 4 4
1 3 3

⊗

1 4
3
2

−
1 1 2 4 4
2 3 3

⊗

1 4
3
2

−
1 2 2 4 4
3 3 1

⊗

1 4
3
2

−
1 3 2 4 4
1 3 2

⊗

1 4
3
2

+
1 3 2 4 4
2 3 1

⊗

1 4
3
2

+
1 1 2 4 4
3 3 2

⊗

1 4
3
2

.

Note that all the 2-tableaux in this expression coincide, except in the 2nd, 6th and
8th box of their first tableau, which get permuted in all possible ways. We represent
cλ · D by a 2-tableau with the entries in boxes 2, 6 and 8 of its first tableau circled
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(see also Definition 3.19 below):

cλ · D = 1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3
⊗

1 4
3
2

.

To reformulate this one last time, we write

1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3
⊗

1 4
3
2

=

∑
σ∈S3

sgn(σ ) · σ

 1 2 2 4 4
1 3 3

⊗

1 4
3
2

 ,
where S3 = S{1,2,3} is the symmetric group on the circled entries.

Definition 3.19. Let A, B and Fk,r
A,B as in Definition 3.17, let

D = [α1, . . . , αk
|β1, . . . , βk

] · zγ k+1 · · · zγ r ∈ Fk,r
A,B,

and let λ `n r = (rd1, . . . , rdn). We let γ i
= αi
∪β i for i = 1, . . . , k, and consider

T = cλ · m the n-tableau corresponding to the monomial m = zγ 1 · · · zγ r . We
represent cλ · D ∈ hwtλ(F

k,r
A,B) as the n-tableau T with the entries in the boxes

corresponding to the elements of α1, . . . , αk circled. Alternatively, we can circle
the entries in the boxes corresponding to the elements of β1, . . . , βk .

It follows that a spanning set for hwtλ(F
k,r
A,B) can be obtained as follows: take

all the subsets C⊂ {1, . . . , r} of size k, and consider all the n-tableaux T with a j

(alternatively b j ) of each of the elements of C circled in T j . Of course, because of
the symmetry of the alphabet {1, . . . , r}, it’s enough to only consider C={1, . . . , k},
so that the only entries we ever circle are 1, 2, . . . , k.

Continuing with Example 3.18, we have

cλ· D =
1 '&%$ !"#2 2 4 4'&%$ !"#1 3 '&%$ !"#3

⊗

1 4
3
2

=
'&%$ !"#1 2 '&%$ !"#2 4 4
1 '&%$ !"#3 3

⊗

'&%$ !"#1 4'&%$ !"#3'&%$ !"#2
.

Our goal is to reduce the statement of Theorem 4.1 to an equivalent statement that
holds in the generic setting, and thus transform our problem into a combinatorial
one. More precisely, we would like to say that the space of generic flattening
equations coincides with the intersection of the kernels of the (generic) maps πµ,
and that this is enough to conclude the same about the nongeneric case. One issue
that arises is that we don’t know at this point (although it seems very tempting to
assert) that the zero-weight space of the space of flattening equations coincides
with the space of generic flattening equations. Section 3C will show how to take
care of this issue, and how to reduce all our questions to the generic setting.
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3B.4. 1-flattenings. In this section we focus on the space of generic 1-flattening
equations, F1 = Fk,r

1 , defined as the subspace of U d
r given by

Fk,r
1 =

∑
A+B=d
|A|=1

Fk,r
A,B .

We shall see that F1 has a very simple representation theoretic description, which
by the results of the next section will carry over to the nongeneric case.

Proposition 3.20. With the notations above, we have

F1 =
⊕
λ`nr
λk 6=0

(U d
r )λ,

where (U d
r )λ denotes the λ-part of the representation U d

r , and λk 6= 0 means λ j
k 6= 0

for some j = 1, . . . , n, that is, some partition λ j has at least k parts.

Proof. We divide the proof into two parts:

a) If λ `n r is an n-partition with some λ j having at least k parts, and T is an
n-tableau of shape λ, then T ∈ F1.

b) If λ `n r is an n-partition with all λ j having less than k parts, then cλ · F1 = 0.

Let us start by proving part a). We assume that λ j has at least k parts and consider
T an n-tableau of shape λ. If T j has repeated entries in its first column, then T = 0.
Otherwise, we may assume that the first column of T j has entries 1, 2, . . . , t in
this order, where t is the number of parts of λ j , t ≥ k. We consider the n-tableau
T̃ obtained from T by circling the entries 1, 2, . . . , k in the first column of T j .
We have

T̃ = T 1
⊗ · · ·⊗

'&%$ !"#1 · · ·

'&%$ !"#2 · · ·

...
...

'&%$ !"#k · · ·

k+1 · · ·
...

⊗ · · ·⊗ T n,

that is,

T̃ =
∑
σ∈Sk

sgn(σ ) · σ(T ),
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where Sk denotes the symmetric group on the circled entries. Since σ(T ) differs from
T by the column permutation σ , it follows by the skew-symmetry of tableaux that
σ(T )= sgn(σ ) · T . This shows that

T̃ = k! · T ⇐⇒ T = 1
k!
· T̃ ∈ F1,

proving a).
To prove b), let

D = [α1, . . . , αk
|β1, . . . , βk

] · zγ k+1 · · · zγ r ∈ Fk,r
A,B,

for some A+ B = d with |A| = 1. We have that bλ · D is a linear combination of
terms that look like D, so in order to prove that cλ= aλ·bλ annihilates D, it suffices
to show that aλ · D = 0.

We have A = (a1, . . . , an) with a j = 1 for some j and ai = 0 for i 6= j . We can
thus think of each of α1, . . . , αk as specifying a box in the partition λ j . Since λ j

has less than k parts, it means that two of these boxes, say p and q , lie in the same
row of λ j . Let σ = (p, q) be the transposition of the two boxes. σ is an element in
the group Rλ of permutations that preserve the rows of the canonical n-tableau of
shape λ (Section 2C), which means that aλ · σ = aλ. However,

σ · [α1, . . . , α p, . . . , αq , . . . , αk
|β1, . . . , βk

]

= [α1, . . . , αq , . . . , α p, . . . , αk
|β1, . . . , βk

]

= −[α1, . . . , α p, . . . , αq , . . . , αk
|β1, . . . , βk

],

since interchanging two rows/columns of a matrix changes the sign of its determinant.
We get

aλ · D = (aλ · σ) · D = aλ · (σ · D)= aλ · (−D)=−aλ · D,

hence aλ · D = 0, as desired. �

Remark 3.21. The nongeneric 1-flattening equations give the equations of the
so-called subspace varieties (see [Landsberg 2012, Section 7.1; Weyman 2003,
Proposition 7.1.2]), and in fact this statement is essentially equivalent to our
Proposition 3.20 via the results of the next section, namely Proposition 3.27.

Corollary 3.22. Let C⊂ {1, . . . , r} be a subset of size k. If λ is an n-partition with
each λ j having less than k parts, and T̃ is an n-tableau of shape λ, with one of each
entries of C in T̃ j circled, then T̃ = 0. More generally, with no assumptions on λ, if
the circled entries in T̃ j all lie in columns of size less than k, then T̃ = 0.

Proof. The first part follows directly from Proposition 3.20, since T̃ is a 1-flattening
equation, and the space of 1-flattening equations doesn’t have nonzero λ-parts when
λ is such that each of its partitions have less than k parts.
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For the more general statement, we can apply the argument for part b) of the
proof of the previous proposition. If

D = [α1, . . . , αk
|β1, . . . , βk

] · zγ k+1 · · · zγ r ∈ F1

is such that each αi corresponds to a box of T̃ j situated in a column of size less than
k, then since column permutations don’t change the columns of the boxes corre-
sponding to the αi , it follows that bλ·D is a combination of expressions D′ with the
same properties as D. To show that cλ·D=0, it is thus enough to prove that aλ·D=0.
The proof of this statement is identical to the one in the preceding proposition. �

Many of the classical results on the representation theory connected to secant
varieties of Segre–Veronese varieties can be recovered from the generic perspective.
For some of them, including the Cauchy formula or Strassen’s equations, and their
generalization by Landsberg and Manivel [2008], the reader may consult [Raicu
2011, Chapter 5].

3C. Polarization and specialization. In this section V1, . . . , Vn are again vector
spaces of arbitrary dimensions, dim(V j )= m j , j = 1, . . . , n. Let r = (r1, . . . , rn)

be a sequence of positive integers, and let

W = V⊗r1
1 ⊗ · · ·⊗ V⊗rn

n .

Let Sr denote the product of symmetric groups Sr1 ×· · ·× Srn , and let G ⊂ Sr be a
subgroup. Consider the natural (right) action of Sr on W obtained by letting Sri act
by permuting the factors of V⊗ri

i . More precisely, we write the pure tensors in W as

v =
⊗
i, j

vi j , with vi j ∈ V j , j = 1, . . . , n, i = 1, . . . , r j ,

and for an element σ = (σ 1, . . . , σ n) ∈ Sr , we let

v ∗ σ =
⊗
i, j

vσ j (i) j .

This action commutes with the (left) action of GL(V ) on W , and restricts to an
action of G on W . It follows that W G is a GL(V )-subrepresentation of W .

Proposition 3.23. Continuing with the notation above, let U =W G , U ′ = Ind
Sr
G (1).

Let λ `n r be an n-partition with λ j having at most m j parts. The multiplicity of
SλV in U is the same with that of [λ] in U ′.

Moreover, there exist polarization and specialization maps

Pλ : wtλ(U )−→U ′, Qλ :U ′ −→ wtλ(U ),

with the following properties:
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(1) Qλ is surjective.

(2) Pλ is a section of Qλ.

(3) Pλ and Qλ restrict to maps between hwtλ(U ) and hwtλ(U ′) which are inverse
to each other.

Proof. The first part is a consequence of Schur–Weyl duality (Lemma 2.2) and
Frobenius reciprocity (Lemma 2.4). We start with the identification

U =W G
= HomG(1,Res

Sr
G (W )).

Using Schur–Weyl duality we get

W = V⊗r1
1 ⊗ · · ·⊗ V⊗rn

n =

⊕
λ`nr

[λ]⊗ SλV ;

therefore the previous equality becomes

U =
⊕
λ`nr

HomG(1,Res
Sr
G ([λ]))⊗ SλV .

Frobenius reciprocity now yields

HomG(1,Res
Sr
G ([λ]))= HomSr (Ind

Sr
G (1), [λ])= HomSr (U

′, [λ]).

