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Andrei Suslin

We show that the theory of motivic complexes developed by Voevodsky over
perfect fields works over nonperfect fields as well provided that we work with
sheaves with transfers of Z[1/p]-modules (p = char F). In particular we show
that every homotopy invariant sheaf with transfers of Z[1/p]-modules is strictly
homotopy invariant.

0. Introduction

Voevodsky defined the category of motives over an arbitrary perfect field. The main
reason why the same construction does not work over arbitrary fields is that we do
not know whether the theorem of Voevodsky, which states that every homotopy
invariant Nisnevich sheaf with transfers is strictly homotopy invariant, holds over
nonperfect fields. This makes life fairly inconvenient because when we start with
a field F of characteristic p > 0 and take a look on the function field F(S) of a
smooth scheme of finite type over F we never get a perfect field unless dim S = 0.

The main purpose of this paper is to show that the above theorem holds over a
nonperfect field of characteristic p provided that we work with sheaves with trans-
fers of Z[1/p]-modules. In Section 1 we use the theory of Frobenius twists to show
that extension of scalars from F to its perfect closure F1/p∞ defines an equivalence
on the category PTp of presheaves with transfers of Z[1/p]-modules. In Section 2
we show that the above functor takes sheaves to sheaves, and the resulting functor
on the category NSTp of Nisnevich sheaves with transfers of Z[1/p]-modules is an
equivalence as well. Finally we show that this functor preserves cohomology. In
Section 3 we show that the extension of scalars functor takes homotopy invariant
presheaves to homotopy invariant presheaves and hence every homotopy invariant
Nisnevich sheaf with transfers of Z[1/p]-modules over F is strictly homotopy
invariant. This fact readily implies that all results concerning homotopy invariant
presheaves with transfers proved by Voevodsky for perfect fields are true over arbi-
trary fields once we work with sheaves of Z[1/p]-modules. In particular we may
define the motivic category DM−p (F) of effective motives in the standard way as
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the category of bounded above complexes of Nisnevich sheaves with transfers of
Z[1/p]-modules with homotopy invariant cohomology sheaves.

In Section 4 we discuss in some detail the extension of scalars for presheaves
with transfers of Z[1/p]-modules in the case of an arbitrary field extension F ⊂ E .
We show that this functor takes sheaves to sheaves, takes homotopy invariant
sheaves to homotopy invariant sheaves and is exact. This allows us to define the
extension of scalars functor φ∗ :DM−p (F)→DM−p (E) in the most straightforward
way — just applying the extension of scalars functor pointwise. We show also
that this functor takes tensor products to tensor products and happens to be an
equivalence of categories if E = F1/p∞ .

In Section 5 we show that extension of scalars commutes with the internal Hom
functor.

1. Presheaves with transfers over nonperfect fields

For a field F we denote by CorF the category of finite correspondences over F and
by PT(F) the category of presheaves with transfers over F , i.e., additive contra-
variant functors CorF → Ab; see [Mazza et al. 2006] for definitions. We use
the notation NST for the category of Nisnevich sheaves with transfers. Let E/F
be a field extension. In this case we have an obvious extension of scalars functor
φ :CorF→CorE taking X to X E and Z ∈Cor(X, Y ) to Z E ∈Cor(X E , YE). Taking
the composition with φ we get a direct image functor φ∗ : PT(E)→ PT(F). The
functor φ∗ is obviously exact and preserves direct sums and direct products. In
particular, φ∗ is continuous and hence has a left adjoint φ#; see [MacLane 1971].

Proposition 1.1. (1) The functor φ# is uniquely characterized by the following
properties:

(a) φ# is right exact.
(b) φ# preserves arbitrary direct sums.
(c) φ#(Ztr(X))= Ztr(X E).

(2) The functor φ# is given by the formula

φ#(F)= Coker
( ⊕

s∈CorF (X,X1)

Ztr(X E)⊗F(X1)→
⊕

X∈SmF

Ztr(X E)⊗F(X)
)
.

Proof. Note that every left adjoint functor is right exact and preserves direct sums.
For any presheaf with transfers M ∈ PT(E) we have

Hom(φ#(Ztr(X),M))= Hom(Ztr(X), φ∗(M))

= φ∗(M)(X)=M(X E)= Hom(Ztr(X E),M).
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This proves the last formula. Assume now that a : PT(F)→ PT(E) is a functor
having the above three properties. Note that in this case we also have the following
property: for any F ∈ PT(F) and any abelian group A we have a natural isomor-
phism,

a(F ⊗ A)= a(F)⊗ A.

In fact the case when A is a free abelian group is clear since a preserves direct
sums. The general case follows in view of right exactness of a. Note now that any
presheaf with transfers F ∈ PT(F) has a canonical resolution⊕

s∈CorF (X,X1)

Ztr(X)⊗F(X1)→
⊕

X∈SmF

Ztr(X)⊗F(X)→ F→ 0.

Applying the functor a to this presentation and using the right exactness of a we
get the presentation for a(F). This proves that

a(F)= Coker
( ⊕

s∈CorF (X,X1)

Ztr(X E)⊗F(X1)→
⊕

X∈SmF

Ztr(X E)⊗F(X)
)
. �

Recall that a presheaf with transfers is called free in case it is a direct sum
of presheaves of the form Ztr(X). Since all schemes in question are Noetherian
it follows that every such presheaf is actually a sheaf in the Nisnevich topology.
Later we’ll need the following additional properties of the functor φ#:

Lemma 1.2. (1) The functor φ# takes free presheaves to free presheaves.

(2) For any presheaves with transfers F , G ∈ PT(F) we have a natural iso-
morphism φ#(F ⊗pr

tr G) = φ#(F)⊗pr
tr φ

#(G) (here ⊗pr
tr stands for the tensor

product operation in the category of presheaves with transfers; see [Suslin
and Voevodsky 2000]).

Proof. The first claim is obvious. To prove the second one we note that, according
to the defining properties of the tensor product operation, to compute F ⊗pr

tr G we
may start with arbitrary free presentations⊕

i

Ztr(X i )
p
→

⊕
j

Ztr(Y j )→F→ 0 and
⊕

s

Ztr(Xs)
q
→

⊕
t

Ztr(Yt)→G→ 0,

in which case F ⊗pr
tr G coincides with the cokernel of the resulting map⊕

i,t

Ztr(X i × Yt)⊕
⊕

j,s

Ztr(Y j × Xs)
p⊗1−1⊗q
−−−−−−→

⊕
j,t

Ztr(Y j × Yt).

Applying the functor φ# to the above presentations we get free presentations of
φ#(F) and φ#(G), and the same computation as above yields our claim. �
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Note that φ∗ takes Zariski (resp. Nisnevich) sheaves with transfer over E to
Zariski (resp. Nisnevich) sheaves with transfers over F . However it’s not clear
whether the functor φ# takes sheaves to sheaves, so working with Nisnevich sheaves
we need to sheafify φ#(F) in Nisnevich topology. The resulting sheaf with transfers
will be denoted φ∗(F). Sometimes we denote φ∗(F) by F ⊗F E or FE and call it
the extension of scalars in F .

Corollary 1.3. (1) For any presheaf with transfers F we have a natural isomor-
phism φ#(F)Nis = φ

∗(FNis).

(2) For any sheaves with transfers F , G ∈NST(F) we have a natural isomorphism
φ∗(F ⊗tr G)= φ∗(F)⊗tr φ

∗(G).

Proof. The first claim is clear since composition of left adjoints coincides with the
left adjoint to the composition. The second claim follows from the first one and
the previous lemma. �

Assume now that F is a field of positive characteristic p and take E = F1/p.
The field E may be identified with F via the Frobenius isomorphism, so that the
category CorE identifies with CorF and the resulting functor φ identifies with the
Frobenius twist functor X 7→ X (1)

= X ⊗ f F , where the subscript f indicates that
we view F as F-algebra via the Frobenius embedding f : F → F , x 7→ x p.
The important property of the Frobenius twist functor is the presence, for any
X ∈ Sch/F , of the canonical Frobenius morphism8X : X→ X (1) (see, for example,
[Friedlander and Suslin 1997]), which in the affine case corresponds to the F-
algebra homomorphism A⊗ f F→ A, a⊗ λ 7→ λ · a p. The following elementary
lemma sums up some of the properties of the Frobenius map:

Lemma 1.4. (1) 8X : X → X (1) is a natural transformation of functors from
Sch/F to itself , i.e., for a morphism f : X→ Y we get a commutative diagram

X

8X
��

f
// Y

8Y
��

X (1) f (1)
// Y (1)

(2) 8X×Y =8X ×8Y .

