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We assign functorially a Z-lattice with semisimple Frobenius action to each
abelian variety over Fp. This establishes an equivalence of categories that de-
scribes abelian varieties over Fp avoiding

√
p as an eigenvalue of the Frobenius in

terms of simple commutative algebra. This result extends the isomorphism classi-
fication of Waterhouse and Deligne’s equivalence for ordinary abelian varieties.
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1. Introduction

1.1. Let p be a prime number, Fp an algebraic closure of the prime field Fp with p
elements, and Fq ⊂ Fp the subfield with q elements, where q = pe is a power of p.
The category

AVq

of abelian varieties over Fq is an additive category, where for any two objects A, B
the abelian group HomFq (A, B) is free of finite rank. Even though the main result
of this paper concerns abelian varieties over the prime field Fp, the general theme of
our work is describing suitable subcategories C of AVq by means of lattices T (A)
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functorially attached to abelian varieties A of C. In contrast to the characteristic-zero
case, if we insist that

rkZ(T (A))= 2 dim(A), (1-1)

then it is not possible to construct T (A) on the whole category AVq (see Section 1.6).
However, if we take C to be the full subcategory

AVord
q

of ordinary abelian varieties, Deligne [1969, §7] showed that a functor A 7→ T (A)
satisfying (1-1) exists and gives an equivalence between AVord

q and the category of
finite free Z-modules T equipped with a linear map F : T → T satisfying a list of
easy-to-state axioms.

Inspired by Waterhouse [1969, Theorem 6.1], in the present work we show that
a description in the style of Deligne can in fact be obtained, when q = p, for a
considerably larger subcategory C of AVp, which excludes only a single isogeny
class of simple objects of AVp from occurring as an isogeny factor (see Theorem 1).
Deligne’s method is an elegant application of the Serre–Tate theory of canonical
liftings of ordinary abelian varieties, whereas our method, closer to that used by
Waterhouse, does not involve lifting abelian varieties to characteristic zero. Even if
the main result of this paper generalizes the q = p case of Deligne’s theorem, it is
unlikely that a proof generalizing Deligne’s lifting strategy is possible.

1.2. A Weil q-number π is an algebraic integer, lying in some unspecified field of
characteristic zero, such that for any embedding ι :Q(π) ↪→ C we have

|ι(π)| = q1/2,

where |−| is the ordinary absolute value of C. Two Weil q-numbers π and π ′ are
conjugate to each other if there exists an isomorphism Q(π)−→∼ Q(π ′) carrying π to
π ′, in which case we write π∼π ′. We will denote by Wq the set of conjugacy classes
of Weil q-numbers. A Weil q-number is either totally real or totally imaginary,
hence it makes sense to speak of a nonreal element of Wq .

Let A be an object of AVq , and denote by πA : A→ A the Frobenius isogeny
of A relative to Fq . If A is Fq-simple then EndFq (A)⊗Q is a division ring, and a
well-known result of Weil says that πA is a Weil q-number inside the number field
Q(πA). Let

A ∼
∏

1≤i≤r

Aei
i (1-2)

be the decomposition of A up to Fq-isogeny into powers of simple, pairwise non-
isogenous factors Ai . The Weil support of A is defined as the subset

w(A)= {πA1, . . . , πAr } ⊆Wq
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given by the conjugacy classes of the Weil numbers πAi attached to the simple factors
Ai . By Honda–Tate theory, the conjugacy classes of the πAi are pairwise distinct;
moreover, any class in Wq arises as πA, for some Fq-simple abelian variety A,
uniquely determined up to Fq -isogeny [Tate 1971, Théorème 1].

1.3. Consider now the case q = p. Using Honda–Tate theory, it is easy to see
that for a simple object A of AVp the ring EndFp(A) is commutative if and only if
πA 6∼

√
p, i.e., if and only if the Frobenius isogeny πA : A→ A defines a nonreal

Weil p-number [Waterhouse 1969, Theorem 6.1]. Let

AVcom
p

be the full subcategory of AVp given by all objects A such thatw(A) does not contain
the conjugacy class of

√
p. Equivalently, AVcom

p is the largest full subcategory of AVp

closed under taking cokernels containing all simple objects whose endomorphism
ring is commutative. Since the Weil p-number

√
p is associated to an Fp-isogeny

class of simple, supersingular abelian surfaces [Tate 1971, Exemple (b), p. 97], we
have a natural inclusion AVord

p ⊂ AVcom
p .

The main result of this paper, proven at the end of Section 5.3, is the following:

Theorem 1. There is an ind-representable contravariant functor

A 7→ (T (A), F)

which induces an antiequivalence between AVcom
p and the category of pairs (T, F)

given by a finite, free Z-module T and an endomorphism F : T → T satisfying the
following properties:

(i) F ⊗Q is semisimple, and its eigenvalues are nonreal Weil p-numbers.

(ii) There exists a linear map V : T → T such that FV = p.

Moreover, the lattice T (A) has rank 2 dim(A) for all A in AVcom
p , and F is equal

to T (πA).

To prove the theorem, we consider in Section 2 a family of Gorenstein rings

Rw = Z[F, V ]/(FV − p, hw(F, V ))

indexed by the finite subsets w ⊆ Wp, where hw(F, V ) is a certain symmetric
polynomial built out of the minimal polynomials over Q of the elements of w. An
object (T, F) in the target category of the functor T (−) of Theorem 1 is nothing
but an Rw-module, for w ⊂ Wp large enough, that is free of finite rank as a Z-
module. In this translation, the linear map F : T → T is given by the action of the
image of F in Rw, and the relation hw(F, V ) in Rw encodes precisely that F ⊗Q

acts semisimply and with eigenvalues given by Weil p-numbers lying in w (see
Sections 2.4, 2.5 and 3.2). Thanks to the Gorenstein property, these Rw-modules
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are precisely the reflexive Rw-modules; the category that they form will be denoted
by (see Section 3)

Refl(Rw).

For v ⊆ w, the corresponding rings are linked by natural surjective maps
prv,w : Rw→ Rv. We denote by Rcom

p the pro-system (Rw, prv,w) with w ⊆ Wp

ranging over the finite subsets avoiding the conjugacy class of
√

p. We further set

Refl(Rcom
p )= lim

−−→
w⊆Wp\{

√
p}

Refl(Rw),

and refer to Section 3.2 for details.
In this language, Theorem 1 can be stated as saying that

T : AVcom
p → Refl(Rcom

p )

is an antiequivalence of categories. While this formulation of the main result is
closer to the perspective we adopted in its proof, the more concrete statement we
chose to give above allows an immediate comparison to Deligne’s result [1969].

1.4. The rings Rw studied in Section 2 are in fact defined for any finite subset
w ⊆Wq . They appear naturally in connection to abelian varieties, in that for any A
in AVq the natural map

Z[F, V ]/(FV − q) → EndFq (A) (1-3)

sending F to πA and V to the Verschiebung isogeny q/πA induces an identification
between Rw(A) and the subring Z[πA, q/πA] of EndFq (A), which has finite index
in the center (see Section 2.1). The rings Rw have been already considered in
[Waterhouse 1969] and [Howe 1995], for example. The Gorenstein property of Rw
in the ordinary cases is implicitly contained in [Howe 1995] and explicitly used in
a special case in [Howe 2004]. However, to the best of our knowledge, a systematic
investigation of the occurrence of Gorensteinness among the rings Rw has not been
carried out previously (see Theorems 11 and 12).

An Rcom
p -linear structure on AVcom

p can be deduced from the map (1-3) (see
Section 2.3). The requirement that F = T (πA) means precisely that the functor
T (−) is an Rcom

p -linear functor (see Section 3.2).

1.5. The proof of the theorem consists of two steps. First, for any finite subset
w ⊆Wp not containing the conjugacy class of

√
p, we construct a certain abelian

variety Aw isogenous to the product of all simple objects attached to the elements
of w via Honda–Tate theory. The object Aw is chosen in its isogeny class with the
smallest possible endomorphism ring, i.e., such that the natural map

Rw→ EndFp(Aw)
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is an isomorphism (see Proposition 21). In order to show the existence of such an
Aw, which already appears in [Waterhouse 1969, Theorem 6.1] if w consists of
a single element, the assumption q = p plays an important role. Exploiting the
Gorenstein property of Rw, in Theorem 25 we show that the functor HomFp(−, Aw)
gives a contravariant equivalence

HomFp(−, Aw) : AVw −→∼ Refl(Rw),

where AVw is the full subcategory of AVp given by all abelian varieties A with
w(A)⊆ w.

The second step consists in showing that the abelian varieties Aw previously
constructed can be chosen in such a way that the functors HomFp(−, Aw) interpolate
well and define a functor on AVcom

p . More precisely we show the existence of an
ind-system

A= (Aw, ϕw,v), (1-4)

indexed by finite subsets w ⊆Wp not containing the conjugacy class of
√

p, such
that the corresponding direct limit of finite free Z-modules

T (A)= lim
−−→
w

HomFp(A, Aw)

stabilizes for any A in AVcom
p . The contravariant functor T (−) ind-represented by

A will produce the required antiequivalence.

1.6. As Serre has observed, it is not possible to functorially construct a lattice T (A)
satisfying the expected rkZ(T (A))= 2 dim(A) on the category of abelian varieties
over Fp. This is due to the existence of objects like supersingular elliptic curves E
over Fp. As is well known, the division ring EndFp

(E)⊗Q is a nonsplit quaternion
algebra over Q and has no 2-dimensional Q-linear representation that can serve as
T (E)⊗Q. The issue just described is the same obstruction that prevents the exis-
tence of a Weil cohomology for varieties over finite fields with rational coefficients.

Using the same argument, one can show the nonexistence of a lattice T (A)
as above on the category AVq , where q is a square. When q is not a square, the
correct instance of Serre’s observation preventing Theorem 1 from extending to all
of AVp is given by the isogeny class of Fq-simple, supersingular abelian surfaces
associated via Honda–Tate theory to the real, nonrational, Weil q-number

√
q . The

endomorphism ring of any such surface A is an order of a quaternion algebra over
Q(
√

q)=Q(
√

p)which is ramified at the two real places [Waterhouse 1969, p. 528].
It follows that EndFq (A)⊗R' H×H is a product of two copies of the Hamilton
quaternions H. Thus it admits no faithful representation on a 4-dimensional real
vector space, which T (A)⊗R would give rise to.
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1.7. The dual abelian variety establishes an antiequivalence A 7→ At of AVq which
preserves Weil supports and has the effect of switching the roles of Frobenius and
Verschiebung endomorphisms relative to Fq . That is,

(πA)
t
= q/πAt

as isogenies from At to itself. On the module side, we define a covariant involution
of Refl(Rcom

p ), denoted by M 7→ Mτ , which interchanges the roles of F and V , i.e.,
such that

(T, F)τ = (T, p/F).