We get

U =
⊕
λ`nr

HomSr (U
′, [λ])⊗ SλV,

hence the multiplicity of SλV in U coincides with that of [λ] in U ′, as long as
SλV 6= 0, that is, as long as m j is at least as large as the number of parts of the
partition λ j .

It follows that the vector spaces hwtλ(U ) and hwtλ(U ′) have the same dimen-
sion, equal to the multiplicity of SλV and [λ] in U and U ′ respectively. We next
construct explicit maps Pλ, Qλ inducing isomorphisms of vector spaces between
the two spaces.

We identify an element σ = (σ 1, . . . , σ n) ∈ Sr with the “tensor”⊗
i, j

σ j (i),

and consider the (regular) representation of Sr on the vector space R with basis
consisting of the tensors σ for σ ∈ Sr . The left action of Sr on R is given by

σ ·
⊗
i, j

ai j =
⊗
i, j

σ j (ai j ),
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while the right action is given by⊗
i, j

ai j ∗ σ =
⊗
i, j

aσ j (i) j .

We consider the vector space map Qλ : R→W given by⊗
i, j

ai j −→
⊗
i, j

g j (ai j ),

where g j : {1, . . . , r j } → B j is the map sending a to xi j if the a-th box of λ j is
contained in the i-th row of λ j (or equivalently if λ j

1+· · ·+λ
j
i−1<a≤λ j

1+· · ·+λ
j
i ).

The image of Qλ is wtλ(W ). It is clear that if a =
⊗

i, j ai j and b =
⊗

i, j bi j , then
Qλ(a) = Qλ(b) if and only if a = σ · b for σ ∈ Sr a permutation that preserves
the rows of the canonical n-tableau of shape λ. It follows that we can define
Pλ : wtλ(W )→ R by

Pλ(Qλ(a))=
1
λ!

aλ · a,

where aλ is the row symmetrizer defined in Section 2C, hence Pλ is a section of Qλ.
Notice that Pλ and Qλ are maps of right Sr -modules, that is, they respect the
∗-action of Sr on R and wtλ(W ) respectively.

Let us prove now that Pλ and Qλ restrict to inverse isomorphisms between
hwtλ(R)= cλ · R (recall from Section 2C that cλ denotes the Young symmetrizer
corresponding to λ) and hwtλ(W ). The two spaces certainly have the same dimen-
sion (take G = {e} to be the trivial subgroup of Sr and apply the first part of the
proposition), so it’s enough to prove that for a′ ∈ hwtλ(R)

a) Qλ(a′) ∈ hwtλ(W ), and

b) Pλ(Qλ(a′))= a′.

To see why part b) is true, note that

Pλ(Qλ(aλ · a))=
1
λ!
· a2
λ · a = aλ · a,

that is, Pλ ◦ Qλ fixes aλ · R. Since hwtλ(R) = cλ · R ⊂ aλ · R, it follows that
Pλ(Qλ(a′)) = a′. To prove a) we need to show that Qλ(a′) is fixed by the Borel
(recall the definition of the Borel subgroup from 2C). It’s enough to do this when

a′ = cλ · a, a =
⊗
i, j

ai j .

The pure tensor a corresponds to an element σ ∈ Sr , so we can write a = e ∗ σ ,
where

e =
⊗
i, j

ei j
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is the “identity” tensor, ei j = i for all i, j . It follows that

Qλ(a′)= Qλ(cλ · a)= Qλ(aλ · bλ · e ∗ σ)= λ! · Qλ(bλ · e) ∗ σ.

Since the ∗-action commutes with the action of the Borel, it is then enough to prove
that Qλ(bλ · e) is fixed by the Borel. But this is a direct computation:

Qλ(bλ · e)=
⊗
i, j

x1 j ∧ · · · ∧ x(λ j )′i j ,

where (λ j )′ denotes the conjugate partition of λ j , so that in fact (λ j )′i denotes the
number of entries in the i-th column of λ j . In any case, it is clear from the formula
of Qλ(bλ · e) that it is invariant under the Borel, proving the claim that Pλ and Qλ

restrict to inverse isomorphisms between hwtλ(W ) and hwtλ(R).
To finish the proof of the proposition, it suffices to notice that, by Remark 2.3,

we have the identities

U =W G
=W ∗ s and U ′ = Ind

Sr
G (1)= R ∗ s, where s =

∑
g∈G

g.

Now since Pλ, Qλ respect the ∗-action, it follows that they restrict to inverse
isomorphisms between

hwtλ(W )∗s=hwtλ(W∗s)=hwtλ(U ) and hwtλ(R)∗s=hwtλ(R∗s)=hwtλ(U ′),

proving the last part of the proposition. �

We shall apply Proposition 3.23 with r = (rd1, . . . , rdn) and

U =U d
r (V )= S(r)(S(d1)V1⊗ · · ·⊗ S(dn)Vn),

or more generally

U =U d
µ(V )=

s⊗
j=1

S(i j )(S(µ j d1)V1⊗ · · ·⊗ S(µ j dn)Vn),

the source and target respectively of the map πµ in Definition 3.1. W is now the
representation

W = V⊗rd1
1 ⊗ · · ·⊗ V⊗rdn

n .

We start with U =U d
r (V ). We have U =W G , where G = (Sd1×· · ·× Sdn )

r
o Sr

is the wreath product between (Sd1 × · · · × Sdn )
r and Sr , and G is regarded as

a subgroup of Sr as follows. First of all, we identify an element σ ∈ G with a
collection

σ =
(
(σ k

j ) j=1,...,n
k=1,...,r

, τ
)
, where σ k

j ∈ Sd j , τ ∈ Sr .
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Then, we think of Sr = Srd1 × · · ·× Srdn as a product of symmetric groups, where
Srd j is the group of permutations of the set D j = {1, . . . , rd j }. Furthermore, we
think of an element σ ∈ G as an element of Sr by letting σ k

j act as a permutation of

{(τ (k)− 1) · d j + 1, . . . , τ (k) · d j } ⊂ D j .

For example, when d1 = · · · = dn = 1, G is just the group Sr , diagonally embedded
in Sn

r . With this G, we let U ′ = Ind
Sr
G (1).

One can now see why the representation U d
r , as defined in the previous section,

can be identified with U ′. Recall that U d
r was defined as a space of r × n blocks

with certain identifications. Consider the block

M =

{1, . . . ,d1} {1, . . . ,d2} · · · {1, . . . ,dn}

{d1+1, . . . ,2d1} {d2+1, . . . ,2d2} · · · {dn+1, . . . ,2dn}
...

...
. . .

...

{(r−1)d1+1, . . . , rd1} {(r−1)d2+1, . . . , rd2} · · · {(r−1)dn+1, . . . , rdn}

.

G acts trivially on M (because each σ k
j does, and because the effect of τ is just

permuting the rows of M), and all the other blocks are obtained from M by the
action of some element of Sr . One should think of the span of M thus as the trivial
representation 1 of G that’s induced to Sr .

It is probably best to forget at this point that U ′ was the zero-weight space of a
certain representation, and just think of it abstractly as the induced representation
Ind

Sr
G (1), with its realization as a space of blocks. An important point to notice now

is that for any decomposition d = A+ B and any k, r , we have

Pλ(wtλ(F
k,r
A,B(V )))⊂ Fk,r

A,B, and Qλ(F
k,r
A,B)⊂ wtλ(F

k,r
A,B(V )),

where Fk,r
A,B (Definition 3.17) is the generic version of Fk,r

A,B(V ) (Definition 2.6).
This means that on the corresponding λ-highest weight spaces, Pλ and Qλ restrict
to isomorphisms

hwtλ(F
k,r
A,B(V ))' hwtλ(F

k,r
A,B).

Example 3.24. Here’s an example of specialization, involving blocks we’re already
familiar with. Let n = 2, d1 = 2, d2 = 1, r = 4, λ1

= (5, 3), λ2
= (2, 1, 1). For

the specialization map Qλ we have

M =

1, 6 1
2, 3 4
4, 5 2
7, 8 3

Qλ
−→

1, 2 1
1, 1 3
1, 1 1
2, 2 2

= M ′.
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Qλ sends 1, 2, 3, 4, 5 from the first column of M to 1, because boxes 1, 2, 3, 4, 5 of
λ1 lie in the first row of λ1, and it sends 6, 7, 8 to 2 because boxes 6, 7, 8 of λ1 lie
in its second row. A similar description holds for the second column of M and λ2.

Although we won’t write down explicitly Pλ(M ′) in this example (see the example
below for a concrete illustration of the action of Pλ), we will just mention that
Pλ(M ′) is the average of the blocks that specialize to M ′ via the specialization map
Qλ. Of course, M is one such block, but there are many more others.

Example 3.25. Let n = 3, d1 = d2 = d3 = 1 and λ1
= λ2
= λ3
= (2, 1). If

m = z({1},{1},{2})z({2},{3},{1})z({3},{2},{3}) ∈U ′,

then Qλ(m)= z({1},{1},{1})z({1},{2},{1})z({2},{1},{2}) ∈U and

Pλ(Qλ(m))
=

1
8(z({1},{1},{2})z({2},{3},{1})z({3},{2},{3})+ z({2},{1},{2})z({1},{3},{1})z({3},{2},{3})

+z({1},{1},{1})z({2},{3},{2})z({3},{2},{3})+ z({2},{1},{1})z({1},{3},{2})z({3},{2},{3})

+z({1},{2},{2})z({2},{3},{1})z({3},{1},{3})+ z({2},{2},{2})z({1},{3},{1})z({3},{1},{3})

+z({1},{2},{1})z({2},{3},{2})z({3},{1},{3})+ z({2},{2},{1})z({1},{3},{2})z({3},{1},{3})).

When U =U d
µ(V ), with µ= (µi1

1 · · ·µ
is
s ), we get U =W G , where

G =
s⊗

j=1

(
(Sµ j d1 × · · ·× Sµ j dn )

i j o Si j

)
.

It follows that U ′= Ind
Sr
G (1)=U d

µ with the realization as a space of blocks explained
in the preceding section.

