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Standard norm varieties for Milnor symbols mod p

Dinh Huu Nguyen

We prove that the standard norm varieties for Milnor symbols mod p of length n
are birationally isomorphic to Pfister quadrics when p = 2, to Severi–Brauer
varieties when p > 2 and n = 2, and to varieties defined by reduced norms of
cyclic algebras when p > 2 and n = 3. In the case p = 2 and the case p > 2
and n = 2, the results imply that the standard norm varieties for two equal Milnor
symbols mod p are birationally isomorphic, and we conjecture this in general.

1. Introduction

The norm residue theorem relates the Milnor K-theory mod p of a field k with
the étale cohomology of k with coefficients in the twists of µp. More precisely,
it states that for each prime p 6= char(k) and each weight n ≥ 0 there exists an
isomorphism

K M
n (k)/p ∼= H n

ét(k, µ
n
p)

In 1996, V. Voevodsky [2003] proved the special case of p = 2, known as the
Milnor conjecture. He later [2011] proved the general case of the norm residue
theorem, also known as the Bloch–Kato conjecture. His proof used a splitting
variety with certain properties for a given Milnor symbol {a1, . . . , an} in K M

n (k)/p.
One construction for such splitting varieties was provided by M. Rost in [Haese-
meyer and Weibel 2009, Section 3]. Another construction for these varieties was
suggested by Voevodsky in [Suslin and Joukhovitski 2006, Section 2]. The entire
theorem has been written in book form by C. Haesemeyer and C. Weibel [2016].

In Section 2, we summarize Voevodsky’s construction. It uses symmetric powers
and produces what are called standard norm varieties.

In Section 3, we show in Theorem 3.7 that the standard norm varieties are
birationally isomorphic to Pfister quadrics defined by subforms of Pfister forms
when p = 2. Then we combine this result with the chain P-equivalence theorem
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by R. Elman and T. Y. Lam [1972, Main Theorem 3.2] and properties of qua-
dratic forms to prove that the standard norm varieties for two equal symbols are
birationally isomorphic in Corollary 3.13.

In Section 4, we use Galois descent to show in Theorem 4.1 that the standard
norm varieties are birationally isomorphic to Severi–Brauer varieties when p > 2
and n = 2 and get the similar Corollary 4.2.

In Section 5, we use Galois descent to show in Theorem 5.1 that the standard
norm varieties are birationally isomorphic to varieties defined by reduced norms
of cyclic algebras when p > 2 and n = 3. N. Karpenko and A. Merkurjev [2013]
use this result and induction to prove A-triviality for standard norm varieties.

Given the above two corollaries, we make the following conjecture:

Conjecture 1.1. The standard norm varieties for {a1, . . . , an} and {b1, . . . , bn}

are birationally isomorphic if {a1, . . . , an} = {b1, . . . , bn} in K M
n (k)/p for all p

and n.

2. Symmetric powers

A general reference for Milnor K-theory is [Milnor 1970]. Throughout this paper,
p is a prime and k is a base field of characteristic 0 containing the p-th roots of
unity. Associated to each nontrivial Milnor symbol {a1, . . . , an} in K M

n (k)/p are
the following notions:

Definition 2.1. A field extension L/k is called a splitting field for {a1, . . . , an} if
{a1, . . . , an} = 0 in K M

n (L)/p.

Definition 2.2. A smooth variety X is called a splitting variety for {a1, . . . , an} if
its function field k(X) is a splitting field for {a1, . . . , an}. In addition, it is called
a generic splitting variety for {a1, . . . , an} if any splitting field L for {a1, . . . , an}

has a point in X , i.e., if there exists a morphism Spec(L)→ X over k.

Such generic splitting varieties are known to exist for all n when p = 2 and only
for n ≤ 3 when p > 2. However, if L ′/L if a finite extension of degree prime to p
and L ′ splits {a1, . . . , an}, then L also splits {a1, . . . , an} (using transfer and norm
maps). Therefore we can relax our last definition.

Definition 2.3. A smooth variety X is called a p-generic splitting variety for
{a1, . . . , an} if it is a splitting variety for {a1, . . . , an} and, for any splitting field L
for {a1, . . . , an}, there exists an extension L ′/L of degree prime to p with a point
in X . In addition, it is called a norm variety for {a1, . . . , an} if it is projective and
geometrically irreducible of dimension pn−1

− 1.

Example 2.4. When n= 1, a norm variety for {a1} is Spec(L), where L = k( p
√

a1 ).
When n = 2, a norm variety for {a1, a2} is the Severi–Brauer variety SB(A) asso-
ciated to the cyclic algebra A = (a1, a2, ζp)k .
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We now describe a standard way to produce these norm varieties for all n, which
are called standard norm varieties.

Let X be a smooth, quasiprojective, geometrically irreducible variety. The sym-
metric group Sp acts on the product X p and induces the quotient variety S p(X).
This quotient variety is geometrically irreducible and normal. Note that Sp acts
freely on X p

\4 and U := (X p
\4)/Sp is an open subset in S p(X), where 4 is the

union of all diagonals in X p.
For every normal and irreducible scheme Y , the set of morphisms Hom(Y, S p(X))

can be identified with the set of all effective cycles Z ⊂ X × Y such that each
component of Z is finite surjective over Y , and that the degree of Z over Y is p. In
particular, the identity map S p(X) id

−→ S p(X) corresponds to the incidence cycle
Z ⊂ X × S p(X). In fact, Z is a closed subscheme: it is the image of the closed
embedding X × S p−1(X) ↪→ X × S p(X), (x, y) 7→ (x, x + y). Compose this with
projection onto the second factor and we get a map

p : X × S p−1(X)→ X × S p(X)→ S p(X).

