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Orbital integrals and K-theory classes

Peter Hochs and Hang Wang

Let G be a semisimple Lie group with discrete series. We use maps K0(C∗r G)→C

defined by orbital integrals to recover group theoretic information about G, in-
cluding information contained in K-theory classes not associated to the discrete
series. An important tool is a fixed point formula for equivariant indices obtained
by the authors in an earlier paper. Applications include a tool to distinguish
classes in K0(C∗r G), the (known) injectivity of Dirac induction, versions of Sel-
berg’s principle in K-theory and for matrix coefficients of the discrete series, a
Tannaka-type duality, and a way to extract characters of representations from
K-theory. Finally, we obtain a continuity property near the identity element of
G of families of maps K0(C∗r G)→ C, parametrised by semisimple elements
of G, defined by stable orbital integrals. This implies a continuity property for
L-packets of discrete series characters, which in turn can be used to deduce a
(well-known) expression for formal degrees of discrete series representations
from Harish-Chandra’s character formula.

1. Introduction

Let G be a real semisimple Lie group. Its reduced C∗-algebra C∗r G is the closure
in B(L2(G)) of the algebra of convolution operators by functions in L1(G). It
represents the tempered dual of G as a “noncommutative space” in the sense of
noncommutative geometry, and encodes all tempered representations of G. Its
K-theory K∗(C∗r G) is a natural invariant to consider. This K-theory is described
explicitly in terms of equivariant indices of Dirac operators on G/K , for a max-
imal compact subgroup K < G, in the Connes–Kasparov conjecture. This was
proved in various cases by Penington and Plymen [1983], Wassermann [1987],
Lafforgue [2002b] and finally in general by Chabert, Echterhoff and Nest [Chabert
et al. 2003].

Despite this explicit knowledge about the structure of K∗(C∗r G), it remains a
challenge to extract explicit representation theoretic information from this K-theory
group. There has been a good amount of success in this direction for classes
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in K∗(C∗r G) corresponding to discrete series representations, for groups having
such representations. For example, Lafforgue [2002a] used K-theory to recover
Harish-Chandra’s criterion rank(G)= rank(K ) for the existence of discrete series
representations.

The von Neumann trace τe on C∗r G, defined by τe( f )= f (e) for f in a dense
subalgebra, induces a map on K0(C∗r G). On classes corresponding to the discrete
series, this gives the formal degrees of such representations. But this trace maps
all other classes to zero (see Proposition 7.3 in [Connes and Moscovici 1982]).
It has recently become clear that a natural generalisation of the von Neumann
trace involving orbital integrals can be used to extract much more information
from K0(C∗r G). For a semisimple element g ∈ G, the orbital integral τg( f ) of a
function f on G is the integral of f over the conjugacy class of g. This integral
converges for f in Harish-Chandra’s Schwartz algebra, which has the same K-
theory as C∗r G. That leads to maps

τg : K0(C∗r G)→ C. (1.1)

If D is an elliptic operator on a Z2-graded vector bundle over a manifold M , G-
equivariant for a proper, cocompact action by G on M , then one has the equivariant
index

indexG(D) ∈ K0(C∗r G).

In [Hochs and Wang 2018a], the authors proved a fixed point formula for the num-
bers

τg(indexG(D)). (1.2)

They showed that Harish-Chandra’s character formula for the discrete series is a
special case of this fixed point formula, much as Weyl’s character formula is a
special case of the Atiyah–Segal–Singer [Atiyah and Segal 1968] or Atiyah–Bott
[Atiyah and Bott 1967] fixed point formulas, as proved in [Atiyah and Bott 1968].
Also, Shelstad’s character identities for L-packets of representations follows from
a K-theoretic argument involving τg, in the case of discrete series representations
[Hochs and Wang 2018c].

Another approach to index theory involving orbital integrals is the work of Bis-
mut on hypoelliptic Laplacians; see for example [Bismut 2011] or the survey [Ma
2017].

For discrete groups, orbital integrals (now sums over conjugacy classes) are also
useful tools in K-theory. The main result in [Wang and Wang 2016] is a fixed point
theorem for (1.2) in the discrete group case, which has consequences to orbifold
geometry, positive scalar curvature metrics, and trace formulas. Gong [2015] and
Samurkaş [2017] used such maps on the K-theory of maximal group C∗-algebras to
deduce information about rigidity of manifolds. Lott [1999] used orbital integrals
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for discrete groups to construct secondary invariants. Xie and Yu [2018] expressed
Lott’s delocalised η-invariant in terms of a K-theoretic ρ-invariant.

For semisimple Lie groups G, the results in [Hochs and Wang 2018a; 2018c;
Lafforgue 2002b] mentioned above show that classes in K0(C∗r G) corresponding
to the discrete series contain a great deal of information about those representa-
tions. But it was long unclear what (representation theoretic) information can be
recovered from other classes. That question was important motivation for this
paper. As a concrete example, it was not known what information the generator of
K0(C∗r SL(2,R)) corresponding to the limits of discrete series (or to the nonspher-
ical principal series) contains.

In the present paper, we investigate further properties and applications of the
maps (1.1) for semisimple Lie groups, many of them related to the fixed point
formula for (1.2). This starts with an explicit expression for τg applied to K-theory
generators defined via Dirac induction (Theorem 3.2). That result shows that τg is
the zero map on K-theory if rank(G) 6= rank(K ), but it has interesting consequences
if rank(G)= rank(K ). These include

• a way to use the maps τg to distinguish elements of K0(C∗r G) (Corollary 4.1);

• an embedding of K0(C∗r G) into the spaces of distributions on Greg or G
(Corollary 4.2);

• an induction formula from K-equivariant indices to G-equivariant indices
(Corollary 4.8);

• versions of Selberg’s vanishing principle for classes in K0(C∗r G) (Corollary 4.9)
and matrix coefficients of the discrete series (Corollary 4.10);

• a Tannaka-type duality result (Corollary 4.11);

• a result relating the value of τg on K-theory generators to characters of repre-
sentations (Corollary 5.3).

Furthermore, Dirac induction is known to be injective (indeed, bijective), but we
recover this injectivity independently as well.