We note that the maps πµ and πµ(V ) commute with the polarization and spe-
cialization maps Pλ, Qλ, that is, we have a commutative diagram:

U d
r

Qλ //

πµ

��

wtλ(U
d
r (V ))

Pλ
oo

πµ(V )
��

U d
µ

Qλ // wtλ(U
d
µ(V ))

Pλ
oo

(3-1)

Example 3.26. Let d = (2, 1), r = 4, µ = (2, 2), λ1
= (5, 3), λ2

= (2, 1, 1). We
only illustrate the specialization map Qλ, with the above diagram transposed:
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1, 6 1
2, 3 4
4, 5 2
7, 8 3

πµ //

Qλ

��

1, 2, 3, 6 1, 4
4, 5, 7, 8 2, 3

+
1, 4, 5, 6 1, 2
2, 3, 7, 8 3, 4

+
1, 6, 7, 8 1, 3
2, 3, 4, 5 2, 4

Qλ

��1, 2 1
1, 1 3
1, 1 1
2, 2 2

πµ(V ) // 1, 1, 1, 2 1, 3
1, 1, 2, 2 1, 2

+
1, 1, 1, 2 1, 1
1, 1, 2, 2 2, 3

+
1, 2, 2, 2 1, 2
1, 1, 1, 1 1, 3

Restricting (3-1) to the λ-highest weight spaces, we obtain a commutative diagram

hwtλ(U
d
r )

Qλ //

πµ

��

hwtλ(U
d
r (V ))

Pλ
oo

πµ(V )
��

hwtλ(U
d
µ)

Qλ // hwtλ(U
d
µ(V ))

Pλ
oo

where all the horizontal maps are isomorphisms. This shows that the λ-highest
weight spaces of the kernels of πµ and πµ(V ) get identified via the polarization and
specialization maps, and therefore the same is true for I d

r and I d
r (V ): the generic

multiprolongations and multiprolongations correspond to each other via polarization
and specialization. We summarize the conclusions of this section:

Proposition 3.27. The polarization and specialization maps Pλ and Qλ restrict
to maps between generic flattening equations and flattening equations, inducing
inverse isomorphisms

hwtλ(F
k,r
A,B)' hwtλ(F

k,r
A,B(V )).

They also restrict to maps between the kernels of the generic πµ and the nongeneric
ones, inducing inverse isomorphisms

hwtλ(ker(πµ))' hwtλ(ker(πµ(V ))).

As a consequence, Pλ and Qλ yield inverse isomorphisms between the λ-highest
weight spaces of generic and nongeneric multiprolongations

hwtλ(I
d
r )' hwtλ(I

d
r (V )).



1848 Claudiu Raicu

It follows that in order to show that flattening equations coincide with multipro-
longations for the variety of secant lines to a Segre–Veronese variety (Theorem 4.1),
it suffices to prove their equality in the generic setting.

4. The secant line variety of a Segre–Veronese variety

This section is based on the techniques developed in the preceding one. We use
the reduction to the “generic” situation to work out the analysis of the equations
and coordinate rings of secant varieties of Segre–Veronese varieties in the first
new interesting case, that of varieties of secant lines. We show how in the case
of the secant line variety σ2(X) of a Segre–Veronese variety X , the combinatorics
of tableaux can be used to show that the “generic equations” coincide with the
3× 3 minors of “generic flattenings”. In particular, we confirm a conjecture of
Garcia, Stillman and Sturmfels, which constitutes the special case when X is a Segre
variety. We also obtain the representation-theoretic description of the homogeneous
coordinate ring of σ2(X), which in particular can be used to compute the Hilbert
function of σ2(X). In the special cases when σ2(X) coincides with the ambient
space, we obtain the decomposition into irreducible representations of certain
plethystic compositions. Section 4A describes the statements of our results, while
Section 4B contains the details of the proofs.

4A. Main result and consequences. The main result of this work is the description
of the generators of the ideal of the variety of secant lines to a Segre–Veronese
variety, together with the decomposition of its coordinate ring as a sum of irreducible
representations.

Theorem 4.1. Let X = SVd1,...,dn (PV ∗1 ×PV ∗2 × · · ·×PV ∗n ) be a Segre–Veronese
variety, where each Vi is a vector space of dimension at least 2 over a field K of
characteristic zero. The ideal of σ2(X) is generated by 3× 3 minors of flattenings,
and moreover, for every nonnegative integer r we have the decomposition of the
degree r part of its homogeneous coordinate ring

K [σ2(X)]r =
⊕

λ=(λ1,...,λn)

λi
`rdi

(Sλ1 V1⊗ · · ·⊗ Sλn Vn)
mλ,

where mλ is obtained as follows. Set

fλ = max
i=1,...,n

⌈
λi

2
di

⌉
, eλ = λ1

2+ · · ·+ λ
n
2.

If some partition λi has more than two parts, or if eλ < 2 fλ, then mλ = 0. If
eλ ≥ r − 1, then mλ = br/2c− fλ+ 1, unless eλ is odd and r is even, in which case
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mλ = br/2c − fλ. If eλ < r − 1 and eλ ≥ 2 fλ, then mλ = b(eλ + 1)/2c − fλ + 1,
unless eλ is odd, in which case mλ = b(eλ+ 1)/2c− fλ.

As a consequence, we derive the conjecture by Garcia, Stillman and Sturmfels
concerning the equations of the secant line variety of a Segre variety.

Corollary 4.2. The GSS conjecture (Conjecture 1.1) holds: namely, the ideal of the
variety of secant lines to a Segre product of projective spaces is generated by 3× 3
minors of flattenings.

Proof. This is the first part of Theorem 4.1 when d1 = d2 = · · · = dn = 1. �

Combining Theorem 4.1 with known dimension calculations for secant varieties
of Segre and Veronese varieties, we obtain two interesting plethystic formulas. We
do not claim that these formulas are new: since all the vector spaces involved have
dimension two, the representation theory of sl2 can be also used to deduce them.
However, we hope that the simple idea we present, together with a generaliza-
tion of the last part of Theorem 4.1 to higher secant varieties, would yield new
plethystic formulas for decomposing Schur functors applied to tensor products of
representations.

Corollary 4.3. a) Let V1, V2, V3 be vector spaces of dimension two over a field K
of characteristic zero, and let r be a positive integer. We have the decomposition

Symr (V1⊗ V2⊗ V3)=
⊕

λ=(λ1,λ2,λ3)

λi
`r

(Sλ1 V1⊗ Sλ2 V2⊗ Sλ3 V3)
mλ,

where mλ is obtained as follows. Set fλ =max{λ1
2, λ

2
2, λ

3
2}, eλ = λ1

2+ λ
2
2+ λ

3
2.

If some partition λi has more than two parts, or if eλ < 2 fλ, then mλ = 0. If
eλ≥r−1, then mλ=br/2c− fλ+1, unless eλ is odd and r is even, in which case
mλ = br/2c− fλ. If eλ < r−1 and eλ ≥ 2 fλ, then mλ = b(eλ+1)/2c− fλ+1,
unless eλ is odd, in which case mλ = b(eλ+ 1)/2c− fλ.

b) Let V1, V2 be vector spaces of dimension two over a field K of characteristic
zero, let r be a positive integer and let µ= (µ1, µ2) be a partition of r with at
most two parts. We have the decomposition

Sµ(V1⊗ V2)=
⊕

λ=(λ1,λ2)

λi
`r

(Sλ1 V1⊗ Sλ2 V2)
mλ,

with mλ = m(λ1,λ2,µ), where m(λ1,λ2,µ) is as defined in part a).

Proof. Part a) follows from the fact that the secant line variety of a 3-factor Segre
variety X has the expected dimension, namely 2 · dim(X) + 1. In the case we
are interested in, X = Seg(P1

×P1
×P1) has dimension 3 and is a subvariety of
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P2·2·2−1
= P7, so σ2(X) fills in the whole space. This means that the coordinate

ring of σ2(X) and P7 coincide, that is,

K [σ2(X)] = Sym(V1⊗ V2⊗ V3),

and therefore we can use the description of Theorem 4.1 to compute

K [σ2(X)]r = Symr (V1⊗ V2⊗ V3).

As for part b), let V3 be another vector space of dimension two. Part a) tells us
how to decompose Symr (V1⊗ V2⊗ V3) in general. On the other hand, regarding
V1⊗ V2⊗ V3 as the tensor product between the vector spaces V1⊗ V2 and V3, we
can use Cauchy’s formula to obtain

Symr (V1⊗ V2⊗ V3)=
⊕
µ`r

Sµ(V1⊗ V2)⊗ SµV3.

Now the desired formula for the multiplicity of the irreducible representations
occurring in Sµ(V1⊗ V2) follows by combining the formula from part a) with the
Cauchy formula depicted above. �

Corollary 4.4. Let V be a vector space of dimension two over a field K of charac-
teristic zero. We have the decomposition

Symr (Sym3(V ))=
⊕
λ`3r

(SλV )mλ,

where mλ is obtained as follows. Set

fλ =
⌈
λ2
3

⌉
, eλ = λ2.

If λ has more than two parts, or if eλ < 2 fλ (that is, λ2 = 1), then mλ = 0. If
eλ ≥ r − 1, then mλ = br/2c− fλ+ 1, unless eλ is odd and r is even, in which case
mλ = br/2c − fλ. If eλ < r − 1 and eλ ≥ 2 fλ, then mλ = b(eλ + 1)/2c − fλ + 1,
unless eλ is odd, in which case mλ = b(eλ+ 1)/2c− fλ.

Proof. This follows from the fact that σ2(Ver3(P
1)), the secant line variety of the

twisted cubic, fills in the space, hence its coordinate ring is Sym(Sym3(V )). Using
the description in Theorem 4.1 with n = 1, d1 = 3 and V = V1 of dimension 2, we
obtain the desired formula. �

4B. Proof of the main result.

Proof of Theorem 4.1. We start by outlining the main steps of the proof. We fix
a sequence of positive integers d = (d1, . . . , dn) and a positive degree r , and let
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r = (rd1, . . . , rdn). By Proposition 3.27, it suffices to prove the generic version of
the theorem. More precisely, we let

F =
∑

A+B=d

F3,r
A,B ⊂U d

r

be the set of all generic flattening equations, and let Fi denote the subspace spanned
by those generic flattening equations with |A| = i . (As the rest of the proof will
imply, we have F = F1+ F2+ F3; see [Raicu 2010; Raicu 2011, Chapter 6] for
more precise results in this direction in the case n = 1 of the Veronese variety.)

Recall that I = I d
r denotes the space of generic multiprolongations of degree r

(Definition 3.13), that is, I is the kernel of the map

π =
⊕

µ=(µ1,µ2)`r

πµ :U =U d
r −→

⊕
µ=(µ1,µ2)`r

U d
µ.

