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The Chow ring of double EPW sextics
Andrea Ferretti

A conjecture of Beauville and Voisin states that for an irreducible symplectic
variety X the subring of CH∗(X) generated by divisors goes injectively into the
cohomology of X , via the cycle map. We prove this for a very general double
Eisenbud–Popescu–Walter sextic.

1. Introduction

A difficult problem in algebraic geometry is to characterize the kernel (and the
image) of the cycle map

c : CH∗(X)→ H∗(X,Z)

for a smooth projective variety X over C. When X is an irreducible symplectic
variety there is this general conjecture:

Conjecture 1 [Beauville 2007]. Let X be an irreducible symplectic variety, and
let DCH(X) ⊂ CH∗

Q
(X) be the subalgebra generated by the divisors. Then the

cycle map
c : CH∗(X)Q→ H∗(X,Q)

is injective when restricted to DCH(X).

We refer to the original article for the motivation of the conjecture and its link
with the conjectures of Bloch and Beilinson; we just remark that the conjecture
was known to hold when X is a K3 surface from [Beauville and Voisin 2004].
Conjecture 1 explicitly means the following: any polynomial relation

P(D1, . . . , Dk)= 0

in the fundamental classes of divisors which holds in H∗(X) already holds inside
CH∗

Q
(X).

This has been extended by Claire Voisin:
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Conjecture 2 [Voisin 2008]. Let X be an irreducible symplectic variety. Any poly-
nomial relation

P(D1, . . . , Dk, ci (X))= 0

in the fundamental classes of divisors and in the Chern classes of X that holds in
H∗(X) already holds in CH∗

Q
(X).

Theorem [Voisin 2008]. Conjecture 2 holds when

• X = S[n], for some K3 surface S, and n ≤ 2b2(S)tr + 4, where b2(S)tr is
the rank of the transcendental part of H 2(S), that is, the orthogonal of the
Néron–Severi lattice, or

• X is the Fano variety of lines on a cubic fourfold Y ⊂ P5.

To our knowledge, no other cases of the conjecture have been verified. We prove
it to be true for double EPW sextics, a class of irreducible symplectic varieties
introduced in [O’Grady 2008a] and named after Eisenbud, Popescu and Walter.
(We will review their construction shortly.) More precisely:

Theorem 1.1. Let X be a double EPW sextic and f : X→ Y its associated double
covering. Let

h = f ∗OY (1)

be the natural polarization. Then every polynomial relation between h and the
Chern classes of X which holds in H∗(X,Q) already holds in CH∗(X)Q.

In particular, if X is very general, Conjecture 2 holds for X.

Theorem 1.1 is the main result of my Ph.D. thesis [Ferretti 2009]. Some facts
that are only cited in the present paper are described there in more detail.

EPW sextics. In this section we recall some known facts about EPW sextics and
we fix the notation that we shall use. The results here are from [O’Grady 2006;
2008a]; see also [Ferretti 2009] for a detailed introduction.

We start with a six-dimensional vector space V over the field C. The space
∧6V

is one-dimensional, so we choose once and for all an isomorphism

vol :
∧6V → C.

This endows
∧3V with a symplectic form, given by

(α, β)= vol(α∧β),

for α, β ∈
∧3V , so

∧3V becomes a symplectic vector space of dimension 20.
For each nonzero v ∈ V we can consider the Lagrangian subspace

Fv = {v∧α | α ∈
∧2V }.
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This is clearly isotropic, and the isomorphism

ϕv : Fv
∼=
−→

∧2(V/〈v〉)

v∧α 7−→ [α]
(1-1)

shows that dim Fv =
(

5
2

)
= 10.

Since the subspace Fv only depends on the class [v]∈P(V ), the subspaces Fv fit
together, giving rise to a Lagrangian subbundle F of the trivial symplectic bundle
P(V )×

∧3V . The maps in (1-1) then yield an isomorphism

F ∼= S⊗
∧2 Q,

where Q is the tautological quotient bundle on P(V ) and S the tautological sub-
bundle. From this a standard computation gives

c1(F)= c1(
∧2 Q)+ rk(F)c1(S)=−6H, (1-2)

where H = c1(O(1)) is the hyperplane class on P(V ).
We are now ready to define the EPW sextics, as follows. Fix a Lagrangian

subspace A⊂
∧3V . Note that the symplectic form gives a canonical identification∧3V/A ∼= A∨.

Let
λA : F→ OP(V )⊗ A∨ (1-3)

be the inclusion F ↪→ OP(V ) ⊗
∧3V followed by the projection modulo A. The

map λA is a map of vector bundles of equal rank 10.

Definition 1.2. We set
YA = Z(det λA),

the zero locus of the determinant of λA. This is a subscheme of P(V ); when it is
not the whole of P(V ), YA is called an EPW sextic. (It is indeed a sextic by (1-2).)