(3) 8X is a finite surjective morphism for any X. If X/F is a smooth irreducible
scheme of dimension d, the morphism 8X : X → X (1) is a finite flat purely
inseparable morphism of degree pd .

Let f : X→ Y be a finite surjective morphism of irreducible schemes. In this
case the graph 0f ⊂ X ×Y is finite over Y and so its transpose 0T

f ⊂ Y × X defines
a finite correspondence from Y to X (which we’ll call f T ).
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Theorem 1.5. The family of maps 8X : X→ X (1) defines a natural transformation
of functors from CorF to itself , 8 : IdCorF → φ. Moreover, after inverting p this
natural transformation becomes an isomorphism of functors with inverse given by
the family of maps

1
pdim X 8

T
X : X

(1)
→ X.

The proof is based on several easy but useful lemmas.

Lemma 1.6. Let f : X→ Y be a finite flat purely inseparable morphism of smooth
irreducible schemes of the same dimension. Then the maps f∗ : Z i (X)→ Z i (Y )
and f ∗ : Z i (Y )→ Z i (X) are defined on all cycles and both compositions coincide
with multiplication by deg f .

Proof. Note that the operation f∗ is defined on all cycles for any proper morphism
and the operation f ∗ is defined on all cycles for any flat morphism. Furthermore,
the composition f∗ ◦ f ∗ coincides with multiplication by deg f in view of the
projection formula. Finally, since f is finite and purely inseparable, it is injective.
Hence f∗ is equally injective and, since f∗ ◦ f ∗ ◦ f∗ = deg f · f∗, we conclude that
f ∗ ◦ f∗ = deg f �

We will also need the following well-known and elementary fact:

Lemma 1.7. Let Z ∈Cor(X, Y ) be a finite correspondence from a (smooth) scheme
X to a (smooth) scheme Y . Let further f : Y → Y ′ and g : X ′→ X be morphisms
of (smooth) schemes. Then:

(1) f ◦ Z ∈ Cor(X, Y ′) coincides with (1X × f )∗(Z).

(2) Z ◦ g ∈ Cor(X ′, Y ) coincides with (g× 1Y )
∗(Z).

Corollary 1.8. (a) Let f : X → Y be a finite surjective morphism of smooth
irreducible schemes. Then f ◦ f T

= deg f .

(b) Assume in addition that f is purely inseparable. Then f T
◦ f = deg f .

Proof. Note that for any morphism f : X→ Y the cycle 0 f ⊂ X×Y coincides with
(1X , f )∗(X) = (1X × f )∗(1X ) and hence 0T

f = ( f, 1X )∗(X) = ( f × 1X )∗(1X ).
Lemma 1.7 shows now that f ◦ f T

= (1Y × f )∗(0T
f )= (1Y × f )∗( f, 1X )∗(X)=

( f, f )∗(X)= (1Y ◦ f )∗(X)= (1Y )∗(deg f ·Y )= deg f ·1Y To prove the second
claim we note first that f is flat, so that we may apply Lemma 1.6. Applying
Lemma 1.7 once again we get

f T
◦ f = ( f × 1X )

∗(0T
f )= ( f × 1X )

∗( f × 1X )∗(1X )= deg f ·1X . �

Proposition 1.9. Let X be a smooth equidimensional scheme and let Z ⊂ X be an
equidimensional cycle of dimension d. Then (8X )∗(Z)= pd

· Z (1).



282 ANDREI SUSLIN

Proof. It suffices, clearly, to treat the case when Z is irreducible, i.e., is represented
by a closed integral subscheme Z ⊂ X . In this case the cycle Z (1) is defined
by the closed subscheme Z (1) ⊂ X (1), which is irreducible but which however
need not be reduced. Thus, denoting the integral scheme Z (1)red by Z ′ we see
that the cycle Z (1) equals l · Z ′, where l is the length of the local Artinian ring
F(Z)⊗F F1/p

= F(Z)⊗ f F . Furthermore, Lemma 1.4 shows that 8X (Z)= Z ′

and hence (8X )∗(Z)=[F(Z) : F(Z ′)]·Z ′. Thus we only need to check the formula

[F(Z) : F(Z ′)] = l · pd .

Let x1, . . . , xd be the transcendence basis of F(Z) over F . Note that dimension of
F(Z)⊗ f F over F(x1, . . . , xd)⊗ f F=F(x1, . . . , xd) equals [F(Z) :F(x1, . . . , xd)]

and hence [F(Z) : F(x1, . . . , xd)] = l · [F(Z ′) : F(x1, . . . , xd)]. The field embed-
ding F(Z ′) ↪→ F(Z) takes xi to x p

i . Thus identifying F(Z ′)with a subfield of F(Z)
we identify its subfield F(x1, . . . , xd) with the subfield F(x p

1 , . . . , x p
d )⊂ F(Z). So

we get

l · pd
=
[F(Z) : F(x1, . . . , xd)]

[F(Z ′) : F(x p
1 , . . . , x p

d )]
· [F(x1, . . . , xd) : F(x

p
1 , . . . , x p

d )]

=
[F(Z) : F(x p

1 , . . . , x p
d )]

[F(Z ′) : F(x p
1 , . . . , x p

d )]
= [F(Z) : F(Z ′)]. �

Proof of Theorem 1.5. We first show that 8 is a natural transformation of func-
tors from CorF to itself. Let Z ∈ Cor(X, Y ) be a finite correspondence from a
smooth, irreducible scheme X to a (smooth, irreducible) Y . We have to verify the
commutativity of the diagram

X

8X
��

Z
// Y

8Y
��

X (1) Z (1)
// Y (1)

By Lemma 1.7,8Y ◦Z = (1X×8Y )∗(Z) and Z (1)◦8X = (8X×1Y (1))
∗(Z (1)). Thus

we need to establish the relation (1X ×8Y )∗(Z)= (8X × 1Y (1))
∗(Z (1)). Applying

to both sides the injective map (8X × 1Y (1))∗ and using Lemma 1.6 we see that
the formula in question takes the form (8X × 8Y )∗(Z) = pdim X

· Z (1). Since
8X ×8Y =8X×Y we conclude from Proposition 1.9 that the left-hand side equals
pdim Z

· Z (1). It suffices to note now that dim X = dim Z .
To finish the proof it suffices to establish that, for any smooth irreducible X ,

8X ◦8
T
X = pdim X

·1X (1) and 8T
X ◦8X = pdim X

·1X .

However, these formulae follow from Corollary 1.8. �
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Denote by CorF [1/p] the category with same objects as CorF (i.e., all smooth
schemes of finite type over F) but whose morphisms are obtained from those of
CorF by inverting p.

Corollary 1.10. The Frobenius twist functor induces an equivalence

CorF [1/p] → CorF [1/p], X 7→ X (1).

Proof. According to Theorem 1.5, the Frobenius twist functor is isomorphic to the
identity functor and hence is an equivalence. �

Set Fn = F1/pn
and let F∞ = F1/p∞

= lim
−−→

Fn be the perfect closure of F .

Theorem 1.11. Extension of scalars defines an equivalence of categories

φ : CorF [1/p] → CorF∞[1/p].

Proof. Corollary 1.10 shows that extension of scalars from F to F1 gives an equiv-
alence of categories on Cor[1/p]. Induction on n implies that the same is true
for the extension of scalars from F to Fn . Note further that, for X ∈ SmF , every
closed subscheme in X F∞ is defined over Fn for appropriate n. Hence, for any
X , Y ∈ SmF we have

Cor(X F∞, YF∞)= lim
−−→

n
Cor(X Fn , YFn ).

Thus the extension of scalars map

Cor(X, Y )[1/p] → Cor(X F∞, YF∞)[1/p]

is an isomorphism. It remains to show that the functor φ is essentially surjective,
i.e., every object of CorF∞[1/p] is isomorphic to X F∞ for appropriate X . However,
this follows from Corollary 1.8 and the following result:

Lemma 1.12. Let Z ∈ SmF∞ be a smooth irreducible scheme. Then there exists
a smooth irreducible scheme X ∈ SmF and a finite, surjective, purely inseparable
morphism Z→ X F∞ .