We have F ⊂ I , by combining Lemma 2.5 with Proposition 3.27. We will show that
F = I and that the image of π decomposes into irreducible Sr -representations as

π(U )=
⊕
λ`nr

[λ]mλ,

where mλ is as defined in the statement of the theorem.
We list the main steps below. The details will occupy the rest of the section.
Step 0: If λ is an n-partition with some λi having at least three parts, then

hwtλ(U )=hwtλ(F) (Proposition 3.20), hence hwtλ(F)=hwtλ(I ) since F⊂ I ⊂U .
Moreover, this also shows that mλ = 0.

Step 1: We fix an n-partition λ of r with each λi having at most two parts. We
identify each tableau T with a certain graph G. We show that graphs containing
odd cycles are contained in F .

Step 2: We show that the λ-highest weight space of U/F is spanned by bipartite
graphs that are as connected as possible, that is, that are either connected, or a union
of a tree and some isolated nodes.

Step 3: We introduce the notion of type associated to a graph G as in Step 2,
encoding the sizes of the sets in the bipartition of the maximal component of G.
We show that if G1,G2 have the same type, then G1 =±G2 (modulo F).

Step 4: If we let

π =
⊕
µ`r

µ=(a≥b)

πµ :U −→
⊕
µ`r

µ=(a≥b)

U n
µ,

and if Gi are graphs of distinct types (not contained in F), then the elements π(Gi )

are linearly independent. This suffices to prove that F and the kernel of π are
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the same, that is, that F = I . The formulas for the multiplicities mλ follow from
counting the number of Gi , that is, the number of possible types.

Remark 4.5. A careful look at the details of the proof will show that, in fact, in
Steps 2 and 3, instead of working modulo F it is enough to work modulo the
subspace of U spanned by graphs containing odd cycles, and that moreover, any
graph containing an odd cycle is a linear combination of graphs containing a triangle.
This implies that in fact F , and hence I , is spanned by graphs containing a triangle.
This is the structure alluded to in the introduction that makes a graph (that is, a
generic polynomial) “vanish” on the secant line variety of a Segre–Veronese variety.

Step 1. We fix an n-partition λ of r with λi
= (λi

1 ≥ λ
i
2 ≥ 0), for i = 1, . . . , n. For

each n-tableau T of shape λ we construct a graph G with r vertices labeled by the
elements of the alphabet A= {1, . . . , r} as follows. For each tableau T i of T and
column

x
y

of T i of length 2, G has an oriented edge (x, y) which we label by the index i . We
will often refer to the labels of the edges of G as colors. Note that we allow G to
have multiple edges between two vertices (some call such G a multigraph), but at
any given vertex there can be at most di incident edges of color i . Since we think of
two n-tableaux as being the same if they differ by a permutation of A, we shall also
identify two graphs if they differ by a relabeling of their nodes. Note that a graph
G determines an element in hwtλ(U ), by considering a tableau T with columns

x
y

for each edge (x, y) of G. The order of the columns of T is not determined by
G, but part (2) of Lemma 3.16 states that any such T yields the same element
of hwtλ(U ). The orientation of the edges of our graphs will be mostly irrelevant:
reversing the orientation of an edge of G = T will correspond to changing G to
−G (see part (1) of Lemma 3.16). When we talk about connectedness and cycles,
we don’t take into account the orientation of the edges.

Example 4.6. The graph

'&%$ !"#1

2

��

1

��

1 2
3
⊗

1 3
2
⊗

2 1
3
=

'&%$ !"#2
3

//'&%$ !"#3



Secant varieties of Segre–Veronese varieties 1853

is connected and has a cycle of length 3, while

'&%$ !"#1

1




2

��

1 3
2
⊗

1 3
2
=

'&%$ !"#2 '&%$ !"#3

is disconnected and has a cycle of length 2.

From now on we work modulo F , and more precisely, inside the λ-highest weight
space of (U/F). This space is generated by the graphs described above. The main
result of Step 1 is this:

Proposition 4.7. If G has an odd cycle, then G = 0 (that is, G is in F).

We first need to establish some fundamental relations, that will be used throughout
the rest of the proof.

Lemma 4.8. The following relations between tableaux/graphs hold (see the inter-
pretation below):

a) x
y
= −

y
x

; in particular, x
x
= 0.

b) x z
y

=
x y
z

+
z x
y

.

c) x z
y

⊗
x y
z

=
x y
z

⊗
x z
y

.

d) x z
y

⊗
x z
y

⊗
x y
z

=
x z
y

⊗
x y
z

⊗
x y
z

.

Interpretation: For an expression E =
∑

T aT ·T , where the T are n-tableaux of
shape λ, we say that E = 0 if ∑

T

aT · T ∈ F ⊂U.

If all the n tableaux occurring in the expression E contain the same n-subtableau S,
then we suppress S entirely from the notation (see also the comment in part (3) of
Lemma 3.16).

Example 4.9. One interpretation of part b) of Lemma 4.8 could be that

a b
c d

⊗
x z t
y

=
a b
c d

⊗
x y t
z

+
a b
c d

⊗
z x t
y

,

for any {a, b, c, d} = {x, y, z, t} = {1, 2, 3, 4}. The 2-subtableau S is in this case

S = a b
c d

⊗ t .
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Proof of Lemma 4.8. a) is part (1) of Lemma 3.16.

b) follows from part (3) of the same lemma (since all columns of our tableaux have
size at most two).

c) We have

'&%$ !"#x '&%$ !"#y'&%$ !"#z ⊗
'&%$ !"#x '&%$ !"#z'&%$ !"#y =

∑
σ∈S3

sgn(σ ) · σ
(

x y
z

⊗
x z
y

)
= 0,

(because the left hand side is contained in F2). Using parts a) and b) repeatedly, we
can express everything in terms of

x y
z

and x z
y

,

and after simplifications, the preceding equation becomes

3 ·
(

x y
z

⊗
x z
y

−
x z
y

⊗
x y
z

)
= 0.

d) Part c) states that any tensor expression in

a = x z
y

and b = x y
z

does not depend on the order in which a and b appear, so we can think of the pure
tensors in a, b as commuting monomials in a, b. Writing

y x
z

= b − a,

we can translate
'&%$ !"#x '&%$ !"#z'&%$ !"#y ⊗

'&%$ !"#x '&%$ !"#z'&%$ !"#y ⊗
'&%$ !"#x '&%$ !"#y'&%$ !"#z =

∑
σ∈S3

sgn(σ ) · σ
(

x z
y

⊗
x z
y

⊗
x y
z

)
= 0

into

a2b − a2(b − a) + (a − b)2b − b2a − (b − a)2a + b2(a − b) = 0,

which simplifies to 3(a2b − ab2) = 0, that is, a2b = ab2, or

x z
y

⊗
x z
y

⊗
x y
z

=
x z
y

⊗
x y
z

⊗
x y
z

. �

Corollary 4.10. If G is a graph having a connected component H consisting of
two nodes joined by an odd number of edges, then G = 0.

Proof. Interchanging the labels of the two nodes of H preserves G, but by part a)
of Lemma 4.8, it also transforms G into (−1)eG, where e is the number of edges
in H . Since e is odd, G = 0. �
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Corollary 4.11. If G is a graph containing cycles of length 1 or 3, then G = 0.

Proof. If G has a cycle of length 1, this follows from part a) of Lemma 4.8. If G
has a cycle of length 3, we may assume this cycle is C = '&%$ !"#1 → '&%$ !"#2 → '&%$ !"#3 → '&%$ !"#1 . We
have several cases to analyze, depending on the colors of the edges in this cycle.

If the edges in C have distinct colors, we need to prove that

1 3
2

⊗
2 1
3

⊗
1 2
3

= 0.

We have by part b) of Lemma 4.8 applied to the middle tableau that

1 3
2
⊗

2 1
3
⊗

1 2
3
=

1 3
2
⊗

1 2
3
⊗

1 2
3
−

1 3
2
⊗

1 3
2
⊗

1 2
3
= 0,

where the last equality is part d) of the same lemma.
If the edges of C have the same color, we need to prove that

1 1 2
2 3 3

= 0.

We have

0 =
'&%$ !"#1 '&%$ !"#1 '&%$ !"#2'&%$ !"#2 '&%$ !"#3 '&%$ !"#3

=
1 1 2
2 3 3

−
2 2 1
1 3 3

−
3 3 2
2 1 1

−
1 1 3
3 2 2

+
2 2 3
3 1 1

+
3 3 1
1 2 2

=
1 1 2
2 3 3

+
1 2 1
2 3 3

+
2 1 1
3 3 2

+
1 1 2
3 2 3

+
2 1 1
3 2 3

+
1 2 1
3 3 2

= 6 · 1 1 2
2 3 3

,

where the penultimate equality follows from skew-symmetry on rows, while the
last one follows from part (2) of Lemma 3.16.

Finally, suppose that the edges of C have two colors, say (1, 2) and (1, 3) have
the same color. We need to prove that

1 1 2 3
2 3

⊗
2 1
3

= 0.

As in the preceding case,

0 =
'&%$ !"#1 '&%$ !"#1 '&%$ !"#2 '&%$ !"#3'&%$ !"#2 '&%$ !"#3

⊗
'&%$ !"#2 '&%$ !"#1'&%$ !"#3

=
1 1 2 3
2 3

⊗
2 1
3

−
2 2 1 3
1 3

⊗
1 2
3

−
3 3 2 1
2 1

⊗
2 3
1

−
1 1 3 2
3 2

⊗
3 1
2

+
2 2 3 1
3 1

⊗
3 2
1

+
3 3 1 2
1 2

⊗
1 3
2

= 6 · 1 1 2 3
2 3

⊗
2 1
3

,

where the last equality follows by utilizing repeatedly parts a) and c) of Lemma 4.8.
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For example, we have for the second term that

2 2 1 3
1 3

⊗
1 2
3

= −
1 2 1 3
2 3

⊗
1 2
3

= −
1 1 2 3
2 3

⊗
2 1
3

,

where the last equality follows by applying part c) of Lemma 4.8 in the form

y z
x

⊗
z y
x

=
z y
x

⊗
y z
x

,

with
y z
x

=
2 1
3

,
z y
x

=
1 2
3

. �

Corollary 4.12. If an n-tableau T contains the columns

C1 =
x
y

and C2 =
x
z
,

and T ′ is obtained from T by interchanging two boxes y and z from the same
tableau T i of T , and not contained in any of C1,C2, then T = T ′ (modulo F).

