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BOUNDARIES OF CYCLE SPACES AND DEGENERATING HODGE
STRUCTURES∗

TATSUKI HAYAMA†

Abstract. We study a property of cycle spaces in connection with degenerating Hodge structures
of odd-weight, and we construct maps from some partial compactifications of period domains to the
Satake compatifications of Siegel spaces. These maps are a generalization of the maps from the
toroidal compactifications of Siegel spaces to the Satake compactifications. We also show continuity
of these maps for the case for the Hodge structure of Calabi-Yau threefolds with h

2,1 = 1.
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1. Introduction. A cycle space is a space which parametrizes certain compact
manifolds in a flag domain. This is studied in the field of complex geometry (cf.
[FHW]). Our aim is to study degenerating Hodge structures by using the theory of
cycle spaces. To be more specific, we will study the partial compactifications of period
domains introduced by Kato and Usui [KU] in this paper. We will show some results
on certain partial compactifications by using a property of cycle spaces. Furthermore,
we will give an explicit calculation and a further result especially for the case for the
Hodge structures of Calabi-Yau threefolds with h2,1 = 1.

1.1. Period domains and the partial compactifications. By Griffiths [G],
a variation of Hodge structure gives a horizontal map to the period domain called a
period map. Kato and Usui [KU] constructed partial compactifications so that period
maps can be extended. They showed these partial compactifications are moduli spaces
of degenerating Hodge structures called log Hodge structures. If we consider the Hodge
structures of curves or K3 surfaces, period domains are Hermitian symmetric domains.
For Hermitian symmetric domains, there are several ways to make compactifications.
In particular, toroidal partial compactifications [AMRT] coincide with the partial
compactifications of [KU]. These partial compactifications are given by fans, and
then the properties of fans have an effect on the properties of geometry on the partial
compactifications. Ash, Mumford, Rapoport and Tai [AMRT] gave the constructions
of fans which give compactifications.

For a general period domain, [KU] showed fundamental geometric properties of
the partial compactifications of period domains using log geometry. The partial com-
pactifications are not analytic spaces but analytic spaces with slits called log mani-
folds. In contrast with Hermitian symmetric case, the partial compactifications are
not well-studied if period domains are not Hermitian symmetric. In fact, we do not
have a general construction of fans in this situation.

In this paper, we will discuss certain partial compactifications of period domains
of odd-weight Hodge structures. We will show some properties on these partial com-
pactifications.
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1.2. Cycle spaces. We review cycle spaces briefly following [FHW]. Let D be
a period domain. Then D is an open orbit of the flag manifold Ď called the compact
dual. Here the real Lie group G act on D transitively. Fixing a base point F0 of
D, the isotropy subgroup L0 is compact, which is maximally compact if and only if
D ∼= G/L0 is a Hermitian symmetric domain. Taking a maximally compact subgroup
K0 containing L0, we have the orbit C0 = K0F0, which is a compact submanifold
contained in D. The cycle space MD is a set of all gC0 with g ∈ GC which is
contained in D.

In this paper, we treat a case for odd-weight Hodge structures. By shifting, we
may assume the weight is −1. In this case we have

G ∼= Sp(n,R), L0
∼=
∏

j≥0

U(nj), K0
∼= U(n), C0

∼= K0/L0(1.1)

where
∑

j nj = n and {nj}j depends on the Hodge numbers (see [CMP]). Here G/K0

is isomorphic to the Siegel space H of degree n, and we have the real analytic quotient
map

D ∼= G/L0 → G/K0
∼= H .

Through this map, a Z-Hodge structure whose Hodge filtration is in D corresponds to
an abelian variety, which coincide with the Weil intermediate Jacobian. Now K0 = L0

if hp,−p−1 = 0 for p 6= 0, 1 (the case for Hodge structures of curves). Moreover
MD

∼= H if K0 = L0.
We are mainly interested in the case where L0 6= K0, i.e. the case where D is not

a symmetric space. In this case the cycle space can be written by MD
∼= H × H̄

where H̄ is its complex conjugate by [FHW]. Since H is a familiar object, MD is
easier to study than D itself. In [H] we showed some properties of MD in connection
with SL(2)-orbits. In this paper we will give a generalization of the results of [H] in
Proposition 2.4.

1.3. Degenerating Hodge structures. We may regard a nilpotent orbit as a
degenerating Hodge structure by Schmid [S] and Cattani, Kaplan and Schmid [CKS].
A nilpotent orbit is given by a rational nilpotent cone in the Lie algebra of G and an
orbit in Ď defined by this cone. Boundary points of the partial compactifications of
period domains correspond to nilpotent orbits.