The support of the scheme YA is by definition the locus

{[v] ∈ P(V ) | dim(Fv ∩ A)≥ 1}.

We then set
YA[k] = {[v] ∈ P(V ) | dim(Fv ∩ A)≥ k},

so that YA = YA[1], at least set-theoretically. The loci YA[k] also have a natural
scheme structure, given by the vanishing of the determinants of the (11 − k) ×
(11− k) minors of λA.

The natural parameter space for EPW sextics is the Lagrangian Grassmannian
LG(

∧3V ), or more precisely the Zariski open set parametrizing those A for which
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YA ( P(V ). We recall that LG(
∧3V ) ⊂ Gr(10,

∧3V ) is the subvariety of La-
grangian subspaces; it is a smooth variety of dimension 55.

Double EPW sextics. Assume that YA is not the whole of P(V ). The map of vector
bundles λA in (1-3) is an injective homomorphism of sheaves, whose cokernel is
supported on YA. If we denote by

i A : YA→ P(V )

the inclusion, then we have an exact sequence

0−→ F −→ OP(V )⊗ A∨ −→ i A∗(ξA)−→ 0 (1-4)

for some sheaf ξA on YA. For a generic Lagrangian subspace A the locus

YA[2] =
{
[v] ∈ P(V ) | dim(Fv ∩ A)≥ 2

}
is properly contained in YA; it follows that ξA is generically free of rank 1. If

ζA = ξ
∨

A (3),

there is a natural multiplication map

m A : ζA⊗ ζA→ OYA .

More precisely:

Lemma 1.3 [O’Grady 2008a]. The map m A is symmetric and associative, and
gives an isomorphism between ζA⊗ ζA and OYA .

Thanks to the lemma we see that the sheaf

OYA⊕ ζA

has the structure of an OYA -algebra, so we have an associated double covering.

Definition 1.4. We denote by X A this double covering; the scheme X A is called a
double EPW sextic. We denote by

f A : X A→ YA

the covering map.

The scheme X A is endowed with a polarization h A = f ∗A OYA(1).

Remark 1.5. The ramification locus of the map f A is YA[2]. To see this we just
need to observe that by construction the ramification locus is the locus where the
sheaf ζA, or equivalently the sheaf ξA, is not locally free. Since i A∗(ξA) is the
cokernel of the map

λA : F→ OP(V )⊗ A∨,

we see that the rank of ξA jumps exactly along YA[2], hence our claim.
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Definition 1.6 [O’Grady 2010]. We let

6 =
{

A ∈ LG(
∧3V ) |

∧3(W )⊂ A for some W ⊂ V, dim W = 3
}
.

In other words, 6 is the set of Lagrangian subspaces of
∧3V containing a decom-

posable form. We also let

1=
{

A ∈ LG(
∧3V ) | YA[3] 6=∅

}
⊂ LG(

∧3V ).

Finally we define
LG(

∧3V )0 = LG(
∧3V ) \ (6 ∪1).

We recall the following characterization of smooth double EPW sextics:

Theorem 1.7 [O’Grady 2010]. The double covering X A is smooth if and only if

A ∈ LG(
∧3V )0.

The relevance of these double coverings stems from the following result.

Theorem 1.8 [O’Grady 2010]. Let A ∈ LG(
∧3V )0. Then X A is an irreducible

symplectic variety. The Beauville–Bogomolov form on H 2(X,Z) is the same as
that of S[2], where S is a K3 surface, and the Fujiki constant of X A is 3.

Let Z A = f −1
A (YA[2]); this is the branch locus for the 2 :1 covering, hence it

is isomorphic to YA[2] itself. Since the covering involution is antisymplectic, the
symplectic form restricts to 0 on Z A, that is, Z A is isotropic. Under mild assump-
tions Z A is a surface, hence a Lagrangian surface inside X A. More precisely:

Proposition 1.9 [O’Grady 2010]. Let A ∈ LG(
∧3V )0. Then YA[2] is a smooth

connected surface of degree 40, with χtop(YA[2])= 192.

We will need the following relation in the Chow group. It appears in [O’Grady
2008b, Proposition 4.9], with a different proof from the one given below.

Proposition 1.10. Let A ∈ LG(
∧3V )0, Z = Z A. The canonical class of Z satisfies

2K Z = OZ (6)

in CH∗(Z).

Remark 1.11. The proposition determines K Z only up to 2-torsion. Namely we
can rewrite it as

K Z = OZ (3)+ κ,

where κ is a 2-torsion class. One can use the deformation argument in [Ferretti
2012] and the results of [Welters 1981] to show that the class κ is really nonzero.
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Proof. For simplicity let W = f (Z) denote the singular set of Y . We know that on
W the map λ has constant rank 8, so we get the following exact sequence of vector
bundles on W :

0−→ K−→ F
λ|W
−→ OW ⊗ (

∧3V/A)−→ ζ |W −→ 0. (1-5)

Here K is defined to be the kernel of λ|W ; it has rank 2. Identifying W with its
preimage Z ⊂ X , we claim that the following isomorphisms hold:

ζ |W ∼= NZ/X , (1-6)

K∼= N∨Z/X . (1-7)

Assuming (1-6) and (1-7) for a moment, the exact sequence in (1-5) gives

c1(N
∨

Z/X )− c1(F)− c1(NZ/X )= 0,

hence
2c1(NZ/X )=−c1(F)= OZ (6).