In the last bullet point above, Corollary 5.3 explicitly states that τg maps a K-
theory class to the value at g of the character of one of the irreducible direct sum-
mands of the representation it corresponds to naturally. The values at g of these
characters are equal up to a sign, and they add up to zero if that representation is
reducible. So the value at g of one of these characters is the most relevant infor-
mation one could have expected to obtain by applying τg. This, to a large extent,
answers the question if and what representation theoretic information is contained
in classes in K0(C∗r G) if rank(G)= rank(K ), even those not corresponding to the
discrete series. In particular, the generator of K0(C∗r SL(2,R)) corresponding to
the limits of discrete series determines the characters of these representations on K .
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In work in preparation, Higson, Song and Tang compute the values of τg on
generators of K0(C∗r G) independently, without using index theory. This is part of
their proof of the Connes–Kasparov conjecture, which states that Dirac induction
is bijective.

For a fixed element x ∈ K0(C∗r G), we will see that τg(x) does not depend con-
tinuously on g, for example at the identity element e. Theorem 6.2 states that a
modified version of τg, related to L-packets of representations in the Langlands
program, has better continuity properties at e. That implies continuity of certain
finite sums of discrete series characters (Corollary 6.3). And that can be used to
take the limit as g→ e in Harish-Chandra’s character formula for the discrete series
to obtain expressions for formal degrees of discrete series representations.

We hope that the various applications of orbital integrals to K-theory of group
C∗-algebras in this paper help to demonstrate the relevance of orbital integrals as
a tool to study such K-theory groups. In future work, we hope to generalise the
results and their applications in this paper to more general groups.

2. Preliminaries

Throughout this paper, let G be a connected semisimple Lie group with finite centre.
Let K < G be a maximal compact subgroup. For any Lie group, we denote its Lie
algebra by the corresponding gothic letter. Fix a K-invariant inner product on g,
and let p⊂ g be the orthogonal complement to k. Then g= k⊕ p.

2A. Dirac induction. The map Ad : K → SO(p) lifts to Ãd : K̃ → Spin(p), for
a double cover K̃ of K . Let 1p be the standard representation of Spin(p), seen as
a representation of K̃ via Ãd. Let K̂Spin be the set of irreducible representations
V of K̃ such that 1p⊗ V descends to a representation of K . Let RSpin(K ) be the
free abelian group generated by K̂Spin.

Let V ∈ K̂Spin. Then we have the G-equivariant vector bundle

EV := G×K (1p⊗ V )→ G/K .

Let {X1, . . . , Xdim(G/K )} be an orthonormal basis of p. Let cp : p→ End(1p) be
the Clifford action. Let L : g→ End(C∞(G)) be the infinitesimal left regular
representation. Consider the Dirac operator

DV :=

dim(G/K )∑
j=1

L(X j )⊗ cp(X j )⊗ 1V

on
0∞(EV )= (C∞(G)⊗1p⊗ V )K .

If G/K has a G-invariant Spin-structure (which is the case precisely if 1p de-
scends to K ), then DV is the Spin-Dirac operator on G/K coupled to the bundle



ORBITAL INTEGRALS AND K-THEORY CLASSES 189

G×K V → G/K ; see Proposition 1.1 in [Parthasarathy 1972]. In any case, DV is
a G-equivariant elliptic differential operator, and has an index

indexG(DV ) ∈ K∗(C∗r G).

Here C∗r G is the reduced group C∗-algebra of G, and indexG is the analytic assem-
bly map [Baum et al. 1994]. If dim(G/K ) is even, then 1p, and hence EV , has a
natural Z2-grading with respect to which DV is odd. Then indexG(DV )∈ K0(C∗r G).
If dim(G/K ) is odd, then there is no such grading, and indexG(DV ) ∈ K1(C∗r G).
So in general, we have

indexG(DV ) ∈ Kdim(G/K )(C∗r G).

Dirac induction is the map

D-IndG
K : RSpin(K )→ Kdim(G/K )(C∗r G)

given by
D-IndG

K [V ] = indexG(DV ),

with V as above. By the Connes–Kasparov conjecture, proved in [Chabert et al.
2003; Lafforgue 2002b; Wassermann 1987], this map is an isomorphism of abelian
groups.

From now on, we suppose that G/K is even-dimensional, since the K-theory
group K0(C∗r G) we study is zero otherwise.

2B. Orbital integrals and a fixed point formula. Let g ∈ G be a semisimple ele-
ment. Let ZG(g)<G be its centraliser. Let d(h ZG(g)) be the left invariant measure
on G/ZG(g) determined by a Haar measure dg on G. The orbital integral with
respect to g of a measurable function f on G is

τg( f ) :=
∫

G/ZG(g)
f (hgh−1) d(h ZG(g)),

if the integral converges. Harish-Chandra [1966, Theorem 6] proved that the inte-
gral converges for f in the Harish-Chandra Schwartz algebra C(G). The subalgebra
C(G)⊂ C∗r G is dense and closed under holomorphic functional calculus [Hochs
and Wang 2018a, Theorem 2.3]. Hence we obtain a map

τg : K0(C∗r G)= K0(C(G))→ C.

Note that τe is the usual von Neumann trace.
Let M be a Riemannian manifold with a proper, isometric, cocompact action

by G. Let E→ M be a G-equivariant, Hermitian, Z2-graded vector bundle. Let
D be an odd, self-adjoint, G-equivariant, elliptic differential operator on E . Then
we have

indexG(D) ∈ K0(C∗r G).
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In [Hochs and Wang 2018a], the authors proved a fixed-point formula for the num-
ber τg(indexG(D)), for almost all g ∈ G. Consequences include Harish-Chandra’s
character formula for the discrete series [Harish-Chandra 1966, Theorem 16] (see
[Hochs and Wang 2018a, Corollary 2.6]) and Shelstad’s character identities in
the case of discrete series representations [Shelstad 1979] (see [Hochs and Wang
2018c, Theorem 2.5]). In this paper, we explore further consequences.

To state the fixed point formula in [Hochs and Wang 2018a], let N → Mg be
the normal bundle to the fixed point set Mg of g in M . Let σD be the principal
symbol of D. Let cg

∈ Cc(Mg) be nonnegative, and such that for all m ∈ Mg,∫
ZG(g)

cg(hm) dh = 1,

for a fixed Haar measure dh on ZG(g) compatible with dg and d(h ZG(g)). If G/K
is odd-dimensional, then K0(C∗r G)= 0, so τg(indexG(D))= 0.

Theorem 2.1. If G/K is even-dimensional, then for almost all semisimple g ∈ G,
we have τg(indexG(D)) = 0 if g is not contained in any compact subgroup of G,
and

τg(indexG(D))=
∫

TMg
cg ch

(
[σD|supp(cg)](g)

)
Todd(TMg

⊗C)

ch
([∧

N ⊗C
]
(g)
) (2.2)

if it is.