It is finite surjective of degree p. Thus we get a diagram

X × S p−1(X) � p−1(U ) �
/Sp−1 X p

\4

S p(X)

p

?
� U

p|p−1(U )

?�

/S
p

We see that both maps from X p
\4 are Galois étale coverings, p|p−1(U ) is a

finite étale map of degree p, and U is smooth. Furthermore p∗ f (OX×S p−1(X)) is
a coherent OS p(X)-algebra and the sheaf A := p∗(OX×S p−1(X)|p−1(U )) is a locally
free OU -algebra of rank p. This latter sheaf corresponds to the vector bundle V :=
Spec(S•Aν) of rank p over U . Here Aν denotes the dual of A and S•Aν denotes
its symmetric algebra. There is a well-defined norm map A N

−→OU . Locally N is
a homogeneous polynomial of degree p, that is, N ∈ S p(Aν).

A norm variety X (a1, . . . , an) for {a1, . . . , an} is then constructed by induction.
For n = 2, we take X = X (a1, a2) in the preceding construction to be the Severi–
Brauer variety SB(A) associated to the cyclic algebra A = (a1, a2, ζp)k . Suppose
we have constructed a norm variety X (a1, . . . , an−1) for {a1, . . . , an−1}. Again let
that be X and let W ⊂ V be the hypersurface defined by the equation N − an = 0.
By construction, W has dimension pn−1

− 1. By [Suslin and Joukhovitski 2006,
Lemma 2.1] it is smooth over U (hence smooth) and geometrically irreducible. By
resolution of singularities we can embed W as an open subvariety of a new smooth,
projective, geometrically irreducible variety X ′ of the same dimension. Together
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[Suslin and Joukhovitski 2006, Lemma 2.3 and Proposition 2.4] and its subsequent
argument show this X ′ is a p-generic splitting variety for {a1, . . . , an}. Hence X ′

is the norm variety that we seek. Note that its construction depends solely on the
tuple (a1, . . . , an).

Remark 2.5. The inductive construction could in fact start with n = 1. We de-
scribe explicitly what happens at this stage. Take X = X (a1) = Spec(L), where
L = k( p

√
a1 ). If k̄ is the separable closure of k then X = X ×Spec(k) Spec(k̄) has p

points; call them 1, 2, . . . , p− 1, p. From there,

X p
= {points on the diagonals}

t {(n1, n2, . . . , n p) | 1≤ ni ≤ p and ni 6= n j for all i, j},

S p(X)= X p/Sp = {classes of points on the diagonals} t {(1, 2, . . . , p)},

X p
\4 = {(n1, n2, . . . , n p) | 1≤ ni ≤ p and ni 6= n j for all i, j},

(X p
\4)/Sp = {(1, 2, . . . , p)}.

The above square thus looks like this:

X × S p−1(X) � p−1(U )= {(n, (2, 3, . . . , p)) | 1≤ n ≤ p}

S p(X)

p
?
� U = {(1, 2, . . . , p)}

p|p−1(U )

?

Over k it looks like this:

X × S p−1(X) � p−1(U )∼= Spec(L)

S p(X)

p

?
� U ∼= Spec(k)

p|p−1(U )

?

We will use this in Theorems 3.7 and 4.1.

Remark 2.6. Since our problem only concerns birational isomorphism, we can
always replace our varieties with birationally isomorphic ones when it suits our
purpose but does not change our result. Or we can consider what happens with
the generic fiber. For example, in Theorem 3.7 we consider the residue field of the
generic fiber of the map p in our construction without mentioning V,W and X ′.

3. When p = 2, all n

When p = 2, we show that the standard norm varieties are birationally isomorphic
to Pfister quadrics associated to Pfister forms. This result together with the chain
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P-equivalence theorem and properties of quadratic forms will allow us to compare
the standard norm varieties for two equal symbols.

For a quadratic form ϕ, let Aϕ denote its symmetric matrix and Dk(ϕ) ⊆ k
denote the set of its values. Also, for an n-tuple (a1, . . . , an), let ϕn denote the
n-fold Pfister form 〈〈a1, . . . , an〉〉 =

∏n
i=1〈1,−ai 〉. Furthermore, we associate to ϕn

the subform ψn = 〈〈a1, . . . , an−1〉〉 ⊥ 〈−an〉 and denote the quadric defined by ψn

as Z(ψn), known as a Pfister quadric. Below are a few more definitions. A general
reference for quadratic forms is [Lam 2005].

Definition 3.1. Two quadratic forms ϕ and ϕ′ are said to be equivalent, written
ϕ ∼= ϕ′, if there exists a matrix C ∈ GL(k) such that Aϕ′ = C AϕC t .