Since X has trivial canonical class, it follows that

2K Z = 2c1(NZ/X )= OZ (6),

as desired.
So we now turn to the proof of (1-6) and (1-7). Let p ∈ Z ; then the covering

involution ϕ fixes p, so ϕ∗ acts on Tp X . This gives a decomposition

Tp X = (Tp X)+⊕ (Tp X)−

in eigenspaces for ϕ∗, with eigenvalues ±1. Since Z is the fixed locus of ϕ,

(Tp X)+ = Tp Z .

On the other hand, since
X = Spec(OY ⊕ ζ ),

we can identify
(Tp X)− ∼= ζ f (p).

It follows that
(NZ/X )p ∼= ζ f (p);

this fiber-wise identification is easily seen to globalize, hence yielding the isomor-
phism in (1-6).

For the other, we show that K∼= ζ |∨W . Indeed observe that over W we have

Kv = Fv ∩ A and ζv =
∧3V/(Fv + A).
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The symplectic form identifies K∨v with the quotient
∧3V/(Fv ∩ A)⊥, and since

both A and Fv are Lagrangian we have

(Fv ∩ A)⊥ = F⊥v + A⊥ = Fv + A,

thereby proving the isomorphism (1-7). �

Corollary 1.12. For A ∈ LG(
∧3V )0 the surface Z A ∼= YA[2] is of general type.

Plan of the paper. Before turning to the proof of Theorem 1.1, we explain the
overall plan. Let X = X A be a smooth double EPW sextic, and denote its polar-
ization h = h A. The symplectic form gives an isomorphism

TX ∼=�
1
X ,

hence the odd Chern classes vanish. So we only need to consider c2(X) and c4(X).
Moreover if A is very general in LG(

∧3V ), the group Pic(X A) is cyclic, generated
by h A, so the second conclusion of Theorem 1.1 follows from the first.

The only relations in cohomology can be in degree 4, 6, or 8. Lemma 2.3
excludes the existence of relations of degree 4, hence we are left with relations in
degree 6 or 8; these are listed in Propositions 2.1 and 2.2.

Since h4, c2(X) ·h, c2(X)2, and c4(X) are all proportional in cohomology, there
must be some distinguished 0-cycle θ on X , such that all these classes are multiples
of θ in CH 4(X). We shall define θ as the class of any point on a suitable surface
inside X A; actually it will be easier to work with YA and pull back everything to
X A later.

Hence we look for a surface S⊂ X such that CH 2(S) is trivial, so each point on
S is rationally equivalent to each other. For instance, in the proof of the conjecture
in the case where X is the Fano variety of a cubic fourfold, Voisin [2008] used a
rational surface. In that case there is a family of Lagrangian surfaces on X , which
are simply the Fano varieties of hyperplane sections of the cubic; if the section is
singular enough, its Fano variety turns out to be rational.

In our case this construction is a delicate point: the analogue of S is an Enriques
surface, but exhibiting it is complicated. The construction that we need is provided
in [Ferretti 2012].

So the plan is as follows. In Section 2 we carry out the cohomology computa-
tions on X . In Section 3 we use the surface constructed in [Ferretti 2012] to define
the class θ . In the rest of the paper we find enough relations in the Chow ring to
finish the proof of the main theorem.

2. Cohomology computations

Let X = X A be a smooth double EPW sextic. In this section we compute the
cohomological invariants of X , partly following [O’Grady 2008b]. We shall find
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all relations in cohomology between h and the Chern classes of X . In later sections
we shall show that these relations hold in the Chow ring.

Let σ be the symplectic form on X . Since the canonical of X is trivial

H 4,0(X)= H 0(X, �4
X )

is generated by σ 2. Moreover it is known that H 3(X)= 0, so we can compute the
Euler characteristic

χ(X,OX )= h0,0(X)+ h2,0(X)+ h4,0(X)= 3.

The symplectic form on X gives an isomorphism

TX ∼=�
1
X ,

hence the odd Chern classes vanish. The Hirzebruch–Riemann–Roch theorem for
X simplifies to

3= χ(X,OX )=
1

240

(
c2(X)2− 1

3 c4(X)
)
. (2-1)

We introduce some more notation. Let us call

q ∈ Sym2(H 2(X,Q)∨)

the Beauville–Bogomolov form of X . Since it is nondegenerate, it allows us to
give an identification

H 2(X,Q)∼= H 2(X,Q)∨;

hence we obtain a dual quadratic form

q∨ ∈ Sym2(H 2(X,Q)).