Proof. If
y
z

is a column of T i then T contains a triangle, hence T = 0. Since interchanging y
and z transforms T into T ′ =−T = 0, it follows that T = T ′. We can assume then
that y and z don’t lie in the same column of T i . If they both belong to columns of
size one of T i , then interchanging them preserves T (see part (2) of Lemma 3.16).
Otherwise we may assume that y belongs to a column of size two in T i , hence we
have the relation

y z
∗
=

y ∗
z
+

z y
∗
=

z y
∗

,

where the last equality follows from the fact that any tableau containing C1, C2 and

y
z

is a graph containing a triangle, that is, it is zero (Corollary 4.11). �

Proof of Proposition 4.7. We show that a graph G (with corresponding tableau T )
containing an odd cycle of length at least 5 is a linear combination of graphs with
shorter odd cycles. The conclusion then follows by induction from Corollary 4.11.
Suppose that C : '&%$ !"#1 → '&%$ !"#2 → · · · → '&%$ !"#k → '&%$ !"#1 is an odd cycle in G, with k ≥ 5. We
denote by Ei the edge (i, i + 1) (Ek = (k, 1)).
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Let’s assume first that there are two consecutive edges of C of the same color:
say E1 and E2 have color 1. If not all edges of C have color 1, we may assume
that E3 has color 2, so that T contains the subtableau

1 2
2 3

⊗
3
4
.

Since E1, E2 have color 1, it follows that d1 ≥ 2, hence there are at least two 4’s in
T 1. One of them is thus not contained in E5, and therefore in none of the edges of C .
We apply Corollary 4.12 with C1,C2 the columns corresponding to E2, E3, y = 2
and z=4. We can thus interchange the 2 in E1 with a 4∈T 1 not in any Ei , obtaining
an n-tableau T ′= T , with T ′ containing the cycle '&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 →· · ·→ '&%$ !"#k → '&%$ !"#1
of length k− 2.

If all the Ei have color 1, T contains the subtableau

S = 1 2 3 4 ··· k
2 3 4 5 ··· 1

⊂ T 1.

If there is an edge (3, 4) of G with color different from 1, then we can replace E3

by that edge and apply the previous case. If d1 > 2 then T 1 has a 4 not contained
in any Ei , so we can again use the argument from the previous paragraph. Suppose
now that d1 = 2. The proof of Corollary 4.12 shows that we can interchange 3
with 4 in all T i (i 6= 1), modulo tableaux containing S and an edge (3, 4) of color
different from 1. But these we know are zero (modulo F) by the argument above,
so we can write T = T ′ where T ′ is obtained from T by interchanging all 3’s and
4’s in T i for i ≥ 2. We now use the relation

1 2 3 4
2 3 4 5

=
1 2 3 4
2 5 4 3

+
1 2 3 3
2 4 4 5

,

to write
T ′ = T ′′ + T ′′′,

where T ′′ contains the cycle '&%$ !"#1 → '&%$ !"#2 → '&%$ !"#5 → · · ·→ '&%$ !"#k → '&%$ !"#1 of length k−2, and
T ′′′ differs from T by interchanging all the 3’s and 4’s in T , and doing a column
transposition in the column of E3. This shows that T = T ′ = 0− T , hence T = 0.

Finally, we assume that no two consecutive edges have the same color. Since the
cycle is odd, we can find three consecutive edges with distinct colors, say E1, E2

and E3, with colors 1, 2 and 3 respectively. By Corollary 4.12, we have

T = 1 4
2

⊗
2
3
⊗

3
4
=

1 2
4

⊗
2
3
⊗

3
4
.

If the edge E4 in C doesn’t have color 1, then it survives after interchanging 2 and
4 as above, hence T is equal with a graph containing the odd cycle

'&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 → · · · → '&%$ !"#k → '&%$ !"#1
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of length k− 2.
Suppose now that E4 has color 1. If the edge E5 doesn’t have color 2, then we

may repeat the argument above replacing the edges E1, E2 and E3 with E2, E3

and E4 respectively. Otherwise, T contains the subtableau (with ∗ = 6 if k > 5 and
∗ = 1 if k = 5),

1 4
2 5

⊗
2 5
3 ∗

⊗
3 5
4

=
1 2
4 5

⊗
2 5
3 ∗

⊗
3 5
4

=
1 2
4 5

⊗
2 5
3 ∗

⊗
5 3
4

,

where the first equality follows by interchanging 2 and 4 in the first factor, while
the last one follows by interchanging 3 and 5 in the last factor (in both cases we
apply Corollary 4.12). It follows that T is equal to a graph containing the odd cycle'&%$ !"#1 → '&%$ !"#4 → '&%$ !"#5 → · · · → '&%$ !"#k → '&%$ !"#1 of length k− 2, concluding the proof. �

Step 2. We first translate the relations in part b) of Lemma 4.8 into basic operations
on graphs. We start with the following:

Definition 4.13. A node /.-,()*+j is said to be i-saturated if there are di edges of color i
incident to /.-,()*+j .

Remark 4.14 (basic operations). Let G be a graph containing an edge (1, 2) of
color 1. The following relations hold:

(1) If the vertex '&%$ !"#3 is not 1-saturated, then 1 3
2
=

1 2
3
+

3 1
2

becomes

'&%$ !"#1
1
��

'&%$ !"#1
1
��

'&%$ !"#1
= +

'&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3
1

oo

(2) If G has an edge (3, 4) of color 1, then 1 3
2 4
=

1 2
3 4
+

1 3
4 2

becomes

'&%$ !"#1
1

��

'&%$ !"#3
1

��

'&%$ !"#1
1 //'&%$ !"#3 '&%$ !"#1

1

��

'&%$ !"#3
1

��
= +

'&%$ !"#2 '&%$ !"#4 '&%$ !"#2
1

//'&%$ !"#4 '&%$ !"#2 '&%$ !"#4

Proposition 4.15. Let λ be as before, and let

eλ =
n∑

i=1

λi
2.

If eλ ≥ r − 1, then hwtλ(U/F) is spanned by connected graphs. If eλ < r − 1, then
hwtλ(U/F) is spanned by graphs G that consist of a tree, together with a collection
of isolated nodes.
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Proof. We first show that if G has two connected components H1, H2 with H1

containing a cycle, then we can write G = G1+G2, where G1 and G2 are graphs
obtained from G by joining the components H1, H2 together.

Consider an edge (1, 2) contained in a cycle of H1, having say color 1. Consider
a node '&%$ !"#3 of H2 and suppose first it is not 1-saturated. Using the first basic operation
of Remark 4.14, we get that G = G1+G2, where G1,G2 are obtained from G by
connecting H2 to H1 via an edge of color 1. If '&%$ !"#3 is 1-saturated, then in particular
there exists at least one edge, say (3, 4), of color 1 in H2. The second basic
operation of Remark 4.14 yields G = G1+G2, where G1,G2 are obtained from G
by connecting H1 and H2 via two edges of color 1.

If eλ≥ r−1, then G will contain cycles as long as it is not connected, so iterating
the procedure above, we can write G as a linear combination of connected graphs.

If eλ < r − 1, the argument above reduces the problem to the case when G is
a union of trees, some of which may be isolated nodes. We show that if G has at
least two components that are not nodes, then G = G1 +G2, where G1,G2 are
unions of trees, and the sizes of the largest components of G1,G2 are strictly larger
than the size of the largest component of G. Induction on the size of the largest
component of G then concludes the proof of the proposition.

Let H1 be the largest component of G, and let H2 be another component which
isn’t a node. If H2 has only one edge, then G = 0 by Corollary 4.10. Consider
a leaf of H1, say '&%$ !"#3 , and assume first that all edges in H2 have the same color,
say 1. Since H2 has more than one edge and is connected, it must have a vertex
with at least two incident edges of color 1, that is, d1 ≥ 2. This means that '&%$ !"#3 is
not 1-saturated. Let (1, 2) be an edge of H2 (of color 1). The first basic operation
of Remark 4.14 shows that G = G1+G2, where G1,G2 are obtained from G by
expanding its largest component.

Assume now that the edges in H2 have at least two colors, and that the edge
incident to '&%$ !"#3 has color 2. Let (1, 2) be an edge of H2 of color different from 2, say
1. '&%$ !"#3 is not 1-saturated, thus we can use the first basic operation of Remark 4.14 as
in the preceding case. �

Step 3. Combining Step 1 with Step 2 we get that, depending on the n-partition
λ, hwtλ(U/F) is spanned either by connected graphs without odd cycles, or by
graphs consisting of a tree and some isolated nodes. These graphs are going to be
important for the rest of the proof, so we make the following

Definition 4.16 (MCB graphs). A maximally connected bipartite (MCB) graph is
either a connected graph without odd cycles, or a graph consisting of a tree together
with a collection of isolated nodes.

For an MCB graph G, the maximal connected component admits an essentially
unique bipartition of its vertex set into subsets A, B of sizes a ≥ b (that is, vertices
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in the same subset A or B are not connected by an edge). We say that G has type
(a, b; λ) (or just (a, b) when λ is understood), and that it is canonically oriented if
all the edges have source in A and target in B (when a = b, there are two canonical
orientations). We have the following:

Proposition 4.17. If G1,G2 are canonically oriented MCB graphs of type (a, b),
then G1 = G2.

We first need to refine the relations of Remark 4.14:

Remark 4.18 (refined basic operations). Suppose that G is an MCB graph with
vertex bipartition A t B as in Definition 4.16.

(1) Assume that '&%$ !"#3 is not 1-saturated, (1, 2) is an edge of color 1, and '&%$ !"#1 , '&%$ !"#3
belong to A. If '&%$ !"#1 , '&%$ !"#3 are contained in the same connected component of the
graph obtained from G by removing the edge (1, 2), then

'&%$ !"#1
1
��

'&%$ !"#1
=

'&%$ !"#2 '&%$ !"#3 '&%$ !"#2 '&%$ !"#3
1

oo

This follows from the fact that the conditions above guarantee that the term
that was left out from the first basic operation of Remark 4.14 has an odd cycle,
and hence equals 0 by Proposition 4.7.

(2) Assume that (1, 2) and (3, 4) are edges of color 1, '&%$ !"#1 , '&%$ !"#3 ∈ A and '&%$ !"#2 , '&%$ !"#4 ∈ B,
and either '&%$ !"#1 and '&%$ !"#3 , or '&%$ !"#2 and '&%$ !"#4 are in the same connected component of
the graph obtained from G by removing the edges (1, 2) and (3, 4). Then

'&%$ !"#1
1

��

'&%$ !"#3
1

��

'&%$ !"#1
1

��

'&%$ !"#3
1

��
=

'&%$ !"#2 '&%$ !"#4 '&%$ !"#2 '&%$ !"#4

As above, the missing term from the second basic operation has an odd cycle,
and hence equals 0.