Definition 3.2. Two Pfister forms ϕ=〈〈a1, . . . , an〉〉 and ϕ′=〈〈a′1, . . . , a′n〉〉 are said
to be simply P-equivalent if there exist two indices i and j such that 〈〈ai , a j 〉〉 ∼=

〈〈a′i , a′j 〉〉 and ak = a′k for k 6= i , j . More generally, they are said to be chain
P-equivalent, written ϕ u ϕ′, if there exists a sequence ϕ0, ϕ1, . . . , ϕm−1, ϕm of
Pfister forms such that ϕ = ϕ0, ϕ′ = ϕm and ϕi is simply P-equivalent to ϕi+1

for 0≤ i ≤ m− 1.

Clearly ϕu ϕ′ implies ϕ∼= ϕ′. The converse statement was proven by Elman and
Lam [1972] and is called the chain P-equivalence theorem. We recall the statement
here, for use in Proposition 3.10.

Theorem 3.3 (chain P-equivalence theorem). Let ϕ and ϕ′ be n-fold Pfister forms.
Then ϕ ∼= ϕ′ if and only if ϕ u ϕ′.

Definition 3.4. Two quadratic forms ϕ and ϕ′ are said to be birationally equivalent
if the quadrics they define are birationally isomorphic, i.e., if the function fields
k(Z(ϕ)) and k(Z(ϕ′)) are isomorphic.

We begin with a lemma about two equivalent Pfister forms and the matrix that
connects them.

Lemma 3.5. If ϕn−1 and ϕn = 〈1,−b〉ϕn−1 are Pfister forms with matrices Aϕn−1

and Aϕn , and c = ϕn(x1, . . . , x2n ), then ϕn ∼= 〈c〉ϕn via a matrix

Cn ∈ GL2n (k(x1, . . . , x2n ))

— that is, Cn Aϕn C t
n = cAϕn — which satisfies two properties:

(1) C−1
n = Cn/c, hence (C t

n)
−1
= C t

n/c as well.

(2) The first row and first column of Cn are (x1 · · · x2n ) and Aϕn (x1 · · · x2n )t .

Proof. We induce on n. For n = 1 and c = x2
1 − ax2

2 , we have ϕ1 ∼= cϕ1 via

C1 =

(
x1 x2

−ax2 −x1

)
,
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which satisfies (1) and (2).
Next, write

Aϕn =

(
Aϕn−1 0

0 −bAϕn−1

)
;

then c=ϕn(x1, . . . , x2n )= x Aϕn x t
=s−bt ∈Dk(ϕn), where s=ϕn−1(x1, . . . , x2n−1)

and t=ϕn−1(x2n−1+1, . . . , x2n ) are in Dk(ϕn−1). By induction, ϕn−1∼=〈s〉ϕn−1 via a
matrix C ∈ GL2n−1(k(x1, . . . , x2n−1)), that is, C Aϕn−1C t

= s Aϕn−1 , which satisfies:

(1) C−1
= C/s, hence (C t)−1

= C t/s.

(2) The first row and first column of C are (x1 · · · x2n−1) and Aϕn−1(x1 · · · x2n−1)t .

Similarly, ϕn−1 ∼= 〈t〉ϕn−1 via C ′ ∈ GL2n−1(F(x2n−1+1, . . . , x2n )) with the same
properties. From this, we have:

(i) ϕn ∼= 〈s〉ϕn−1 ⊥ 〈−b〉〈t〉ϕn−1 = 〈s,−bt〉ϕn−1 with(
C 0
0 C ′

)(
Aϕn−1 0

0 −bAϕn−1

)(
C t 0
0 C ′ t

)
=

(
s Aϕn−1 0

0 −bt Aϕn−1

)
.

(ii) 〈s,−bt〉ϕn−1 ∼= 〈c,−cbst〉ϕn−1 with(
I I

bt I s I

)(
s Aϕn−1 0

0 −bt Aϕn−1

)(
I bt I
I s I

)
=

(
cAϕn−1 0

0 −cbst Aϕn−1

)
.

(iii) Let D = (CC ′)−1
= C ′−1C−1

= C ′C/ts; then

〈c,−cbst〉ϕn−1 ∼= 〈c,−cb〉ϕn−1 = 〈c〉ϕn

with(
I 0
0 D

)(
cAϕn−1 0

0 −cbst Aϕn−1

)(
I 0
0 Dt

)
=

(
cAϕn−1 0

0 −cbst D Aϕn−1

)(
I 0
0 Dt

)
=

(
cAϕn−1 0

0 −cbst D Aϕn−1 Dt

)
=

(
cAϕn−1 0

0 −cbst Aϕn−1/st

)
=

(
cAϕn−1 0

0 −cbAϕn−1

)
.

(iv) Putting (i), (ii) and (iii) together, we get ϕn ∼= 〈s〉ϕn−1 ⊥ 〈−b〉〈t〉ϕn−1 =

〈s,−bt〉ϕn−1 ∼= 〈c,−cbst〉ϕn−1 ∼= 〈c,−cb〉ϕn−1 = 〈c〉ϕn via C ′n , where



STANDARD NORM VARIETIES FOR MILNOR SYMBOLS MOD p 463

C ′n =
(

I 0
0 D

)(
I I

bt I s I

)(
C 0
0 C ′

)
=

(
I I

bt D s D

)(
C 0
0 C ′

)
=

(
C C ′

btC ′−1C−1C sC ′−1C−1C ′

)
=

(
C C ′

bC ′ C ′CC ′/t

)
.