From [Verbitsky 1996, Theorem 1.5] (together with the computation of the Betti
numbers in [Göttsche 1990]) we know that the cup product yields an isomorphism
between Sym2(H 2(X,Q)) and H 4(X,Q), so we can regard q∨ as an element of
H 4(X,Q).

O’Grady [2008b] proves that we have the relation

q∨ = 5
6 c2(X), (2-2)

and that for any α, β ∈ H 2(X,Q) we have

q∨ ·α ·β = 25q(α, β). (2-3)

We now work out the relations in the cohomology of X . Let

h = c1( f ∗OY (1)) ∈ H 2(X).
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Proposition 2.1. In the cohomology ring H∗(X,Q) we have

h4
= 12, h2

· c2(X)= 60, c2(X)2 = 828, c4(X)= 324.

Proof. The first and the last relations are easily handled. Indeed,

h4
= 2 deg(Y )= 12.

As for the last one we have
c4(X)= χ(X),

and since X is a deformation of S[2], where S is a K3, we have

χ(X)= χ(S[2])= 324.

By O’Grady’s computations (2-3) and (2-2) we also have

c2(X) · h2
=

6
5 q∨ · h2

=
25·6

5
q(h, h)= 60.

Finally we can use (2-1) to obtain c2(X)2 = 828. �

In degree 6 the only possible relation is a linear dependency between h3 and
c2(X) · h, and indeed we have:

Proposition 2.2. There is a relation

c2(X) · h = 5h3

H 6(X,Q).

Proof. From O’Grady’s relation (2-3) we get

6q∨ · h ·α = 6 · 25q(h, α)

for all α ∈ H 2(X). On the other hand, by polarization of Fujiki’s relation we obtain

25h3
·α = 25 · 3 · q(h, h)q(h, α)= 6 · 25q(h, α).

So Poincaré duality implies that

25h3
= 6q∨ · h

modulo torsion, and using (2-2) we get the thesis. �

We can instead exclude relations in degree 4:

Lemma 2.3. The classes h2 and c2(X) are linearly independent inside H 2(X).

This fact appears inside the proof of [O’Grady 2008b, Claim 3.1], but we add a
short proof for completeness.
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Proof. We can substitute c2(X) with its multiple q∨. Assume that we have a
relation

h2
+ λq∨ = 0

for some λ ∈ C. Then we get

h2α2
=−25λq(α, α)

for all α ∈ H 2(X). By polarization of the Fujiki formula we also obtain

h2α2
= q(α, α)q(h, h)+ 2q(h, α)2.

So if q(α, α) = 0 we obtain q(h, α) = 0. This means that q is degenerate (the
quadric defined by q would be contained in a hyperplane of PH 2(X)), which is a
contradiction. �

Finally, it will be useful to write out the explicit form of Hirzebruch–Riemann–
Roch, using the above computations for the characteristic classes of X . We let

OX (1)= f ∗OY (1).

Then OX (n) is ample on X , and since K X is trivial, Kodaira vanishing yields

χ(X,OX (n))= h0(X,OX (n)).

The formula of Hirzebruch–Riemann–Roch then reads

h0(X,OX (n))=
h4

24
n4
+

c2(X) · h2

24
n2
+χ(OX )=

1
2 n4
+

5
2 n2
+ 3. (2-4)

3. Definition of the class θ

Let X = X A be a double EPW sextic, f : X → Y the double covering. Our first
task is to define a class

θ ∈ CH 4(X)

of degree 1. Then we will show that the relations

h4
= 12θ, h2c2(X)= 60θ, c2(X)2 = 828θ, c4(X)= 324θ

hold.
It will actually be easier to work on Y , so we should find the relationship between

CH(X) and CH(Y ).

Remark 3.1. The map f : X→ Y induces a push-forward morphism

f∗ : CH(X)→ CH(Y ),

because f is proper (for the construction of Chow rings and morphisms between
them see [Fulton 1984, Chapter 1]). On the other hand f ∗ is usually defined for flat
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maps with fibers of constant dimension, or when the target is smooth, and neither
is the case.

Following [Fulton 1984, Example 1.7.6] we can define f ∗ in our situation. In-
deed, Fulton shows that if

Y = X/G

is the quotient of X by the action of a finite group G, we have a canonical isomor-
phism

CH(Y )Q ∼= CH(X)GQ,

where as usual CH(Y )Q =CH(Y )⊗Q. So if f is the quotient map we can define
f ∗ by the composition

CH(Y )Q
∼=
−→ CH(X)GQ ↪→ CH(X)Q.