Using these two dualities we can exhibit a covariant version of the functor T (−)
of Theorem 1. More precisely, define

T∗(A)= T (At)τ

as the pair given by the Z-module T (At) equipped with the linear map p/T (πAt ).
In the notation as pairs, T∗(A) takes the form

(T (At), p/T (πAt ))= (T (At), T ((πA)
t))= (T∗(A), T∗(πA)).

The functor T∗(−) gives a covariant, Rcom
p -linear equivalence

T∗ : AVcom
p → Refl(Rcom

p ) (1-5)

which is pro-represented by the system At
= (At

w, ϕ
t
w′,w) dual to (1-4). In the

definition of T∗(−) it is necessary to apply the involution τ to T (At) in order to
guarantee that T∗ be Rcom

p -linear.
In Section 7.4 we compare T∗(−) restricted to AVord

p with Deligne’s functor [1969,
§7], which we denote by TDel,p(−). The comparison makes use of a compatible
pro-system of projective Rw-modules Mw of rank 1 for all finite subsets w ⊆Wp

consisting only of conjugacy classes of ordinary Weil p-numbers. Proposition 44
then describes, for all abelian varieties A over Fp with w(A) ⊆ w, a natural
isomorphism

TDel,p(A)⊗Rw Mw −→
∼ T∗(A).

Furthermore, by choosing a suitable ind-representing system A= (Aw, ϕv,w), we
may assume that Mw = Rw for all w, i.e., the antiequivalence of Theorem 1 may be
chosen in its covariant version to extend Deligne’s equivalence; see Proposition 45
for details.

1.8. Finally, we indicate how to recover the `-adic Tate module T`(A), for a prime
` 6= p, and the contravariant Dieudonné module Tp(A) (see [Waterhouse 1969, §1.2])
from the module T (A). This involves working with the formal Tate module T`(A)
and the formal Dieudonné module Tp(A) of the direct system A, respectively
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defined as the direct limit of T`(Aw) and the inverse limit of the Tp(Aw), with
transition maps obtained via functoriality of T` and Tp. More concretely, we have
natural isomorphisms

T`(A)' HomR`
(T (A)⊗Z`, T`(A)),

Tp(A)' (T (A)⊗Zp) ⊗̂Rp Tp(A);

see Propositions 27 and 28 for notation and proofs. In this respect the functor T (−)
can be interpreted as an integral lifting of the Dieudonné module functor Tp(−).

In a forthcoming paper, we will apply the method used here to study certain
categories of abelian varieties over a finite field which is larger that Fp. Therefore,
although Theorem 1 deals with abelian varieties over Fp, we only restrict to the
case q = p when it becomes necessary.

2. On the ubiquity of Gorenstein rings among minimal central orders

2.1. Minimal central orders. Let w ⊆ Wq be any finite set of conjugacy classes
of Weil q-numbers. Choose Weil q-numbers π1, . . . , πr representing the elements
of w, and consider the ring homomorphism

Z[F, V ]/(FV − q)→
∏

1≤i≤r

Q(πi ) (2-1)

sending F to (π1, . . . , πr ) and V to (q/π1, . . . , q/πr ).

Definition 2. The minimal central order Rw is the quotient

Z[F, V ]/(FV − q)→ Rw (2-2)

by the kernel of the homomorphism (2-1). The image of F in Rw will be denoted
by Fw, and the image of V by Vw.

The construction of the ring Rw is independent of the chosen Weil q-numbers in
their respective conjugacy classes. When w consists of a single conjugacy class
of a Weil number π , the ring R{π}, isomorphic to the order of Q(π) generated by
π and q/π , will sometimes be denoted simply by Rπ . Since the representatives
π1, . . . , πr are pairwise nonconjugate, there is a canonical finite index inclusion

Rw ⊆
∏
π∈w

Rπ ;

in particular,
Rw⊗Q=

∏
π∈w

Q(π). (2-3)

Moreover, for finite subsets v ⊆ w ⊆Wq we have a natural surjection

prv,w : Rw→ Rv.
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Our main goal in this section is to show that, under a mild assumption on w, the
ring Rw is a 1-dimensional Gorenstein ring. This will be proved in Section 2.5,
where we obtain a description of Rw by identifying the relations between the
generators F and V .

Example 3. The equality of closed subschemes

Spec(Rw)=
⋃
π∈w

Spec(Rπ )⊆ Spec(Z[F, V ]/(FV − q))

shows that the spectrum of Rw is obtained by gluing the spectra of the rings Rπ
along their various intersections inside Spec(Z[F, V ]/(FV − q)). This means,
roughly, that congruences between Weil q-numbers are responsible for Rw differing
from the product of the Rπ for all π ∈ w.

We measure in a special situation the deviation of Rw from being isomorphic
to
∏
π∈w Rπ . For i = 1, 2, let πi be a quadratic Weil q-number with minimal

polynomial
x2
−βi x + q,

where βi ∈ Z, and set 1= β1−β2. Since q/πi = βi −πi , we have

Rπi = Z[πi ] ' Z[x]/(x2
−βi x + q);

moreover, the subring Rw ⊆ Z[π1]×Z[π2] is generated as a Z-algebra by

(0,1), (π1, π2) ∈ Z[π1]×Z[π2],

since it is generated by (π1, π2) and (β1−π1, β2−π2). Because β1 ≡ β2 modulo
1, there are isomorphisms of quotients

Z[π1]/1Z[π1] ' Z[π2]/1Z[π2] =: R0,

and Rw becomes the fiber product

Rw = Z[π1]×R0 Z[π2],

which is an order of index12 in the product Rπ1×Rπ2 . The congruences between π1

and π2 are encoded by the closed subscheme of Spec(Z[F, V ]/(FV −q)) given by

Spec(R0)= Spec(Rπ1)∩Spec(Rπ2).

Note that the minimal polynomials x2
−βi +q yield Weil q-numbers if and only if

β2
i < 4q.

In particular, by letting q range over the powers of the prime p, the Weil q-numbers
πi may be chosen so that 1 is divisible by an arbitrary integer.
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2.2. Connection to abelian varieties. We proceed to link Rw to abelian varieties
over Fq . Any such A has two distinguished isogenies, given by the Frobenius
πA and the Verschiebung q/πA relative to Fq . The Q-algebra EndFq (A)⊗Q is
semisimple, and its center is equal to the subalgebra Q(πA) generated by πA [Tate
1966, Theorem 2]. It follows that any isogeny decomposition of A, as in (1-2),
induces the isomorphism

Q(πA)'
∏

πAi ∈w(A)

Q(πAi ), (2-4)

sending πA to (πA1, . . . , πAr ), where πA1, . . . , πAr are the Weil q-numbers defined
by the simple factors of A and w(A) is the Weil support of A defined in the
introduction.

From (2-4) we deduce that the ring homomorphism

rA : Z[F, V ]/(FV − q)→ EndFq (A)

sending F to πA and V to q/πA gives an identification between Rw(A) and the
image of rA, namely the subring

Z[πA, q/πA],

which sits inside the center of EndFq (A) with finite index. In this way we see that
Rw(A) plays the role of a lower bound for the center of EndFq (A). This justifies the
terminology we chose in its definition.

Remark 4. One can ask whether there exists an abelian variety A with Weil support
w such that the natural map Rw→ EndFp(A) induced by rA gives an isomorphism
between Rw and the center of EndFp(A). In Proposition 21 below, generalizing a
result of Waterhouse, we obtain a partial result in this direction.

2.3. Linear structures over minimal central orders. For a finite subset w ⊆ Wq

the full subcategory
AVw ⊆ AVq

consists of all abelian varieties A such that w(A)⊆w or, equivalently, such that rA

factors through the quotient Z[F, V ]/(FV − q)→ Rw. Since for any morphism
f : A→ B in AVq and any η ∈ Z[F, V ]/(FV − q) the diagram

A
f //

rA(η)

��

B

rB(η)

��

A
f // B

(2-5)
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is commutative, as follows from the naturality of the Frobenius and Verschiebung
isogenies, we deduce an Rw-linear structure on the category AVw. Furthermore, for
finite subsets v ⊆ w the Rw-linear structure on AVv induced by the fully faithful
inclusion AVv ⊆ AVw is compatible, via the surjection prv,w, with the Rv-linear
structure on AVv.

Remark 5. If W ⊆ Wq is now any subset, denote by RW the projective system
(Rw, prw,v) as w ranges through all finite subsets of W , and by AVW the full
subcategory of AVq whose objects are all abelian varieties A with w(A)⊆W . We
will treat AVW as the direct 2-limit of the categories AVw, for finite subsets w of W .
The collection of Rw-linear structures on the subcategories AVw ⊆ AVW , which are
linked by the compatibility conditions described above, form what we will refer to
as the RW -linear structure on AVW .

2.4. The symmetric polynomial. Let π be a Weil q-number. If Q(π) has a real
place then π2

= q, so that Q(π) is totally real, and [Q(π) : Q] is either 2 or 1
according to whether the degree e = [Fq : Fp] is odd or even, respectively. In the
first case there is only one conjugacy class of real Weil q-numbers; in the second
one there are two of them, given by the rational integers qe/2 and −qe/2. In the
general case where π is not real, the field Q(π) is a nonreal CM field, with complex
conjugation induced by π 7→ q/π .

The degree 2d = [Q(π) :Q] is even, except for the two rational Weil q-numbers
occurring for e even, in which case d = 1/2. Set

Pπ (x)= x2d
+ a2d−1x2d−1

+ · · ·+ a1x + a0 ∈ Z[x]

for the normalized minimal polynomial of π over Q. The polynomial Pπ (x) depends
only on the conjugacy class of π . The following lemma is well known (see [Howe
1995, Proposition 3.4]):

Lemma 6. Let π be a nonreal Weil q-number. For r ≥ 0, we have ad−r = qr ad+r .

Proof. We can arrange the roots α1, . . . , α2d of Pπ (x) so that αi and α2d+1−i

are complex conjugates of each other, that is, αiα2d+1−i = q. For a subset
I ⊆ {1, . . . , 2d} we set I c

= {1, . . . , 2d} \ I and I = {i : 2d + 1 − i ∈ I }; we
will use the multiindex notation α I

=
∏

i∈I αi . Then, summing over subsets of
{1, . . . , 2d}, we compute

(−1)d+r ad−r =
∑
|I |=d+r

α I
=

( 2d∏
i=1

αi

)
·

∑
|I |=d+r

1
α I c

= qr
·

∑
|J |=d−r

qd−r

α J = qr
·

∑
|J |=d−r

α J
= qr (−1)d−r ad+r . �
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We next construct a symmetric polynomial hπ (F, V ) ∈ Z[F, V ]. The idea is to
consider the rational function Pπ (F)/Fd

∈ Z[F, q/F] (at least when d ∈ Z), and
then formally set V = q/F .