Here
ch : K 0(supp(cg))→ H∗(supp(cg)),

ch : K 0(TMg
|supp(cg))→ H∗(TMg

|supp(cg))

are Chern characters, and Todd denotes the Todd class.

Remark 2.3. Explicitly, Theorem 2.1 holds for the semisimple g ∈ G with finite
Gaussian orbital integral (FGOI) [Hochs and Wang 2018a, Definition 7]. That
condition means that the integral∫

G/ZG(g)
e−d(e,hgh−1)2 d(h ZG(g))

converges, where d is the G-invariant Riemannian distance on G. It was shown in
[Hochs and Wang 2018a, Proposition 4.2] that almost every element of G has FGOI.

In this paper, whenever a result is stated for almost all g, what is meant is that
it holds for semisimple elements with FGOI, and possibly also with dense powers
in a maximal torus.
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3. A fixed point formula on G/K

Let T < K be a maximal torus. Let T̃ < K̃ be its inverse image in K̃ . Fix a set
R+c of positive roots of (kC, tC). Let ρc be half the sum of the elements of R+c . Let
V ∈ K̂Spin. Let λ ∈ it∗ be its highest weight with respect to R+c .

For any finite-dimensional (actual or virtual) representation W of K or K̃ , we
denote its character by χW . For any function ϕ on K̃ that descends to a function
on K , we use the same notation ϕ for both the function on K̃ and K . For example,
we have χ1pχV ∈ C∞(K ).

In the case where T is a Cartan subgroup of G, i.e., rank(G)= rank(K ), fix a
set of positive noncompact roots R+n of (gC, tC) such that the character χ1p of the
graded representation 1p of K̃ satisfies

χ1p |T̃ =
∏
α∈R+n

(eα/2− e−α/2). (3.1)

Such a choice of positive noncompact roots can always be made; see, for example,
[Atiyah and Schmid 1977, pp. 17–18; Parthasarathy 1972, Remark 2.2; Atiyah and
Singer 1968, (5.1)]. In the equal-rank case, we write R+ := R+c ∪ R+n . We denote
half the sums of the elements of R+ and R+n by ρ and ρn , respectively.

Let WK := NK (T )/T be the Weyl group of (K , T ).

Theorem 3.2. (a) If rank(G)= rank(K ), then for almost all g ∈ T ,

τg(D-IndG
K [V ])= (−1)dim(G/K )/2 χV

χ1p

(g)

= (−1)dim(G/K )/2

∑
w∈WK

ε(w)ew(λ+ρc)∏
α∈R+(eα/2− e−α/2)

(g).

(In particular, the right-hand sides are well-defined.)

(b) If rank(G) 6= rank(K ), then for almost all g ∈ T ,

τg(D-IndG
K [V ])= 0.

Let a ⊂ p be an abelian subspace such that Zg(t) = t⊕ a. Let c ∈ Cc(a) be a
function whose integral over a is 1. Let σDV be the principal symbol of DV .

Lemma 3.3. For almost all g ∈ T ,

τg(D-IndG
K [V ])=

∫
T a

c
ch
(
[σDV |supp(c)](g)

)
ch
([
a×

∧
p/a⊗C

]
(g)
) .

Proof. Let g ∈ T be such that its powers are dense in T , and with FGOI (see
Remark 2.3). By Proposition 4.2 in [Hochs and Wang 2018a], almost all elements
of T have these two properties.
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We have G/K ∼= p as K-spaces, and hence in particular as T -spaces. Therefore,

(G/K )g = (G/K )T = pAd(T )
= a.

Set A := exp(a); this is the centraliser of g in exp(p). We have p = a ⊕ p/a

as representations of T . So the normal bundle in G/K = p to (G/K )g = a is
a× p/a→ a. The Todd class of the trivial bundle T (G/K )g⊗C→ (G/K )g is 1.
Hence the claim follows from Theorem 2.1. �

Let us compute [σDV |supp(c)]. Let βa ∈ K 0(a) be the Bott generator. (Note
that a is even-dimensional since G/K is.) Let π : Ta→ a be the tangent bundle
projection, and π |supp(c) : supp(c)× a→ supp(c) its restriction. Note that

1p
∼=1a⊗1p/a

as graded representations of T̃ . These descend to T after tensoring with V .

Lemma 3.4. Under the isomorphism

K T
0 (supp(c)× a)∼= K0(supp(c)× a)⊗ R(T ),

we have
[σDV |supp(c)] 7→ π |∗supp(c)βa⊗[1p/a⊗ V ].

Proof. Let ca : a→ End(1a) be the Clifford action. The class

π |∗supp(c)βa ∈ K 0(supp(c)× a)

is defined by1 the vector bundle homomorphism

A : supp(c)×1+a → supp(c)×1−a
given by

AY = ca(Y )
for all Y ∈ supp(c).

We have
(G×K (1

±

p ⊗ V ))|a ∼= a×1±p ⊗ V

as T -vector bundles. So

π |∗supp(c)
(
(G×K (1

±

p ⊗ V ))|supp(c)
)
= (supp(c)× a)×1±p ⊗ V .

Let X, Y ∈ a, so that, using the above identification, we get

σDV (X, Y )= cp(Y )⊗ 1V :1
+

p ⊗ V →1−p ⊗ V . (3.5)

Since Y ∈ a, the map (3.5) equals the odd endomorphism

ca(Y )⊗ 11p/a⊗V ∈ End(1a⊗1p/a⊗ V ).

Together with the above form of the class π |∗supp(c)βa, this implies the claim. �

1We absorb a possible sign in the definition of βa; see [Connes and Moscovici 1982, Lemma 4.1].
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Lemma 3.6. Suppose that rank(G)= rank(K ). Then∧
p⊗C= (−1)dim(G/K )/21p⊗1p

as graded representations of T .

Proof. The set of positive noncompact roots R+n determines a complex structure
on p such that p1,0 is the sum of the positive noncompact root systems. As graded
representations of T , we have∧

p⊗C=
∧

p1,0
⊗
∧

p0,1
=
∧

Cp⊗ (
∧

Cp)
∗.

The element ρn ∈ it∗ is integral for T̃ , and 1p⊗Cρn descends to a representation
of T . We have ∧

Cp= (−1)dim(G/K )/21p⊗Cρn

as graded representations of T ; see, for example, the proof of Lemma 5.5 in [Hochs
and Wang 2018a]. Since 1∗p ∼= (−1)dim(G/K )/21p, we conclude that∧

p⊗C=1p⊗1
∗
p = (−1)dim(G/K )/21p⊗1p.