Fulton also shows that the composition

CH(Y )Q
f ∗
−→ CH(X)Q

f∗
−→ CH(Y )Q

is the multiplication map by ]G.
In our situation G=〈ϕ〉, where ϕ is the covering involution, and the composition

above is multiplication by 2.
Moreover we observe that

CH(Y )Q ∼= CH(X)Z/2Z

Q

is a subring of CH(X)Q, so we can multiply cycle classes on Y even if it is singular.

We now recall the main result in [Ferretti 2012]. There we produce a surface
S ⊂ Y such that CH 2(S) = Z; this will be the starting point for our investigation
of CH∗(Y ). Let us fix a Lagrangian subspace A ∈ LG(

∧3V ). If B is another
Lagrangian subspace such that

dim(A∩ B)= 9, (3-1)

it follows from the Grassmann formula that YB[2] ⊂ YA.

Theorem [Ferretti 2012]. Let A be a Lagrangian subspace in LG(
∧3V )0. Then

there exists another Lagrangian subspace B such that dim(A ∩ B) ≥ 9, and such
that S := YB[2] is either a (singular) Enriques surface, or a degeneration of such
surfaces. In either case we have

CH 2(S)∼= Z.

Moreover we have the relation

[S] =
[
YA[2]

]
(3-2)
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in CH 2(X A).

So for such a choice of B we know that all points on S = YB[2] are rationally
equivalent. We define θ̄ as the class of any such point. We need to do some checks
in order to show that this is actually well-defined. We also define

θ = 1
2 f ∗(θ̄) ∈ CH 4(X A)Q.

Lemma 3.2. Let B, B ′ ∈ LG(
∧3V ) such that (3-1) holds. Then

YB[2] ∩ YB ′[2] 6=∅. (3-3)

Proof. It is enough to show that

YB[2] · YB ′[2] 6= 0

in CH∗(YA). Thanks to (3-2) it will be enough to prove that

YA[2]2 6= 0.

By the definition of the ring structure on CH∗(YA) we need to prove that

Z2
A 6= 0 in CH∗(X A).

But actually Z2
A 6= 0 already in cohomology. Indeed, using the fact that Z A is

Lagrangian, we have

Z2
A = c2(NZ A/X A)= c2(�

1
Z A
)= c2(Z A)= χtop(Z A)= 192

by Proposition 1.9. �

By the previous lemma we see that the class of θ̄ ∈ CH 4(YA) is actually inde-
pendent of the chosen Lagrangian subspace B such that (3-1) holds.

4. Relations coming from vector bundle morphisms

In this section we omit A from the notation, for clarity. Fix a Lagrangian subspace
A ∈ LG(

∧3V )0 and denote X = X A, Y = YA, and Z = Z A. We shall exhibit a
number of relations coming from exact sequences of sheaves on X and Y .

Lemma 4.1. The following relation holds in CH(X):

3Z = 15h2
− c2(X).

Proof. We consider f as a map X→P5, so it induces a morphism of vector bundles
over X :

d f : TX → f ∗TP5 .
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We notice that d f is injective outside Z , so we can see Z as a degeneracy locus
for this morphism. We then apply the Thom–Porteous formula in the form stated
in [Fulton 1984, §14.4]. In their notation we have e = 4, f = 5, and k = 3.

This yields a cycle class

D3(d f ) ∈ CH 2(Z)

whose support is Z , and such that the image of D3(d f ) in CH 2(X) is

1
(1)
2 (c( f ∗TP5 − TX ))= c2( f ∗TP5 − TX ).

Here the total Chern class
c( f ∗TP5 − TX )

is defined formally in such a way that Whitney’s formula holds, that is,

c(TX ) · c( f ∗TP5 − TX )= c( f ∗TP5).

From the last equation and the fact that c1(TX ) = 0 (since X is symplectic) we
can obtain

c2( f ∗TP5 − TX )= f ∗c2(TP5)− c2(TX )= 15h2
− c2(X).

Since D3(d f ) has support on Z , which is irreducible, we find that

k Z = 15h2
− c2(X) (4-1)

for some k ∈ Z. To find the right k, we observe that, again by [Fulton 1984,
Theorem 14.4(c)], we have

D3(d f )= [D3(d f )],

where D3(d f ) is the degeneracy locus of d f . In other words D3(d f ) is just Z ,
with the scheme structure given by the vanishing of all 4× 4 minors of d f .

The map
f : X→ Y ⊂ P5

has, in suitable analytic coordinates around a point of Z , the local form

f (x, y, z, t) =
loc
(x2, xy, y2, z, t).

The differential of f is then

d f =
loc


2x 0 0 0
y x 0 0
0 2y 0 0
0 0 1 0
0 0 0 1

 ;
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equating to 0 the determinants of its 3× 3 minors yields

D3(d f ) =
loc

V (x2, xy, y2).

So we see that D3(d f ) has multiplicity 3 at each point of Z , hence k = 3.
Alternatively we could multiply (4-1) by h2 to find

k Z · h2
= 15h4

− c2(X) · h2.