Definition 7. We define the symmetric polynomial hπ (F, V ) attached to a Weil
q-number π as follows:

(1) If π is a nonreal Weil q-number, then we set

hπ (F, V )= Fd
+a2d−1 Fd−1

+· · ·+ad+1 F+ad+ad+1V +· · ·+a2d−1V d−1
+V d .

(2) If π =±pm√p is real but not rational, then we set

hπ (F, V )= F − V .

(3) If π =±pm is rational, then we set

h±pm (F, V )= F1/2
∓ V 1/2.

The polynomial hw(F, V ) just defined belongs to Z[F, V ] if π not rational, and
to Z[F1/2, V 1/2

] otherwise. It appears already in [Howe 1995, §9].

Lemma 8. (1) If π is a nonreal Weil q-number, then we have hπ (π, q/π)= 0.

(2) If π is a real, but not rational, Weil q-number, then hπ (F, V ) = F − V and
hπ (π, q/π)= 0.

(3) If π = ±pm is rational, then h pm (F, V ) · h−pm (F, V ) = F − V is again
contained in Z[F, V ], and vanishes for F = π and V = q/π .

Proof. Assertion (1) follows from hπ (π, q/π)= Pπ (π)/πd
= 0 which is based on

Lemma 6. Assertion (2) and (3) are trivial. �

Definition 9. An ordinary Weil q-number is a Weil q-number π such that exactly
half of the roots of its minimal polynomial Pπ (x) in an algebraic closure of Qp are
p-adic units.

A Weil q-number is ordinary if and only if its associated isogeny class of simple
abelian varieties over Fq is ordinary. Real Weil numbers are not ordinary.

Lemma 10. Let w ⊆ Wq be a finite subset of nonreal conjugacy classes of Weil
q-numbers. Then w consists of ordinary conjugacy classes if and only if hw(0, 0) is
not divisible by p.

Proof. Let α1, . . . , αd , q/α1, . . . , q/αd be the roots of
∏
π∈w Pπ (x). Then

hw(F, V )≡
d∏

i=1

(F − (αi + q/αi )+ V ) mod (FV − q)
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so that

hw(F, V )≡ (−1)d
d∏

i=1

(αi + q/αi ) mod p.

This integer is not divisible by p if and only if the algebraic integers αi + q/αi are
p-adic units for all i . This happens if and only if either αi or q/αi are p-adic units
for all i , that is, if w consists of ordinary conjugacy classes. �

2.5. Structure of the minimal central orders. In what follows we will define the
degree of a finite subset w ⊆Wq by

deg(w)= rkZ(Rw)=
∑
π∈w

[Q(π) :Q].

So w is of even degree if and only if w either contains none or both rational Weil
q-numbers ±qe/2, which only exist when e = [Fq : Fp] is even. Extending this
notion, we will say that an arbitrary subset W ⊆Wq is of even degree if either none
or both rational conjugacy classes of Weil q-numbers belong to W .

If w ⊆Wq is any finite subset, we set

hw(F, V )=
∏
π∈w

hπ (F, V ),

which is contained in Z[F, V ] as soon as w is of even degree.

Theorem 11. Let w ⊆Wq be a finite set of Weil q-numbers of even degree.

(1) We have Rw = Z[F, V ]/(FV − q, hw(F, V )).

(2) The ring Rw is a 1-dimensional complete intersection; in particular, it is a
Gorenstein ring.

When w consists of ordinary Weil q-numbers, part (1) of Theorem 11 is [Howe
1995, Proposition 9.1].

Proof. The ring Rw is reduced as it injects into a product of number fields. Moreover,
Rw is a finite Z-algebra, because it is generated by F and V satisfying integral rela-
tions in Rw. Thus Rw is free of finite rank as a Z-module and of Krull dimension 1.
More precisely, by (2-3) we have

rkZ(Rw)=
∑
π∈w

[Q(π) :Q] =: 2D

The ring Z[F, V ]/(FV−q) is a normal ring with at most one rational singularity
in p= (F, V, p). Hence, hw(F, V ) is a nonzero divisor in Z[F, V ]/(FV − q) and
it remains to show (1) to conclude the proof of (2).
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We now show assertion (1). By Lemma 8 the evaluation of hw(F, V ) in Rπ
vanishes for all π ∈ w. Hence we obtain a surjection

ϕ : S = Z[F, V ]/(FV − q, hw(F, V ))� Rw.

We are done if we can show that S is generated by 2D elements as a Z-module.
By construction, hw(F, V ) is a product of polynomials of the form

fπ (F)+ gπ (V )

with fπ , gπ ∈ Z[X ] monic (or −gπ monic). The degrees are deg( fπ )= deg(gπ )=
[Q(π) :Q]/2 if π is nonrational, and 1 if π is rational. Having a representative of
the form f (F)+ g(V ) for monic polynomials f, g (or −g) of the same degree is
preserved under taking products:

( f1(F)+ g1(V ))( f2(F)+ g2(V ))

= f1 f2(F)+ g1g2(V )+ lower degree terms in F, V ,

where the mixed terms are of lower degree, because FV = q necessarily leads to
cancellations.

Hence the same holds for the product: hw(F, V )= f (V )+g(V ) with deg( f )=
deg(g)= D. In particular,

F D, F D−1, . . . , F, 1, V, . . . , V D−1

generate S as a Z-module. �

Since Theorem 1 deals with abelian varieties over Fp, our main concern in this
paper are the commutative algebra properties of Rw for finite subsets of Wp. Here
Theorem 11 covers all cases. In order to complete the picture, we answer what
happens if w⊆Wq contains exactly one rational conjugacy class of Weil q-numbers.

Theorem 12. Let q be the square of a positive or negative integer
√

q ∈ Z. Let
v⊆Wq be a finite set containing no rational conjugacy class, and set w= v∪{

√
q}.

(1) We have Rw = Z[F, V ]/
(
FV − q, hv(F, V )(F −

√
q), hv(F, V )(V −

√
q)
)
.

(2) The ring Rw is Gorenstein if and only if all conjugacy classes of Weil q-numbers
in v are ordinary.

Proof. Reasoning as in the proof of Lemma 8, we see that the defining quotient
map Z[F, V ]/(FV − q)→ Rw factors as a surjective map

S = Z[F, V ]/
(
FV − q, hv(F, V )(F −

√
q), hv(F, V )(V −

√
q)
)
� Rw.

As in Theorem 11, as a Z-module, the ring Rw is free of rank

rkZ(Rw)= 1+
∑
π∈v

[Q(π) :Q] =: 2D+ 1.
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It is easy to see that S is generated as a Z-module by

F D, F D−1, . . . , F, 1, V, . . . , V D.

This shows assertion (1) above.
For assertion (2), we first note that after inverting one of the elements p, F or

V , the three relations can be reduced to two relations, so that outside of (p, F, V )
the ring Rw is a local complete intersection and hence Gorenstein. It remains to
discuss the local ring in p= (p, F, V ).

There is a unique polynomial h ∈ Z[X ] such that

hv(F, V )= h(F)− h(0)+ h(V ) ∈ Z[F, V ],

and for this h we have h(0)= hv(0, 0). Since Z is regular (hence Gorenstein) and
Rw is a flat Z-algebra, it follows from [Matsumura 1989, Theorem 23.4] that Rw is
Gorenstein in p if and only if

Rw/pRw = Fp[F, V ]/(FV, h(F)F, h(V )V )

is Gorenstein in p= (F, V ). The ring Rw/pRw is Artinian, hence of dimension 0,
so that by [Matsumura 1989, Theorem 18.1] the ring (Rw/pRw)p is Gorenstein if
and only if

1= dimFp Hom(κ(p), Rw/pRw).

The space of homomorphisms has the same dimension as the socle, i.e., the maximal
submodule annihilated by (F, V ). The socle is the intersection of the kernels of
F and V as Fp-linear maps of Rw, which can be easily evaluated in the basis
F D, F D−1, . . . , F, 1, V, . . . , V D. The intersection is 1-dimensional if p - h(0),
and it is 2-dimensional otherwise. By Lemma 10, this completes the proof. �

3. Remarks on reflexive modules

3.1. Reflexive versus Z-free. Let S be a noetherian ring. Recall that a finitely
generated S-module M is reflexive (resp. torsionless) if the natural map

M→ HomS(HomS(M, S), S)

is an isomorphism (resp. injective). We denote the category of finitely generated
reflexive S-modules by Refl(S).

Lemma 13. Let w ⊆Wq be a finite set of Weil q-numbers such that Rw is Goren-
stein, and let ` be a prime number. Let M be a finitely generated Rw-module
(resp. Rw⊗Z`-module). The following are equivalent:

(a) M is reflexive.
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(b) M is torsionless.

(c) M is free as a Z-module (resp. Z`-module).

Proof. Assertions (a) and (b) are equivalent by [Bass 1963, Theorem 6.2(4)], since
Rw is Gorenstein and of dimension 1.

For a uniform treatment, we set S= Rw⊗3 with 3=Z (resp. 3=Z`). Since S
is finite flat over 3, the dual module HomS(M, S) is free as a 3-module. The same
holds for every submodule of HomS(M, S), which shows assertion (b) implies (c).

For the converse direction we introduce the total ring of fractions S⊂K = S⊗ZQ,
which is a product of fields. Therefore, assuming (c), the composite map

M→ M ⊗Z Q= M ⊗S K → HomS(HomK (M ⊗S K , K ), K )

is injective. And since it factors over the natural map M→HomS(HomS(M, S), S),
the latter is also injective and hence M is torsionless. �

3.2. The main theorem with reflexive modules. Let w ⊆ Wq be a finite set of
conjugacy classes of Weil q-numbers of even degree (see Section 2.5), so that,
in particular, Rw is Gorenstein (see Theorem 11). For an object M of Refl(Rw),
let (M0, FM) be the pair consisting of the Z-module M0 underlying M and of the
linear map FM : M0→ M0 given by the action of Fw ∈ Rw on M .

Proposition 14. The functor M 7→(M0,FM) gives an equivalence between Refl(Rw)
and the category of pairs (T, F) consisting of a finite, free Z-module T , and an
endomorphism F : T → T satisfying the following conditions:

(i) F ⊗Q is semisimple with eigenvalues given by Weil q-numbers in w.

(ii) There exists V : T → T such that FV = q.

A morphism between two such pairs (T, F) and (T ′, F ′) is a linear map f : T→ T ′

such that f F = F ′ f .

Proof. Thanks to Lemma 13, an Rw-module belongs to Refl(Rw) if and only if it is
finite and free as a Z-module. Moreover, the linear map FM : M0→ M0 satisfies in
the ring EndZ(M0) the polynomial

Fd
· hw(F, q/F)=

∏
π∈w

Pπ (F),

which is squarefree. Therefore FM ⊗Q is semisimple with eigenvalues given by
Weil q-numbers whose conjugacy classes belong to w. The map VM : M0→ M0

induced by the action of Vw ∈ Rw on M satisfies VM FM = q . Essential surjectivity
of the functor follows easily from Lemma 13. �
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Let now v ⊆ w be a finite subset which is also of even degree. By Lemma 13,
the natural projection prv,w : Rw→ Rv gives a fully faithful embedding

Refl(Rv)⊆ Refl(Rw),

by means of which Refl(Rv) can be regarded as the full subcategory whose objects
are those for which the Rw-action factors over prv,w : Rw→ Rv . Using the descrip-
tion of Proposition 14, we easily see that an object M of Refl(Rw) lies in Refl(Rv)
if and only if the eigenvalues of FM ⊗Q : M0⊗Q→ M0⊗Q define conjugacy
classes of Weil q-numbers in v.