The nontrivial element of the kernel of the covering map K̃→ K acts on 1p as ±1;
therefore, 1p⊗1p descends to a representation of T . �

Lemma 3.7. Let c be a nonnegative, compactly supported, continuous function on
R2n with integral 1. Let β ∈ K 0(R2n) be the Bott class, and consider

π |supp(c) : supp(c)×R2n
→ supp(c),

where π : T R2n
→ R2n is the natural projection. Then∫

R2n×R2n
c ch(π |∗supp(c)β)= 0. (3.8)

Proof. By Proposition 6.11 in [Wang 2014], the integral (3.8) equals the L2-index
of the Spin-Dirac operator on R2n . That index is zero because the L2-kernel of this
Dirac operator is zero. Indeed, the Spin-Dirac operator on R2n only has continuous
spectrum; see, for example, Theorem 7.2.1 in [Ginoux 2009]. �

Proof of Theorem 3.2. Lemma 3.4 implies that

ch
(
[σDV |supp(c)](g)

)
= ch(π |∗supp(c)βa)(χ1p/aχV )(g).

Furthermore,
ch
([
a×

∧
p/a⊗C

]
(g)
)
= χ∧ p/a⊗C(g)

in the graded sense. So by Lemma 3.3,

τg(D-IndG
K [V ])=

χ1p/aχV

χ∧ p/a⊗C

(g)
∫

Ta
c ch(π |∗supp(c)βa).
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If rank(G) 6= rank(K ), then a is nonzero, and the claim follows from Lemma 3.7.
If rank(G)= rank(K ), then Lemma 3.6 implies that

τg(D-IndG
K [V ])= (−1)dim(G/K )/2 χV

χ1p

(g);

in particular, the right-hand side is well-defined. The claim now follows from
Weyl’s character formula and (3.1). (Note that (K̃ , T̃ ) and (K , T ) have the same
Weyl group WK , since they have the same root system.) �

Remark 3.9. If g = e, then τe(D-IndG
K [V ]) is the L2-index of DV by Proposi-

tion 4.4 in [Wang 2014]. That index is zero if the kernel of DV is zero. Theorem 3.2
shows that, in the equal-rank case, the more general trace τg yields nonzero infor-
mation even in cases where the kernel of DV is zero (see also Section 5B).

4. Consequences

Suppose from now on that rank(G)= rank(K ).

4A. Distinguishing K-theory classes. As a consequence of Theorem 3.2, the traces
τg “separate points” on K0(C∗r G), or distinguish all elements of K0(C∗r G), in the
following sense.

Corollary 4.1. Let x ∈ K0(C∗r G). If τg(x) = 0 for all g in a dense subset of T ,
then x = 0.

Proof. Let x ∈ K0(C∗r G). By surjectivity of Dirac induction, we can write

x =
∑

V∈K̂Spin

mV D-IndG
K [V ],

for mV ∈ Z, finitely many nonzero. By Theorem 3.2, we have for almost all g ∈ T ,

τg(x)= (−1)dim(G/K )/2
∑

V∈K̂Spin

mV
χV

χ1p

(g).

So if τg(x)= 0 for all g in a dense subset of T , then by continuity and conjugation
invariance of the characters χV , we find that∑

V∈K̂Spin

mVχV = 0.

So mV = 0 for all V , i.e., x = 0. �

4B. K-theory and distributions. Let Greg
⊂ G be the subset of regular elements.

Corollary 4.2. The map

τ : K0(C∗r G)→ D′(Greg)
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defined by
〈τ(x), f 〉 =

∫
Greg

τg(x) f (g) dg

for x ∈ K0(C∗r G) and f ∈ C∞c (G
reg), is a well-defined, injective group homomor-

phism.

Proof. Let x ∈ K0(C∗r G). By the surjectivity of Dirac induction, we can write
x = D-IndG

K [y], for some y ∈ RSpin(K ). Theorem 3.2 implies that the function
g 7→ τg(x) equals an analytic function almost everywhere on the set of elliptic
elements of G. Theorem 2.1 implies that this function equals zero almost every-
where on the set of nonelliptic elements of G. So g 7→ τg(x) equals an analytic
function almost everywhere on G. Furthermore, that analytic function is bounded
on compact subsets of Greg. This implies that τ(x) is a well-defined distribution
on Greg.

If τ(x)= 0, then τg(x)= 0 for almost all g ∈ Greg, in particular for almost all
elements of T . Hence Corollary 4.1 implies that x = 0. �

Remark 4.3. As noted in the proof of Corollary 4.2, the first part of Theorem 2.1
implies that τ(x) is zero outside the set of regular elliptic elements of G.

Remark 4.4. We describe the map τ in Corollary 4.2 explicitly in terms of charac-
ters of representations in Section 5. There we see that τ(x) equals the character of
a tempered representation of G almost everywhere on the set of regular elliptic ele-
ments, and zero almost everywhere outside the set of elliptic elements. Therefore,
it extends to a distribution on all of G by Harish-Chandra’s regularity theorem.

4C. Injectivity of Dirac induction. We have used the surjectivity of Dirac induc-
tion in the proof of Corollary 4.1 (which is justified because the Connes–Kasparov
conjecture has been proved). Theorem 3.2 implies injectivity of Dirac induction.

Corollary 4.5. Dirac induction is injective.

Proof. Let y ∈ RSpin(K ), and suppose that D-IndG
K (y)= 0. Then τg(D-IndG

K (y))= 0
for all g ∈ T . Theorem 3.2 implies that for almost all g ∈ T ,

χy

χ1p

(g)= 0.

So χy = 0, i.e., y = 0. �

4D. An induction formula. Let M be an even-dimensional Riemannian manifold
with a G-equivariant Spinc-structure. Let E→ M be a G-equivariant, Hermitian
vector bundle. Let DE

M be the Spinc-Dirac operator on M twisted by E . By Abels’
theorem [1974], there is a K-invariant submanifold N ⊂ M such that M ∼= G×N N
via the action map G × N → M . Furthermore, N has a K-equivariant Spinc-
structure on N compatible with the one on M ; see Proposition 3.10 in [Hochs
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and Mathai 2017]. The Spinc-Dirac operator DE
N on N , twisted by E |N , has the

property that
D-IndG

K (indexK (DE
N ))= indexG(DG

M) ∈ K0(C∗r G). (4.6)

See Theorem 5.2 in [Hochs and Wang 2018a] and Proposition 4.7 in [Hochs 2009].
Theorem 3.2 and surjectivity of Dirac induction imply that the following dia-

gram commutes for all g in the dense subset of T in Theorem 3.2:

K0(C∗r G)
τg

,,

RSpin(K )

D-IndG
K

OO

(−1)dim(G/K )/2 evg /χ1p (g)
// C

(4.7)

Here evg denotes evaluation of characters of representations at g; note that the
bottom arrow is well-defined.