If we look at this relation in cohomology it becomes, thanks to Proposition 2.1,

40k = 15 · 12− 60,

so k = 3. �

We take a closer look at the differential of

f : X→ P5.

As a map of vector bundles, this is not injective exactly on Z . Hence it is always
injective on stalks; in other words

d f : TX → f ∗TP5

is an injective map of sheaves. Let R denote its cokernel; this is locally free of
rank 1 outside Z . So we have the exact sequence

0−→ TX −→ f ∗TP5 −→ R−→ 0. (4-2)

We now dualize it applying Hom(·,OX ). We remark that

Hom(R,OX )

is torsion-free, of rank one, and one can check in local coordinates that it is a line
bundle. By (4-2) we get c1(R)= 6h, hence

Hom(R,OX )∼= OX (−6).

Then we note that
Ext1( f ∗(TP5),OX )= 0,

because both sheaves are locally free. So if we let

Q= Ext1(R,OX ),

the dual of (4-2) becomes

0−→ OX (−6)−→ f ∗(�1
P5)

d f T

−→�1
X −→ Q−→ 0. (4-3)
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We remark that Q is set-theoretically supported on Z , because both R and OX are
locally free outside Z . Actually the schematic support of Q is 2Z , that is, the
subscheme of X defined by the ideal I2

Z . This follows from:

Lemma 4.2. Let Q be as above; then Ann(Q)= I2
Z .

Proof. We only need to prove this locally. As in the proof of Lemma 4.1 we can
choose local coordinates on X such that

f (x, y, z, t) =
loc
(x2, xy, y2, z, t);

then d f T has the matrix

d f T
=
loc


2x y 0 0 0
0 x 2y 0 0
0 0 0 1 0
0 0 0 0 1

 ;
hence we have the presentation

Q =
loc

〈dx, dy〉
〈x dx, x dy+ y dx, y dy〉

.

A given h(x, y) ∈ C[x, y] then annihilates Q if and only if both h dx and h dy
belong to the k[x, y]-module generated by x dx , x dy+ y dx , and y dy.

Let us make this more explicit. Assume that

h(x, y)dx = a(x, y)x dx + b(x, y) · (x dy+ y dx)+ c(x, y)y dy.

This yields
h(x, y)= xa(x, y)+ yb(x, y),

0= xb(x, y)+ yc(x, y).

The second equation implies b(x, y)= yb′(x, y), so the first becomes

h(x, y)= xa(x, y)+ y2b′(x, y).

If h can be written this way, then we can choose c so that the second condition is
satisfied. In short

h(x, y) dx ∈ 〈x dx, x dy+ y dx, y dy〉k[x,y]

if and only if h ∈ (x, y2).
We have the symmetric condition for h(x, y) dy, so we conclude that h∈Ann(Q)

if and only if
h ∈ (x, y2)∩ (x2, y)= (x2, xy, y2).
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The last equality between ideals can be proved, for instance, by the remark that
both (x, y2)∩ (x2, y) and (x2, xy, y2) consist of the polynomials h such that

h(0, 0)= ∂h
∂x
(0, 0)= ∂h

∂y
(0, 0)= 0.

Finally, (x2, xy, y2) is exactly the square of the ideal (x, y) which locally de-
fines Z . �

We now produce another exact sequence involving Q. Let

i : Z ↪→ X

denote the inclusion. Recall that we have a canonical identification

IZ/I
2
Z
∼= i∗N∨Z/X : (4-4)

locally the function g vanishing on Z corresponds to the normal covector dg. Con-
sider the natural projection

π :�1
X |Z → N∨Z/X ;

we see this as a map on X :

π :�1
X → IZ/I

2
Z .

Lemma 4.3. We have π ◦ d f T
= 0.

Proof. We keep the notation of the proof of Lemma 4.2. We need only to verify
the thesis on Z . The image of d f T is generated by

x dx, x dy+ y dx, y dy, dz, dt.

The first three elements vanish on Z , while the latter two are in the kernel of π . �

The above lemma and the exact sequence in (4-3) provide us a surjective map

α : Q→ i∗(N∨Z/X ).

Lemma 4.4. The kernel of α is i∗(det TZ ).

Proof. We can see this explicitly in local coordinates. Keeping the notation of the
above proofs, Q is locally generated, on Z , by dx , dy, and x dy = −y dx . The
conormal bundle N∨Z/X is generated by dx and dy, and α is the obvious projection.

The kernel of α is then generated by x dy. Under the identification in (4-4) this
corresponds to the generator dx ∧ dy of

∧2 N∨Z/X .
So

kerα = i∗(det N∨Z/X )
∼= i∗(det TZ ),

since Z is Lagrangian. �
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Thanks to the lemma we get the exact sequence we are looking for:

0−→ i∗(det TZ )−→ Q−→ i∗TZ −→ 0. (4-5)

We can now find new relations in the Chow ring of X .