Definition 15. Let W ⊆ Wq be a subset of even degree, and RW = (Rw) be the
pro-ring with w ranging over all finite subsets of W of even degree. The category

Refl(RW ) := lim
−−→
w⊆W

Refl(Rw)

is the full subcategory of the category of Z[F, V ]-modules given by all M such that:

(1) There exists wM ⊆ W such that the structural action of Z[F, V ] on M fac-
tors through Z[F, V ] → RwM (and hence through Z[F, V ] → Rw for all w
containing wM ).

(2) For any finite w⊆W of even degree containing wM , the module M is reflexive
as an Rw-module.

Notice that condition (2) is equivalent to asking that M be a reflexive module
over Rw for some w⊆W of even degree such that the action of Rw on M is defined
(see Lemma 13).

Remark 16. For any finite w⊆W of even degree, the category Refl(RW ) contains
the Rw-linear category Refl(Rw) as a full subcategory. Moreover, if v⊆w are finite
subsets of W of even degree, then the Rv-linear structure on Refl(Rv) induced from
the fully faithful embedding Refl(Rv)⊆ Refl(Rw) is compatible, via the surjection
prv,w : Rw→ Rv , with the natural Rw-linear structure. Formally we are in a situation
analogous to that described in Remark 5, where the category AVW played the role of
Refl(RW ). We will then refer to this data as the RW -linear structure of Refl(RW ).

The category Refl(RW ) can be given a concrete description in terms of pairs
(T, F) given by a finite free Z-module T and a linear map F : T → T such that:

(i) F ⊗Q is semisimple and its eigenvalues are Weil q-numbers in W .

(ii) There exists V : T → T with FV = q .

The notion of morphism between two such pairs is clear. This can be seen reasoning
as in Proposition 14, and using the compatibility of linear structures described in
Remark 16.
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Denote now the set Wp \ {
√

p} of nonreal conjugacy classes of Weil p-numbers
simply by W com

p , and the corresponding pro-ring RW com
p

by Rcom
p . Theorem 1 then

claims the existence of a contravariant, RW com
p

-linear, ind-representable equivalence

T : AVcom
p → Refl(Rcom

p )

such that T (A) is a lattice of rank 2 dim(A). By definition, the RW com
p

-linearity of
T (−) is the requirement that for any finite w ⊆W com

p the restriction of T to AVw
has values in Refl(Rw) and is Rw-linear. These conditions amount precisely to the
equality F = T (πA) for all A in AVcom

p .

3.3. Further remarks. The following piece of homological algebra is used later:

Lemma 17. Let S be a 1-dimensional Gorenstein ring. For any finitely generated
reflexive S-module M , we have

Ext1S(M, S)= 0.

Proof. We use a free presentation of the dual HomS(M, S) and dualize again. This
yields an embedding of M into a free S-module and then a short exact sequence

0−→ M −→ Sn
−→ M ′ −→ 0.

The Ext-sequence, and the fact that S has injective dimension 1 [Bass 1963, §1],
yield

0= Ext1S(S
n, S)−→ Ext1S(M, S)−→ Ext2S(M

′, S)= 0

from which the lemma follows. �

Finally, here is a criterion for invertible reflexive modules in terms of their
endomorphism algebras:

Proposition 18. Let S be a reduced Gorenstein ring of dimension at most 1, and
let M be a reflexive module. Then the following are equivalent:

(a) M is locally free of rank 1.

(b) The natural map S→ EndS(M) is an isomorphism.

Proof. If M is locally free of rank 1, then EndS(M) ' M∨ ⊗ M ' S, where
M∨ = HomS(M, S), and (b) holds.

For the converse, we may assume that S is a complete local ring by passing to
the completion. Since EndS(M) = S we have M 6= 0, and, moreover, M cannot
be a module (extending the S-module structure) for a strictly larger subring of the
total ring of fractions of S. Now [Bass 1963, Proposition 7.2] shows that M has a
nonzero projective direct summand M0. With M = M0⊕M1, we find

S×EndS(M1)= EndS(M0)×EndS(M1)⊆ EndS(M)= S
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and therefore EndS(M1) = 0. This forces M1 = 0, and M is projective. Then
EndS(M) is projective with rank equal to the square of the rank of M (as a locally
constant function on Spec(S)). Thus M is of rank 1 and the proof is complete. �

4. Abelian varieties with minimal endomorphism algebra

Before restricting to the case q = p, we recall the following classical result of
Tate (see [Tate 1966, §1] for ` 6= p, [Waterhouse and Milne 1971, Theorem 6]
for any `, also [Chai et al. 2014, §A.1]) which will be used frequently. For A an
abelian variety over Fq and ` a prime number, denote by A[`∞] the `-divisible
group corresponding to A.

Theorem 19 (Tate). Let A, B be abelian varieties over Fq , and ` a prime number.
The natural map f 7→ f [`∞] induces an isomorphism

HomFq (A, B)⊗Z` −→
∼ Hom(A[`∞], B[`∞]).

As is well known, the isomorphism of Tate’s theorem takes a more concrete form
as follows. If ` 6= p, it can be formulated in terms of Galois representations, and
says that the functor `-adic Tate module T`(−) induces an isomorphism

HomFq (A, B)⊗Z` −→
∼ HomZ`[GalFq ]

(T`(A), T`(B)).

If `= p, using the language of Dieudonné modules, Tate’s theorem translates
into the fact that the functor contravariant Dieudonné module Tp(−) induces an
isomorphism

HomFq (A, B)⊗Zp −→
∼ HomDFq

(Tp(B), Tp(A)),

where DFq is the Dieudonné ring of Fq .

Remark 20. For any prime ` the Rw-linear structure on the category AVw defined
in Section 2.1 induces an enrichment of the functor T`(−) to left Rw⊗Z`-modules
for ` 6= p, and to right1 Rw⊗Zp-modules for `= p.

For any A ∈ AVw and any ` 6= p, the action of the arithmetic Frobenius of Fq

on T`(A) agrees with the action of Fw ⊗ 1 ∈ Rw ⊗ Z`, and we have a natural
identification

HomZ`[GalFp ]
(T`(A), T`(B))= HomRw⊗Z`(T`(A), T`(B))

for ` 6= p and all A, B ∈ AVw. In the special case where q = p, and only in this
case, the Dieudonné ring DFq is commutative, and hence the theory of Dieudonné

1We employ the contravariant Dieudonné theory; therefore the left Rw-module structure of the
Hom-groups in AVw turns into a right Rw ⊗Zp-modules structure on the corresponding Dieudonné
modules. However Rw is commutative, hence for A in AVw we can safely treat Tp(A) as a left
Rw ⊗Zp-module.
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modules of abelian varieties over the prime field Fp does not involve semilinearity
aspects. For any A ∈ AVw the action of DFp on Tp(A) factors through the quotient
DFp � Rw⊗Zp, and Tate’s theorem says that

HomDFp
(Tp(A), Tp(B))= HomRw⊗Zp(Tp(B), Tp(A))

for all A, B ∈AVw. So, roughly speaking, the Dieudonné theory of abelian varieties
over the prime field is analogous to the theory of Tate modules at primes ` 6= p, up
to replacing covariance with contravariance.

For any π ∈Wp, we choose a simple abelian variety Bπ over Fp whose associated
Weil p-number represents π .

Proposition 21. Let w⊆Wp be a finite set of conjugacy classes of Weil p-numbers
not containing

√
p. There exists an abelian variety Aw over Fp isogenous to∏

π∈w Bπ such that T`(Aw) is free of rank 1 over Rw⊗Z` for all primes `. Further-
more, for any such Aw, the natural map

Rw→ EndFp(Aw)
is an isomorphism.

Remark 22. In the case where w consists of just one Weil p-number, the abelian
variety Aw in Proposition 21 was already considered by Waterhouse [1969, Theo-
rem 6.1]. We observe that the product

∏
π∈w A{π} of the varieties constructed for

each singleton {π} ⊂w may well fail to serve as the Aw satisfying the properties of
Proposition 21. This failure is explained by a phenomenon analogous to congruences
between Weil q-numbers, discussed in Example 3.

Proof. Let B be any abelian variety over Fp isogenous to
∏
π∈w Bπ . For any π ∈Wp

with π 6∼
√

p, it is straightforward to verify using Honda–Tate theory [Tate 1971,
Théorème 1(ii)] that

(i) all local invariants of the division ring End0
Fp
(Bπ ) are trivial,

(ii) [Q(π) :Q] = 2 dim(Bπ ).

In fact, each of these conditions is equivalent to the commutativity of EndFp(Bπ ).
Since the abelian varieties Bπ , π ∈ w, are pairwise nonisogenous, we have that

EndFp(B) is also commutative, and isomorphic to an order of the product of CM
fields

∏
π∈w Q(π). We deduce the chain of equalities

rkZ(EndFp(B))=
∑
π∈w

[Q(π) :Q] =
∑
π∈w

2 dim(Bπ )= 2 dim(B).

From the injectivity of the isomorphism of Theorem 19, and using the lan-
guage of Dieudonné modules if ` = p, it follows that the action of Rw ⊗Q` =∏
π∈w Q(π)⊗Q` on

V`(B)= T`(B)⊗Z` Q`



244 Tommaso Giorgio Centeleghe and Jakob Stix

is faithful. Hence V`(B) has rank 1 over
∏
π∈w Q(π)⊗Q`, since they both have

dimension 2 dim(B) over Q` (notice that dimQp(Vp(B)) = 2 dim(B) because we
work over Fp).

Therefore, for every ` we can choose an Rw⊗Z`-lattice

3` ⊂ V`(B)

which is free of rank 1, and which contains T`(B) if ` 6= p and is contained in
Tp(B) if `= p.

If Rw⊗Z` is the maximal order of
∏
π∈w Q(π)⊗Q`, as occurs for almost all `,

then T`(B) is necessarily free of rank 1 over Rw⊗Z` and we take 3` = T`(B).
Now, if ` 6= p, then the finite subgroup

N` =3`/T`(B)⊂ B[`∞],

being an Rw-submodule, is stable under Frobenius and hence is defined over Fp. The
corresponding isogeny ψ` : B→ B/N` induces an identification 3` ' T`(B/N`)
of Rw⊗Z`-modules.