Proof. Since every scheme of finite type over F∞ is defined over Fn for sufficiently
large n, we easily conclude that there exists a smooth irreducible scheme Y ∈ SmFn

such that Z is isomorphic to YF∞ . In the case Y that is defined over F , the scheme Z
is also defined over F and we have nothing to prove. In the general case we
may identify Fn with F via the n-th power of the Frobenius isomorphism. In this
way, Y defines a smooth irreducible scheme X over F . As we pointed out before,
the scheme X Fn , viewed as a scheme over F , coincides with the n-th Frobenius
twist X (n). The n-th power of the Frobenius morphism

8n
X : X→ X (n)
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is a finite, surjective, purely inseparable morphism of degree pn·dim X. When we
return from F to Fn , the morphism 8n

X defines a finite, surjective, purely insepa-
rable morphism Y → X Fn . Extending scalars from Fn to F∞, we get the required
morphism Z→ X F∞ . �

We are going to use the notation PTp(F) for the category of the presheaves with
transfers of Z[1/p]-modules (i.e., additive functors from CorF to Z[1/p]-mod).
Note that presheaves with transfers of Z[1/p]-modules may be identified with
presheaves with transfers, all of whose groups of sections are uniquely p-divisible,
so that PTp(F)⊂ PT(F).

Theorem 1.13. The direct image functor

φ∗ : PTp(F∞)→ PTp(F)

is an equivalence of categories with quasi-inverse φ#.

Proof. Note first that, for any additive category C, every additive functor M :
C→ Z[1/p]-mod extends uniquely to an additive functor C[1/p] → Z[1/p]-mod.
Thus the category PTp(F) may be identified with the category of additive functors
from CorF [1/p] to Z[1/p]-mod. Our first claim follows now immediately from
Theorem 1.11. Since φ# is left adjoint to an equivalence φ∗, we conclude that it
coincides with the quasi-inverse equivalence. �

Corollary 1.14. Let E/F be any purely inseparable field extension. Denote by
ψ : CorF → CorE the corresponding extension of scalars functor. Then ψ∗ :
PTp(E)→ PTp(F) is an equivalence of categories with quasi-inverse ψ#.

Proof. Note that E ⊂ F∞ and, moreover, F∞ = E∞. Denote by φ′ the extension
of scalars functor corresponding to the field extension E ⊂ E∞. Our claim follows
from Theorem 1.13 and the commutative diagram

PTp(E∞)
=
//

φ′

��

PTp(F∞)

φ∗

��

PTp(E)
ψ∗

// PTp(F) �

In the next section we’ll need the following result:

Lemma 1.15. Let F ∈ PTp(F) be a presheaf with transfers of Z[1/p]-modules.
Let, further, f : X → Y be a finite, surjective, purely inseparable morphism of
irreducible smooth schemes. Then the homomorphism f ∗ : F(Y )→ F(X) is an
isomorphism.

Proof. It suffices to note that in CorF we have a morphism f T
: Y → X , which

yields a homomorphism ( f T )∗ : F(X)→ F(Y ) and both compositions of f ∗ and
( f T )∗ are equal (according to Corollary 1.8) to multiplication by deg f . �
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2. Sheaves with transfers over nonperfect fields

We keep the notations introduced in the previous section. In particular we denote by
E = F∞ the perfect closure of F . We denote by φ :CorF→CorE the corresponding
extension of scalars functor. Finally we use the notation

φ∗ : PTp(F∞)→ PTp(F) and φ#
: PTp(F)→ PTp(F∞)

for the corresponding functors on presheaves with transfers of Z[1/p]-modules.

Theorem 2.1. Let F ∈ PTp(F∞) be a presheaf with transfers of Z[1/p]-modules.
Assume that φ∗(F) is a Zariski (resp. Nisnevich) sheaf. Then F itself is also a
Zariski (resp. Nisnevich) sheaf.

We start with the case of Zariski sheaves, which is somewhat more transparent.

Lemma 2.2. Let π : Y→ X be an integral surjective morphism of integral schemes.
Assume further that the scheme X is normal and the extension of rational function
fields is purely inseparable. Then π is a homeomorphism.

Proof. Since π is integral we conclude that it is a closed map. Thus it suffices to
establish that π is bijective. Our conditions show that π is surjective and we only
need to verify the injectivity of π . Replacing X by an open affine scheme and Y by
its inverse image, we see that it suffices to consider the case when X = Spec A
(A is an integrally closed domain) and Y = Spec B is an affine integral scheme.
Surjectivity of π readily implies that π∗ : A→ B is injective. Denote by F (resp. E)
the field of fractions of A (resp. B). Since E/F is purely inseparable and A is
integrally closed there is exactly one prime ideal in B over each prime ideal of A —
see [Bourbaki 1972] — which means that π is bijective. �

Corollary 2.3. Under the conditions and notation of Lemma 2.2, let F be a presheaf
on the small Zariski site of Y . If π∗(F) is a sheaf , F itself is a sheaf as well.

Let F be a presheaf on SmF . For any X ∈ SmF , restricting F to the small Zariski
(resp. Nisnevich) site of X we get a presheaf FX on XZar (resp. XNis). Moreover,
for any morphism f : X→Y we get a canonical homomorphism α f :FY→ f∗(FX ).
Finally, for a pair of composable morphisms f : X→ Y and g : Y → Z ,

αg f = g∗(α f ) ◦αg.

Lemma 2.4. Let F ∈ PTp(F) be a presheaf with transfers of Z[1/p]-modules. Let,
further, f : X → Y be a finite surjective purely inseparable morphism of smooth
schemes. Then the associated homomorphism

α f : FY → f∗(FX )

is an isomorphism ( for both the Nisnevich and Zariski topologies).
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Proof. We need to show that for any U ∈ YNis (resp. U ∈ YZar) the canonical map

F(U )
p∗2
−→F(X ×Y U )

is an isomorphism. It suffices to treat the case when U is irreducible, in which case
(since f is purely inseparable ) X ×Y U is also irreducible. Now our claim follows
from Lemma 1.15, since p2 is a finite, surjective, purely inseparable morphism. �

Proof of Theorem 2.1 for the Zariski topology. To show that F is a Zariski sheaf
we have to verify that for any Y ∈ SmE the restriction FY is a sheaf. It suffices,
clearly, to treat the case when Y is irreducible. Assume first that Y = X E for
an appropriate X ∈ SmF . Let π : Y → X be the structure morphism. Note that
π∗(FY )= (φ∗(F))X and hence π∗(FY ) is a sheaf. Since π : Y → X is an integral,
surjective, purely inseparable morphism of integral normal schemes we conclude
by Corollary 2.3 that FY is a sheaf. In the general case, we use Lemma 1.12 and
find a finite surjective purely inseparable morphism Y f

→ X E . Lemma 2.4 shows
that α f : FX E → f∗(FY ) is an isomorphism. Thus f∗(FY ) is a sheaf. Applying
Corollary 2.3 again, we conclude that FY is a sheaf. �

Lemma 2.5. Let O be a henselian local ring. Let, further, A be an integral
O-algebra. If A is local it is a local henselian ring.

Proof. Assume first that A is finite over O. Every finite A-algebra happens to be a
finite O-algebra and hence is a finite product of local rings. However, this property
characterizes henselian local rings — see [Milne 1980] — so we conclude that A
is henselian. In the general case, let B be any finitely generated subalgebra of A.
Since A is integral over B, we conclude that there is a maximal ideal of A over
each maximal ideal of B. Thus B has to be local and hence has to be a henselian
local ring. The same reasoning shows that whenever B ⊂ B ′ the inclusion B ↪→ B ′

is a local homomorphism. Now it suffices to use the following lemma. �

Lemma 2.6. Let {Bi }i∈I be a filtering direct system of local rings and local homo-
morphisms. If all Bi are henselian then A = lim

−−→i∈I Bi is also a henselian local
ring.