Finally, let

Cn =

(
I 0
0 −I

)
C ′n =

(
C C ′

−bC ′ −C ′CC ′/t

)
;

then its inverse C−1
n equals Cn/c, its first row and first column are (x1 · · · x2n ) and

Aϕn (x1 · · · x2n )t , and

Cn Aϕn C t
n =

(
I 0
0 −I

)
C ′n Aϕn C

′t
n

(
I 0
0 −I

)
= cAϕn .

The last equality can be verified directly:

Cn Aϕn C t
n

=

(
C C ′

−bC ′ −C ′CC ′/t

)(
Aϕn−1 0

0 −bAϕn−1

)(
C t

−bC ′ t

C ′ t −C ′ t C t C ′ t/t

)

=

(
C Aϕn−1 −bC ′Aϕn−1

−bC ′Aϕn−1 (b/t)C ′CC ′Aϕn−1

)(
C t

−bC ′ t

C ′ t −C ′ t C t C ′ t/t

)

=

(
C Aϕn−1C t

−bC ′Aϕn−1C ′ t −bC Aϕn−1C ′ t+(b/t)C ′Aϕn−1C ′ t C t C ′ t

−bC ′Aϕn−1C t
+(b/t)C ′CC ′Aϕn−1C ′ t b2C ′Aϕn−1C ′ t−(b/t2)C ′CC ′Aϕn−1C ′ t C t C ′ t

)

=

(
s Aϕn−1−bt Aϕn−1 −bC Aϕn−1C ′ t+bAϕn−1C t C ′ t

−bC ′Aϕn−1C t
+bC ′C Aϕn−1 b2t Aϕn−1−bs Aϕn−1

)

=

(
cAϕn−1 −bC Aϕn−1C ′ t+(b/s)C Aϕn−1C t C t C ′ t

−bC ′Aϕn−1C t
+(b/s)C ′CC Aϕn−1C t

−bcAϕn−1

)

=

(
cAϕn−1 −bC Aϕn−1C ′ t+bC Aϕn−1C ′ t

−bC ′Aϕn−1C t
+bC ′Aϕn−1C t

−bcAϕn−1

)

=

(
cAϕn−1 0

0 −bcAϕn−1

)
= cAϕn .

This concludes the proof. �
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The next lemma is needed to show that the residue field in Theorem 3.7 stays
the same.

Lemma 3.6. The n× n matrix

M =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn


has characteristic polynomial charM(t)= tn−1(t − a1b1− a2b2− · · ·− anbn).

Proof. We consider what M does to the standard basis:

kn M
−→ kn,

(1, 0, . . . , 0) 7−→ b1(a1, . . . , an),

(0, 1, . . . , 0) 7−→ b2(a1, . . . , an),
...

(0, 0, . . . , 1) 7−→ bn(a1, . . . , an).

Thus M sends (a1, . . . , an) to α(a1, . . . , an), where α= a1b1+a2b2+· · ·+anbn .
Letting v1 = (a1, . . . , an), we choose a new basis {v1, . . . , vn} for kn such that
ker(M)= 〈v2, . . . , vn〉 and again look at what M does as a linear map:

kn M
−→ kn,

v1 7−→ (α, 0, . . . , 0),
v2 7−→ (0, . . . , 0),

...
vn 7−→ (0, . . . , 0).

Therefore M has canonical form
α 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


and det(t I −M)= charM(t)= tn

−αtn−1
= tn−1(t−a1b1−a2b2−· · ·−anbn). �

We are now ready to turn the standard norm varieties into Pfister quadrics defined
by subforms of Pfister forms.

Theorem 3.7. The standard norm variety X (a1, . . . , an) for {a1, . . . , an} is bi-
rationally isomorphic to the Pfister quadric Z(ψn)⊂ P2n−1

k defined by the subform
ψn = 〈〈a1, . . . , an−1〉〉 ⊥ 〈−an〉 of the Pfister form ϕn = 〈〈a1, . . . , an〉〉.
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Proof. We induce on n. First we verify the case n = 2. As described in Remark 2.5,
we begin our symmetric power construction with X (a1) = Spec(L), where L =
k(
√

a1 ) and get

Spec(L)×Spec(L) � p−1(U )∼= Spec(L)

S2(Spec(L))

p

?
� U ∼= Spec(k)

p|p−1(U )

?

Hence X (a1, a2)= Z(NL/k−a2)= Z(x2
1−a1x2

2−a2), the hypersurface defined
by the equation NL/k − a2 = x2

1 − a1x2
2 − a2 = 0. Projectivization then gives

X (a1, a2)= Z(x2
1 − a1x2

2 − a2x2
3)= Z(ψ2)⊂ P2

k , as required.
By induction, X (a1, . . . , an+1)≈ Z(ψn+1). Write ψ =ψn+1 = ϕn ⊥ 〈−an+1〉 =

〈1〉 ⊥ ϕ′ ⊥ 〈−an+1〉 ∼= 〈1,−an+1〉 ⊥ ϕ
′, where ϕ′ is the pure subform of ϕ. By

construction, we get

(Xn+1× Xn+1) \4 −→ ((Xn+1× Xn+1) \4)/S2 −→ Gr(2,A2n
+1

k ).