Similarly, the p-power degree isogeny ψp : B → B/Np, where Np is the Fp-
subgroup-scheme of B corresponding to the Dieudonné module Tp(B)/3p, induces
an identification Tp(B/Np)'3p of Rw⊗Zp-modules. Therefore, after applying
a finite sequence of isogenies to B, we obtain the abelian variety Aw with the
desired property.

Lastly, by Theorem 19, the natural map

Rw→ EndFp(Aw)

is an isomorphism after − ⊗Z` for all prime numbers `, since T`(Aw)' Rw⊗Z`.
Therefore the last statement of the proposition follows. �

Remark 23. One can show that there is a free and transitive action of the Picard
group Pic(Rw) on the set of isomorphism classes of abelian varieties Aw satisfying
the conditions of Proposition 21 (see [Waterhouse 1969, Theorem 6.1.3] for the case
of simple abelian varieties, i.e., w= {π}). We will discuss this below in Section 7.3.

The Gorenstein property of Rw allows the following useful characterization of
the abelian varieties Aw satisfying the property of Proposition 21 (see also the end
of §4 in [Serre and Tate 1968]).

Proposition 24. Let w⊆Wp be a finite set of conjugacy classes of Weil p-numbers
not containing

√
p, and let A be an abelian variety over Fp isogenous to

∏
π∈w Bπ .

The following conditions are equivalent:

(a) T`(A) is free of rank 1 over Rw⊗Z`, for all primes `.

(b) EndFp(A) is equal to the minimal central order Rw.
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Proof. Thanks to Proposition 21, we only need to show that (b) implies (a). Since
Rw is Gorenstein by Theorem 11, its completion Rw ⊗Z` is also Gorenstein. It
follows from [Bass 1963, Theorem 6.2] that the torsion-free Rw⊗Z`-module T`(A)
is reflexive.

By (b) and Theorem 19 we have EndRw⊗Z`(T`(A))= Rw⊗Z`, so Proposition 18
yields that T`(A) is projective of rank 1. Since Rw⊗Z` is a finite Z`-algebra, hence
a product

Rw⊗Z` =
∏
λ

Rλ

of complete local rings Rλ, its Picard group is trivial and T`(A) is free of rank 1 as
an Rw⊗Z`-module. �

We conclude the section by observing that if A is an abelian variety over Fq , for
q arbitrary, the Dieudonné module Tp(A) has rank 2 dim(A) over the Witt vectors
W (Fq) of Fq . It follows that the naive analogue of (a) can never be attained if q > p
for rank reasons, and the above proposition is peculiar to the q = p case.

5. Construction of the antiequivalence

In this section we give a proof of Theorem 1. Recall from Remark 5 that for a
subset W ⊆Wq of conjugacy classes of Weil q-numbers, the category AVW is the
full subcategory of AVq consisting of all abelian varieties A over Fq whose support
w(A) is contained in W .

5.1. Finite Weil support. We begin by defining the lattice T (A) and its endomor-
phism F on the increasing family of subcategories

AVw ⊆ AVcom
p

for finite subsets w ⊆W com
p .

Let us then assume that
√

p /∈ w, and pick an abelian variety Aw satisfying
the condition of Proposition 21 for w. For any object A of AVw there is a natural
Rw = EndFp(Aw)-module structure on

Mw(A) := HomFp(A, Aw).

This is the same Rw-structure described in Remark 5.

Theorem 25. Let w ⊆ Wp be a finite set of nonreal conjugacy classes of Weil
p-numbers. The functor Mw(−) induces an antiequivalence

AVw→ Refl(Rw).

The Z-rank of Mw(A) is 2 dim(A).
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Proof. We begin by showing that Mw(−) is fully faithful. The map

f : HomFp(A
′, A′′)→ HomRπ (Mw(A′′),Mw(A′))

is a homomorphism of finitely generated Z-modules, and hence it is an isomorphism
if and only if it is an isomorphism after scalar extension − ⊗Z` for all primes `.

We first treat the case ` 6= p. For N ∈ Refl(Rw⊗Z`), set

N∨ = HomRw⊗Z`(N , T`(Aw)),

which is isomorphic to the Rw⊗Z`-dual of N , in view of our choice of Aw. The
isomorphism of Theorem 19 gives a natural isomorphism of contravariant functors

(T`(−))∨ = HomRw⊗Z`(T`(−), T`(Aw))'Mw(−)⊗Z` (5-1)

on AVw (see Remark 20). This translates into the commutative diagram

HomFp(A
′, A′′)⊗Z`

' //

f⊗Z`

��

HomRw⊗Z`(T`(A
′), T`(A′′))

(−)∨

��

HomRw(Mw(A′′),Mw(A′))⊗Z`
' // HomRw⊗Z`(T`(A

′′)∨, T`(A′)∨)

where both horizontal maps are isomorphisms as a consequence of Theorem 19.
Since Rw ⊗ Z` is a completion of a Gorenstein ring by Theorem 11, it is itself
Gorenstein. Because T`(Aw) is free of rank 1, this implies that N 7→ N∨ is an
contravariant autoequivalence of Refl(Rw⊗Z`) [Bass 1963, Theorem 6.2]. Therefore
the right vertical map in the diagram is an isomorphism, and we conclude that
f ⊗Z` is an isomorphism as well.

Concerning the case `= p, for any N ∈ Refl(Rw⊗Zp) we set

N∨ = HomRw⊗Zp(Tp(Aw), N ).

The isomorphism of Theorem 19 then gives a natural isomorphism of contravariant
functors

(Tp(−))∨ = HomRw⊗Zp(Tp(Aw), Tp(−))'Mw(−)⊗Zp (5-2)

on AVw, which translates into the commutative diagram

HomFp(A
′, A′′)⊗Zp

' //

f⊗Zp

��

HomRw⊗Zp(Tp(A′′), Tp(A′))

(−)∨

��

HomRw(Mw(A′′),Mw(A′))⊗Zp
' // HomRw⊗Zp(Tp(A′′)∨, Tp(A′)∨)
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The horizontal maps are isomorphisms by Theorem 19. Since Tp(Aw) is free of
rank 1 over Rw⊗Zp, the right vertical map in the diagram is an isomorphism. We
conclude that f ⊗Zp is an isomorphism as well.

We have now established that the functor A 7→Mw(A) from AVw to the category
Refl(Rw) is fully faithful.

In order to show that Mw(−) is an equivalence, we must now show that this
functor is essentially surjective. Let M ∈Refl(Rw) be a reflexive module. Since Rw is
Gorenstein, the natural map M→HomRw(HomRw(M, Rw), Rw) is an isomorphism.
Dualizing a presentation of the dual HomRw(M, Rw) leads to a copresentation

0−→ M −→ (Rw)n
ψ
−−→ (Rw)m .

Since Mw(Aw) = EndFp(Aw) = Rw, we find by full faithfulness of Mw(−) a
homomorphism

9 : (Aw)m→ (Aw)n

with ψ =Mw(9). The cokernel

B = coker(9)

exists and is an abelian variety B ∈ AVw. By definition of the cokernel, the functor
Mw(−) is left-exact; hence

0−→Mw(B)−→Mw((Aw)n)
Mw(9)
−−−−−→Mw((Aw)m),

and so
M 'Mw(B)

as Rw-modules. This completes the proof of essential surjectivity.
We are only left with showing that rkZ(HomFp(A, Aw))= 2 dim(A) for all A in

AVw. The statement is additive in A and depends only on the isogeny class of A
and Aw. Recall that for any π ∈Wp we have chosen a simple abelian variety Bπ
over Fp whose associated Weil p-number represents π . Because Aw is isogenous
to
∏
π∈w Bπ , it is enough to show that for any π ∈ w we have

rkZ

(
HomFp

(
Bπ ,

∏
π ′∈w

Bπ ′
))
= 2 dim(Bπ ).

This follows from the equality rkZ(EndFp(Bπ ))= 2 dim(Bπ ) for all Weil p-numbers
π 6∼
√

p [Tate 1971, Théorème 1(ii)], and the proof of the theorem is complete. �

5.2. The direct system. In order to prove Theorem 1, we construct a direct system
A = lim

−−→
Aw consisting of abelian varieties Aw indexed by finite sets w of Weil

p-numbers not containing
√

p, and having the property stated in Proposition 21.
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Let v ⊆ w be two finite sets of nonreal Weil p-numbers. By means of the
canonical surjection

prv,w : Rw � Rv,

we may consider Rv-modules as Rw-modules such that the action factors over prv,w.
Lemma 13 shows that

Refl(Rv)⊆ Refl(Rw)

is a full subcategory. After choosing abelian varieties Av and Aw as in Proposition 21,
associated to the sets v and w respectively, we obtain a diagram of functors

AVw
HomFp (−,Aw) // Refl(Rw)

AVv

?�

OO

HomFp (−,Av) // Refl(Rv)
?�

OO
(5-3)

where the vertical functors are natural full subcategories. This diagram need not
commute for arbitrary unrelated choices Aw and Av. The next proposition shows
that for every Aw there is a canonical abelian subvariety Av,w ⊆ Aw that leads to a
choice of Av for which (5-3) commutes.

Proposition 26. Let w be a set of nonreal conjugacy classes of Weil p-numbers, let
Aw be an abelian variety over Fp such that EndFp(Aw)= Rw, and let v ⊆ w be any
subset. Then the subgroup generated by all images

Av,w := 〈im( f ) : f : B→ Aw, B ∈ AVv〉 ⊆ Aw

satisfies the following:

(1) Av,w belongs to AVv and is an abelian subvariety of Aw.

(2) T`(Av,w) is free of rank 1 over Rv ⊗Z` for all primes `.

(3) The diagram (5-3) commutes when Aw is chosen to be the abelian variety
associated to w and Av = Av,w as that associated to v.

(4) The abelian variety Av,w is the image of any map f : B → Aw such that
w(B)= v and w(coker( f ))= w \ v.

Proof. Assertion (1) is obvious and assertion (3) follows from the natural equality

HomFp(B, Av,w)= HomFp(B, Aw)

for every B ∈AVv , since every morphism f : B→ Aw takes values in the subvariety
Av,w ⊆ Aw.
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Assertion (4) is obvious once we pass to the semisimple category of abelian
varieties up to isogeny. Therefore f (B) and Av,w have the same dimension. Since
by definition f (B)⊆ Av,w, we obtain the claimed equality.

It remains to verify assertion (2), which by Proposition 24 is equivalent to
EndFp(Av,w)= Rv. The natural map

Rw = EndFp(Aw)=Mw(Aw)→Mw(Av,w)= EndFp(Av,w) (5-4)

factors through the quotient map prv,w : Rw� Rv . In order to prove (2), it is enough
to show that (5-4) is surjective. It suffices to verify surjectivity after − ⊗Z` for
every prime number `.