Proof of Proposition 4.17. We prove by induction on eλ (the number of “edges” of
λ), that it is possible to get from G1 to G2 via a series of refined basic operations.
If eλ = 0, there is nothing to prove. Suppose now that eλ > 0.

We call an edge E of an MCB graph G nondisconnecting if the graph obtained
from G by removing E is still an MCB graph. More explicitly, if eλ ≥ r , then E
must be contained in a cycle of G, and if eλ < r , then one of the endpoints of E
must be a leaf of G.

The idea of proof is to reduce to the case when G1,G2 have nondisconnecting
edges E1, E2 of the same color, such that G ′1 = G1 \ E1 and G ′2 = G2 \ E2 are
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canonically oriented MCB graphs of the same type. Once this is done, we remove
E1, E2 from G1,G2 and apply induction to conclude that G ′2 can be obtained from
G ′1 via a series of refined basic operations (as in Remark 4.18). We then put back the
edges E1, E2 and lift the sequence of operations to the original graphs. The main
difficulty lies in creating the nondisconnecting edges E1, E2, which is especially
laborious when the graphs contain no cycles. For the convenience of the reader,
this case is illustrated by Example 4.19 below.

Inductive step. We will prove later that for any nondisconnecting edge E2 of G2

of color c, there exist a sequence of refined basic operations which transforms G1

into a new graph Ĝ1 having a nondisconnecting edge E1 of color c, such that the
graphs G ′1 and G ′2 obtained from Ĝ1 and G2 by removing the edges E1 and E2

have the same type. Assuming this, by induction we can find a series of refined
basic operations that transform G ′1 into G ′2. We lift this sequence of operations to
Ĝ1 as follows: the refined basic operations of type (2) are performed just as if the
edge E1 was not contained in Ĝ1, as well as the operations of type (1) that don’t
transform an edge E ′ of color c into one that’s incident to E1; the operations of
type (1) involving an edge E ′ of color c that gets transformed into an edge incident
to E1 are replaced by operations of type (2) involving E ′ and E1. It is clear that E1

remains nondisconnecting along the process, so we end up with the graphs G ′′1 and
G2 that coincide after removing the nondisconnecting edges E1 and E2 of color c.
At most two more refined operations of type (2) (that correspond to correcting
the positions of the endpoints of E1) are then sufficient to transform G ′′1 into G2,
concluding the proof.

Creating a nondisconnecting edge when the graphs contain cycles. We show that if
eλ ≥ r and G1 has an edge E1 of color c, then we can find a refined basic operation
that makes E1 nondisconnecting. Suppose that E1 is disconnecting, and let H1, H2

be the connected components of the graph obtained from G1 by removing the
edge E1. One of H1, H2 must contain a cycle, say H1, and let O , Y be consecutive
edges of this cycle, of colors o(range) and y(ellow) (note that o might coincide
with y). If H2 has a node N that is not o-saturated or not y-saturated, then a refined
operation of type (1) involving the node N (as '&%$ !"#3 ) and one of the edges O , Y (as
the edge (1, 2)) will make E1 a nondisconnecting edge. Otherwise, if every vertex
of H2 is both o- and y-saturated, then there exists a cycle in H2 consisting of edges
of colors o and y (if o= y, then since O, Y are incident edges of color o, it means
that do ≥ 2, in particular any o-saturated node has at least two incident edges of
color o; if o 6= y, then any o- and y-saturated node has at least one o-incident and
one y- incident edge; in both cases, the nodes in H2 have at least two incident edges,
so we can find a cycle as stated). A refined basic operation of type (2) involving an
o-edge on this cycle and O (or an y-edge and Y ) will make E1 nondisconnecting.
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Creating a nondisconnecting edge when the graphs have no cycles. If eλ < r and
G2 has a nondisconnecting edge E2 of color c, then we prove that we can find a
sequence of refined basic operations that transforms G1 into a graph Ĝ1 containing
a nondisconnecting edge E1 of color c, and moreover Ĝ1− E1 and G2− E2 have
the same type. We may assume that eλ = r − 1, by removing the isolated nodes
of G1 and G2. Suppose that the graphs Gi have vertex bipartitions Ai t Bi , with
|Ai | = a, |Bi | = b, and that E2 = (x, y), with '&%$ !"#y ∈ B2 a leaf of G2. This means
that the graph G2, and hence also G1, has at most (b− 1) · dc+ 1 edges of color c,
and for any color c′ 6= c, it has at most (b− 1) · dc′ edges of color c′. In particular,
for any color c′ 6= c, there exists a node in B1 which is not c′-saturated. Consider
an edge E = (u, v) of color c in G1, with '&%$ !"#u ∈ A1, '&%$ !"#v ∈ B1. Let H1, H2 be the
connected components of G1− E containing u and v respectively. We prove by
descending induction on the size of H2 that we can make E nondisconnecting, with
its endpoint in B1 being a leaf.

If H2 = {'&%$ !"#v } then E is nondisconnecting. More generally, if H2 ∩ B1 = {'&%$ !"#v },
then we may assume that all the edges in H2 have color c. If E ′ is an edge of H2

of color c′ 6= c (see the second transformation in Example 4.19 below), then there
are at most (b− 1) · dc′ − 1 edges of color c′ in H1, so that we can find a vertex C ′

in H1 that is not c′-saturated. A refined basic operation of type (1) involving E ′

and C ′ decreases the size of H2 by one, so we can conclude by induction. Assume
now that the edges in H2 have color c. Together with the edge E , we get at least
two edges of color c outside H1, which means that H1 has at most (b− 1) · dc− 1
edges of color c, that is, it has a vertex that is not c-saturated. We now do a refined
basic operation of type (1) as before, involving that vertex and an edge of H2, and
conclude by induction.

We may now assume |H2∩ B1|> 1 (see the first transformation in Example 4.19
below). Therefore there exist distinct edges Y = (u′, v) of color y(ellow) and
O = (u′, v′) of color o(range) in H2 (y and o might coincide). If o = c then we
replace E with (u′, v′), which decreases the size of H2, so that we can conclude by
induction. If there exists a vertex W ∈H1∩B1 that is not y-saturated, then the refined
basic operation involving Y and W decreases the size of H2. Likewise, if there
exists a vertex W ∈ H1∩ A1 that is not o-saturated, then the refined basic operation
involving O and W also decreases the size of H2. We may therefore assume that all
nodes in B1 ∩ H1 are y-saturated, and those in A1 ∩ H1 are o-saturated, and show
that this leads to a contradiction. If y = o, then since u′ has two incident edges of
color o, we must have do ≥ 2. All the nodes of H1 being saturated implies that they
have degree at least do ≥ 2, so H1 contains a cycle, which is a contradiction. If
y 6= o, then H1 must contain at least |H1∩ A1| edges of color o (since each vertex in
H1 ∩ A1 is o-saturated) and at least |H1 ∩ B1| edges of color y, that is, H1 contains
at least |H1| edges, hence it can’t be a tree. �
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Example 4.19. Consider the 3-tableaux

T1 =
3 5 1 6
2 4

⊗
3 1 2 5 6
4

⊗
1 5 3 4
2 6

,

T2 =
1 3 5 6
2 4

⊗
5 1 2 3 4
6

⊗
3 5 1 6
2 4

,

with corresponding graphs

'&%$ !"#1
��<

<
<

'&%$ !"#2

G1 = '&%$ !"#3

AA

���]
�]

�]

'&%$ !"#4

'&%$ !"#5

@@

��<
<

<

'&%$ !"#6

'&%$ !"#1
��'&%$ !"#2

and G2 = '&%$ !"#3

AA�
�

�

��'&%$ !"#4

'&%$ !"#5

@@�
�

�

���^
�^

�^

'&%$ !"#6

where color 1 corresponds to // , color 2 to ///o/o/o , and color 3 to //___ . G1

and G2 are MCB of the same type (Definition 4.16), and in fact G1 = 0, since it is
the same as the graph obtained by reversing the orientation of its 5 edges (an odd
number), and this equals −G1 by part a) of Lemma 4.8. However, it is unclear a
priori that G2 is also equal to 0. We use the algorithm described in the proof of
Proposition 4.17 to get a sequence of refined basic operations that transforms G1

into G2. We first make the edge of G1 of color 2 nondisconnecting, and then adjust
its position (the third step) and relabel the nodes (last step) to get G2:

'&%$ !"#1
��<

<
< '&%$ !"#1

��<
<

< '&%$ !"#1
��<

<
< '&%$ !"#1

��<
<

<

���T
�T
�T
�T
�T
�T
�T
�T
�T

'&%$ !"#5
��<

<
<

���T
�T
�T
�T
�T
�T
�T
�T
�T

'&%$ !"#2 '&%$ !"#2 '&%$ !"#2 '&%$ !"#2 '&%$ !"#4

'&%$ !"#3

@@

���[
�[

�[
'&%$ !"#3

@@

��(
(

(
(

(
(

(

���[
�[

�[
'&%$ !"#3

@@

���[
�[

�[

��(
(

(
(

(
(

(
'&%$ !"#3

@@

��(
(

(
(

(
(

(
'&%$ !"#3

@@

��(
(

(
(

(
(

(

'&%$ !"#4 1
−→

'&%$ !"#4 2
−→

'&%$ !"#4 3
−→

'&%$ !"#4 4
−→

'&%$ !"#6

'&%$ !"#5
��<

<
<

CC

'&%$ !"#5

CC

'&%$ !"#5
��

'&%$ !"#5
��

'&%$ !"#1
��'&%$ !"#6 '&%$ !"#6 '&%$ !"#6 '&%$ !"#6 '&%$ !"#2

With the notation in the last paragraph of the proof of Proposition 4.17, we have
E = (3, 4) a disconnecting edge, A1 = {1, 3, 5}, B1 = {2, 4, 6} a bipartition of the
vertex set of G1. We’d like to make E nondisconnecting, with its endpoint in B1
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being a leaf. We have
'&%$ !"#1

��:
:

:

H1 = '&%$ !"#2

'&%$ !"#3

AA

'&%$ !"#4

and H2 = '&%$ !"#5

AA

��:
:

:

'&%$ !"#6

We also have Y = (5, 4) of color y = // and O = (5, 6) of color o= //___ .
The unique vertex '&%$ !"#2 in H1∩ B1 is y-saturated, and '&%$ !"#1 ∈ H1∩ A1 is o-saturated, but
W = '&%$ !"#3 is not o-saturated. The refined basic operation involving W and O yields
the first transformation.