Proof. Denote by Mi and ki the maximal ideal and the residue field of Bi . It’s
perfectly trivial to verify that A is a local ring with maximal ideal M = lim

−−→
Mi

and residue field k = lim
−−→

ki . Let f ∈ A[T ] be a monic polynomial and assume
that f̄ = g0 · h0, where g0, h0 ∈ k[T ] are coprime monic polynomials. Clearly
there exists i ∈ I such that f comes from the monic polynomial f (i) ∈ Bi [T ]
and g0, h0 ∈ k[T ] come from monic polynomials g0(i), h0(i) ∈ ki [T ]. Moreover,
increasing i if required, we may assume that the identity f (i)= g0(i) · h0(i) holds
in ki [T ]. Clearly g0(i) and h0(i) are coprime in ki [T ]. Since Bi is henselian we
conclude that f (i)= g(i) · h(i), where g(i), h(i) ∈ Bi [T ] are monic polynomials
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with g(i)= g0(i) and h(i)= h0(i). Taking the images of g(i), h(i)∈ Bi [T ] in A[T ],
we get the required factorization for f ∈ A[T ]. �

Corollary 2.7. Let π : Y → X be an integral surjective morphism of integral
schemes. Assume further that the scheme X is normal and the extension of fields
of rational functions is purely inseparable. Let x ∈ X be a point and y ∈ Y be the
unique point over x. In this case,

Y ×X SpecOh
x = SpecOh

y .

Proof. Obviously Y ×X SpecOh
x = Spec A, where A is integral over Oh

x . To give a
maximal ideal in A is the same as to give a point in the fiber of Spec A→ SpecOh

x
over Mh

x . Since this fiber coincides with the fiber of Y → X over x , we conclude
that A is local and its unique maximal ideal lies over My . Lemma 2.5 shows that
A is a henselian local ring. On the other hand A is ind-étale over Y and hence
coincides with Oh

y . �

Recall that whenever x is a point on the scheme X an étale neighborhood of x
on X is an étale morphism f : U → X together with a point u ∈ U such that
f (u) = x and the embedding of residue fields k(x) f ∗

→ k(u) is an isomorphism.
Given two étale neighborhoods (U, u) and (V, v) of x on X , we say that U is finer
than V if there exists a morphism g : U → V over X that takes u to v. Assume
that π : Y → X is a morphism of schemes. Let, further, x be a point on X and
y ∈ Y be a point over x . Finally, let (V, v) be an étale neighborhood of x on X .
In this case we define the induced étale neighborhood π−1(V ) of y as follows:
we take U = V ×X Y and define a morphism Spec k(y)→U using the canonical
morphisms (over X ) Spec k(y)→ Spec k(x)= Spec k(v)→ V and Spec k(y)→ Y .
Straightforward verification shows that the resulting point u ∈ U lies over y and
its residue field equals k(y).

Corollary 2.8. Under the conditions and notation of Corollary 2.7, let (U, u) be
an étale neighborhood of (Y, y). Then there exists an étale neighborhood (V, v)
of (X, x) such that π−1(V ) is finer than U.

Proof. Obviously it suffices to treat the case when X = Spec A, Y = Spec B
and U = Spec R are affine. Since Oh

y may be identified with the direct limit of
coordinate algebras of affine étale neighborhoods of (Y, y), we get a canonical
B-algebra homomorphism R φ

→Oh
y = Oh

x ⊗A B. Since R is a finitely presented
B-algebra and Oh

x ⊗A B = lim
−−→

C ⊗A B, where C runs through coordinate algebras
of affine étale neighborhoods of (X, x), we conclude that φ factors through C⊗A B
for appropriate C . Thus V = Spec C is an étale neighborhood of (X, x), whose
inverse image to Y is finer than U . �
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Proposition 2.9. Under the conditions and notation of Corollary 2.7, let F be a
presheaf on the small Nisnevich site of Y . Then

Ȟ 0
Nis(Y,F)= Ȟ 0

Nis(X, π∗(F)).

Proof. Given a Nisnevich covering V of X we get the induced Nisnevich covering
π−1(V) of Y . For these two coverings we have the obvious relation

Ȟ 0(π−1(V),F)= Ȟ 0(V, π∗(F)).

Since Čech cohomology may be computed using any cofinal family of coverings,
it suffices to check that any Nisnevich covering of Y admits a refinement of the
form π−1(V). However this readily follows from Corollary 2.8. �

Proof of Theorem 2.1 for the Nisnevich topology. We start with a presheaf F ∈PTp(E)
such that φ∗(F) is a Nisnevich sheaf. Since applying the functor Ȟ 0

Nis to a presheaf
twice we get the associated sheaf, we see that to show that F is a sheaf it suffices
to verify that, for any irreducible Y ∈ SmE , the natural map F(Y )→ Ȟ 0

Nis(Y,FY )

is an isomorphism. Assume first that Y = X E for an appropriate X ∈ SmF . Apply
Proposition 2.9 to the structure morphism π : Y → X . In this way we get

Ȟ 0
Nis(Y,F)= Ȟ 0

Nis(X, p∗(F))= p∗(F)(X)= F(Y ).

In the general case we apply Lemma 1.12 and find a finite, surjective, purely
inseparable morphism f : Y → X E . Lemma 2.4 shows that the natural map
α f : FX E → f∗(FY ) is an isomorphism and in particular f ∗ : F(X E)→ F(Y )
is an isomorphism. Proposition 2.9 shows that the pull-back map

f ∗ : Ȟ 0
Nis(X E ,FX E )→ Ȟ 0

Nis(X E , f∗(FY ))→ Ȟ 0
Nis(Y,FY )

is an isomorphism. Our claim follows now from the commutative diagram

F(X E)

∼=
��

∼

f ∗
// F(Y )

��

Ȟ 0
Nis(X E ,FX E )

∼

f ∗
// Ȟ 0

Nis(Y,FY ) �

Corollary 2.10. Let E/F be any purely inseparable field extension. Denote by
ψ : CorF → CorE the corresponding extension of scalars functor. Let, further,
F ∈ PTp(E) be a presheaf with transfers of Z[1/p]-modules over E. Assume that
ψ∗(F) is a Zariski (resp. Nisnevich) sheaf. Then F itself is also a Zariski (resp.
Nisnevich) sheaf.

Proof. Denote by φ (resp. φ′) the extension of scalars functor corresponding to the
field extension F ⊂ F∞ (resp. E ⊂ E∞= F∞), and set G= (φ′)#(F). Corollary 1.14
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shows that F = φ′
∗
(G). Thus φ∗(G)= ψ∗(φ′∗(G))= ψ∗(F) is a sheaf. Theorem 2.1

shows that G is a sheaf and hence F = φ′
∗
(G) is a sheaf as well. �

Corollary 2.11. Under the conditions and notation of Corollary 2.10 the func-
tor ψ#

: PTp(F) → PTp(E) takes Zariski (resp. Nisnevich) sheaves to Zariski
(resp. Nisnevich) sheaves. More precisely, F ∈ PTp(F) is a sheaf if and only if
ψ#(F) is a sheaf. In particular for Nisnevich sheaves we have an identification
ψ∗(G)= ψ#(G).

Proof. This follows immediately from Corollary 2.10, since ψ∗(ψ#(G)= G for any
G ∈ PTp(F) according to Corollary 1.14. �

Denote by NSTp(F) the category of Nisnevich sheaves with transfers of Z[1/p]-
modules.

Corollary 2.12. Let E/F be any purely inseparable field extension. Denote by
ψ : CorF → CorE the corresponding extension of scalars functor. Then ψ∗ :
NSTp(E)→NSTp(F) is an equivalence of categories with quasi-inverse ψ∗ =ψ#.

Theorem 2.13. Let F ∈ NSTp(F) be a Nisnevich sheaf with transfers of Z[1/p]-
modules. Then, for any scheme X ∈ SmF , we have a natural identification of
cohomology groups

H i
Nis(X,F)= H i

Nis(X F∞,FF∞).

Proof. By Corollary 2.12, φ∗(FF∞) = F . Denote by π : Y = X F∞ → X the
structure morphism and by G the sheaf (FF∞)Y . Thus π∗(G)= FX . Applying the
Leray spectral sequence to π we see that it suffices to establish that Riπ∗G = 0
for i > 0. However (Riπ∗G)x = H i

Nis(Y ×X SpecOh
x ,G)= H i (SpecOh

y ,G)= 0. �

3. Homotopy invariant sheaves with transfers over nonperfect fields

Proposition 3.1. Let F ∈PTp(F∞) be a presheaf with transfers of Z[1/p]-modules.
Assume that φ∗(F) is homotopy invariant, where φ∗ is as in Theorem 1.13. Then
F itself is also homotopy invariant.