Assume first that ` 6= p. Let C be the quotient abelian variety C = Aw/Av,w.
There is an exact sequence of reflexive Rw⊗Z`-modules

0−→ T`(Av,w)−→ T`(Aw)−→ T`(C)−→ 0,

and its Ext-sequence contains

HomRw⊗Z`(T`(Aw),T`(Aw))−→ HomRw⊗Z`(T`(Av,w),T`(Aw))

−→ Ext1Rw⊗Z`
(T`(C),T`(Aw)).

The Ext1-term vanishes by Lemma 17. Thus Theorem 19 shows the surjectivity of

Mw(Aw)⊗Z` = HomRw⊗Z`(T`(Aw),T`(Aw))

� HomRw⊗Z`(T`(Av,w),T`(Aw))=Mw(Av,w)⊗Z`.

If `= p, then the inclusion Av,w ⊆ Aw gives a surjection of reflexive Rw⊗Zp-
modules

Tp(Aw)� Tp(Av,w).

Since Tp(Aw) is free over Rw⊗Zp, we obtain a surjection

HomRw⊗Zp(Tp(Aw), Tp(Aw))� HomRw⊗Zp(Tp(Aw), Tp(Av,w)),

which, by Theorem 19, says that Mw(Aw)⊗Zp→Mw(Av,w)⊗Zp is surjective.
This completes the proof of the proposition. �

5.3. Proof of the main result. We are now ready to prove our main result. We
must show that the abelian varieties Aw that exist by Proposition 21 for each w, and
which yield equivalences of the desired type on the respective full subcategories
AVw by Theorem 25, can be chosen in a compatible way for every v ⊆ w. This
requires a two-step process. We use the notation of Proposition 26.

• First, we establish compatibility on the set-theoretic level: we must fix isomor-
phism classes for each Aw such that Av ' Av,w for every v ⊆ w.
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• Secondly, we categorize the first choice: we must choose isomorphisms
Av ' Av,w such that the inclusions ϕw,v : Av ' Av,w ⊆ Aw obey the cocycle
condition ϕw,v ◦ϕv,u = ϕw,u for u ⊆ v ⊆ w, and thus construct an ind-system
A= (Aw, ϕw,v).

Proof of Theorem 1. For any finite set w ⊆ Wp that avoids
√

p, let Z(w) be the
set of isomorphism classes [A] of abelian varieties A in AVw such that the natural
map Rw → EndFp(A) is an isomorphism. The elements of Z(w) all belong to
the same isogeny class, and so Z(w) is finite, since there are only finitely many
isomorphism classes of abelian varieties over a finite field lying in a given isogeny
class (in fact, finiteness holds for isomorphism classes of abelian varieties of fixed
dimension [Milne 1986, Corollary 18.9]). Moreover, the set Z(w) is nonempty by
Proposition 21.

For any pair v ⊆w of finite sets of nonreal Weil p-numbers, we construct a map

ζv,w : Z(w)→ Z(v)

given by ζv,w([A])= [B], where B is the abelian subvariety of A generated by the
image of all f :C→ A with w(C)⊆ v. Proposition 26 states that ζv,w indeed takes
values in Z(v).

These maps satisfy the compatibility condition

ζu,w = ζu,vζv,w

for all tuples u ⊆ v ⊆ w, hence they define a projective system

(Z(w), ζv,w)

indexed by finite subsets w ⊆ Wp with
√

p /∈ w. Since the sets Z(w) are finite
and nonempty, a standard compactness argument shows that the inverse limit is
not empty:

Z = lim
←−−
w

Z(w) 6=∅.

We choose a compatible2 system z = (zw) ∈ Z of isomorphism classes of abelian
varieties.

Now we would like to choose abelian varieties Aw in each class zw, and inclusions

ϕw,v : Av→ Aw

2We will see later in Remark 40 that ζv,w is always surjective. This extra piece of information
simplifies the construction of the system marginally. However, we find it conceptually easier to deduce
this fact from the antiequivalence of Theorem 1, hence the order of the assertions and proofs.
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for every v ⊆ w that are isomorphic to the inclusion from Proposition 26 in a
compatible way: for u ⊆ v ⊆ w we want

ϕw,u = ϕw,vϕv,u .

Because the set of Weil numbers is countable, we may choose a cofinal totally
ordered subsystem of finite subsets of W com

p

w1 ⊆ w2 ⊆ · · · ⊆ wi ⊆ · · · .

Working first with this totally ordered subsystem, we can construct a direct system

A0 = (Awi , ϕw j ,wi )

of abelian varieties, as desired, by induction. If Awi is already constructed, then
we choose Awi+1 in zwi+1 and deduce from ζwi ,wi+1(zwi+1) = zwi that there is an
inclusion ϕwi+1,wi : Awi → Awi+1 as desired.

Once this is achieved, we may identify all transfer maps of the restricted system
A0 with inclusions. Now we can extend the directed system A0 from the index set
{wi : i ∈ N} to an ind-object A on all finite subsets of Wp. For a general finite
w ⊂Wp we choose i large enough such that w ⊆ wi , and define

Aw := Aw,wi ⊆ Awi

by means of the construction of Proposition 26. This choice is well defined, i.e.,
independent of i� 0. Furthermore, there are compatible transfer maps ϕv,w : Av→
Aw for all v ⊆ w that lead to the desired direct system

A= (Aw, ϕw,v).

In the sense of ind-objects we have A0'A and so A0 would suffice for Theorem 1,
but we wanted to restore symmetry and have Aw for all finite subsets w ⊆W com

p .
Let A be any element of AVcom

p , and set

T (A)= HomFp(A,A)= lim
−−→
w

HomFp(A, Aw)= lim
−−→
w

Mw(A).

The groups HomFp(A, Aw) are stable when w is large enough. More precisely, if
w, w′ are finite sets of Weil p-numbers with w(A)⊆ w ⊆ w′, then the map

ϕw′,w ◦ − : HomFp(A, Aw)→ HomFp(A, Aw′)

is an isomorphism (see Proposition 26). Moreover, T (−) restricted to AVw recovers
the functor Mw(−) of Theorem 25 constructed using the object Aw of A, and
induces an antiequivalence between AVw and Refl(Rw).
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Observe that, by the naturality of the Frobenius isogeny, for any finite w ⊆Wp

avoiding
√

p and any f ∈ HomFp(A, Aw) the diagram

A
f //

πA

��

Aw

πAw

��

A
f // Aw

is commutative. This implies that, for w sufficiently large, the action of Fw ∈ Rw
on T (A) is given by T (πA), the morphism induced by the Frobenius isogeny πA

via functoriality of T .
Compatibility in w shows that T (−) induces an antiequivalence

T = lim
−−→

Mw : AVcom
p = lim

−−→
w

AVw −→∼ lim
−−→
w

Refl(Rw)= Refl(Rcom
p ).

Due to the remarks of Section 3.2, this is precisely the claim of Theorem 1, and so
its proof is complete. �

6. Properties of the functor T

6.1. Recovering Tate and Dieudonné module. Let A be an abelian variety over
Fp, and set w = w(A). We explain here how the Rw ⊗Z`-modules T`(A) can be
recovered from the pair (T (A), F) attached to A by Theorem 1. We set

R` = lim
←−−
w

(Rw⊗Z`)

for all prime numbers `, where in the projective limit w ranges through all finite
subsets of W com

p , and define

T`(A)=
{

lim
−−→w

T`(Aw) ` 6= p,
lim
←−−w

Tp(Aw) `= p,

as the direct limit if ` 6= p and the projective limit if `= p of the system obtained
by applying T`(−) to the direct system A = (Aw)w constructed in the proof of
Theorem 1.

We first discuss the `-adic Tate module, and assume ` 6= p. Since for v ⊆ w
the map Av→ Aw is an inclusion of abelian varieties, the induced map T`(Av)→
T`(Aw) is the inclusion of a direct summand, at least as Z`-modules. Hence T`(A)
is a free Z`-module of countable infinite rank.

Proposition 27. Let A be an abelian variety over Fp with
√

p /∈ w(A). There is a
natural isomorphism of R`-modules

T`(A)−→∼ HomR`
(T (A)⊗Z`, T`(A)).
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Proof. Let w⊆W com
p be a finite set containing w(A). Since Rw⊗Z` is Gorenstein,

dualizing (5-1) yields the first equality in

T`(A)= HomRw⊗Z`(Mw(A)⊗Z`, T`(Aw))= HomR`
(T (A)⊗Z`, T`(A)).

The second equality holds, because T`(Aw)⊆ T`(A) is the maximal submodule on
which R` acts through its quotient R`→ Rw⊗Z`. �

Now we address the contravariant Dieudonné module Tp(A). We endow Tp(A)

with the projective limit topology. If M is a topological Rp-module which is finite
and free over Zp, then the action of Rp on M factors through Rp→ Rw⊗Zp for
some large enough w, by compactness of M . We denote by

M ⊗̂Rp Tp(A)= lim
←−−
w�∅

M ⊗Rw⊗Zp Tp(Aw)

the continuous tensor product.

Proposition 28. Let A be an abelian variety over Fp with
√

p /∈ w(A). There is a
natural isomorphism of Rp-modules

Tp(A)= (T (A)⊗Zp) ⊗̂Rp Tp(A).

Proof. Let w ⊆ W com
p be a finite set containing w(A). We deduce from (5-2) a

natural identification

Tp(A)= HomRw⊗Zp(Tp(Aw), Tp(A))⊗Rw⊗Zp Tp(Aw)

=Mw(A)⊗Rw Tp(Aw)= (T (A)⊗Zp) ⊗̂Rp Tp(A),

because for w(A)⊆ w ⊆ w′ the natural maps

(T (A)⊗Zp)⊗Rw′⊗Zp Tp(Aw′)→ (T (A)⊗Zp)⊗Rw⊗Zp Tp(Aw)

are isomorphisms. �

6.2. Isogenies and inclusions. We discuss how the functor T (−) detects isogenies
and inclusions.

Proposition 29. Let A and B be abelian varieties in AVcom
p .

(1) The map f : B→ A is an isogeny if and only if T ( f )⊗Q is an isomorphism.

(2) For an isogeny f : B→ A, the map T ( f ) is injective and the image is of index

deg( f )= |coker(T ( f ))|.

Proof. (1) An isogeny f has an inverse up to multiplication-by-n map for n=deg( f ).
Therefore T ( f ) is an isomorphism after inverting deg( f ).

Conversely, if f is not an isogeny, then either ker( f ) or coker( f ) have a nontrivial
abelian variety as a direct summand up to isogeny. In the presence of such a direct
summand the map T ( f )⊗Q cannot be an isomorphism.
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(2) We indicate the `-primary part by an index `. Then using Proposition 27, for
` 6= p we have

|coker(T ( f ))|` = |coker(T ( f ))⊗Z`| = |coker(T`( f )∨ : T`(A)∨→ T`(B)∨)|.

The duals here are Hom(−, Rw ⊗ Z`). Since Rw ⊗ Z` is reduced Gorenstein of
dimension 1, we can use [Bass 1963, Theorem 6.3(4)] and induction on the length
to see that

|coker(T`( f )∨ :T`(A)∨→T`(B)∨)|=|coker(T`( f ) :T`(B)→T`(A))|=| ker( f )|`.