Let U = 〈u, v〉 = 〈(1, 0, x2, . . . , x2n ), (0, 1, y2, . . . , y2n )〉 be the generic plane
in A2n

+1
k and moreover let {u, v} be a basis for U . Over this basis, the restriction

ψk(xi ,yi )|U has matrix form (
ψ(u) b(u, v)

b(u, v) ψ(v)

)
,

where
U ×U b

−→ k, (u′, v′) 7→ 1
2(ψ(u

′
+ v′)−ψ(u′)−ψ(v′)),

is the symmetric bilinear form associated to ψk(xi ,yi )|U .
The generic fiber is then the point (r, s) ∈U such that

ψ(r, s)= ψ(u, u)r2
+ 2b(u, v)rs+ψ(v, v)s2

= 0,

with residue field

q f
(

k(xi , yi )
[r

s

]
/
(
ψ(u, u)

(r
s

)2
+ 2b(u, v)r

s
+ψ(v, v)

))
= k(xi , y j )(

√
−θ ),

where

θ = ψ(u)ψ(v)− b(u, v)2

= (1+ϕ′(x2, . . . , x2n ))(−an+1+ϕ
′(y2, . . . , y2n ))− b(u, v)2

= (ϕ(1, x2, . . . , x2n ))(−an+1+ϕ
′(y2, . . . , y2n ))− b(u, v)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ(1, x2, . . . , x2n )ϕ(0, y2, . . . , y2n )− b(u, v)2.
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If we write ϕ = 〈1, c2, . . . , c2n 〉 then, by Lemma 3.5, there exists a matrix

Cn =


1 x2 · · · x2n

c2x2
. . .

...
. . .

c2n x2n
. . .


such that ϕ(1, x2, . . . , x2n )ϕ(0, y2, . . . , y2n )= ϕ((0, y2, . . . , y2n )Cn). So

θ = (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((0, y2, . . . , y2n )Cn)− b(u, v)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((0, y2, . . . , y2n )Aϕ(1, x2, . . . , x2n )t , z2, . . . , z2n )

− ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t , z2, . . . , z2n )

− ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ′(z2, . . . , z2n ).

Above, we let (z1, z2, . . . , z2n ) = (0, y2, . . . , y2n )Cn , so that (z2, . . . , z2n ) =

(y2, . . . , y2n )M , where M is Cn without its first row and first column. Since
C2

n = ϕ(1, x2, . . . , x2n )I , it follows that M2
= ϕ(1, x2, . . . , xn)I − (ci xi x j ) for

2≤ i, j ≤ 2n. By Lemma 3.6,

det(M2)= ϕ(1, x2, . . . , x2n )2
n
−2.

Thus det(M) = ϕ(1, x2, . . . , x2n )2
n−1
−1 and M ∈ GL2n−1(F(x2, . . . , x2n )). So the

residue field stays the same:

F(xi , y j )(
√
−θ )= F(xi , z j )(

√
−θ )

It has quadratic norm

N (m+ n
√
−θ )= m2

− an+1ϕ(1, x2, . . . , x2n )n2
+ϕ′(z2, . . . , z2n )n2

= ϕ(m, nz2, . . . , nz2n )− an+1ϕ(n, nx2, . . . , nx2n )

= 〈1,−an+1〉ϕ(m, nz2, . . . , nz2n , n, nx2, . . . , nx2n )

= ϕn+1(t1, . . . , t2n+1).

Therefore our projectivized X (a1, . . . , an+2)= Z(N−an+2t2
2n+1+1) is birationally

isomorphic to Z(ϕn+1 ⊥ 〈−an+2〉)= Z(ψn+2)⊂ P2n+1

k , as wanted. �

Next, we show that interchanging ai and a j or multiplying ai by any nonzero
norm Nk(√a j )/k(u) in the symbol {a1, . . . , an} does not change its standard norm
variety. For this, we need two more lemmas about Pfister neighbors; the first one
we will use toward our Corollary 3.13 and the second one we will use toward our
Example 3.14.
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Lemma 3.8. If ϕ = 〈〈a1, . . . , an〉〉 is an anisotropic Pfister form then the two forms
ϕ ⊥ 〈−bϕ〉 ⊥ 〈−c〉 and ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉 are birationally equivalent.

Proof. We connect the quadrics defined by these two forms by a sequence of
birationally isomorphic ones. Let (x, y, z) be the generic zero for the form ϕ ⊥

〈−bϕ〉 ⊥ 〈−c〉; then
ϕ(x)− bϕ(y)− cz2

= 0.

Since ϕ is Pfister and ϕ(y) ∈ Dk(y)(ϕ), it follows ϕ ∼= ϕ(y)ϕ over k(y). That
means there exists a matrix C ∈ GL(k(y)) such that ϕ(x) = ϕ(y)ϕ(Cx). Let
x ′ = Cx ; then k(x, y, z)= k(x ′, y, z) and

ϕ(y)ϕ(x ′)− bϕ(y)− cz2
= 0,

hence

ϕ(x ′)− b− c
z2

ϕ(y)
= 0.

Now let y′ = y/ϕ(y); then k(x, y, z)= k(x ′, y′, z) and

ϕ(x ′)− b− cz2ϕ(y′)= 0,

hence
ϕ(x ′)

z2 −
b
z2 − cϕ(y′)= 0.

Finally, let x ′′ = x ′/z and z′ = 1/z; then (x ′′, y′, z′) is a generic zero for
ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉, k(x, y, z)= k(x ′′, y′, z′) and

ϕ(x ′′)− cϕ(y′)− bz′2 = 0.