Let σ be a nilpotent cone, and let B(σ) be the set of all σ-nilpotent orbits. For
a fan Σ of nilpotent cones, we denote by DΣ the union of B(σ) for σ ∈ Σ, where the
component B({0}) for the 0-cone is D. Taking a subgroup Γ of the discrete group GZ

which is compatible with Σ, Γ\DΣ is the partial compactification related to Σ. We
will define an even-type (resp. odd-type) nilpotent cone σ in Definition 2.6 and the
Satake boundary component BS(σ) of H corresponding to σ. By using a properties
of cycle spaces (Proposition 2.4), we will construct a map

pev : B(σ) → BS(σ), (resp. pod : B(σ) → BS(σ)).

If D is a Siegel space, pev coincides with the map ζ given by [CCK] (see Example
2.9).

Theorem 1.1. Let Σ be an even-type (resp. odd-type) fan (Definition 2.6), and
let Γ be a subgroup of GZ which is compatible with Σ. Then we have the map pev (resp.
pod) from the partial compactification Γ\DΣ defined by Kato and Usui [KU] to the
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Satake compactification Γ\HS (resp. Γ\H S). If D is a Siegel space, pev coincides
with the map from the toroidal partial compactification to the Satake compactification.

Moreover, an even-type (resp. odd-type) cone σ gives a nilpotent orbit for H

(resp. H̄ ). We denote by Btor(σ) the boundary component of Hσ. We will define
the map

p̃ev : B(σ) → Btor(σ) (resp. p̃od : B(σ) → Btor(σ)).

If D is a Siegel space, p̃ev is the identity map. Then we will obtain the following
theorem:

Theorem 1.2. Let Σ be an even-type (resp. odd-type) fan, and let Γ be a subgroup
of GZ which is compatible with Σ. Then we have the map p̃ev : Γ\DΣ → Γ\HΣ (resp.
p̃od : Γ\DΣ → Γ\H Σ), which factors through the map of Theorem 1.1. If D is a
Siegel space, p̃ev is the identity map.

Finally, we have the following commutative diagrams:

Γ\DΣev

pev

%%K
KK

KK
KK

KK
K

p̃ev

// Γ\HΣev

ζ

��

Γ\HS

Γ\DΣod

pod

%%J
JJ

JJ
JJ

JJ
J

p̃od

// Γ\H Σod

ζ̄

��

Γ\H S

where Σev is an even-type fan and Σod is an odd-type fan.

1.4. The (1,1,1,1) case. We will study these maps in detail for the case for the
Hodge structures of Calabi-Yau threefolds with h2,1 = 1. This case geometrically cor-
responds to the quintic mirror family or the Borcea-Voisin mirror family (see [GGK1]),
and the nilpotent orbits are explicitly described and classified by Kato and Usui [KU].
We have the fans Σev and Σod and the nilpotent orbits in this case. By using it, we
will describe the maps pev, pod, p̃ev and p̃od and show the following proposition:

Proposition 1.3. In this case, p̃ev and p̃od (therefore pev and pod) are continu-
ous.

Here the topology of Γ\DΣ is the strong topology, which makes these maps con-
tinuous. Remark that the even-types and the odd-types are not parallel. Indeed, pod

is not surjective although pev is, and Σod is not a part of a fan of a toroidal compact-
ification although Σev is. In particular, the following diagram holds for the even-case
(see Remark 3.4):

Γ\DΣev

pev

%%K
KK

KK
KK

KK
K

p̃ev

// Γ\HΣev

��

⊂
// Γ\HΣtor

ζ
yyss
ss
ss
ss
ss

Γ\HS

where Γ\HΣtor
is the toroidal compactification. The even-case is further investigated

in [H2].
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1.5. Problems. How to construct Σev and Σod and the property of pev, pod, p̃ev

and p̃od beyond the above case is unknown. We expect that pev and pod have a good
geometric property similar to the Siegel case. Since the toroidal compactifications and
the Satake compactifications are well known, we expect that these maps are helpful
to study the geometry of Γ\DΣev

and Γ\DΣod
.

On the other hand, Green, Griffiths and Kerr [GGK2] recently study Mumford-
Tate domains. Kerr and Pearlstein [KP] investigate a relationship between boundary
components of Mumford-Tate domains and the Kato-Usui boundary components. We
expect that our study of Kato-Usui boundary components can be applied to the study
of boundary components of Mumford-Tate domains.

Acknowledgment. The part of this work was done during a visit of the author
to Johns Hopkins University for the activity of JAMI in February 2012. The author
is grateful for the hospitality and the support. The author is thankful to professors
Radu Laza, Gregory Pearlstein and Steven Zucker for their valuable advice and warm
encouragement.

2. Even-type and odd-type Degenerations. Let (HZ, F0, 〈 , 〉) be a po-
larized Hodge structure of weight −1 where HZ is Z-module, F0 is a filtration of
HC := HZ ⊗ C and 〈 , 〉 is a non-degenerate alternating bilinear form on HZ. We
have the period domain D and its compact dual Ď by [G]. Here D is written as a
homogeneous space on which the real Lie group G acts. As in (1.1), G ∼= Sp(n,R)
and the isotropy subgroup L0 is isomorphic to

∏

j≥0 U(nj) where nj is the Hodge

number hj,−j−1. We denote by g the Lie algebra of G.