Proof. We need to verify that for any irreducible Y ∈ SmF∞ the pull-back map
F(Y ) p∗1−→ F(Y ×A1) is an isomorphism. To do so we use Lemma 1.12 and find
a finite, surjective, purely inseparable morphism f : Y → X F∞ . Consider the
commutative diagram

F(X F∞)= (φ)∗(F)(X)
f ∗

//

p∗1
��

F(Y )

p∗1
��

F(X F∞ ×A1)= φ∗(F)(X ×A1)
( f×1

A1 )
∗

// F(Y ×A1)
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Lemma 1.15 shows that both horizontal arrows are isomorphisms and the left ver-
tical arrow is an isomorphism by assumption. Thus the right vertical arrow is an
isomorphism as well. �

Using the same machinery as in the proof of Corollary 2.10 we readily verify:

Corollary 3.2. Let E/F be any purely inseparable field extension. Denote by
ψ : CorF → CorE the corresponding extension of scalars functor. Let, further,
F ∈ PTp(E) be a presheaf with transfers of Z[1/p]-modules over E. Assume
that the presheaf ψ∗(F) is homotopy invariant. Then F itself is also homotopy
invariant.

Corollary 3.3. Under the conditions and notation of Corollary 3.2 let F ∈ PTp(F)
be a homotopy invariant presheaf with transfers of Z[1/p]-modules. Then FE is
also homotopy invariant. Conversely, if FE is homotopy invariant then F is also.

Proof. This follows immediately from Proposition 3.1, since ψ∗(FE)= F accord-
ing to Corollary 2.12. �

Theorem 3.4. Let F ∈ NSTp(F) be a homotopy invariant sheaf with transfers of
Z[1/p]-modules. Then F is strictly homotopy invariant, i.e., H i

Nis(X ×A1,F) =
H i

Nis(X,F) for any i and any X ∈ SmF .

Proof. Corollary 3.3 shows that FF∞ is a homotopy invariant sheaf with transfers
over a perfect field F∞. Thus Voevodsky’s Theorem 13.8 [Mazza et al. 2006]
shows that FF∞ is strictly homotopy invariant. Finally, using Theorem 2.13 we get

H i
Nis(X×A1,F)= H i

Nis(X F∞×A1,FF∞))= H i
Nis(X F∞,FF∞)= H i

Nis(X,F). �

Theorem 3.4 shows that all results proved in [Mazza et al. 2006] over perfect
fields hold over all fields once we work with presheaves with transfers of Z[1/p]-
modules. In particular we have the following result:

Theorem 3.5. Let F ∈ PTp(F) be a homotopy invariant presheaf with transfers of
Z[1/p]-modules; then:

(1) The sheaf FZar coincides with FNis and has a natural structure of a homotopy
invariant sheaf with transfers.

(2) H i
Zar(X,FZar)= H i

Nis(X,FNis) for any X ∈ SmF and any i ≥ 0.

(3) The presheaves X 7→ H i
Zar(X,FZar)= H i

Nis(X,FNis) are homotopy invariant
presheaves with transfers.

Proof. The first claim is proved in [Mazza et al. 2006, Theorems 22.1 and 22.2]
for arbitrary homotopy invariant presheaves with transfers. In view of this fact, in
the sequel we may assume that F ∈ NSTp(F) is a homotopy invariant Nisnevich
sheaf with transfers of Z[1/p]-modules. Homotopy invariance of the presheaf
X 7→ H i

Nis(X,F) is proved above in Theorem 3.4. The fact that X 7→ H i
Nis(X,F)
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has a natural structure of a presheaf with transfers is proved in [Mazza et al. 2006,
Lemma 13.4] for arbitrary Nisnevich sheaves with transfers. Finally, the coinci-
dence of Zariski and Nisnevich cohomology follows easily from the homotopy
invariance of Nisnevich cohomology; see the proof of [Mazza et al. 2006, Propo-
sition 13.9]. �

Once Theorem 3.5 is proved we may proceed the same way as in [Suslin and
Voevodsky 2000] and define the category of effective motives DM−p (F). Specifi-
cally we define the category DM−p (F) as a full subcategory of the derived category
D−(NSTp(F)) of bounded above complexes of Nisnevich sheaves with transfers of
Z[1/p]-modules comprising the complexes with homotopy invariant cohomology
sheaves.

For any X ∈ SmF we define its motive Mp(X) as the complex C •(Z[1/p]tr(X))
in DM−p (F); cf. [Suslin and Voevodsky 2000, §1]. Nisnevich cohomology may be
recovered in terms of DM−p (F). The proof of the following result is identical to
the proof of Theorem 1.5 in [Suslin and Voevodsky 2000].

Theorem 3.6. For any complex A• ∈ DM−p (F) and any X ∈ SmF we have natural
isomorphisms

H i
Nis(X, A•)= HomDM−p (F)(Mp(X), A•[i]).

The category DM−p (F) may be also viewed as a localization of the category
D−(NSTp(F)) with respect to a thick triangulated subcategory A. Recall that
A• 7→ C •(A•) defines a functor C • : D−(NSTp(F))→ DM−p (F) and take A ⊂
D−(NSTp(F)) to be the full triangulated subcategory consisting of those com-
plexes A• for which the complex C •(A•) is acyclic. The proof of the following
result is identical to the proof of Theorem 1.12 in [Suslin and Voevodsky 2000].

Theorem 3.7. (1) The functor C • is left adjoint to the embedding functor

DM−p (F)⊂ D−(NSTp(F))

and shows the equivalence of DM−p (F) with the localization of D−(NSTp(F))
with respect to the thick triangulated subcategory A.

(2) A complex A• ∈ D−(NSTp(F)) is in A if and only if it is quasi-isomorphic to
a bounded above complex of contractible Nisnevich sheaves with transfers of
Z[1/p]-modules.

Finally recall (see [Suslin and Voevodsky 2000, §2]) that the category DM−p (F)
has a natural tensor structure given by the formula A•⊗ B• = C •(A•⊗L B•). The
main properties of this operation listed in Proposition 2.8 of [Suslin and Voevodsky
2000] remain true over nonperfect fields provided that we work with complexes of
Nisnevich sheaves with transfers of Z[1/p]-modules.
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For future use we recall briefly the explicit definition of A•⊗L B•. See [Mazza
et al. 2006, Definition 8.2]. Given two complexes A• and B• in DM−p (F) we
pick quasi-isomorphisms A•1→ A• and B•1→ B• with free complexes A•1, B•1 (i.e.,
consisting of direct sums of sheaves Z[1/p]tr(X)) and set A•⊗L B•=Tot(A•1⊗B•1),
where A•1 ⊗ B•1 is a bicomplex consisting of sheaves (A1)

i
⊗tr (B1)

j . The same
reasoning as in [Suslin and Voevodsky 2000] show that the resulting complex is
independent of the choice of free resolutions A•1 and B•1 up to a natural quasi-
isomorphism.

4. Extension of scalars for the category DM−
p (F)

Let E/F be a field extension. Denote by φ : CorF → CorE the corresponding
extension of scalars functor. In the sequel we denote by p the exponential char-
acteristic of F (i.e., p = 1 for fields of characteristic zero). We work with the
category PTp(F) of presheaves with transfers of Z[1/p]-modules.

Theorem 4.1. The functor φ#
: PTp(F)→ PTp(E) takes Nisnevich (resp. Zariski)

sheaves to Nisnevich (resp. Zariski) sheaves, so that φ∗ = φ#. Furthermore, the
functor φ#

: PTp(F)→ PTp(E) is exact.

Proof. Consider first the special case when the field F is perfect and E is finitely
generated over F . In this case E may be written in the form E = F(S) for an
appropriate smooth, irreducible scheme of finite type S ∈ SmF . In this case Spec E
may be further identified with the inverse limit Spec E = lim

←−−
U , where U runs

through a directed inverse system of open affine neighborhoods of the generic
point η ∈ S and we may apply the following classical result; see [EGA IV1 1964]:

Theorem 4.2. Let I be a directed partially ordered set. Let, further, {Si }i∈I be an
inverse system of schemes over I with affine transition morphisms. Assume that all
the Si are quasicompact and quasiseparated and set S = lim

←−−
Si .