The equality (4.6) and commutativity of (4.7) imply the following formula for
induction from slices.

Corollary 4.8. We have, for almost all g ∈ T ,

τg(indexG(DE
M))= (−1)dim(G/K )/2 indexK (DE

N )(g)/χ1p(g).

Note that the right-hand side can be computed via the Atiyah–Segal–Singer fixed
point formula [Atiyah and Segal 1968].

Induction formulas like Corollary 4.8 we used in various settings to deduce
results about G-equivariant indices from results about K-equivariant indices [Guo
et al. 2018; Hochs 2009; Hochs and Mathai 2016; Hochs and Mathai 2017; Hochs
and Wang 2018a]. The case g = e is not covered by Corollary 4.8; that case is
Corollary 53 in [Guo et al. 2018].

4E. Selberg’s principle. The Selberg principle is a vanishing result for orbital in-
tegrals of certain convolution idempotents on G. See [Blanc and Brylinski 1992;
Julg and Valette 1986; 1987] for approaches to this principle in the spirit of non-
commutative geometry. Theorem 2.1 implies a version of this principle.

Corollary 4.9 (K-theoretic Selberg principle). For almost all g not contained in
compact subgroups of G, the map

τg : K0(C∗r G)→ C

is zero.

Proof. Theorem 2.1 implies that for almost all g not contained in compact sub-
groups of G, and all V ∈ RSpin(K ), we have

τg(D-IndG
K [V ])= 0.

So surjectivity of Dirac induction implies the claim. �
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Corollary 4.9 has a purely representation theoretic consequence.

Corollary 4.10 (Selberg principle for matrix coefficients of the discrete series).
Let π be a discrete series representation of G. Let v be a K-finite vector in the
representation space of π , and mv,v the corresponding matrix coefficient. For all
g not contained in compact subgroups of G, we have

τg(mv,v)= 0.

Proof. Let dπ be the formal degree of π . By rescaling, we may assume that v
has norm 1. Then dπmv,v is an idempotent in C∗r G. Let [π ] ∈ K0(C∗r G) be its
K-theory class. Since v is K-finite, the function mv,v lies in Harish-Chandra’s
Schwartz algebra C(G). Therefore, for all semisimple g ∈ G,

τg(mv,v)=
1

dπ
τg([π ]).

By Corollary 4.9, the number is zero for almost all g not contained in compact
subgroups. The claim therefore follows by continuity of mv,v. �

4F. A Tannaka-type duality. We now suppose that the representation 1p of K̃
descends to K . This is true if we replace G by a double cover if necessary. Then
Dirac induction is defined on R(K ).

The K-theory group K0(C∗r G) and its elements contain nontrivial information
about G and its representations; see, e.g., [Hochs and Wang 2018a; 2018c; Laf-
forgue 2002b]. But just the isomorphism class of K0(C∗r G) as an abelian group con-
tains no information about G whatsoever: this group is always free, with countably
infinitely many generators. It turns out, however, that the combination of the iso-
morphism class of K0(C∗r G), the topological space T and the maps τg:K0(C∗r G)→C,
for g in a dense subset of T , together determine the Cartan motion group K np and
vice versa. The tempered representation theory of K n p is closely related to that
of G; this is the Mackey analogy [Afgoustidis 2015; Higson 2008; 2011; Mackey
1975; Tan et al. 2017; Yu 2017]. Also, the analytic assembly map for G can be
defined in terms of a continuous deformation from K n p to G; see pp. 23–24 of
[Baum et al. 1994] and [Higson 2008].

This is vaguely analogous to the fact that the irrational rotation algebras Aλ, for
irrational λ in

[
0, 1

2

]
, have the same K-theory Z⊕ Z, but are determined up to

isomorphism by the pair (K0(Aλ), τ ), where τ is a natural trace. This is because
the image of τ is Z+ λZ.

Corollary 4.11. The

• abelian group K0(C∗r G) up to isomorphism,

• pointed topological space (T, {e}) up to homeomorphism, and
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• family of group homomorphisms τg : K0(C∗r G)→ C, for g in a dense sub-
set of T ,

together determine the Cartan motion group K n p, and vice versa.

Proof. Write
K0(C∗r G)=

⊕
j∈Z

Z

and let e j be a generator of the j-th copy of Z. Let S be the intersection of the
dense subset of T in the third point in the corollary and the set of g ∈ T for which
the formula in Theorem 3.2 holds. Then S is dense in T .

Consider the function χ j : S→ R given by χ j (g) = τg(e j ). By Theorem 3.2,
there is a function ψ ∈ C∞(T ), not unique but independent of j , and there are
uniquely determined integers d j such that for all j ,

lim
g→e

ψ(g)χ j (g)= d j ,

where at least one of the integers d j equals 1. (Indeed, take ψ = χ1p |S and d j plus
or minus the dimensions of the irreducible representations of K .) By replacing e j

by −e j where necessary, we can make sure that all integers d j are positive.
Fix j0 ∈ Z such that d j0 = 1. Then, again by Theorem 3.2,∣∣χ1p |S

∣∣= |χ j0 |
−1.

And χ1p =−χ1p , so χ1p is imaginary-valued. Hence

χ1p |S =±i |χ j0 |
−1.

We cannot resolve the sign ambiguity with the data we have, but we do not need to.
The characters of irreducible representations V j of K are continuous and conju-

gation invariant, so they are determined by

χV j |S = (χ1p |S)χ j =±i |χ j0 |
−1χ j ,

with the sign chosen such that ±i |χ j0 |
−1χ j > 0 near the identity element. This de-

termines the representations V j of K , and their tensor products and the underlying
vector spaces. By Tannaka duality [Tannaka 1938], this determines K .

To recover p as a K-representation, set ψ := i |χ j0 |
−1, extended continuously

to T . Then
ψ =±χ1p |T =±

∏
α∈R+n

(eα/2− e−α/2).