Proposition 4.5. In CH(X)Q we have

c2(X) · h = 5h3

and c4(X) is a linear combination of h4, c2(X) · h2, and c2(X)2.

Proof. This is just a matter of putting together the relations that come from the
exact sequences (4-3) and (4-5).

We start from (4-3), which yields

(1− 6h) · (1+ c2(X)+ c4(X))= (1− h)6 · (1+ c1(Q)+ c2(Q)+ c3(Q)+ c4(Q)).

Comparing the terms in degree up to 2 we get:

c1(Q)= 0, c2(Q)= c2(X)− 15h2
=−3Z , (4-6)

where the last equality is Lemma 4.1. Then in degree 3 we have

c3(Q)= 6h(c2(Q)− c2(X))+ 20h3
= 6h · (−15h2)+ 20h3

=−70h3, (4-7)

using the second of (4-6). Finally in degree 4 we get, using (4-6) and (4-7),

c4(X)= 15h4
+15h2

·c2(Q)−6h ·c3(Q)+c4(Q)= 15h4
−45h2

·Z+420h4
+c4(Q),

hence
c4(Q)= c4(X)− 435h4

+ 45h2
· Z . (4-8)

Next we look at the relations coming from (4-5). To do this we shall use
Grothendieck–Riemann–Roch, which for the closed embedding

i : Z ↪→ X

takes the form
ch(i∗F)= i∗(ch(F) · td(NZ/X )

−1),

for any F ∈ Coh(Z). This is because in our situation we have

Rki∗(F)= 0

for all such F, thanks to [Hartshorne 1977, Corollary III.11.2].
Using that Z is Lagrangian we have NZ/X ∼=�

1
Z , so we can compute

td(NZ/X )= 1− 1
2 c1(Z)+ 1

12 (c1(Z)2+ c2(Z)),

td(NZ/X )
−1
= 1+ 1

2 c1(Z)+ 1
6 c1(Z)2− 1

12 c2(Z).
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Then we have

ch(det TZ )= 1+ c1(Z)+ 1
2 c1(Z)2,

ch(TZ )= 2+ c1(Z)+ 1
2 (c1(Z)2− c2(Z)).

So Grothendieck–Riemann–Roch for these sheaves becomes

ch(i∗ det TZ )= i∗
(
1+ 3

2 c1(Z)+ 7
6 c1(Z)2− 1

12 c2(Z)
)
,

ch(i∗TZ )= i∗
(
2+ 2c1(Z)+ 4

3 c1(Z)2− 7
6 c2(Z)

)
.

Next we use the fact that in CH(Z)Q we have

c1(Z)=−K Z =−3i∗(h),

thanks to Proposition 1.10. So we obtain

ch(i∗ det TZ )= Z − 9
2 h · Z + 21

2 h2
· Z − 1

12 Z2,

ch(i∗TZ )= 2Z − 6h · Z + 12h2
· Z − 7

6 Z2.

We can use this to recover the Chern classes of i∗(det TZ ) and i∗(TZ ). These are:

c1(i∗ det TZ )= 0, c2(i∗ det TZ )=−Z ,

c3(i∗ det TZ )=−9h · Z , c4(i∗ det TZ )= Z2
− 63h2

· Z ,

and
c1(i∗TZ )= 0, c2(i∗TZ )=−2Z ,

c3(i∗TZ )=−12h · Z , c4(i∗TZ )= 9Z2
− 72h2

· Z .

Finally we use the exact sequence (4-5) to get the Chern classes of Q. The first
two are

c1(Q)= 0, c2(Q)=−3Z ,

in accordance with (4-6). Then we get

c3(Q)=−21h · Z ,

and comparing with (4-7) we obtain

−3h · Z =−10h3.

Using Lemma 4.1 this is equivalent to

c2(X) · h = 5h3.

Finally we get
c4(Q)= 12Z2

− 135h2
· Z;
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comparing with (4-8) this yields

12Z2
− 135h2

· Z = c4(X)− 435h4
+ 45h2

· Z ,

and using again Lemma 4.1 to write Z as a rational combination of c2(X) and h2,
we get the second claim of the thesis. �

5. Conclusion of the proof

First we recall that we have defined the class

θ = 1
2 f ∗(θ̄).

Here θ̄ is the class of any point on a surface S ⊂ YA. By (3-2) we know that[
YA[2]

]
= [S] in CH 2(YA).

We also let h̄ = OY (1), so that h = f ∗(h̄).

Lemma 5.1. There exists a line L0 ⊂ Y which meets YB[2].

Proof. Let V be the union of lines contained in Y .

Step 1: dim V ≥ 2. Let R ⊂ Gr(2, V ) be the locus of lines `⊂ YA. We can obtain
R as follows. Let

YA = V (g),

where g is a degree-6 polynomial, and let S be the tautological subbundle on
Gr(2, V ), so that Sym6(S∨) is the fiber bundle whose fiber at ` is the vector space
of homogeneous polynomials of degree 6 on `.