Therefore, the two forms ϕ ⊥ 〈−bϕ〉 ⊥ 〈−c〉 and ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉 are bi-
rationally equivalent. �

Lemma 3.9. If ϕ = 〈〈a1, . . . , an〉〉 is an anisotropic Pfister form then the two forms
ϕ ⊥ 〈−b〉 and ϕ ⊥ 〈−bϕ(x0)〉 with ϕ(x0) 6= 0 are birationally equivalent. In
particular, ϕ ⊥ 〈−b〉 ≈ ϕ ⊥ 〈−bNk(

√
ai )/k(u)〉 for any nonzero norm Nk(

√
ai )/k(u).

Proof. We use the same approach as in Lemma 3.8. Let (x, y) be a generic zero
for the form ϕ ⊥ 〈−bϕ(x0)〉; then

ϕ(x)− bϕ(x0)y2
= 0,

hence
ϕ(x0)ϕ(x)− bϕ(x0)

2 y2
= 0.

Again ϕ ∼= ϕ(x0)ϕ over k, i.e., there exists a matrix C ∈ GL(k) such that
ϕ(Cx) = ϕ(x0)ϕ(x). Let x ′ = Cx and y′ = ϕ(x0)y; then (x ′, y′) is a generic
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zero for ϕ ⊥ 〈−b〉, k(x, y)= k(x ′, y′) and

ϕ(x ′)− by′2 = 0

Therefore, the two forms ϕ ⊥ 〈−b〉 and ϕ ⊥ 〈−bϕ(x0)〉 with ϕ(x0) 6= 0 are
birationally equivalent. The last statement follows when we choose x0 such that
ϕ(x0)= Nk(

√
ai )/k(u). �

Proposition 3.10. If two Pfister forms ϕ and ϕ′ are equivalent then their associated
subforms ψ and ψ ′ are birationally equivalent.

Proof. By the chain P-equivalence theorem, ϕ u ϕ′. So there exists a sequence of
Pfister forms ϕ0, ϕ1, . . . , ϕt , . . . , ϕm−1, ϕm such that ϕ= ϕ0, ϕ′= ϕm and ϕt is sim-
ply P-equivalent to ϕt+1 for 0≤ t ≤m−1. Write ϕt =〈〈a1, . . . , ai , . . . , a j , . . . , an〉〉

and ϕt+1 = 〈〈a1, . . . , a′i , . . . , a′j , . . . , an〉〉, where 〈〈ai , a j 〉〉 ∼= 〈〈a′i , a′j 〉〉. If i = j then
there is nothing to do. Otherwise, we consider each case separately:

(1) If j 6= n then

ψt = 〈〈a1, . . . , ai , . . . , a j , . . . , an−1〉〉 ⊥ 〈−an〉

∼= 〈〈a1, . . . , a′i , . . . , a′j , . . . , an−1〉〉 ⊥ 〈−an〉

= ψt+1.

(2) If j = n and i 6= n− 1 then, by Lemma 3.8,

ψt = 〈〈a1, . . . , ai , . . . , an−1〉〉 ⊥ 〈−a j 〉

≈ 〈〈a1, . . . , ai , . . . , a j 〉〉 ⊥ 〈−an−1〉

∼= 〈〈a1, . . . , a′i , . . . , a′j 〉〉 ⊥ 〈−an−1〉

≈ 〈〈a1, . . . , a′i , . . . , an−1〉〉 ⊥ 〈−a′j 〉

= ψt+1.

(3) If j = n and i = n− 1 then, again by Lemma 3.8,

ψt = 〈〈a1, . . . , an−2, ai 〉〉 ⊥ 〈−a j 〉

∼= 〈〈a1, . . . , ai , an−2〉〉 ⊥ 〈−a j 〉

≈ 〈〈a1, . . . , ai , a j 〉〉 ⊥ 〈−an−2〉

∼= 〈〈a1, . . . , a′i , a′j 〉〉 ⊥ 〈−an−2〉

≈ 〈〈a1, . . . , a′i , an−2〉〉 ⊥ 〈−a′j 〉
∼= 〈〈a1, . . . , an−2, a′i 〉〉 ⊥ 〈−a′j 〉

= ψt+1.

Hence ψt ≈ ψt+1 for all t , and ψ ≈ ψ ′. �
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Remark 3.11. Let ϕ be a Pfister form of dimension greater than or equal to 2,
c ∈ k×, and ϕ1 a nonzero subform of ϕ. In [Ahmad and Ohm 1995], H. Ahmad
called (ϕ, c, ϕ1) a Pfister triple, ϕ ⊥ 〈c〉 the base form, ϕ ⊥ cϕ1 the form defined by
the triple, ϕ ⊥ cϕ the associated Pfister form, and any form similar to such ϕ ⊥ cϕ1

a special Pfister neighbor. In this setting the forms in Lemma 3.8 and the forms
in Lemma 3.9 are pairwise special Pfister neighbors of the same dimensions and
have the same associated Pfister forms ϕ⊗〈〈b, c〉〉 and ϕ⊗〈〈b〉〉, respectively. The
lemmas then follow from his more general [Ahmad and Ohm 1995, Theorem 1.6].