2.1. R-split LMHS with N2 = 0. Let N ∈ g be a nilpotent with N2 = 0, and
let F ∈ Ď. We have the monodromy weight filtration W (N) such that

W (N)0 = HR, W (N)−1 = KerN, W (N)−2 = ImN

(which is shifted by −1 from the original definition of the weight filtration). We say
(W (N), F ) is a limiting mixed Hodge structure (LMHS) if the following properties
hold:

• (W (N), F ) is a mixed Hodge structure;

• N : Gr
W (N)
0

∼→ Gr
W (N)
−2 gives a (−1,−1)-morphism of Hodge structure;

• 〈•, N j•〉 gives a polarization for Gr
W (N)
j−1 (j = 0, 1).

Now we have the Deligne decomposition HC =
⊕

p+q=0,−1,−2 I
p,q letting

Ip,q = F p ∩W (N)p+q,C ∩ (F̄ q ∩W (N)p+q,C +
∑

j≥2

F̄ q−j+1 ∩W (N)p+q−j,C),

which gives Hodge decomposition on each graded quotient part. We assume that the
LMHS is R-split, i.e. the Deligne decomposition is defined over R. By [CKS, Lemma
3.12], exp (zN)F ∈ D for Im z > 0.

Lemma 2.1. Let v ∈ Ip,−p. For z ∈ C with Im z > 0, exp (zN)v is in the
(p,−p− 1)-component of the Hodge decomposition with respect to exp (zN)F .

Proof. Now exp (zN)v ∈ exp (zN)F p. Moreover, v̄ ∈ F−p and Nv̄ ∈ F−p−1 since
the LMHS is R-split. Here

Nv̄ = exp (zN)(Nv̄) ∈ exp (zN)F−p−1,

v̄ − zNv̄ = exp (zN)v̄ − 2zNv̄ ∈ exp (zN)F−p−1.
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Then

exp (zN)v = v + zNv

= v̄ − zNv̄ + 2Re (z)Nv ∈ exp (zN)F−p−1.

Let HC =
⊕

p H
p,−p−1 be the Hodge decomposition with respect to exp (zN)F

for Im z > 0. By the above lemma,

ezNIp,−p ⊂ Hp,−p−1, ezNI−p,p ⊂ H−p,p−1,

ez̄NI−p,p = ezNIp,−p ⊂ H−p−1,p, ez̄NIp,−p = ezNI−p,p ⊂ Hp−1,−p.

We write

Hp,−p−1
1 = Ip,−p−1, Hp,−p−1

2 = ezNIp,−p, Hp,−p−1
3 = ez̄NIp+1,−p−1.(2.1)

Then the (p,−p− 1)-component has the decomposition

Hp,−p−1 = Hp,−p−1
1 ⊕Hp,−p−1

2 ⊕Hp,−p−1
3 .(2.2)

Remark 2.2. By [S, Lemma 6.24], HC can be decomposed into the direct sum of
the subspaces which are invariant and irreducible with respect to the Hodge structure.
Here every irreducible subspace is isomorphic to H(p)⊗ S(−2p− 1) with p ≤ −1, or
E(p, q)⊗S(−p−q−1) with p+q ≤ −1. The relationship between this decomposition
and the decomposition (2.2) is written as follows:

Hp,−p−1
1 ⊕H−p−1,p

1

is the direct sum of the (E(p,−p− 1)⊗ S(0)) type components;

Hp,−p−1
2 ⊕Hp−1,−p

3 ⊕H−p,p−1
2 ⊕H−p−1,p

3

= Ip,−p ⊕ I−p,p ⊕ Ip−1,−p−1 ⊕ I−p−1,p−1

is the direct sum of the (E(p− 1,−p− 1)⊕ S(1)) type components for p ≥ 1;

H0,−1
2 ⊕H−1,0

3 = I0,0 ⊕ I−1,−1

is the direct sum of the (H(−1)⊕ S(1)) type components.

2.2. Cycle spaces and SL(2)-orbits. Let (N,F ) be a pair which generates a
LMHS with N2 = 0. By [CKS, Proposition 2.20], there exists δ ∈ L−1,−1

R
(W (σ), F )

uniquely such that (W (σ), e−iδF ) is a R-split LMHS. We write F̂ = e−iδF . By
the SL(2)-orbit theorem ([S, Theorem 5.13], [CKS, §3]), there exists a Lie group
homomorphism ρ : SL(2,C) → GC defined over R and a holomorphic map φ : P1 → Ď
satisfying the following conditions:

• ρ(g)φ(z) = φ(gz);
• φ(0) = F̂ ;
• ρ∗(n−) = N ;
• Hv = (p+ q + 1)v for v ∈ Ip,q where ρ∗(h) = H ;
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• ρ∗ : sl(2,C) → gC is a (0, 0)-morphism of Hodge structure where g (resp.
sl(2,R)) has a Hodge structure of weight 0 relative to φ(i) (resp. i),

where {n−,h,n+} are the standard generators of sl(2,C). We fix F0 = φ(i) =
exp (iN)F̂ as a base point of D. We write