If `= p, using Proposition 28 yields

|coker(T ( f ))|p = |coker(T ( f ))⊗Zp| = |coker(Tp( f ) : Tp(A)→ Tp(B))|

= | ker( f )|p,

where the last equality follows from Dieudonné theory. �

Proposition 30. Let A and B be abelian varieties in AVcom
p . For a map f : B→ A,

the following are equivalent:

(a) T ( f ) : T (A)� T (B) is surjective.

(b) The map f can be identified with the inclusion of an abelian subvariety.

Proof. If T ( f ) is surjective, Proposition 27 shows that the induced map T`(B)→
T`(A) is injective. Therefore ker( f ) is at most a finite group scheme. We may
therefore replace A by the image A0 of B→ A and thus reduce to the case of the
isogeny f0 : B→ A0. Here Proposition 29 implies that deg( f0)= 1, hence B = A0

and f is indeed an inclusion of an abelian subvariety.
Conversely, if f : B→ A is an inclusion, then there is a map g : A→ B such

that g f : B → B is an isogeny. Therefore T ( f ) has at least an image of finite
index. The image of T ( f ) is a reflexive submodule in the image of the equivalence
T (−), so that there is an abelian variety C and a factorization B→ C→ A with
T (A)� T (C) surjective and T (C)⊆ T (B) an inclusion.

We have already proven that C→ A is an abelian subvariety, and it is easy to
see that B→ C is an isogeny. Therefore B→ C is an isomorphism. �

As an application, we prove a variant for objects of AVp of Waterhouse’s theo-
rem on possible endomorphism rings of Fp-simple abelian varieties over Fp; see
[Waterhouse 1969, Theorem 6.1.2]:

Theorem 31. Let w be a set of conjugacy classes of nonreal Weil p-numbers. Then
the following are equivalent:

(a) S is an order in Rw⊗Q containing Rw.

(b) S is isomorphic as an Rw-algebra to EndFp(B) for an abelian variety B with
w(B)= w whose simple factors up to isogeny occur with multiplicity 1.
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Proof. Since Rw is the minimal central order for abelian varieties B with w(B)=w,
it is clear that (b) implies (a).

Conversely, if S is an order containing Rw, then S is a reflexive Rw-module and
thus corresponds to an abelian variety B. Let Aw be the abelian variety occurring in
the ind-system pro-representing T (−), so that T (Aw)= Rw. The inclusion Rw ⊆ S
corresponds to an isogeny ϕ : B→ Aw by Proposition 29, so that B has the required
Weil support and product structure up to isogeny. Moreover,

EndFp(B)= EndRw(S)= {λ ∈ Rw⊗Q : λS ⊆ S} = S

shows (a) implies (b). �

7. Ambiguity and comparison

The construction of the functor T (−) in Section 5.3 depends on the choice of an
ind-abelian variety A. For the sake of distinguishing the different choices, we set
in this section

TA(−)= HomFp(−,A).

7.1. Continuous line bundles.

Definition 32. Let W ⊆Wq be a subset. Let us denote by RW the pro-ring (Rw),
where w ranges over the finite subsets of W .

(1) An RW -module is a pro-system M = (Mw) with w ranging over the finite
subsets of W , such that Mw is an Rw-module and the maps Mw → Mv for
v⊆w are Rw-module homomorphisms (where Rw acts on Mv via the projection
Rw→ Rv). Homomorphisms of M are levelwise Rw-module homomorphisms.

(2) An RW -module M is invertible if for allw⊆W the Rw-module Mw is invertible
and for v ⊆ w the maps Mw→ Mv are surjective (equivalently, they induce a
natural isomorphism Mw⊗Rw Rv ' Mv).

(3) The set of isomorphism classes of invertible RW -modules forms a group,
denoted by Pic(RW ), under levelwise tensor products, the Picard group of RW .

For a finite setw of conjugacy classes of Weil q-numbers, we set Xw=Spec(Rw)
and consider the ind-schemes

X = lim
−−→
w

Xw,

and for a subset W ⊆Wq the ind-scheme

XW = lim
−−→
w⊆W

Xw,
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with closed immersions as transfer maps, all denoted i , induced by the projections
prv,w : Rw � Rv. The invertible RW -modules are just line bundles on XW , and

Pic(RW )= Pic(XW )= H1(XW ,O×).

Since O×XW
= lim
←−−w⊆W i∗O×Xw , we find an exact sequence

0−→ lim
←−−
w⊆W

1 R×w −→ Pic(RW )−→ lim
←−−
w⊆W

Pic(Rw)−→ 0.

The quotient of Pic(RW ) given by lim
←−−w

Pic(Rw) parametrizes the choices of a
compatible system of isomorphism classes of rank-1 Rw-modules Mw. The lim

←−−

1-
term parametrizes all choices of transfer maps to obtain an invertible RW -module
M = (Mw) from a given compatible choice of isomorphism classes of invertible
Rw-modules at every level.

Proposition 33. Let V ⊆W ⊆Wq be subsets. Then the natural restriction map

Pic(RW )� Pic(RV )

is surjective.

Proof. For v ⊆ w, define Zariski sheaves Kv,w on XW by the short exact sequence

0−→ Kv,w −→ i∗O×Xw −→ i∗O×Xv −→ 0.

Then KV,W = lim
←−−w⊆W Kw∩V,w is the kernel of O×XW

� i∗O×XV
. The Zariski coho-

mology sequence yields an exact sequence

Pic(RW )−→ Pic(RV )−→ H2(XW ,KV,W ),

and it remains to show vanishing of H2(XW ,KV,W ). The pro-structure of KV,W

leads to a short exact sequence

0−→ lim
←−−
w⊆W

1 H1(Xw,Kw∩V,w)−→H2(XW ,KV,W )−→ lim
←−−
w⊆W

H2(Xw,Kw∩V,w)−→0.

The lim
←−−

-term on the right vanishes by cohomological dimension because dim(Xw)
is 1. The lim

←−−

1-term on the left vanishes, as we claim that (H1(Xw,Kw∩V,w))w⊆W

is a surjective system, and hence a Mittag–Leffler system. Indeed, for finite subsets
w ⊆ w′ ⊆W , the cokernel Cw,w′ of

Kw′∩V,w′→ Kw∩V,w

is a sheaf with support in at most the finitely many points of Xw′ that are con-
tained in more than one irreducible component, and so H1(Xw′,Cw,w′)= 0. Since
H1(Xw′,−) is right exact, we have an exact sequence

H1(Xw′,Kw′∩V,w′)→ H1(Xw,Kw∩V,w)→ H1(Xw′,Cw,w′)= 0,

from which we deduce the claim. �
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7.2. Mixed tensor products. We recall Serre and Tate’s well-known tensor product
construction (see [Giraud 1968] for the parallel Hom-construction explaining a
construction of Shimura and Taniyama). Let A be an abelian variety over Fq and M
a finitely generated Rw-module for some w(A) ⊆ w ⊂ Wq . The Rw-action on A
induces an Rw-module structure on the set of U -valued points for any Fq -scheme U .
The fppf-sheafification (M ⊗Rw A)# of the functor on Fq -schemes

U 7→ M ⊗Rw A(U )

is representable by an abelian variety. Indeed, let

Rm
w

ϕ
−−→ Rn

w −→ M −→ 0

be a finite presentation. The m×n-matrix ϕ also defines a map ϕA : Am
→ An , and

M⊗Rw A(U )=coker(ϕ⊗idA(U ))=coker(ϕA : A(U )m→ A(U )n)=coker(ϕA(U )),

so that

(M ⊗Rw A)# = coker(ϕA),

and this is representable by an abelian variety. We denote the representing object by

M ⊗Rw A.

If w ⊆ w′ and M ′ is a finitely presented Rw′-module with M = M ′ ⊗Rw′ Rw,
then there is an obvious identification

M ′⊗Rw′ A = M ⊗Rw A.

In particular, if W ⊆ Wq is a subset and w(A) ⊆ W , then for any invertible RW -
module M= (Mw) we have a well-defined tensor product given by

M⊗RW A := Mw⊗Rw A

for all sufficiently large finite w(A)⊆ w ⊆W .

7.3. Choices of ind-representing objects. Before we describe our choices, we need
three propositions of independent interest.

Proposition 34. Let W ⊆ Wq be a subset, A an abelian variety with w(A) ⊆ W ,
and M= (Mw) an invertible RW -module. Then there is a natural isomorphism

HomFq (−,M⊗RW A)'M⊗RW HomFq (−, A)

of functors AVW → Refl(RW ).
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Proof. We set w = w(A), and must show that naturally in X

HomFq (X,Mw⊗Rw A)' Mw⊗Rw HomFq (X, A)

for any abelian variety X over Fq . We extend this claim to projective Rw-modules
M of finite rank. Since the tensor construction is compatible with direct sums,
clearly the claim is additive in M in the sense that it holds for M ′ and M ′′ if and
only if it holds for M = M ′⊕M ′′. This reduces the claim to free modules M = Rn

w,
and by the same argument to M = Rw. Now the claim trivially holds. �

Proposition 35. Let W ⊆ Wq be a subset containing no rational Weil q-number.
Any RW -linear contravariant equivalence

S : AVW → Refl(RW )

is ind-representable, i.e., of the form

S(−)= HomFp(−,B)

for an ind-system B= (Bw, ϕw,v) such that the following holds for all finite subsets
v ⊆ w ⊆W :

(i) w(Bw)= w.

(ii) The natural map Rw→ EndFq (Bw) is an isomorphism.

(iii) Bw is isogenous to the product of its simple factors with multiplicity 1.

(iv) The maps ϕw,v : Bv→ Bw are inclusions.

Proof. The pro-system RW = (Rw, prv,w) can be considered as the pro-system of
the free rank-1 modules Rw ∈ Refl(Rw) ⊆ Refl(RW ). As such there is a unique
ind-system B= (Bw, ϕw,v) with S(B)= (S(Bw))=RW . Yoneda’s lemma assigns
to the compatible elements 1 ∈ Rw = S(Bw) a natural transformation

8 : HomFq (−,B)= lim
−−→
w

HomFq (−, Bw)→ S(−).

For every A ∈ AVW the map 8 is the composition of the two isomorphisms

lim
−−→
w

Hom(A, Bw)
S
−−→ lim

−−→
w

HomRw(Rw, S(A))
ev1
−−→ S(A),

where ev1 denotes the evaluation map at 1. It remains to prove the finer claims on
the ind-representing system B.