(1) For any morphism of finite presentation X→ S there exists an index i ∈ I and
a morphism of finite presentation X i→ Si such that X ∼= X i ×Si S (as schemes
over S).

(2) Given i ∈ I , schemes of finite presentation X i and Yi over Si and a morphism
φ : X i ×Si S→ Yi ×Si S over S, there exists an index i ′ ≥ i and a morphism
φi ′ : X i ×Si Si ′→ Yi ×Si Si ′ over Si ′ whose base change to S is φ.

(3) Given i ∈ I , X i and Yi of finite presentation over Si and a pair of morphisms
φi , ψi : X i → Yi (over Si ) whose base changes to S are equal, there exists
i ′ ≥ i such that the base changes of φi and ψi to Si ′ are equal.

(4) Assume that X i and Yi are schemes of finite presentation over Si and φi :

X i → Yi is a morphism over Si . Denote by X (resp. Y ) the scheme obtained
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from X i (resp. Yi ) by base change from Si to S. In a similar way denote
by φ : X → Y the morphism obtained from φi by base change from Si to S.
Finally, for any j ≥ i let X j , Y j and φ j be schemes and morphisms obtained
from X i , Yi and φi by base change from Si to S j . Assume that the morphism
φ has one of the following properties:

(a) φ is an isomorphism.
(b) φ is an open (resp closed) embedding.
(c) φ is surjective.
(d) φ admits a section.
(e) φ is finite.
(f) φ is étale.
(g) φ is smooth.

Then there exists an index j ≥ i such that φ j has the same property.

Corollary 4.3. Under the conditions and notation of Theorem 4.2 assume that
the scheme S is Noetherian. Let, further, X/S be a reduced scheme of finite
type and let Y φ

−→ X be a (singleton) Nisnevich covering of X. Then there exists
i ∈ I , schemes of finite presentation X i and Yi over Si , and a Nisnevich covering
Yi

φi
−→ X i such that X = X i ×Si S, Y = Yi ×Si S and φ = φi ×Si S.

Proof. Theorem 4.2 shows that we may assume that X = X i ×Si S, Y = Yi ×Si S
and φ = φi ×Si S for appropriate X i , Yi and φi . Since φ is étale we conclude
from Theorem 4.2 that, increasing i , we may assume that φi is étale as well.
Finally, since φ is a Nisnevich covering of a Noetherian scheme we conclude
from [Hoyois 2012, Proposition 1.6] that there exists a chain of closed subschemes
∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X such that φ admits a section over X i \ X i−1

for 1≤ i ≤ n. Theorem 4.2 shows that we may assume that Xk = X ik ×Si S, where
∅ = X i0 ⊂ X i1 ⊂ · · · ⊂ X in = X i is a chain of closed subschemes of X i and
φi admits a section over X ik \ X i,k−1. In this case φi : Yi → X i is obviously a
Nisnevich covering of X i . �

We still assume that F is perfect and E is finitely generated over F . We fix a
smooth scheme of finite type S ∈ SmF such that E = F(S). Let F : SmF → Ab
be a presheaf of abelian groups on the category SmF . In this case we define a
new presheaf aF on SmE using the following construction. Let X ∈ SmE be a
smooth scheme of finite type over Spec E . According to Theorem 4.2 we may find
a nonempty open U ⊂ S and a smooth scheme of finite type X̃→U whose generic
fiber X̃η coincides with X . In this case we’ll be saying that X̃ is a model of X
defined over U . In this situation we set

aF(X)= lim
−−→

V⊂U
F(X̃ V ).
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Let Y ∈SmE be another smooth scheme of finite type over Spec E and let f : X→Y
be a morphism over Spec E . Let, further, Ỹ → V be a model of Y defined over V .
Theorem 4.2 shows that, shrinking V , we may find a morphism f̃ : X̃→ Ỹ over V
whose generic fiber equals f . Moreover, given two such extensions f̃1 and f̃2 of f ,
we may find a nonempty open set W ⊂ V such that f̃1 and f̃2 agree on X̃ W . These
considerations readily imply that the definition of aF(X) is independent of the
particular choice of X̃ and moreover that aF has a natural structure of an abelian
presheaf on SmE .

Proposition 4.4. Assume that F is a Zariski (resp. Nisnevich) sheaf. Then aF is
also a Zariski (resp. Nisnevich) sheaf.

Proof. Consider first the case of the Zariski topology. Since all schemes in question
are quasicompact it suffices to consider finite coverings. Let X =

⋃n
i=1 X i be an

open covering of X ∈ SmE . Let, further, X̃ be the model of X defined over U ⊂ S.
Theorem 4.2 readily implies that, shrinking U , we may find an open covering
X̃ =

⋃n
i=1 X̃ i such that X̃ i is a model of X i . For any V ⊂ U we have an open

covering X̃ V =
⋃n

i=1(X̃ i )V and hence an exact sequence

0→ F(X̃ V )→

n∏
i=1

F((X̃ i )V )→

n∏
i, j=1

F((X̃ i ∩ X̃ j )V ).

Passing to the direct limit over V we get the required exact sequence

0→ aF(X)→
n∏

i=1

aF(X i )→

n∏
i, j=1

aF(X i ∩ X j ).

Next we consider the case of the Nisnevich topology. Let X be a smooth scheme
of finite type over Spec E and let X̃→U be its model defined over an open U ⊂ S.

To finish the proof of Proposition 4.4 we start with a singleton Nisnevich cov-
ering f : Y → X . According to Corollary 4.3 we may assume that f = f̃η, where
f̃ : Ỹ → X̃ V is a Nisnevich covering of X̃ V . For any open set W ⊂ V the induced
map f̃W : Ỹ W → X̃ W is also a Nisnevich covering and, since F is a Nisnevich
sheaf, we conclude that the sequence

0→ F(X̃ W )→ F(Ỹ W )→ F(Ỹ W ×X̃ W
Ỹ W )

is exact. Passing to the direct limit over W we get the exactness of the sequence

0→ aF(X)→ aF(Y )→ aF(Y ×X Y ).

The case of an arbitrary Nisnevich covering readily follows since we already know
that aF is a Zariski sheaf. �
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Proposition 4.5. Assume that F is a presheaf with transfers. Then aF also has a
natural structure of a presheaf with transfers.

Proof. For the proof we need the following elementary definition of finite corre-
spondences in a relative situation. The definition we give is a very special and
absolutely elementary case of the construction discussed in Section 1A of [Mazza
et al. 2006].

Let U be a smooth irreducible scheme of finite type over F . Let, further,
X/U and Y/U be smooth schemes of finite type over U (and a fortiori over F).
Denote by CorU (X, Y ) the free abelian group generated by closed integral sub-
schemes (called elementary finite correspondences) T ⊂ X ×U Y that are finite
and surjective over a component of X . Note that CorU (X, Y ) is a subgroup in
CorF (X, Y ). If Z/U is another smooth scheme of finite type over U , we have the
usual composition map CorF (Y, Z)×CorF (X, Y )→CorF (X, Z), and a straightfor-
ward verification shows that this composition map takes CorU (Y, Z)×CorU (X, Y )
to CorU (X, Z). In this way we get the category of finite correspondences over U ,
whose objects are smooth schemes of finite type over U and morphisms from X/U
to Y/U are represented by finite correspondences over U . We denote the corre-
sponding category by CorU . Note further that if V ⊂U is a nonempty open set we
get a canonical functor resU

V from CorU to CorV , which takes X/U to XV /V and
takes the relative finite correspondence T ⊂ X ×U Y to TV ⊂ XV ×V YV .

Let η be the generic point of U . Denote by E ′ the residue field at η (i.e., the
field of rational functions E ′ = F(U )). In this case we get a canonical functor
from CorU to CorE ′ , which takes X/U to its generic fiber Xη = X ×U Spec E ′ and
takes an elementary correspondence T ⊂ X×U Y to the elementary correspondence
represented by the generic fiber Tη ⊂ Xη×Spec E ′ Yη. Whenever V is a nonempty
open subscheme of U the following diagram obviously commutes:

CorU //

��

CorV

��

CorE ′
=
// CorE ′

Hence, for any X , Y ∈ SmU we get the induced map

lim
−−→

V⊂U
CorV (XV , YV )→ CorE ′(Xη, Yη).