X =
1

2
(iN −H + iN+)

where N+ = ρ∗(n+). Then X is in the (−1, 1)-component of the Hodge decompo-
sition of gC with respect to F0 and X2 = 0. Let HC =

⊕

Hp,−p−1 be the Hodge
decomposition with respect to F0. By Lemma 2.1, for v ∈ Ip,−p we have

u = exp (iN)v ∈ Hp,−p−1

Then Xu ∈ Hp−1,−p. We denote by ‖ • ‖ the norm induced by the polarization with
respect to F0. Scaling v, we may assume ‖u‖ = 1.

Lemma 2.3. Xu = − exp (−iN)v and ‖Xu‖ = 1.

Proof. By the property of the sl2-triple,

N+Nv = v, N+Nv̄ = v̄, N+v = N+v̄ = 0,

Hv = v, Hv̄ = v̄, HNv = −Nv, HNv̄ = −Nv̄.

Then

Xu =
1

2
(iN −H + iN+)(v + iNv)

= −v + iNv = − exp (−iN)v.

Next, we show ‖Xu‖ = 1. Let a = 〈v, v̄〉, b = 〈Nv, v̄〉, c = 〈v,Nv̄〉 and d =
〈Nv,Nv̄〉. Then by the orthogonality and the positivity

〈u, ū〉 = a+ ib− ic+ d = i−2p−1, 〈u,Xu〉 = −a− ib− ic+ d = 0,

〈Xu, ū〉 = −a+ ib+ ic+ d = 0.

Since v ∈ F̂ p and v̄ ∈ F̂−p, a = 0. Therefore, the simultaneous equation induces
d = 0, b − c = i−2p−2 and 〈Xu,Xu〉 = a − ib + ic + d = −i−2p−1. Then ‖Xu‖ =
i2p−1〈Xu,Xu〉 = 1.

Then X gives the isomorphism

X : Hp,−p−1
2 → Hp−1,−p

3 ; exp (iN)v 7→ − exp (−iN)v.

Therefore, we have

i2p+1〈exp (zX)u, exp (zX)u〉 = 1− |z|2.(2.3)

If v′ ∈ Ip,−p is orthogonal to v for 〈•, N •̄〉,

〈exp (zX)u, exp (zX)u′〉 = 0(2.4)

where u′ = exp (iN)v′.
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For the Hodge numbers {hp,−p−1}p, we define

fp
ev =

∑

r≥p,
r: even

hr,−r−1, fp
od =

∑

r≥p,
r: odd

hr,−r−1.

The maximally compact subgroup K0 is isomorphic to the unitary group U(n) as in
(1.1), and the orbit C0 = K0F0 is a compact submanifold of D by [FHW, Lemma
5.1.3]. The cycle space is defined by

MD = {gC0 | gC0 ⊂ D, g ∈ GC}.
By [FHW, Lemma 5.1.3], MD is an open subset of the complex manifold

MĎ = {gC0 | g ∈ GC}.
If K0 = L0, i.e. D is a Siegel space, C0 is the base point F0 and MD = D. We
describe MD for the case where K0 6= L0 following [FHW, §5.5B]. Here C0 can be
written as

C0 = {F ∈ D | dim (F p ∩Hev) = fp
ev, dim (F p ∩Hod) = fp

od}
where

Hev =
⊕

p: even

Hp,q, Hod =
⊕

p: odd

Hp,q.

Let V and W be complementary 〈 , 〉-isotropic n-dimensional subspaces of HC, and
let

CV,W = {F ∈ Ď| dim (F p ∩ V ) = fp
ev, dim (F p ∩W ) = fp

od}.
Here C0 = CHev ,Hod and gCV,W = CgV,gW for g ∈ GC. By using this, the cycle space
is described as

MD = {CV,W | V ≫ 0 and W ≪ 0 for − i〈•, •̄〉}.
NowG/K0 is isomorphic to the Siegel spaceH of degree n. MoreoverH is isomorphic
to the bounded symmetric domain B of type-III. Then we have

{V ⊂ HC | dimV = n, V ≫ 0, 〈V, V 〉 = 0} ∼= H ∼= B,
{W ⊂ HC | dimW = n, W ≪ 0, 〈W,W 〉 = 0} ∼= H̄ ∼= B̄.

By [FHW, §5.4], we have the isomorphism

MD
∼→ B × B̄; C(V,W ) 7→ (V,W ).

Proposition 2.4. exp (X)C0 ∈ MĎ is in the topological closure Mcl
D of MD in

MĎ if N2 = 0.