This implies that for all X, Y ∈ t,

d
dt

∣∣∣
t=0
ψ(X + tY )= ψ(exp(X))

∑
α∈R+n

〈α, Y 〉
2

coth(〈α, X〉/2).
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The term on the right-hand side corresponding to α equals the same term with
α replaced by −α. But otherwise this expression determines the weights α up
to signs. In this way, we recover the set Rn of t-weights of p⊗C as a complex
representation of T , and hence p as a real representation of T , and therefore as a
representation of K . This determines K n p.

Conversely, the Cartan motion group K n p determines its maximal compact
subgroup K and the quotient p = (K n p)/K as a representation of K . And K
determines the pair (T, {e}) up to conjugacy. The K-theory group K0(C∗r G) is
isomorphic to R(K ) via Dirac induction. Furthermore, K and p determine the
characters χV , for V ∈ K̂ and χ1p , and the dimension dim(G/K )= dim(p). Hence,
by Theorem 3.2, this determines the maps τg : K0(C∗r G)∼= R(K )→ C, for g in a
dense subset of T . �

Remark 4.12. In Corollary 4.11, one only needs the neighbourhoods of the iden-
tity element, not all of its topology. And as stated in the corollary, one does not
need the group structure of T .

Remark 4.13. If G = K is compact, then the triple

(K0(C∗r G), (T, {e}), (τg)g∈T )

determines the ring R(G) of characters of G. That in turn determines the tensor
products of representations of G, and forgetful maps to finite-dimensional com-
plex vector spaces. So in this case, Corollary 4.11 reduces to Tannaka duality for
compact groups [Tannaka 1938] (which was used in the proof of Corollary 4.11).

Remark 4.14. If the representation 1p of K̃ does not descend to K , then we only
recover the ring RSpin(K ) in the proof of Corollary 4.11 and cannot directly apply
Tannaka duality.

5. Characters

Again, we suppose that the representation 1p of K̃ descends to K . We may need
to replace G by a double cover for this assumption to hold. This assumption is
now not essential; see Remark 5.4.

5A. Characters and τg . The structure of the C∗-algebra C∗r G and its K-theory
was described by Wassermann [1987] and Clare, Crisp and Higson [Clare et al.
2016]. We can use this to relate values of τg on K-theory classes to values of
characters of representations.

Let P = MAN < G be a cuspidal parabolic and σ in the set M̂ds of discrete
series representations of M . Consider the bundle of Hilbert spaces EP,σ → Â
whose fibre at ν ∈ Â is IndG

P (σ ⊗ ν⊗ 1N ). (This can be topologised by viewing it
as a trivial bundle in the compact picture of induced representations.) Let IndG

P (σ )



200 PETER HOCHS AND HANG WANG

be the Hilbert C0( Â)-module of continuous sections of EP,σ vanishing at infinity.
The group

Wσ := {w ∈ NK (a)/Z K (a);wσ = σ }

acts on K(IndG
P (σ )) via Knapp–Stein intertwiners; see Theorem 6.1 in [Clare et al.

2016]. Let K(IndG
P (σ ))

Wσ be the fixed point algebra of this action. Then

C∗r G ∼=
⊕
P,σ

K(IndG
P (σ ))

Wσ ,

where the sum runs over a set of cuspidal parabolics P =MAN and σ ∈ M̂ds. This
is [Clare et al. 2016, Theorem 6.8]. See also Theorem 8 in [Wassermann 1987].

Now let P and σ be such that

K0(K(IndG
P (σ ))

Wσ )

is nonzero, hence infinite cyclic. (This is equivalent to the condition that Wσ equals
the R-group Rσ ; see Lemma 10 in [Wassermann 1987].) Let b(P, σ ) ∈ K0(C∗r G)
be the generator of this summand of K0(C∗r G) in the image under Dirac induction
of the Z≥1-span of K̂ inside R(K ).

Let η ∈ it∗M be the Harish-Chandra parameter of σ , and η̃ ∈ it∗ its extension by
zero on the orthogonal complement of tM in t. For any positive root system R̃+

of (gC, tC) for which η̃ is dominant, let πG(η̃, R̃+) be the corresponding (limit of)
discrete series representation of G. We need the following version of Schmid’s
character identities. This is Lemma 12 in [Wassermann 1987] in the equal rank
case, but with information included about the infinitesimal characters of the limits
of discrete series representations that occur.

Proposition 5.1. There are 2dim(A) choices of positive roots R+1 , . . . , R+2dim(A) ⊂ R,
obtained from R+ by the application of all combinations of dim(A) commuting
reflections in simple noncompact roots, such that

IndG
P (σ ⊗ 1A⊗ 1N )=

2dim(A)⊕
j=1

πG(η̃, R+j ).

Proof. This is a special case of Theorem 13.3 in [Knapp and Zuckerman 1982] for
the maximal parabolic G in the equal-rank group G. �

As before, let ρc be half the sum of the compact positive roots. By Lemma 15(i)
in [Wassermann 1987], the element η̃−ρc is dominant for K . It is integral because
1p descends to K ; this implies that ρn and hence η̃− ρ+ ρn is integral.

Proposition 5.2 (Wassermann). Let Vη̃−ρc ∈ K̂ have highest weight η̃− ρc. Then

D-IndG
K [Vη̃−ρc ] = b(P, σ ).



ORBITAL INTEGRALS AND K-THEORY CLASSES 201

Proof. See the last page of [Wassermann 1987]. This uses Proposition 5.1. �

Proposition 5.1 and Harish-Chandra’s character formula for (limits of) discrete
series representations imply that the character of the representation IndG

P(σ⊗1A⊗1N)

naturally associated to the K-theory generator b(P, σ ) is zero on T , if this repre-
sentation is reducible. (See Section 5B for an example.) Therefore, it is a useful
property of the map τg that it maps b(P, σ ) to the possibly nonzero value of an
irreducible summand of that representation.

Corollary 5.3. For almost all g ∈ T , τg(b(P, σ )) equals the value at g of the
character of one of the irreducible summands of IndG

P (σ ⊗ 1A⊗ 1N ). The values
at g of the characters of these summands at g are all equal up to a sign.

Proof. Proposition 5.2 and Theorem 3.2 imply that

τg(b(P, σ ))= τg(D-IndG
K [Vη̃−ρc ])= (−1)dim(G/K )/2

∑
w∈WK

ε(w)ewη̃∏
α∈R+(eα/2− e−α/2)

(g).

By Harish-Chandra’s character formula (extended coherently to the limits of dis-
crete series), the right-hand side is the value at g of the character of πG(η̃, R+).
That formula also shows that on T , the character of πG(η̃, R+) equals the character
of πG(η̃, R+j ) modulo a sign, for j = 1, . . . , 2dim(A). Hence the claim follows from
Proposition 5.1. �

Remark 5.4. If the representation 1p does not descend to K , then the analogue of
Corollary 5.3 relates τg(b(P, σ )) to characters of the corresponding representations
of a double cover of G.