We now have

'&%$ !"#1

��:
:

:

H1 = '&%$ !"#2

'&%$ !"#3

AA

��<
<

<

'&%$ !"#6

'&%$ !"#4

and H2 = '&%$ !"#5

AA

We are in the case H2∩B1={
'&%$ !"#v }={'&%$ !"#4 }. The edge E ′= (5, 4) has color c′= // ,

different from c= ///o/o/o . W = '&%$ !"#6 is a vertex in H1∩ B1 which is not c′-saturated,
so we can use the refined basic operation involving E ′ and W as our second
transformation, making E a nondisconnecting edge as desired.

We next adjust the position of E , in order to get the graph G2. We use the
refined operation involving the vertex '&%$ !"#1 and the edge (3, 4). The last transforma-
tion involves relabeling the nodes '&%$ !"#5 , '&%$ !"#6 , '&%$ !"#2 , '&%$ !"#1 and '&%$ !"#4 by '&%$ !"#1 , '&%$ !"#2 , '&%$ !"#4 , '&%$ !"#5 and '&%$ !"#6
respectively.

Corollary 4.20. If G is a canonically oriented MCB graph of type (a, a), having
an odd number of edges, then G = 0.

Proof. Changing the orientation of all the edges of G, we obtain a canonically
oriented MCB graph G ′ of the same type as G. It follows from Proposition 4.17
that G = G ′. On the other hand, we get by part a) of Lemma 4.8 that G ′ = −G,
hence G = 0. �

Step 4. The preceding steps yield:

Corollary 4.21. For eλ, fλ as in Theorem 4.1, the space (U/F)λ is spanned by
MCB graphs Gµ′ of type µ′ = (a′ ≥ b′) (see Definition 4.16 for the type of an MCB
graph), with a′+b′ =min(eλ+1, r) and b′ ≥ fλ. Moreover, Gµ′ = 0 if a′ = b′ and
eλ is odd.
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Proof. The last statement is the content of Corollary 4.20. We know that (U/F)λ is
spanned by MCB graphs (Proposition 4.15), and the condition b′ ≥ fλ follows from
the fact that any graph G has at least λi

2/di vertices incident to edges of color i ,
and any edge is incident to one vertex in each of the two sets of the bipartition. The
number of vertices in the maximal connected component of an MCB graph of type
µ′ is a′+ b′ =min(eλ+ 1, r).

It remains to show that if µ′ = (a′ ≥ b′), a′+ b′ = min(eλ+ 1, r) and b′ ≥ fλ,
then there exists an MCB graph Gµ′ of type µ′. Consider A′ and B ′ disjoint sets
consisting of a′ and b′ vertices in {'&%$ !"#1 , . . . , ��������r } respectively. For every i = 1, . . . , n
we draw λi

2 edges of color i joining pairs of elements in A′ and B ′, in such a way
that no vertex has more than di incident edges of color i . This is possible since
λi

2/di ≤ fλ ≤ b′ ≤ a′. If the bipartite graph G (with vertex set A′ ∪ B ′) obtained in
this way is connected, then we get an MCB graph Gµ′ by adding to G the isolated
nodes outside A′ ∪ B ′. If G is not connected, then it has an edge E of color c
contained in a cycle, and a vertex v outside the connected component of E . If v is
not c-saturated, we can move E to make it incident to v, and preserve the bipartition
of G (as in the refined basic operations of type (1), Remark 4.18), thus obtaining a
graph with fewer components. If v is c-saturated, let E ′ be an incident edge of color
c. We move E and E ′ as in a refined basic operation of type (2), connecting the
components of E and v. Repeating this procedure will eventually yield a connected
graph G and an MCB graph Gµ′ as above. �

Lemma 4.22. Consider canonically oriented graphs Gµ′ as above, one for each
type µ′ = (a′, b′), with a′ 6= b′ when eλ is odd. If

π =
⊕
µ`r

µ=(a≥b)

πµ :U −→
⊕
µ`r

µ=(a≥b)

U d
µ,

then the set {π(Gµ′)}µ′ is linearly independent. In particular, F = I and the graphs
Gµ′ give a basis of (U/F)λ. This shows that dim((U/I )λ) = mλ, where mλ is as
described in Theorem 4.1, concluding the proof of our main result.

Proof. Note that the number of Gµ′ is precisely mλ, so the last statement follows
once we prove the independence of the Gµ′ . This is a consequence of the linear
independence of {π(Gµ′)}µ′ , which in turn follows once we show that for µ= (a, b),
µ′ = (a′, b′), we have

(1) πµ(Gµ′)= 0 if b < b′, and

(2) πµ(Gµ′) 6= 0 if b = b′.

Recall that Gµ′ = Tµ′ , for some n-tableau Tµ′ . We have

πµ(Tµ′)=
∑

Ti , (*)
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where each Ti is an n-tableau with entries 1, 2, obtained from a partition A t B =
{1, . . . , r} by setting equal to 1 and 2 the entries of Tµ′ from A and B respectively.

To prove (1), note that since |B| = b< b′, for each i the endpoints of some edge
in Gµ′ have to be set to the same value, so Ti has repeated entries in some column,
that is, Ti = 0. It follows that πµ(Gµ′)=

∑
Ti = 0.

To prove (2), let A′ t B ′ be the bipartition of the maximal connected component
of Gµ′ , and take

µ= (a, b)= (d − b′, b′).

The only n-tableau(x) Ti in (*) without repeated entries in some column is (are)
the n-tableau T1 obtained from setting the entries of A = {1, . . . , r}− B ′ to 1, and
the entries of B = B ′ to 2 (and if |A′| = |B ′|, the n-tableau T2 obtained by setting
the entries of A= {1, . . . , r}− A′ to 1 and the entries of B = A′ to 2). Since in the
latter case eλ must be even, we get in fact that T1 = T2, since T1 and T2 differ by
an even number of transpositions within columns, and by permutations of columns
of size 1. It follows that it’s enough to prove that T1 6= 0.

Up to permutations within columns, and permutations of columns of the same
size, we may assume that

T1 = cλ ·m = cλ · z(A,...,A) · z(B,...,B),

where A= {1, . . . , a} and B = {a+1, . . . , a+b}, that is, T1= T 1
1 ⊗· · ·⊗T n

1 , with

T i
1 =

1 1 ··· 1 1 1 ··· 2 2 ···
2 2 ··· 2

.

If a > b and σ = τ · τ ′, with τ a row permutation and τ ′ a column permutation
of the canonical n-tableau Tλ of shape λ, then σ ·m 6= m, unless τ ′ = id. This
shows that the coefficient of m in T1 is a positive number, hence T1 6= 0. If a = b,
σ ·m = m and τ ′ 6= id, then τ ′ must transpose all the pairs (1, 2) in the columns
of T1 of size 2. Since T1 has eλ (an even number) of such columns, the signature
of τ ′ must be +1. It follows again that the coefficient of m in T1 is positive and
therefore T1 6= 0. � �

Acknowledgments

I would like to thank David Eisenbud for his guidance, and Tony Geramita, Tony
Iarrobino, Joseph Landsberg, Steven Sam, Bernd Sturmfels and Jerzy Weyman for
helpful discussions. I would also like to thank Dan Grayson and Mike Stillman
[1993] for making Macaulay2, which has been used at various stages of this project.
I am grateful to the referee for useful suggestions for improving the presentation of
the paper.



Secant varieties of Segre–Veronese varieties 1867

References

[Allman 2007] E. S. Allman, “Open problem: Determine the ideal defining Sec4(P
3
×P3

×P3)”,
paper, 2007, Available at http://www.dms.uaf.edu/~eallman/Papers/salmonPrize.pdf.

[Allman and Rhodes 2008] E. S. Allman and J. A. Rhodes, “Phylogenetic ideals and varieties
for the general Markov model”, Adv. in Appl. Math. 40:2 (2008), 127–148. MR 2008m:60145
Zbl 1131.92046

[Bates and Oeding 2011] D. J. Bates and L. Oeding, “Toward a salmon conjecture”, Exp. Math. 20:3
(2011), 358–370. MR 2012i:14056

[Bernardi 2008] A. Bernardi, “Ideals of varieties parameterized by certain symmetric tensors”, J.
Pure Appl. Algebra 212:6 (2008), 1542–1559. MR 2009c:14106 Zbl 1131.14055

[Cartwright et al. 2012] D. Cartwright, D. Erman, and L. Oeding, “Secant varieties of P2
× Pn

embedded by O(1, 2)”, J. Lond. Math. Soc. (2) 85:1 (2012), 121–141. MR 2876313 Zbl 1239.14040

[Catalisano et al. 2008] M. V. Catalisano, A. V. Geramita, and A. Gimigliano, “On the ideals of
secant varieties to certain rational varieties”, J. Algebra 319:5 (2008), 1913–1931. MR 2009g:14068
Zbl 1142.14035

[Cox and Sidman 2007] D. Cox and J. Sidman, “Secant varieties of toric varieties”, J. Pure Appl.
Algebra 209:3 (2007), 651–669. MR 2008i:14077 Zbl 1115.14045

[Draisma and Kuttler 2011] J. Draisma and J. Kuttler, “Bounded-rank tensors are defined in bounded
degree”, preprint, 2011. arXiv 1103.5336

[Ein and Lazarsfeld 2012] L. Ein and R. Lazarsfeld, “Asymptotic syzygies of algebraic varieties”,
Invent. Math. 190:3 (2012), 603–646. MR 2995182

[Friedland 2010] S. Friedland, “On tensors of border rank l in Cm×n×l ”, preprint, 2010. arXiv 1003.
1968

[Friedland and Gross 2012] S. Friedland and E. Gross, “A proof of the set-theoretic version of the
salmon conjecture”, J. Algebra 356 (2012), 374–379. MR 2891138

[Fulton and Harris 1991] W. Fulton and J. Harris, Representation theory: A first course, Graduate
Texts in Mathematics 129, Springer, New York, 1991. MR 93a:20069 Zbl 0744.22001

[Garcia et al. 2005] L. D. Garcia, M. Stillman, and B. Sturmfels, “Algebraic geometry of Bayesian
networks”, J. Symbolic Comput. 39:3-4 (2005), 331–355. MR 2006g:68242 Zbl 1126.68102

[Grayson and Stillman 1993] D. R. Grayson and M. E. Stillman, Macaulay 2: A software system for
research in algebraic geometry, 1993, Available at http://www.math.uiuc.edu/Macaulay2/.