Proof. Now we have the decompositionHp,−p−1 =
⊕

j=1,2,3 H
p,−p−1
j of (2.2) with

respect to exp (iN)F̂ . Since XHp,−p−1
1 = XHp,−p−1

3 = 0, then

eXHp,p−1 = Hp,p−1
1 ⊕ eXHp,p−1

2 ⊕Hp,p−1
3 .

Here the above components are orthogonal to each other, and by (2.3) and (2.4)
eXHp,p−1

2 is non-negative (resp. non-positive) for i2p−1〈•, •̄〉 if p is even (resp. odd).
Then eXHev (resp. eXHod) is in the closure Bcl (resp. B̄cl).

Remark 2.5. If N2 6= 0, eXC0 need not to be in Mcl
D (See [H, proposition 4.6]).
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2.3. Maps to the Satake boundary components. We call (σ, exp (σC)F ) a
nilpotent orbit if it satisfies the following conditions:

• σ is a finitely generated rational polyhedral cone in g;
• Any elements of σ are nilpotent and commutative with each other;
• F ∈ Ď and exp (zN)F ∈ D for Im z ≫ 0 and for N in the relative interior
σ◦;

• NF p ⊂ F p−1 for N ∈ σ.
The above conditions do not depend on the choice of F ∈ exp (σC)F . By [CK] the
monodromy weight filtration W (N) does not depend on the choice of N ∈ σ◦ (we
denote it by W (σ)), and (W (σ), F ) is a LMHS by [S].

Definition 2.6. A nilpotent orbit (σ, exp (σC)F ) is called even-type (resp. odd-
type) if N2 = 0 for N in the relative interior σ◦ and Ip,−p = 0 for any odd (resp. even)
integer p with respect to the LMHS (W (σ), F ). A nilpotent cone σ is called even-type
(resp. odd-type) if every σ-nilpotent orbit is even-type (resp. odd-type). A fan Σ is
called even-type (resp. odd-type) if any face of Σ is even-type (resp. odd-type).

Let (σ, exp (σC)F ) be a nilpotent orbit of even-type or odd-type. For (N,F ) with
N ∈ σ◦, we have the compact submanifold C0 ∈ MD as in the previous subsection.
By Proposition 2.4, exp (X)C0 ∈ Mcl

D. If K0 6= L0, MD
∼= B×B̄. We then define the

two projections

pev : Mcl
D → Bcl, pod : Mcl

D → B̄cl.

If K0 = L0, we define pev as the canonical isomorphism Mcl
D

∼→ Bcl and pod as the

complex conjugation map Mcl
D

∼→ Bcl → B̄cl.

Theorem 2.7. If the nilpotent orbit is of even-type (resp. odd-type),

pev(exp (X)C0) ∈ Bcl (resp. pod(exp (X)C0) ∈ Bcl
) does not depend on the choice

of N ∈ σ◦ and F ∈ exp (σC)F .

Proof. By Lemma 2.1, u = exp (iN)v ∈ Hp,−p−1
2 for v ∈ Ip,−p. By Lemma 2.3

exp (X)u = exp (iN)v − exp (−iN)v = 2iNv ∈ eXHp,−p−1
2 ,(2.5)

and for u′ = exp (iN)v̄ ∈ H−p,p−1
2

exp (X)u′ = exp (iN)v̄ − exp (−iN)v̄ = 2iNv̄ ∈ eXH−p,p−1
2 .

Since Hp,−p−1
3 = 0 for even (resp. odd) p by definition, then

eXHev =
⊕

p: even

(Hp,p−1
1 ⊕ eXHp,p−1

2 ) =
⊕

p: even

Hp,p−1
1 ⊕ ImNC,

(resp. eXHod =
⊕

p: odd

Hp,p−1
1 ⊕ ImNC).

Here ImN = W (σ)−2 does not depend on the choice of N ∈ σ◦. Moreover Hp,−p−1
1 is

in the kernel of the action of σC and L−1,−1
R

(W (σ), F ). Then eXHev (resp. eXHod)
does not depend on the choice of F ∈ exp (σC)F and N ∈ σ◦.

The Satake boundary components of B corresponds to the set of real isotropic
subspaces of HR ([N, Proposition 4.4]). We denote by BS(σ) the Satake boundary
component corresponding to the real vector space W (σ)−2. The boundary point
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pev(exp (X)C0) (resp. pod(exp (X)C0)) is contained in the Satake boundary compo-
nent BS(σ) (resp. BS(σ)).

Corollary 2.8. Let σ be an even-type (resp. odd-type) nilpotent cone, and let
B(σ) be the set of all σ-nilpotent orbits. Then pev (resp. pod) gives a well-defined
map B(σ) → BS(σ) (resp. B(σ) → BS(σ)).