Then we can define a section

s ∈ H 0(Gr(2, V ),Sym6(S∨))

by the condition
s(`)= g|`.

By definition R is the zero locus of s. It follows that

dim R ≥ dim Gr(2, V )− rk Sym6(S∨)= 8− 7= 1,

provided R is not empty. But we can show that R 6= ∅ by computing the funda-
mental class

[R] = c7(Sym6(S∨))= 432 · 134σ4,3.

Here the notation is that of Schubert calculus, see for instance [Griffiths and Harris
1978, §1.5].

Since V =
⋃
`∈R

` is birational to a P1-bundle over R, it follows that dim V ≥ 2.
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Step 2: There exists B ′ such that A∩ B = A∩ B ′ and YB ′[2] meets V . Let

U = A∩ B.

In [Ferretti 2012] we have shown that there exists a divisor DU ⊂ YA which is
covered by the surfaces [YB ′[2]] as B ′ ranges through the Lagrangian subspaces
which satisfy

A∩ B ′ ⊃U.

In particular DU has dimension 3; since two varieties of dimensions 2 and 3 in P5

always meet, it follows that
DU ∩ V 6=∅.

So there exists a Lagrangian subspace B ′ such that B ′ ∩ A =U and

YB ′[2] ∩ V 6=∅.

Step 3: B meets V . We lift everything to X A, which is smooth, so intersection
theory applies. Let

Ṽ1 = f −1(V ) and Ṽ2 = f −1(YB ′[2]).

One easily sees that on X
Ṽ1 · Ṽ2 6= 0.

Since f −1(YB[2]) and Ṽ2 have the same homology class, it follows that

Ṽ1 · f −1(YB[2]) 6= 0;

in particular Ṽ1 must meet f −1(YB[2]), and so

V ∩ YB[2] 6=∅. �

Using Lemma 5.1 we can start proving that

h4
= 6θ in CH(X). (5-1)

Indeed let L0 be any line meeting S and let3 be any plane containing L0. Then
h̄3 is represented by the intersection

3 · Y = L0+C,

where C is a quintic on 3. Multiplying by h̄ we obtain

h̄4
= L0 · h̄+C · h̄.

We claim that this is represented by a 0-cycle supported on L0. This is clear for
the first addend; for the second we represent h̄ by a hyperplane containing L0 and
transverse to 3. It follows that C · h̄ is supported on C ∩ L0.
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Since L0 is rational, CH 1(L0) ∼= Z, so h̄4 is rationally equivalent to a multiple
of a point of L0. Finally L0 ∩ S 6=∅, so we get

h̄4
= kθ̄ in CH 4(Y )Q

for some k ∈Q.
Pulling back this relation to X and using f ∗(h̄) = h, f ∗(θ̄) = 2θ we see that

h4
= 2k θ in CH 4(X)Q. Since in cohomology we have h4

= 12 we must have k= 6,
and so (5-1) is proved.

Next we show that
h2
· c2(X)= 60 θ̄ . (5-2)

We start from Lemma 4.1; pushing forward that relation we get

3
[
YA[2]

]
= 15 · 4 h̄2

− f∗c2(X) in CH 2(Y ). (5-3)

Multiplying (5-3) by h̄2 we get

h̄2
· f∗c2(X)= 60 h̄4

− 3h̄2
·
[
YA[2]

]
.

We already proved that h̄4 is a multiple of θ̄ , and the cycle class

h̄2
·
[
YA[2]

]
= h̄2
· [S]

is supported on S, hence it is a rational multiple of θ̄ too.
We conclude that the relation (5-2) holds up to a multiple, that is,

h̄2
· f∗c2(X)= kθ̄ .

As before, we pull back this relation to X in order to make computations in coho-
mology. We get

h2
· 2c2(X)= 2kθ̄ .

Since in cohomology we have h2
· c2(X)= 60, we must have k = 60, and (5-2) is

proved.
In a similar way, we can rewrite (5-3) as

f∗c2(X)= 15 h̄2
− 3

[
YA[2]

]
and take squares to write ( f∗c2(X))2 as a combination of h̄4 and a 0-cycle supported
on YB[2]. This shows that ( f∗c2(X))2 is a rational multiple of θ̄ .

As usual a cohomology computation yields the precise form

c2(X)2 = 828θ.

Now we can use Proposition 4.5 to conclude that c4(X) = kθ , and finally we
get k = 324 by comparison with the analogous computation in cohomology. This
takes care of all relations in degree 8.
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The only relation in degree 6 comes from Proposition 2.2, and is

c2(X) · h = 5h3.

We already proved that the same holds in CH∗(X) in Proposition 4.5, so this ends
the proof of the main theorem.
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