[Grone 1977] R. Grone, “Decomposable tensors as a quadratic variety”, Proc. Amer. Math. Soc. 64:2
(1977), 227–230. MR 57 #12542 Zbl 0404.15008

[Hà 2002] H. T. Hà, “Box-shaped matrices and the defining ideal of certain blowup surfaces”, J. Pure
Appl. Algebra 167:2-3 (2002), 203–224. MR 2002h:13020 Zbl 1044.13004

[Kanev 1999] V. Kanev, “Chordal varieties of Veronese varieties and catalecticant matrices”, J. Math.
Sci. (New York) 94:1 (1999), 1114–1125. MR 2001b:14078 Zbl 0936.14035

[Landsberg 2012] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathe-
matics 128, American Mathematical Society, Providence, RI, 2012. MR 2865915 Zbl 1238.15013

[Landsberg and Manivel 2004] J. M. Landsberg and L. Manivel, “On the ideals of secant varieties of
Segre varieties”, Found. Comput. Math. 4:4 (2004), 397–422. MR 2005m:14101 Zbl 1068.14068

[Landsberg and Manivel 2008] J. M. Landsberg and L. Manivel, “Generalizations of Strassen’s equa-
tions for secant varieties of Segre varieties”, Comm. Algebra 36:2 (2008), 405–422. MR 2009f:14109
Zbl 1137.14038

http://www.dms.uaf.edu/~eallman/Papers/salmonPrize.pdf
http://dx.doi.org/10.1016/j.aam.2006.10.002
http://dx.doi.org/10.1016/j.aam.2006.10.002
http://msp.org/idx/mr/2008m:60145
http://msp.org/idx/zbl/1131.92046
http://dx.doi.org/10.1080/10586458.2011.576539
http://msp.org/idx/mr/2012i:14056
http://dx.doi.org/10.1016/j.jpaa.2007.10.022
http://msp.org/idx/mr/2009c:14106
http://msp.org/idx/zbl/1131.14055
http://dx.doi.org/10.1112/jlms/jdr038
http://dx.doi.org/10.1112/jlms/jdr038
http://msp.org/idx/mr/2876313
http://msp.org/idx/zbl/1239.14040
http://dx.doi.org/10.1016/j.jalgebra.2007.01.045
http://dx.doi.org/10.1016/j.jalgebra.2007.01.045
http://msp.org/idx/mr/2009g:14068
http://msp.org/idx/zbl/1142.14035
http://dx.doi.org/10.1016/j.jpaa.2006.07.008
http://msp.org/idx/mr/2008i:14077
http://msp.org/idx/zbl/1115.14045
http://msp.org/idx/arx/1103.5336
http://dx.doi.org/10.1007/s00222-012-0384-5
http://msp.org/idx/mr/2995182
http://arxiv.org/abs/1003.1968
http://arxiv.org/abs/1003.1968
http://dx.doi.org/10.1016/j.jalgebra.2012.01.017
http://dx.doi.org/10.1016/j.jalgebra.2012.01.017
http://msp.org/idx/mr/2891138
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://msp.org/idx/mr/93a:20069
http://msp.org/idx/zbl/0744.22001
http://dx.doi.org/10.1016/j.jsc.2004.11.007
http://dx.doi.org/10.1016/j.jsc.2004.11.007
http://msp.org/idx/mr/2006g:68242
http://msp.org/idx/zbl/1126.68102
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.2307/2041432
http://msp.org/idx/mr/57:12542
http://msp.org/idx/zbl/0404.15008
http://dx.doi.org/10.1016/S0022-4049(01)00032-9
http://msp.org/idx/mr/2002h:13020
http://msp.org/idx/zbl/1044.13004
http://dx.doi.org/10.1007/BF02367252
http://msp.org/idx/mr/2001b:14078
http://msp.org/idx/zbl/0936.14035
http://msp.org/idx/mr/2865915
http://msp.org/idx/zbl/1238.15013
http://dx.doi.org/10.1007/s10208-003-0115-9
http://dx.doi.org/10.1007/s10208-003-0115-9
http://msp.org/idx/mr/2005m:14101
http://msp.org/idx/zbl/1068.14068
http://dx.doi.org/10.1080/00927870701715746
http://dx.doi.org/10.1080/00927870701715746
http://msp.org/idx/mr/2009f:14109
http://msp.org/idx/zbl/1137.14038


1868 Claudiu Raicu

[Landsberg and Weyman 2007] J. M. Landsberg and J. Weyman, “On the ideals and singularities of
secant varieties of Segre varieties”, Bull. Lond. Math. Soc. 39:4 (2007), 685–697. MR 2008h:14055
Zbl 1130.14041

[Landsberg and Weyman 2009] J. M. Landsberg and J. Weyman, “On secant varieties of compact
Hermitian symmetric spaces”, J. Pure Appl. Algebra 213:11 (2009), 2075–2086. MR 2010i:14095
Zbl 1179.14035

[Manivel 2009] L. Manivel, “On spinor varieties and their secants”, SIGMA Symmetry Integrability
Geom. Methods Appl. 5 (2009), Paper 078, 22. MR 2010h:14085 Zbl 1187.14055

[Oeding and Raicu 2011] L. Oeding and C. Raicu, “Tangential varieties of Segre varieties”, preprint,
2011. arXiv 1111.6202

[Pachter and Sturmfels 2004] L. Pachter and B. Sturmfels, “Tropical geometry of statistical models”,
Proc. Natl. Acad. Sci. USA 101:46 (2004), 16132–16137. MR 2114586 Zbl 1135.62302

[Pucci 1998] M. Pucci, “The Veronese variety and catalecticant matrices”, J. Algebra 202:1 (1998),
72–95. MR 2000c:14071 Zbl 0936.14034

[Raicu 2010] C. Raicu, “3× 3 minors of catalecticants”, preprint, 2010. arXiv 1011.1564

[Raicu 2011] C. C. Raicu, Secant varieties of Segre–Veronese varieties, thesis, University of Califor-
nia, Berkeley, 2011, Available at https://web.math.princeton.edu/~craicu/thesis.pdf. MR 2942194

[Snowden 2010] A. Snowden, “Syzygies of Segre embeddings”, preprint, 2010. arXiv 1006.5248

[Wakeford 1919] E. K. Wakeford, “On canonical forms”, Proc. London Math. Soc. 18:2 (1919),
403–410. MR 1576066 JFM 47.0880.01

[Weyman 2003] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in
Mathematics 149, Cambridge University Press, 2003. MR 2004d:13020 Zbl 1075.13007

Communicated by Bernd Sturmfels
Received 2011-06-30 Revised 2011-12-15 Accepted 2012-01-20

craicu@math.princeton.edu Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08544-1000, United States

Institute of Mathematics “Simion Stoilow”,
Romanian Academy of Sciences, 21 Calea Grivitei Street,
010702 Bucharest, Romania

mathematical sciences publishers msp

http://dx.doi.org/10.1112/blms/bdm049
http://dx.doi.org/10.1112/blms/bdm049
http://msp.org/idx/mr/2008h:14055
http://msp.org/idx/zbl/1130.14041
http://dx.doi.org/10.1016/j.jpaa.2009.03.010
http://dx.doi.org/10.1016/j.jpaa.2009.03.010
http://msp.org/idx/mr/2010i:14095
http://msp.org/idx/zbl/1179.14035
http://dx.doi.org/10.3842/SIGMA.2009.078
http://msp.org/idx/mr/2010h:14085
http://msp.org/idx/zbl/1187.14055
http://msp.org/idx/arx/1111.6202
http://dx.doi.org/10.1073/pnas.0406010101
http://msp.org/idx/mr/2114586
http://msp.org/idx/zbl/1135.62302
http://dx.doi.org/10.1006/jabr.1997.7190
http://msp.org/idx/mr/2000c:14071
http://msp.org/idx/zbl/0936.14034
http://msp.org/idx/arx/1011.1564
https://web.math.princeton.edu/~craicu/thesis.pdf
http://msp.org/idx/mr/2942194
http://msp.org/idx/arx/1006.5248
http://dx.doi.org/10.1112/plms/s2-18.1.403
http://msp.org/idx/mr/1576066
http://msp.org/idx/jfm/47.0880.01
http://dx.doi.org/10.1017/CBO9780511546556
http://msp.org/idx/mr/2004d:13020
http://msp.org/idx/zbl/1075.13007
mailto:craicu@math.princeton.edu
http://msp.org


Algebra & Number Theory
msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Virginia, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2012 is US $175/year for the electronic version, and $275/year (+$40 shipping outside the US) for
print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University
of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org
http://msp.org/


Algebra & Number Theory
Volume 6 No. 8 2012

1579On the refined ramification filtrations in the equal characteristic case
LIANG XIAO

1669On common values of φ(n) and σ(m), II
KEVIN FORD and PAUL POLLACK

1697Galois representations associated with unitary groups over Q

CHRISTOPHER SKINNER

1719Abelian varieties and Weil representations
SUG WOO SHIN

1773Small-dimensional projective representations of symmetric and alternating groups
ALEXANDER S. KLESHCHEV and PHAM HUU TIEP

1817Secant varieties of Segre–Veronese varieties
CLAUDIU RAICU

A
lgebra

&
N

um
ber

Theory
2012

Vol.6,
N

o.8

http://dx.doi.org/10.2140/ant.2012.6.1579
http://dx.doi.org/10.2140/ant.2012.6.1669
http://dx.doi.org/10.2140/ant.2012.6.1697
http://dx.doi.org/10.2140/ant.2012.6.1719
http://dx.doi.org/10.2140/ant.2012.6.1773

	1. Introduction
	2. Preliminaries
	2A. Secant varieties
	2B. Segre--Veronese varieties
	2C. Representation theory
	2D. Flattenings
	2E. The ideal and coordinate ring of a Segre--Veronese variety

	3. Equations of the secant varieties of a Segre--Veronese variety
	3A. Multiprolongations and inheritance
	3B. The ``generic case''
	3B.1. Generic multiprolongations
	3B.2. Tableaux
	3B.3. Generic flattenings
	3B.4. 1-flattenings

	3C. Polarization and specialization

	4. The secant line variety of a Segre--Veronese variety
	4A. Main result and consequences
	4B. Proof of the main result

	Acknowledgments
	References
	
	