Lemma 4.6. For any X , Y ∈ SmU the natural map

lim
−−→

V⊂U
CorV (XV , YV )→ CorE ′(Xη, Yη)

is an isomorphism.
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Proof. To prove the injectivity of the map in question it suffices to establish that
the canonical map CorU (X, Y )→ CorE ′(Xη, Yη) is injective. Since this map takes
the generators of the free abelian group CorU (X, Y ) to the generators of the free
abelian group CorE ′(Xη, Yη), we only need to verify that different generators go
to different generators, and this follows from the fact that the generic fiber Tη is
dense in T .

To prove surjectivity, start with a closed integral subscheme T0⊂ Xη×Spec E ′Yη=
(X ×U Y )η that is finite and surjective over Xη. Theorem 4.2 shows that after
shrinking U we can find a model T for T0 defined over U . The E ′-morphism
i : Tη → (X ×U Y )η may be extended (after diminishing U ) to a morphism ĩ :
T → X ×U Y . Since i is a closed embedding we see that, diminishing U , we
may assume that ĩ is a closed embedding as well, i.e., we may assume that T is a
closed subscheme of X×U Y . Furthermore, since the projection p1 : Tη = T0→ Xη
is finite we conclude that we may assume that T is finite over X . Finally, since
Tη is integral it follows easily — cf. [EGA IV3 1966, Corollaire (8.7.3)] — that we
may assume that T is integral. In this way we get an elementary correspondence
T ∈ CorU (X, Y ) whose image in CorE ′(Xη, Yη) equals T0. �

Corollary 4.7. Assume that X ∈ SmU and Y ∈ SmF . Then

CorE ′(Xη, YE ′)= lim
−−→

V⊂U
CorF (XV , Y ).

Proof. This follows immediately from the previous proposition in view of the
obvious identification (valid for any V ⊂U )

CorV (XV , Y ×Spec F V )= CorF (XV , Y ) �

To finish the proof of Proposition 4.5 we note that given a section s0 ∈ aF(Y ) and
a finite correspondence T0 ∈ CorE(X, Y ) we may pick an open set U ⊂ S, models
X̃/U and Ỹ/U for X and Y , and representatives s ∈ F(Ỹ ) and T ∈ CorU (X̃ , Ỹ )
for s0 and T0, respectively, and take T ∗0 (s0) ∈ aF(X) to be the canonical image of
T ∗(s) ∈ F(X̃). A standard verification based on the repeated use of Theorem 4.2
shows that the resulting section is independent of all choices made and we really
get a presheaf with transfers structure on aF . �

In a similar way we show that whenever f : F1→ F2 is a homomorphism of
presheaves with transfers the resulting map a f : aF1→ aF2 is also compatible with
transfers. In other words we get a functor a : PT(F)→ PT(E). This functor is
obviously exact and commutes with arbitrary direct sums. Moreover, Corollary 4.7
shows that when we apply this functor to Ztr(Y ) we get Ztr(YE). Proposition 1.1
readily implies that the functor φ# coincides with a and hence takes sheaves to
sheaves and is exact.
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Still assuming that F is perfect, consider the case of an arbitrary extension
E/F . Let {Ei }i∈I be the direct system of finitely generated subextensions of E
(ordered by inclusion). Set Fi = FEi . Assume that i ≤ j . In this case denote
by φ j

i : CorEi → CorE j the extension of scalars functor from Ei to E j . Since
(φ

j
i )

#(Fi ) = F j we get a canonical homomorphism Fi → (φ
j
i )∗(F j ) and so, for

any X i ∈ SmEi , setting X j = (X i )E j , we have a canonical map Fi (X i )→ F j (X j ).
A straightforward verification shows that {F j (X j )} j≥i is a direct system of abelian
groups.

We use the same approach as before to construct an appropriate model for
the functor φ#. Let X be a smooth scheme of finite type over E . Theorem 4.2
shows that we can find i ∈ I and a smooth scheme of finite type X i over Ei

such that X = (X i )E . Defining X j for j ≥ i in the same way as before we set
aF(X) = lim

−−→ j≥i F j (X j ). The same reasoning as before shows that the result-
ing group is independent of the particular choice of i and X i ; moreover, aF is
a presheaf with transfers whenever F is and aF is a sheaf in Zariski or Nis-
nevich topology whenever F is. The resulting functor a is clearly exact and com-
mutes with arbitrary direct sums. Since aZtr(X) = Ztr(X E), we conclude from
Proposition 1.1 that a = φ#.

Now we are ready to finish the proof of Theorem 4.1. Denote by F∞ and E∞
the perfect closures of F and E , respectively. We get a commutative diagram of
fields

F
φ
//

ψF
��

E

ψE
��

F∞
φ∞
// E∞

which yields the associated commutative diagram of functors

PT(F)

ψ#
F
��

φ#
// PT(E)

ψ#
E
��

PT(F∞)
φ#
∞
// PT(E∞).

Since both vertical arrows are equivalences and the bottom horizontal arrow is exact
we conclude that the top horizontal arrow is exact as well. The claim concerning
sheaves is proved in the same way, using Corollary 2.11. �

Corollary 4.8. Under the conditions and notations of Theorem 4.1 the base change
functor φ∗ : NSTp(F)→ NSTp(E) is exact.

Proof. This functor is right exact as a left adjoint to the functor φ∗ and is left exact
because left exactness in the category of sheaves is equivalent to the left exactness
in the category of presheaves. �
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Proposition 4.9. Under the conditions and notations of Theorem 4.1, the func-
tor φ# takes homotopy invariant presheaves with transfers to homotopy invariant
presheaves with transfers.

Proof. We follow the same steps as in the proof of the Theorem 4.1. Assume
first that F is perfect and E is finitely generated over F . Let S/F be a smooth
irreducible scheme of finite type for which E = F(S). Let X be a scheme of finite
type over E . Find a model X̃/U for X defined over an appropriate U ⊂ S. In the
course of the proof of Theorem 4.1 we established that φ#(F)(X)= lim

−−→V⊂U F(X̃ V ).
At the same time A1

× X̃ is a model for A1
× X and hence

(φ#F)(A1
× X)= lim

−−→
V⊂U

F(A1
× X̃ V )= lim

−−→
V⊂U

F(X̃ V )= φ
#F(X)

In a similar way we consider the case of an arbitrary extension of a perfect field
and finally use Corollary 3.3. �

The same reasoning establishes the validity of the following claim:

Lemma 4.10. Under the conditions and notations of Theorem 4.1, for any presheaf
F ∈ PTp(F) we have the formula

φ#(Cn(F))= Cn(φ
#(F)).

The same arguments may be used to prove the following result, which concerns
categories of all Nisnevich sheaves with transfers.

Corollary 4.11. Let F be a perfect field and let E/F be an arbitrary field exten-
sion. The functor φ#

: PT(F)→ PT(E) takes Nisnevich (resp. Zariski) sheaves
to Nisnevich (resp. Zariski) sheaves, so that φ∗ = φ#. Furthermore, the functor
φ#
: PTp(F)→ PTp(E) is exact, takes homotopy invariant presheaves to homotopy

invariant presheaves and commutes with Cn .

Theorem 4.1 together with Proposition 4.9 and Lemma 4.10 immediately imply
that, associating to a complex A• ∈DM−p (F) the complex A•E , we get a well-defined
triangulated functor φ∗ : DM−p (F)→ DM−p (E). The following result summarizes
the properties of this functor:

Theorem 4.12. (1) The functor φ∗ takes exact triangles to exact triangles and
commutes with shifts.

(2) The functor φ∗ takes tensor products to tensor products.

(3) φ∗(Mp(X))= Mp(X E) for any smooth scheme of finite type X over F.

Proof. The first claim is obvious; the third one follows from Proposition 1.1
and Lemma 4.10. To prove the second claim we start with arbitrary complexes
A•, B• ∈ DM−p (F) and pick their free resolutions A•1→ A• and B•1→ B•. In this
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case A•⊗ B• is quasi-isomorphic to C •(A•1⊗tr B•1) and hence φ∗(A•⊗ B•) is quasi-
isomorphic to φ∗(C •(A•1 ⊗tr B•1) = C •(φ∗(A•1 ⊗tr B•1)) = C •(φ∗(A•1)⊗tr φ

∗(B•1)).
Since φ∗(A•1) and φ∗(B•1) are free resolutions of φ∗(A•) and φ∗(B•), respectively,
we conclude that the last complex is quasi-isomorphic to φ∗(A•)⊗φ∗(B•). �

The following result, which is an immediate consequence of the above discus-
sion and Corollary 2.12, shows that there is essentially no difference between a
nonperfect field F and its perfect closure F∞.