Let Σ be an even-type (resp. odd-type) fan. We write DΣ =
⊔

σ∈Σ B(σ). We
have the well-defined map

pev : DΣ → HS (resp. pod : DΣ → H̄S)

where the map restricted onB(σ) is given by Corollary 2.8. If σ = {0}, thenB(σ) = D
and pev|D (resp. pod|D) is the map given by taking the even-part (resp. odd-part) of
the Hodge decomposition. Let Γ be a subgroup of GZ = Aut (HZ, 〈 , 〉). Then γ ∈ Γ
gives a map from B(σ) to B(Ad (γ)σ) by

(σ, exp (σC)F ) 7→ (Ad (γ)σ, γ exp (σC)F ).

We assume that Γ is compatible with the fan Σ. Then pev (resp. pod) is compatible
with the action of Γ, and we can define

pev : Γ\DΣ → Γ\HS (resp. pod : Γ\DΣ → Γ\HS).(2.6)

Example 2.9. Let D be a Siegel space H , i.e. hp,−p−1 = 0 if p 6= 0,−1. We
take a nilpotent cone σ in the open real cone η+i of [CCK, §4]. By [CCK, Proposition
4.2], (W (σ), F ) is a LMHS if and only if F ∈ exp (σC)H ⊂ Ȟ , and

B(σ) ∼= exp (σC)H / exp (σC).

Here the LMHS is the following type:

(0,0)•

N

��

(0,−1)• (−1,0)•

(−1,−1)•
Then any nilpotent orbit for H is even-type, where pev|D = id and pev : B(σ) →
BS(σ) coincides with the map ζ of [CCK, §4(3)]. By [CCK, §6] ζ induces the maps
from the toroidal compactifications to the Satake compactification.

2.4. Maps to the toroidal boundary components. For an even-type
(resp. odd-type) nilpotent orbit (σ, exp (σC)F ), we have the R-split nilpotent or-
bit (σ, exp (σC)F̂ ). Let HC =

⊕

p+q=0,−1,−2 I
p,q be the Deligne decomposition with

respect to the LMHS (W (σ), F̂ ). We define F̃ ∈ Ȟ by

F̃ 0 = (
⊕

p: even

Ip,−p−1)⊕ (
⊕

p

Ip,−p),

(resp. F̃ 0 = (
⊕

p: odd

Ip,−p−1)⊕ (
⊕

p

Ip,−p)).
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Now (W (σ), F̃ ) (resp. (W (−σ), F̃ )) is a R-split LMHS. In fact, 〈•, N•〉 (resp.

〈•,−N•〉) with N ∈ σ◦ gives a polarization on Gr
W (σ)
0 since i2p = 1 if p is even

and −1 if p is odd. Then (σ, exp (σC)F̃ ) is a R-split nilpotent orbit for H (resp. H̄ ).
Moreover we have the following proposition:

Proposition 2.10. pev(ezN F̂ ) = ezN F̃ (resp. pod(ez̄N F̂ ) = ez̄N F̃ ) for Im z > 0
and N ∈ σ◦.

Proof. Let HC =
⊕

p H
p,−p−1 be the Hodge decomposition with respect to

exp (zN)F̂ . Since σ is even-type (resp. odd-type), Hp,−p−1
3 = 0 if p is even (resp.

odd). Then by (2.1)

pev(ezN F̂ )0 =
⊕

p: even

(Hp,−p−1
1 ⊕Hp,−p−1

2 )

=
⊕

p: even

Ip,−p−1 ⊕ ezN (
⊕

p

Ip,−p) = ezN F̃ 0

(resp. pod(ez̄N F̂ )0 = ez̄N F̃ 0).

We denote by Btor(σ) the boundary component for σ of Hσ. For an even-type
(resp. odd-type) nilpotent cone σ, we define the map p̃ev : B(σ) → Btor(σ) (resp.
p̃od : B(σ) → Btor(σ)) by

(σ, exp (σC)F ) 7→ (σ, exp (σC)e
iδF̃ )

where F = eiδF̂ . Then for an even-type (resp. odd-type) fan Σ we can define the
map

p̃ev : DΣ → HΣ (resp. p̃od : DΣ → H̄Σ),

and for a subgroup Γ of GZ which is compatible with Σ we have

p̃ev : Γ\DΣ → Γ\HΣ (resp. p̃od : Γ\DΣ → Γ\H Σ),

where p̃ev = id if D = H . Now we have the map ζ : Γ\HΣ → Γ\HS (resp.
ζ̄ : Γ\HΣ → Γ\H S) such that

ζ ◦ p̃ev(σ, exp (σC)F ) = W (σ)−2 ⊕ (
⊕

p: even

Ip,−p−1)

= pev(σ, exp (σC)F )

(resp. ζ̄◦p̃od(σ, exp (σC)F ) = pod(σ, exp (σC)F )). Then we have the following theorem:

Theorem 2.11. pev (resp. pod) factors through p̃ev (resp. p̃od).

3. The (1,1,1,1) case. In this section, we consider the case where hp,−p−1 = 1
if p = 1, 0,−1,−2, hp,−p−1 = 0 otherwise. In this case

G ∼= Sp(2,R), L0
∼= U(1)× U(1), K0

∼= U(2), C0
∼= P

1.