Since S is an RW -linear equivalence, RW acts on Bw through Rw as on S(Bw)=
Rw. Here we use that Rw is commutative, and so we can forget to pass to the
opposite ring due to S being contravariant. Since Fw acts on Bw by the Frobenius
isogeny πBw , and on Rw = S(Bw) by Fw ∈ Rw, it follows that w(Bw)= w.
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The natural map Rw → EndFw(Bw) is an isomorphism, because applying the
RW -linear S(−) transforms it to the map Rw→ EndRw

(Rw), which is indeed an
isomorphism. We deduce assertion (iii) from this as well.

It remains to show that ϕw,v : Bv → Bw is isomorphic to an inclusion for all
v ⊆ w. We denote the image of ϕw,v by C . Since S is ind-representable, the
surjection Bv→ C becomes an inclusion

S(C) ↪→ S(Bv).

Since by construction S(Bw)→ S(Bv) is the surjective map prv,w : Rw→ Rv, we
conclude that S(C) ' S(Bv) is an isomorphism. Consequently, because S is an
equivalence, we have C ' Bv and assertion (iv) holds. �

The third proposition is related to Proposition 24.

Proposition 36. Let W ⊆ Wq be a subset containing no rational Weil q-number,
and let

S : AVW → Refl(RW )

be an RW -linear contravariant equivalence.
Let w ⊆W be a finite set of conjugacy classes of Weil q-numbers, and let A be

an abelian variety over Fq with w = w(A). The following are equivalent:

(a) The natural map Rw→ EndFq (A) is an isomorphism.

(b) S(A) is a projective Rw-module of rank 1.

Proof. Since S(−) is an equivalence of categories, the map Rw→ EndFp(A) is an
isomorphism if and only if the map

Rw→ EndRw(S(A))

is an isomorphism (S is contravariant but the rings are commutative here). Since
Rw is a reduced Gorenstein ring of dimension 1 by Theorem 11, this is equivalent
by Proposition 18 to S(A) being a projective Rw-module of rank 1. �

We define the tensor product of an invertible RW -module M = (Mw) and an
ind-system A= (Aw, ϕw,v) of abelian varieties indexed by finite subsets of W and
with w(Aw)= w by

M⊗A := (Mw⊗Rw Aw).

Theorem 37. Let W ⊆Wq be a subset containing no rational Weil q-number.
Let A = (Aw, ϕw,v) be an ind-system of abelian varieties over Fq indexed by

finite subsets of W such that:

(i) w(Aw)= w.

(ii) The natural map Rw→ EndFq (Aw) is an isomorphism.
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(iii) Aw is isogenous to the product of its simple factors with multiplicity 1.

(iv) The maps ϕw,v : Av→ Aw are inclusions.

For an invertible RW -module M, the ind-system M⊗RW A has the same properties
(i)–(iv), and the group Pic(RW ) acts freely and transitively by

A 7→M⊗RW A

on the set of isomorphism classes of such ind-systems.

Remark 38. When q = p and W = {π} consists of a single Weil p-number,
Theorem 37 is a special case of [Waterhouse 1969, Theorem 6.1.3], which inspired
the above result.

Proof of Theorem 37. By a W -version of the proof of Theorem 1 for any ind-system
A satisfying (i)–(iv), the functor

TA = HomFq (−,A) : AVW → Refl(RW )

is a contravariant RW -linear antiequivalence AVW → Refl(RW ). The effect of the
action by M∈Pic(RW ) on the represented functors is described by Proposition 34 as

TM⊗RW A(−)=M⊗RW TA(−).

Since M= (Mw) is invertible, the functor M⊗RW − is an autoequivalence of AVW .
We thus have natural isomorphisms

Rw = EndFq (Aw)= EndFq (M⊗RW Aw)= TM⊗RW A(M⊗RW Aw).

Moreover, since M= (Mw) is invertible, the functor TM⊗RW A(−) is an antiequiva-
lence as well, and

TM⊗RW A(M⊗RW A)=RW

as pro-systems. It follows from the proof of Proposition 35 that M⊗RW A also
satisfies properties (i)–(iv). This shows that Pic(RW ) indeed acts on isomorphism
classes of such A.

Let M be an invertible RW -module, and let A be a pro-system as above such
that there is an isomorphism M ⊗RW A ' A. Evaluating the resulting natural
isomorphism

M⊗RW TA(−)' TA(−)

in A itself yields an isomorphism M⊗RW RW 'RW , and hence M must be trivial
in Pic(RW ). This shows that the action is free.

Let now A and B be two pro-systems of the type considered. The RW -module

M= TB(A)= (HomFp(Aw, Bw))
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(note that all maps of pro-objects A→B are levelwise maps since w(Aw)= w =
w(Bw)) is levelwise an invertible Rw-module Mw = TB(Aw) by Proposition 36.
The transfer maps Mw→Mv agree with TB(ϕw,v), which is surjective. Indeed, the
image corresponds to an abelian variety C such that ϕw,v factors as

Av −→ C −→ Aw.

Now the same argument as in the proof of Proposition 35 shows that w(C)⊆w and
C→ Aw is an inclusion. Since ϕw,v is an inclusion, we necessarily have Av = C
and TB(ϕw,v) is indeed surjective. Consequently, the RW -module M = (Mw)

is invertible.
There is a natural map defined by composition of maps

M⊗RW TA(−)= Hom(A,B)⊗Hom(−,A)−→ Hom(−,B)= TB(−).

This is an isomorphism, because for every X in AVW and large enough w we have

M⊗RW TA(X)= HomFp(Aw, Bw)⊗Rw HomFp(X, Aw)

= TB(Aw)⊗Rw HomRw(TB(Aw), TB(X))

= TB(X).

Here we have used again the assumption that TB(−) is an equivalence and the fact
that TB(Aw) is invertible as an Rw-module by Proposition 36. �

Corollary 39. The action of Pic(Rcom
p ) on the isomorphism classes of ind-systems

A that represent Rcom
p -linear antiequivalences Acom

p → Refl(Rcom
p ) is free and

transitive.

Proof. This follows immediately from Theorem 37, the proof of Theorem 1 and
Proposition 35. �

Remark 40. With the notation of Section 5.3, for finite sets v ⊆ w ⊆Wp avoiding
√

p the transfer map
ζv,w : Z(w)→ Z(v)

in the pro-system of isomorphism classes occurring in the proof of Theorem 1 is in
fact surjective. This follows immediately from Theorem 37 and the surjectivity of
Pic(Rw)→ Pic(Rv) from Proposition 33.

Corollary 41. Let V ⊆W ⊆Wp be subsets avoiding
√

p, and let AV = (Av, ϕw,v)
be an ind-system of abelian varieties over Fp indexed by finite subsets of V as in
Theorem 37 such that

TAV = HomFp(−,AV ) : AVV → Refl(RV )
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is an RV -linear antiequivalence of categories. Then AV can be extended to an
ind-system AW = (Aw, ϕv,w) of abelian varieties over Fp indexed by finite subsets
of W as in Theorem 37. In particular the antiequivalence

TAW = HomFp(−,AW ) : AVW → Refl(RW )

naturally extends TAV .

Proof. We start by choosing an auxiliary ind-system BW indexed by finite subsets
of W as in Theorem 37. The restriction

HomFp(−,BW ) : AVV → Refl(RV )

is an RV -linear antiequivalence and is ind-represented by the restriction BV =BW |V

of the indices to finite subsets of V . By Theorem 37 there is an MV ∈ Pic(RV )

such that
AV =MV ⊗RV BV .

By Proposition 33 we can find MW ∈ Pic(RW ) such that MV =MW ⊗RW RV . Then

AW =MW ⊗Rw
BW

obviously extends AV in the desired manner. �

7.4. Comparison with Deligne’s functor for ordinary abelian varieties over Fp.
Let w ⊆ W com

p be a finite subset, and let τ : Rw → Rw be the automorphism
interchanging Fw and Vw. Denote by Rτw the Rw-module obtained by letting Rw
operate onto itself via τ . Similarly, for an object M of Refl(Rw), denote by Mτ the
Rw-module M ⊗Rw Rτw.

We fix a contravariant equivalence T as in Theorem 1, and an ind-representing
system A= (Aw, ϕw′,w) for T = TA. The covariant functor on AVcom

p

T∗(A)= T (At)τ = lim
−−→
w

Hom(At
w, A),

is pro-representable by the dual system At
= (At

w, ϕ
t
w′,w) and a version of Theorem 1

with a covariant equivalence

T∗ : AVcom
p → Refl(Rcom

p )

holds. Notice that T∗ is Rcom
p -linear, since the dual of the Frobenius isogeny

πA : A→ A is the Verschiebung isogeny p/πAt : At
→ At .

We recall that Deligne’s functor TDel on AVord
q is defined as

TDel(A)= H1( Ã(C),Z),

where Ã/W (Fp) is the Serre–Tate canonical lift of A⊗Fq Fp to characteristic 0 over
the Witt-vectors W (Fp), and where the C-valued points are taken with respect to an
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a priori fixed embedding W (Fp) ↪→ C. The lattice TDel(A) comes equipped with a
natural Frobenius action by F = TDel(πA).

Note that the functor depends on the chosen embedding W (Fp) ↪→ C.
We denote by W ord

q the set of conjugacy classes of ordinary Weil q-numbers,
i.e., of Weil q-numbers such that at least half of the roots of the characteristic
polynomial are p-adic units, when regarded inside an algebraic closure of Qp. With
the abbreviation Rord

q =RW ord
q

, the main result of [Deligne 1969, §7] can be stated as:

Theorem 42. The covariant functor TDel induces an Rord
q -linear equivalence of

categories
TDel : AVord

q → Refl(Rord
q ).

We now compare T∗(−) with TDel when both are restricted to AVord
p :

Proposition 43. The functor TDel(−) is pro-representable by a pro-system ADel

and
TDel(ADel)=Rord

q .

The dual ind-system At
Del satisfies (i)–(iv) of Proposition 35.

Proof. This follows from Proposition 35 applied to the functor X 7→ TDel(X t). �

Let T ord
∗

and TDel,p denote the restriction of T∗ and TDel to AVord
p , respectively.

The functor T ord
∗

is pro-represented by the dual Aord,t of the ind-system Aord which
is defined as A restricted to indices in W ord

p .

Proposition 44. There is an invertible Rord
p -module M= (Mw)w∈W ord

p
and a natural

isomorphism
M⊗Rord

p
TDel,p(−)−→

∼ T ord
∗
(−)

of covariant equivalences AVord
p → Refl(Rord

p ), and a natural isomorphism of
ind-systems

M⊗Rord
q

At
Del 'Aord.

Proof. This follows from Theorem 37 applied to W =W ord
q . �

Proposition 45. For an appropriate choice of ind-system A = (Aw, ϕv,w), the
covariant functor T∗ associated to the functor T = TA of Theorem 1 extends a given
choice of Deligne’s functor

TDel,p ' T∗|Aord
p
: AVord

p → Refl(Rord
p ).

Proof. This follows from Proposition 44 together with the argument of Corollary 41
based on the surjectivity Pic(Rcom

p )→ Pic(Rord
p ) of Proposition 33. �
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