Corollary 4.13. Let E/F be a purely inseparable field extension. Then the corre-
sponding functor φ∗ : DM−p (F)→ DM−p (E) is an equivalence of categories.

5. Extension of scalars and internal Hom-objects

In this section we’ll often write A•E instead of φ∗(A•). Recall that, for a perfect
field F , the category DM−(F) has internal Hom-objects, i.e., for any A• ∈DM−(F)
and any X ∈ Sm /F we have a new object Hom(M(X), A•) and a universal mor-
phism Hom(M(X), A•)⊗M(X)→ A• such that the resulting map

HomDM−(F)(M,Hom(M(X), A•))→ HomDM−(F)(M ⊗M(X), A•)

is an isomorphism for any M ∈ DM−(F). Corollary 4.13 immediately implies that
the same result is valid for the category DM−p (F) for arbitrary F . The purpose
of this section is to show that extension of scalars functor preserves internal Hom-
objects.

Theorem 5.1. Let E/F be any field extension. Let, further, A• ∈ DM−p (F) be any
motivic complex and let X ∈ Sm /F be any smooth scheme. In this case we have a
natural isomorphism

Hom(Mp(X), A•)E =Hom(Mp(X E), A•E).

Proof. Applying the extension of scalars functor to the canonical homomorphism
Hom(Mp(X), A•)⊗ Mp(X)→ A• and using Theorem 4.12, we get a homomor-
phism Hom(Mp(X), A•)E ⊗Mp(X E))→ A•E and hence the induced map

Hom(Mp(X), A•)E →Hom(Mp(X E), A•E).

We claim that this map is a quasi-isomorphism. If E/F is purely inseparable our
claim readily follows from Corollary 4.13. Using the same machinery as in the
proof of Theorem 4.1 we easily reduce the general case to the special one, when
F is perfect. We start with the following observation:

Lemma 5.2. Let I ∈NSTp(F) be an injective Nisnevich sheaf with transfers. Then,
for any smooth X/Spec E , the cohomology groups H∗Nis(X, IE) are trivial in posi-
tive dimensions.
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Proof. We first consider the Čech cohomology. It clearly suffices to treat the case of
a singleton Nisnevich covering Y → X . Assume first that E/F is finitely generated,
pick a smooth irreducible scheme of finite type S/F such that E = F(S), and
denote by η the generic point of S. According to Theorem 4.2 and Corollary 4.3
we may assume that X = X̃η, Y = Ỹ η and φ = φ̃η, where X̃ and Ỹ are smooth
schemes over an open U ⊂ S and φ̃ : Ỹ → X̃ is a Nisnevich covering. For any
open V ⊂ U the morphism φ̃V : Ỹ V → X̃ V is still a Nisnevich covering and
hence Ȟ i (Ỹ V /X̃ V , I )= 0 for i > 0; see [Suslin and Voevodsky 2000, Lemma 1.6].
Passing to the direct limit over V ⊂U we see that Ȟ i (Y/X, IE)= 0 for i > 0. In the
general case we may write E as a direct limit of finitely generated subextensions,
E = lim

−−→
Ei , and represent Y , X and φ in the form Y = Yi E , X = X i E and φ = φi E ,

where Yi and X i are smooth schemes of finite type over Ei and φi : Yi → X i is
a Nisnevich covering. For any j ≥ i , φ j = (φi )E j : Yj → X j is still a Nisnevich
covering. Thus, by what was proved above, Ȟ∗(Yj/X j , IE J )= 0 for i > 0. Passing
to the direct limit over j ≥ i we conclude that Ȟ i (Y/X, IE)= 0 for i > 0.

Now the standard argument involving the Cartan–Leray spectral sequence com-
pletes the proof. �

Proposition 5.3. Let A• be an arbitrary complex of Nisnevich sheaves with trans-
fers.

(1) Assume first that E/F is finitely generated, pick a smooth irreducible S/F
such that E = F(S) and denote by η the generic point of S. Then, for any
smooth scheme of finite type X̃/S, we have a natural identification

H∗Nis(X̃η, A•E)= lim
−−→
U⊂S

H∗Nis(X̃U , A•).

(2) For arbitrary E/F write E = lim
−−→

Ei , where Ei/F are finitely generated subex-
tensions. Then for any smooth scheme of finite type X i/Ei we have a natural
identification H∗Nis((X i )E , A•E)= lim

−−→ j≥i H∗Nis((X i )E j , A•E j
).

Proof. (1) Recall (see [Suslin and Voevodsky 2000, §0]) that we define hyper-
cohomology with coefficients in nonbounded below complexes via Cartan–Eilenberg
resolutions. This approach gives correct answers since all schemes involved have
finite cohomological dimension in Nisnevich topology. Thus let A• → I •• be a
Cartan–Eilenberg resolution of A• and let A•E → J •• be a Cartan–Eilenberg reso-
lution of A•E . Note that, according to the definitions and results of Section 4,

H∗(I ••E (X̃η))= lim
−−→
U⊂S

H∗(I ••(X̃U ))= lim
−−→
U⊂S

H∗(X̃U , A•),

H∗(J ••(X̃η))= H∗(X̃η, A•E).

Since the functor M 7→ ME is exact one checks immediately that I ••E is an admis-
sible resolution of A•E , i.e., cycles, boundaries and cohomology of rows of this
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bicomplex give resolutions of cycles etc. of A•E . The universal property of Cartan–
Eilenberg resolutions shows that there exists a unique up to homotopy homomor-
phism I ••E → J •• of bicomplexes under A•E . Finally the induced homomorphism
I ••E (X̃η)→ J ••(X̃η) is a quasi-isomorphism since the columns of I ••E are acyclic
resolutions of Ai

E (according to Lemma 5.2 ) while the columns of J •• are injective
resolutions of Ai

E , and sheaf cohomology may be computed using any acyclic
resolutions.

(2) The proof of this is essentially the same; we skip the trivial details. �

The end of the proof of Theorem 5.1. Consider first the case when E = F(S)
for a smooth irreducible scheme of finite type S/F . To show that the canonical
map Hom(Mp(X), A•)E →Hom(Mp(X E), A•E) is a quasi-isomorphism we have
to check that its cone is trivial in DM−p (E). Since the category DM−p (E) is weakly
generated by objects of the form Mp(Ỹ η)[i] (with Ỹ/S smooth of finite type) it
suffices to verify that HomDM−p (E)(Mp(Ỹ η)[i], cone)= 0. In other words we have
to verify that the induced map

HomDM−p (E)(Mp(Ỹ η)[i],Hom(Mp(X), A•)E)

→ HomDM−p (E)
(
Mp(Ỹ η)[i],Hom(Mp(X E , A•E))

)
is an isomorphism. The previous results show that we may compute the above
Hom-groups as follows:

HomDM−p (E)
(
Mp(Ỹ η)[i],Hom(Mp(X), A•)E

)
= H−i (Ỹ η,Hom(Mp(X), A•)E)

= lim
−−→
U⊂S

H−i (Ỹ U ,Hom(Mp(X), A•))

= lim
−−→
U⊂S

HomDM−p (F)(Mp(Ỹ U )[i],Hom(Mp(X), A•))

= lim
−−→
U⊂S

HomDM−p (F)(Mp(Ỹ U ×F X, A•))

= lim
−−→
U⊂S

H−i (Ỹ U ×F X, A•).

On the other hand,

HomDM−p (E)(Mp(Ỹ η)[i],Hom(Mp(X E), A•E))

= HomDM−p (E)(Mp(Ỹ η×E X E)[i], A•E)

= H−i ((Ỹ ×F X)η, A•E)

= lim
−−→
U⊂S

H−i (Ỹ U ×F X, A•).
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Thus the above Hom-groups identify canonically and it’s not hard to trace through
the above computations to see that this identification coincides with the canonical
homomorphism defined before.

The general case is treated once again by passing to a direct limit over finite
subextensions in E and using Proposition 5.3(2). �
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