Any nilpotent cone in this case is rank 1, and its generator N is classified as follows:
(I) N2 = 0, dim (ImN) = 1;
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(II) N2 = 0, dim (ImN) = 2;
(III) N3 6= 0, N4 = 0.

Here the type I is even-type; the type II is odd-type; the type III is neither. The
boundary components are described by [KU, §12.3] or [GGK1]. For the type I (resp.
the type II), we describe pev and p̃ev (resp. pod and p̃od) explicitly and show continuity
of these maps.

3.1. Preliminary. First, we describe the period domain D. Let HZ be a rank-4
Z-module. We define a bilinear form 〈 , 〉 by

(〈ej , ek〉)j,k =

(

0 −I
I 0

)

for a basis e1, . . . , e4 of HZ. We have an open immersion

Sym(2,C)× C →֒ Ď; (τ, λ) 7→ F (τ, λ) where

(3.1)

F 1(τ, λ) = spanC























τ12
τ22
0
1









+ λ









τ11
τ21
1
0























, F 0(τ, λ) = spanC























τ12
τ22
0
1









,









τ11
τ21
1
0























,

F−1(τ, λ) = F 1(τ, λ)⊥.

Here F (τ, λ) ∈ D if, and only if,

det (Im τ) < 0, −i〈ω, ω̄〉 > 0 for 0 6= ω ∈ F 1(τ, λ).(3.2)

Let σ be a nilpotent cone, and let Γ be a subgroup of GZ such that

there exists γ ∈ Γ which satisfies σ = R≥0 log (γ).(3.3)

We write Γ(σ)gp = exp (σR)∩Γ. The topology of Γ(σ)gp\Dσ is the quotient topology
via the map Eσ → Γ(σ)gp\Dσ ([KU, 3.4.2]). Here Eσ is the subset of Ď × C such
that

(F, z) ∈ Eσ ⇔
{

(σ, exp (σC)F ) is a nilpotent orbit if z = 0,

exp (ℓ(z)N)F ∈ D if z 6= 0,

where N is the generator of exp (σ) ∩ Γ and ℓ(z) = log z/2πi (we may assume that
ℓ(z) is the one-valued function by taking a branch of log). The map Eσ → Γ(σ)gp\Dσ

is given by

(F, z) 7→
{

(σ, exp (σC)F ) if z = 0,

exp (ℓ(z)N)F (mod Γ(σ)gp) if z 6= 0.

The topology of Eσ is the strong topology in Ď×C. For a fan Σ and a subgroup Γ of
GZ which is compatible with Σ, the topology of Γ\DΣ is the strongest topology such
that Γ(σ)gp\Dσ → Γ\DΣ is continuous for all σ ∈ Σ.

We review the definition of the strong topology briefly. For an analytic space Y
and a subset X , a subset U of X is open in the strong topology in Y if f−1(U) is
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open for any analytic space Z and any analytic map f : Z → Y such that f(Z) ⊂ X .
The following example is typical:

Example 3.1 ([KU, 3.1.3]). Let Y = C2, and let X = Y −{0}×C∗. The strong
topology on X in Y does not coincide with the topology as a subspace of Y around
the origin. We put

Un(δn) =
{

(z1, z2) ∈ ∆2
δn

|z1|n < |z2|, z2 6= 0
}

,

U(δ) =
⋃

n

Un(δn) ∪ {(0, 0)}

where ∆δn is the δn-open disk with δn > 0 and δ = {δn}n. Then U(δ) ⊂ X is an open
neighborhood of the origin and U(δ), where δ runs over all sequences in R>0, form a
fundamental system of neighborhoods of the origin.

3.2. Boundaries for the type I. Let σ = R≥0N be the type I nilpotent element
withN(e3) = e1 andN(ej) = 0 for j = 1, 2, 4. Here the LMHS of this type is described
as the following diagram:

(0,0)•

N

��

(1,−2)• (−2,1)•

(−1,−1)•

Then this nilpotent cone is even-type. We define a fan

Σev = {Ad (g)σ | g ∈ GZ}.

Then Σev is the fan of all nilpotent cones of even-type by [KU, §12.3].
We write

ξ0(w) =









0
w
1
0









, ξ1(v, w) =









w
v
0
1









and define a filtration F (v, w) ∈ Ď by

F 1(v, w) = spanC{ξ1(v, w)}, F 0(v, w) = spanC{ξ1(v, w), ξ0(w)}.

Then

B(σ) =
{

(σ, exp (CN)F (v, w)) Im v < 0, w ∈ C
}

.

Let F = F (v, w) with Im v < 0. Then the (0, 0)-component of the Deligne decompo-
sition for (W (N), F ) is

F 0 ∩W0(N) ∩ (F̄ 0 ∩W0(N) + F̄−1 ∩W−2(N)) = F 0 ∩ (F̄ 0 +NF̄ 0),
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which is generated by

e = ξ0(w)− γξ1(v, w) =









−γw
Rew − γ Re v

1
−γ









, where γ =
Imw

Im v
.