5B. Nonspherical principal series and limits of discrete series of SL(2,R). Con-
sider the case where G = SL(2,R), K = T = SO(2), and P =MAN < SL(2,R)

is the minimal parabolic of upper triangular matrices, where M = {±I }. Then
M̂ds = {σ+, σ−}, where σ+ is the trivial representation of M in C and σ− is the
nontrivial one. Now we have Morita equivalences

K(IndG
P (σ+))

Wσ+ ∼ C0([0,∞)),

K(IndG
P (σ−))

Wσ− ∼ C0(R)oZ2.

See Example 6.11 in [Clare et al. 2016]. So the pair (P, σ+) does not contribute
to K0(C∗r (SL(2,R))), whereas (P, σ−) contributes a summand Z, generated by

b(P, σ−)= D-IndG
K [C0].

Let α ∈ it∗ be the root mapping
( 0

1
−1

0

)
to 2i . Set R+ := {α}. Let

g =
(

cosϕ − sinϕ
sinϕ cosϕ

)
∈ T,
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where ϕ ∈ R \ 2πQ. Theorem 3.2 now yields

τg(b(P, σ−))=
1

2i sinϕ
.

This is the value at g of the character of the limit of discrete series representation
πG(0, R+), and minus the value at g of the character of the limit of discrete series
representation πG(0,−R+). The direct sum of these two representations is the
nonspherical principal series representation IndG

P (σ−⊗ 1A⊗ 1N ). The character of
that representation is zero at g.

Some authors, including the authors of this paper, have wondered if the K-theory
generator b(P, σ−) can be detected by suitable maps out of K0(C∗r (SL(2,R))),
and if representation theoretic information can be recovered from it. This example
shows that the answer to both questions is yes.

6. Stable orbital integrals and continuity at the group identity

This section is independent of the rest of this paper. In particular, it does not depend
on Theorem 3.2.

It follows from Theorem 3.2 that, for a fixed x ∈ K0(C∗r G), the function

g 7→ τg(x)

on the set of semisimple elements g of G is not continuous if G is noncompact. In
particular, it is not continuous at the identity element. Theorem 3.2 does imply that
this function is continuous almost everywhere. Already in the compact case, it is a
nontrivial question if the right-hand side of the fixed point formula (2.2) depends
continuously on g, for example as g→ e (as pointed out in Section 8.1 in [Berline
et al. 2004]). It turns out that a version of τg involving stable orbital integrals has
better continuity properties near the identity element. (This comes at the cost of
mapping more elements to zero, however. See Section 5B, where the stable orbital
integral of the class in K0(C∗r SL(2,R)) associated to the limits of discrete series
is shown to be zero.)

6A. Continuity at e. Let GC be a complex semisimple Lie group, and G < GC a
real form of GC. Let g be a semisimple element of G.

Definition 6.1. The stable conjugacy class of g in G is

(g)s := {hgh−1
∈ G : h ∈ GC},

the intersection of the conjugacy class (g)GC
of g in GC with G.

For every f in the Harish-Chandra Schwartz algebra C(G), the stable orbital
integral of f with respect to g is

τ s
g ( f ) :=

∑
g′
τg′( f )=

∑
g′

∫
G/ZG(g′)

f (hg′h−1) dh(ZG(g′)),
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where the sum is over representatives g′ of G-conjugacy classes in (g)s , i.e., (g)s =⊔
g′(g
′).

Stable conjugacy classes are relevant to the notion of an L-packet of represen-
tations and Shelstad’s character identities. See [Shelstad 1979].

The map τ s
g : K0(C∗r G) = K0(C(G))→ C induced by τ s

g has better continuity
properties in g than τg. Let S ⊂ G be the set of elements g for which Theorem 2.1
holds (see Remark 2.3). Then G \ S has measure zero, so in particular S is dense.

Theorem 6.2. For all x ∈ K0(C∗r G),

lim
g→e;g∈S

τ s
g (x)= τe(x).

(Note that τe = τ
s
e .)

Let K < G be maximal compact. If rank(G) 6= rank(K ), then Theorem 6.2
follows from Theorem 3.2(b) and the fact that τe is identically zero on K0(C∗r G).
So assume from now on that rank(G)= rank(K ).

Theorem 6.2 implies a continuity property of characters of L-packets of discrete
series representations.

As before, let T < K be a maximal torus, and set WK := NK (T )/T . Let WG be
the Weyl group of the root system of (gC, tC). Fix representatives w ∈WG of all
classes [w] ∈WG/WK . For any discrete series representation with Harish-Chandra
parameter λ, we denote its global character by 2λ.

Corollary 6.3. Let π be a discrete series representation of G with Harish-Chandra
parameter λ ∈ it∗. Then

lim
g→e;g∈T reg

∑
[w]∈WG/WK

2wλ(g)= dπ ,

where dπ is the formal degree of π .

This corollary will be proved after we prove Theorem 6.2. As a consequence,
one can take the limit as g→ e in Harish-Chandra’s character formula to obtain
an expression for dπ ; see, e.g., page 25 of [Atiyah and Schmid 1977]. See also
Proposition 50 in [Guo et al. 2018].

6B. A K-theoretic character identity. Let Gc be a compact inner form of G, which
exists because rank(G)= rank(K ). Inner forms are defined for example in Chapter
2 of [Adams et al. 1992], but the only properties we need are that Gc is a real form
of GC, and T identifies with a Cartan subgroup of Gc. So pairs (G, T ) and (Gc, T )
have the same root system. The positive root system R+ determines a G-invariant
complex structure on Gc/T . For any integral ν ∈ it∗, consider the holomorphic
line bundles

LG
ν := G×T Cν→ G/T,

LGc
ν := Gc×T Cν→ Gc/T .
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Let ∂̄LG
ν

and ∂̄LGc
ν

be the Dolbeault operators on G/T and Gc/T , respectively,
coupled to these line bundles.

In [Hochs and Wang 2018c], the authors prove a K-theoretic analogue of Shel-
stad’s character identities [Shelstad 1979], and deduce Shelstad’s character identity
in the case of the discrete series.

Theorem 6.4. For all integral ν ∈ it∗ and all g ∈ S,

τg
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
=

∑
[w]∈WG/WK

τg
(
indexG

(
∂̄LG

w−1ν
+ ∂̄∗LG

w−1ν

))
.