Remark 3.12. One sees that Lemmas 3.8 and 3.9 hold for any strongly multiplica-
tive form ϕ as defined in [Lam 2005]. The work lies with anisotropic Pfister forms.
The remaining strongly multiplicative forms are isotropic, hence their function
fields are rational and both lemmas become trivial.

Proposition 3.10 enables us to compare the standard norm varieties for two equal
symbols.

Corollary 3.13. The standard norm varieties X (a1, . . . , an) and X (b1, . . . , bn)

for {a1, . . . , an} and {b1, . . . , bn} are birationally isomorphic if {a1, . . . , an} =

{b1, . . . , bn} in K M
n (k)/2.

Proof. By [Elman et al. 2008, Theorem 6.20], the two Pfister forms ϕ=〈〈a1, . . . , an〉〉

and ϕ′ = 〈〈b1, . . . , bn〉〉 are equivalent. Proposition 3.10 now implies their associ-
ated subforms ψ and ψ ′ are birationally equivalent. By Theorem 3.7, X (a1, . . . , an)

and X (b1, . . . , bn) are birationally isomorphic. �

Example 3.14. For any nonzero norm Nk(
√

ai )/k(u), we know

{a1, . . . , ai , . . . , a j , . . . , an} = {a1, . . . , ai , . . . , a j Nk(
√

ai )/k(u), . . . , an}

in K M
n (k)/2. By Corollary 3.13, their standard norm varieties are birationally

isomorphic. Or we can use Theorem 3.7 and Lemma 3.9, bypassing the chain
P-equivalence theorem to see this as well.

4. When p > 2 and n = 2

When p > 2 and n = 2 we show that the standard norm varieties are birationally
isomorphic to Severi–Brauer varieties.

Theorem 4.1. The standard norm variety X (a, b) for {a, b} is birationally iso-
morphic to the Severi–Brauer variety SB(A) associated to the cyclic algebra A =
(a, b, ζp)k .

Proof. Again, if we start the symmetric power construction with X (a)= Spec(L),
where L = k( p

√
a ), then X (a, b)= Z(NL/k−b) by Remark 2.5. We consider what

happens in a split case, where AL ∼= Mp(L) and SB(AL) ∼= P
p−1
L . Furthermore,
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if G = Gal(L/k) = 〈σ 〉 of order p then over L , the norm NL/k(x) splits in to a
product

∏p−1
i=0 σ

i (x) for every x ∈ L . Define

UL = {I ⊂ Mp(L)},

where

I =


 α0 0 · · · 0

...
...
. . .

...

αp−1 0 · · · 0

M

∣∣∣∣∣ αi 6= 0 for all i and M ∈ Mp(L)

 ;
then UL is an open subset in SB(AL) and we have a diagram

Z(NL/k − b)L
fL - UL

open- SB(AL)

Z(NL/k − b)

/G

? f - U

/G

? open- SB(A)

/G

?

where fL can be described as

Z(NL/k − b)L
fL
−→UL ,

(x, σ (x), . . . , σ p−1(x)) 7−→ (x : xσ(x) : . . . : xσ(x) · · · σ p−1(x)),

if we abuse notation and write points in SB(AL) in projective coordinates. We
verify that fL is G-equivariant:

fL(σ · (x, σ (x), . . . , σ p−2(x), σ p−1(x)))

= f (σ (x), σ 2(x), . . . , σ p−1(x), σ p(x))

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : σ(x)σ 2(x) · · · σ p(x))

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : b),

while

σ · fL(x, σ (x), . . . , σ p−1(x))

=


0 1 0 · · · 0

0 0 1
. . .

...
...
...
. . .

. . . 0
0 0 · · · 0 1
b 0 · · · 0 0




x

xσ(x)
...

xσ(x) · · · σ p−2(x)
xσ(x) · · · σ p−1(x)


= (xσ(x) : xσ(x)σ 2(x) : . . . : xσ(x) · · · σ p−1(x) : bx)

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : b).
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In function fields, we have an isomorphism of the same name fL from L(UL)=

L(t1/t0, . . . , tp/t0) to L(Z(NL/k − b)L)= L(x, σ (x), . . . , σ p−1(x)),

L
(

t1
t0
, . . . ,

tp

t0

)
fL
−→ L(x, σ (x), . . . , σ p−1(x)),

ti
t0
7→ xσ(x) · · · σ i−1(x),

where i = 1, . . . , p and tp/t0 = b with inverse

L(x, σ (x), . . . , σ p−1(x))
f −1
L
−→ L

(
t1
t0
, . . . ,

tp

t0

)
, σ i−1(x) 7→

ti
ti−1

.

We verify that fL respects the G-action:

fL

(
σ ·

ti
t0

)
= fL

(
ti+1

t1

)
= fL

((
ti+1

t0

)(
t1
t0

)−1 )
= xσ(x) · · · σ i (x)x−1

= σ(x) · · · σ i (x),
while

σ · fL

(
ti
t0

)
= σ · (xσ(x) · · · σ i−1(x))= σ(x) · · · σ i (x).

Therefore Z(NL/k − b)L is birationally isomorphic to UL . So Z(NL/k − b) is
birationally isomorphic to U , hence to SB(A). �

This theorem enables us to compare the standard norm varieties for two equal
symbols.

Corollary 4.2. The standard norm varieties X (a1, a2) and X (b1, b2) for {a1, a2}

and {b1, b2} are birationally isomorphic if {a1, a2} = {b1, b2} in K M
2 (k)/p.

Proof. By the norm residue homomorphism K M
2 (k)/p→ Brp(k), the classes of

(a1, a2, ζp)k and (b1, b2, ζp)k are equal in the subgroup Brp(k) of elements of expo-
nent p in the Brauer group Br(k). Since they have the same dimension, (a1, a2, ζp)k

and (b1, b2, ζp)k are isomorphic as algebras. Hence

SB((a1, a2, ζp)k)∼= SB((a1, a2, ζp)k).

It follows from the theorem that X (a1, a2)≈ X (b1, b2). �

5. When p > 2 and n = 3

When p > 2 and n = 3, we show that the standard norm varieties are birationally
isomorphic to varieties defined by reduced norms of cyclic algebras.
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Theorem 5.1. The standard norm variety X (a, b, c) for {a, b, c} is birationally
isomorphic to Z(NrdA/k −c), where A = (a, b, ζp)k .

Proof. We consider what happens in a split case. Let L = k( p
√

a ) and use SB(A)
as the standard norm variety X (a, b) for {a, b}. Once again, AL ∼= Mp(L) and
SB(AL) ∼= P

p−1
L . Our symmetric power construction looks like the front square

over k and the back square over L:

SB(AL)× S p−1(SB(AL)) � p−1(UL)

SB(A)×SBp−1(A) �
�

/G

p−1(U )

�

/G
S p(SB(AL))

pL

?
� UL

pL |

?
� πL VL

S p(SB(A))

p

?
�

�

/G

U

p|

?
� π�

/G

V

�
/G

Now let X L denote the variety of all étale subalgebras of degree p in EndL(L p).
If each subalgebra D ∈ X L is generated by a matrix λ, where λ= (λ1, . . . , λp) is
its diagonal form, then Sp acts trivially on X L by permuting the diagonal entries.
So we have an Sp-equivariant map

UL
fL
−→ X L , (u1, . . . , u p) 7→ D,

where D is the étale subalgebra whose eigenspaces are the lines u1, . . . , u p, with
inverse f −1

L : D 7→ (u1, . . . , u p). This map fits into the following commutative
diagram:

UL
fL - X L

U

/G

? f - X

/G

?
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and we get vector bundles over the last diagram,

UL �
πL VL

U �
π�

/G fL

V
�

X L

?
�

πX L VX L

f ∗L

?

X

f

?
� πX
�

/G

VX

f ∗

?�

For each (u1, . . . , u p) ∈ UL , the preimage p−1
L ((u1, . . . , u p)) consists of p

points y1, . . . , yp, where each yi is of the form (ui , (u1, . . . , ǔi , . . . , u p)). So
π−1

L ((u1, . . . , u p)) = {((u1, . . . , u p), x1, . . . , x p) | xi ∈ L(yi )}. Correspondingly,
π−1

X L
(D)= {(D, d) | d ∈ D}. Both are algebras of rank p over L . We can describe

the back face of the cube pointwise:

((u1, . . . , u p), x1, . . . , x p)
f ∗L-

D,


x1 0 · · · 0
0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 x p




(u1, . . . , u p)

πL

? fL - D

πX L

?

Note that if q(t)= a1t + · · · + apt p and d = q(λ) ∈ D with eigenvalues q(λi )

then f ∗
−1

L (D, d)= ((u1, . . . , u p), q(λ1), . . . , q(λp)).
Therefore, in VL and VX L we have two birationally isomorphic subvarieties

Z(N − c)L and Z(NrdAL/L −c), since

Z(N − c)L = {((u1, . . . , u p), x1, . . . , x p) | x1 · · · x p = c}
∼= {(D, d) | D ⊂ AL étale of rank p and d ∈ D with ND/L(d)= c}

= {(D, d) | D ⊂ AL étale of rank p and d ∈ D with NrdAL/L(d)= c}
∼= {d ∈ AL | 〈d〉 ⊂ AL étale of rank p and NrdAL/L(d)= c}

(via (D, d) 7→ d)
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= {d ∈ AL | NrdAL/L(d)= c}
∩ {d ∈ AL | its minimal polynomial md(t) is of degree p}

= {d ∈ AL | NrdAL/L(d)= c}
∩ {d ∈ AL | xi 6= x j for all of its eigenvalues xi , x j }

≈ {d ∈ AL | NrdAL/L(d)= c}

= Z(NrdAL/L −c).

Note that the intersection above is nonempty — it contains, for example, the
diagonal matrix (c/ζ (p−1)/2

p , ζp, . . . , ζ
p−1
p )— and the second set is open. Hence

our standard norm variety X (a, b, c) = Z(N − c) is birationally isomorphic to
Z(NrdA/k −c) over k. �

Knowing that X (a, b, c) is birationally isomorphic to Z(NrdA/k −c), where A=
(a, b, ζp)k , may allow us to compare X (a, b, c) and X (a′, b′, c′) when {a, b, c} =
{a′, b′, c′} in K M

3 (k)/p. If we know Z(NrdA/k −c)≈ Z(NrdA′/k −c′), where A′ =
(a′, b′, ζp)k , then we can draw the same corollary for p > 2 and n = 3 as we did
for p = 2 in Corollary 3.13 and for p > 2 and n = 2 in Corollary 4.2.
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