Proof. This is (3.6) in [Hochs and Wang 2018c]. There, ν is regular but that
property is not used in the proof of the above equality. �

6C. Dolbeault operators. We will use some properties of the Dolbeault–Dirac op-
erators in Theorem 6.4 to deduce Theorem 6.2.

First of all, every element of K0(C∗r G) is the index of a Dolbeault–Dirac operator
on G/T . Indeed, let V ∈ K̂Spin, and let λ ∈ it∗ be its highest weight with respect
to the positive compact roots chosen earlier. Then λ− ρn is a weight of 1p⊗ V ,
so it is integral for T . Consider the holomorphic, G-equivariant line bundle

LG
λ−ρn
:= G×T Cλ−ρn → G/T .

Let ∂̄LG
λ−ρn

be the Dolbeault operator on G/T coupled to LG
λ−ρn

.

Proposition 6.5. We have

D-IndG
K [Vλ] = (−1)dim(G/K ) indexG

(
∂̄LG

λ−ρn
+ ∂̄∗LG

λ−ρn

)
.

Proof. This is proved in Section 5 of [Hochs and Wang 2018b] in the case where
λ+ ρc is regular for G, but that assumption is not necessary for the arguments. �

Lemma 6.6. We have, for all w ∈WG and all g ∈ S,

τwgw−1
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
= τg

(
indexG

(
∂̄LG

w−1(λ−ρ)
+ ∂̄∗LG

w−1(λ−ρ)

))
.

Proof. In the case of Dolbeault operators twisted by holomorphic vector bundles,
and finite fixed point sets, the fixed point formula in Theorem 2.1 simplifies con-
siderably; see Corollary 6.3 in [Hochs and Wang 2018b]. For any h ∈ T with dense
powers, and any integral ν ∈ it∗, this yields

τh
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
=

∑
xT∈(G/T )h

tr(g|(LG
ν )xT )

detC(1− g−1|TxT G/T )
. (6.7)

Now, forw∈WG , we have (G/T )wgw−1
=(G/T )T =NK (T )/T , and for x ∈NK (T ),

(LG
ν )xT = CAd∗(x)ν, TxT G/T =

⊕
α∈R+

CAd∗(x)α
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as complex representations of T , where we use the complex structure on G/T
defined by R+. So

τwgw−1
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
=

∑
xT∈NK (T )/T

tr(wgw−1
|CAd∗(x)(λ−ρ))

detC(1−wg−1w−1|⊕
α∈R+ CAd∗(x)α )

=

∑
xT∈NK (T )/T

tr(g|CAd∗(w−1x)(λ−ρ)
)

detC(1− g−1|⊕
α∈R+ CAd∗(w−1x)α

)

=

∑
yT∈w−1 NK (T )w/T

tr(g|CAd∗(yw−1)(λ−ρ)
)

detC(1− g−1|⊕
α∈R+ CAd∗(yw−1)α

)
. (6.8)

(In the last step, we substituted y = w−1xw.)
Finally, w−1 NK (T )w = NK (T ), and⊕

α∈R+
CAd∗(yw−1)α = TyT G/T

as complex representations of T , with respect to the complex structure defined by
the positive root system w−1 R+ with respect to which w−1(λ−ρ) is dominant. So
by (6.7), the expression (6.8) equals

τg
(
indexG

(
∂̄LG

w−1(λ−ρ)
+ ∂̄∗LG

w−1(λ−ρ)

))
. �

Lemma 6.9. We have, for all integral ν ∈ it∗,

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= τe

(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
.

Proof. By Connes and Moscovici’s L2-index formula [1982, Theorem 5.2], we
have

τe
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= ε

(
ch
(∧

Cg/t⊗Cν
)

Â(g, T )
)
[g/t],

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= ε

(
ch
(∧

Cgc/t⊗Cν
)

Â(gc, T )
)
[gc/t],

for the same sign ε ∈ {±1}. Here ch : R(T )→ H∗(g, T,R) is the relative Chern
character, and the characteristic classes Â in H∗(g, T,R) are defined in Section 4
of [Connes and Moscovici 1982]. The right-hand side of the first line only depends
on the representations

∧
Cg/t⊗Cν and g/t of T , and similarly for the right-hand

side of the second line. Since g/t and gc/t are both equal to the sum of the positive
root spaces as complex representations of T , we find that the two expressions
are equal. �
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6D. Proofs of Theorem 6.2 and Corollary 6.3. To finish the proof of Theorem 6.2,
we need a final lemma.

Lemma 6.10 (Arthur). We have, for all g ∈ T reg,

τ s
g =

∑
[w]∈WG/WK

τwgw−1 .

Proof. In Section 27 (p. 194) of [Arthur 2005], it is pointed out that two elements
g, g′ ∈ T reg are conjugate if and only if g = wK g′w−1

K for some wK ∈ WK , and
stably conjugate if and only if g = wG g′w−1

G for some wG ∈WG . �

Proof of Theorem 6.2. By surjectivity of Dirac induction and Proposition 6.5, every
x ∈ K0(C∗r G) is represented by the equivariant index

x = indexG
(
∂̄LG

ν
+ ∂̄∗LG

ν

)
for an integral element ν ∈ it∗.

Let g ∈ S. By Theorem 6.4 and Lemmas 6.6 and 6.10, we have

τ s
g (x)= τ

s
g
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= τg

(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
.

Since Gc is compact, this expression is continuous in g. And by Lemma 6.9,

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= τe

(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= τe(x). �

Proof of Corollary 6.3. For w ∈WG , let [πwλ] ∈ K0(C∗r G) be the class defined by
the discrete series representation with Harish-Chandra parameter wλ. By Proposi-
tions 5.1 and 5.2 in [Hochs and Wang 2018a], we have for all g ∈ T reg,∑
[w]∈WG/WK

2wλ(g)=
∑

[w]∈WG/WK

τg([πwλ])

= (−1)dim(G/K )/2
∑

[w]∈WG/WK

τg
(
indexG

(
∂̄LG

w(λ−ρ)
+ ∂̄∗LG

w(λ−ρ)

))
.

Lemmas 6.6 and 6.10 imply that the right-hand side equals

(−1)dim(G/K )/2τ s
g
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
.

As g→ e through the set S in Theorem 6.2, that result implies that the limit of the
above expression is

(−1)dim(G/K )/2τe
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
= τe([πλ])= dπ .

The claim now follows from continuity of characters on the regular set. �
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