The R-split mixed Hodge structure (W (N), F̂ ) associated to (W (N), F ) is given by

F̂ = exp (γi ImwN)F.

In fact, the (0, 0)-component is generated by

ê = exp (γi ImwN)e =









−γ Rew
Rew − γRe v

1
−γ









.

Then for the Hodge decomposition with respect to exp (iN)F̂ ,

u1 := ξ1(v, w) ∈ H1,−2, u0 := exp (iN)ê ∈ H0,−1.

Here Hev is generated by u0 and ū1, and by (2.5)

exp (X)u0 = 2iNê = 2ie1, exp (X)u1 = u1.

Then

pev(σ, exp (σC)F ) = exp (X)Hev = spanC{e1, v̄e2 + e4},(3.4)

which is contained in BS(σ). Moreover, the map pev : B(σ) → BS(σ) is surjective.
Now F̃ is given by F̃ 0 = spanC{ξ1(v, w), ê}. By Proposition 2.10, for Im z > 0

p̃ev(exp (zN)F̂ ) = exp (zN)F̃ =

(

z − γi Imw w̄
w̄ v̄

)

.

Since exp (σC)F = exp (σC)F̂ , we have

p̃ev(σ, exp (σC)F ) = (σ, exp (σC)F̃ ).

Proposition 3.2. Let Γ be a subgroup of GZ which is compatible with Γ and
satisfies the condition (3.3) for any σ ∈ Σev. Then p̃ev : Γ\DΣev

→ Γ\HΣev
is

continuous.

Proof. It is sufficient to show continuity around the boundary point
(σ, exp (σC)F (v, w)) in Γ\DΣev

. We write

F = F (v, w), ξ0 = ξ0(w), ξ1 = ξ1(v, w),

and we assume F = F̂ , i.e. Imw = 0 (it is similar to show continuity for F 6= F̂ , and
we omit the proof of it). A neighborhood of (σ, exp (σC)F̃ ) in Γ\HΣev

is written as

{exp (ℓ(z′4)N)F̃ (z′) | z′ ∈ ∆4
ε, z

′
4 6= 0}(3.5)

⊔ {exp (σC)F̃ (z′) | z′ ∈ ∆4
ε, z

′
4 = 0}
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for sufficiently small ε > 0 where

F̃ (z′) = F̃ +

(

z′1 z′2
z′2 z′3

)

.

We describe neighborhoods of (σ, exp (σC)F ) of Γ\DΣev
, and show that there is a

small neighborhood whose image through p̃ev is contained in the above neighborhood
(3.5).

A neighborhood of the boundary point (σ, exp (σC)F ) in Γ\DΣev
is given by Eσ

and the map φ : Eσ → Γ\DΣev
. It is sufficient to show p̃ev ◦ φ is continuous. We

describe a neighborhood of (F, 0) ∈ Eσ ⊂ Ď × C. Let ∆ be a small open disk. By
(3.1) an open neighborhood of F in Ď is given by

∆4 →֒ Ď; (z1, . . . , z4) 7→ F (z)

where F 1(z) = spanC {ξ1 + θ1(z) + z4 (ξ0 + θ0(z))} ,
F 0(z) = spanC {ξ1 + θ1(z), ξ0 + θ0(z)}

where

θ0(z) =









z1
z2
0
0









, θ1(z) =









z2
z3
0
0









.

Then we have an open neighborhood ∆5 →֒ Ď×C by (z1, . . . , z5) 7→ (F (z1, . . . , z4), z5).
Here

(F (z1, . . . , z4), z5) ∈ Eσ ⇔
{

z4 = 0 if z5 = 0,

exp (ℓ(z5)N)F (z1, . . . , z4) ∈ D if z5 6= 0.

For z5 6= 0, we write

η0(z) = eℓ(z5)N (ξ0 + θ0(z)) = eℓ(z5)Nξ0 + θ0(z),

η1(z) = eℓ(z5)N (ξ1 + θ1(z)) + z4η0(z) = ξ1 + θ1(z) + z4η0(z).

Then

eℓ(z5)NF 1(z) = spanC{η1(z)}, eℓ(z5)NF 0(z) = spanC{η1(z), η0(z)}.

If z1, . . . , z5 → 0 provided that |z4| log |z5| → 0, we then have the convergences

η1(z) → ξ1, η0(z)− eℓ(z5)Nξ0 → 0(3.6)

〈η1(z), η1(z)〉 → 〈ξ1, ξ1〉, 〈η1(z), η0(z)〉 − 〈ξ1, eℓ(z5)Nξ0〉 → 0.

Here

eℓ(z5)NF 1 = spanC{ξ1}, eℓ(z5)NF 0 = spanC{ξ1, eℓ(z5)Nξ0}.

Then

eℓ(z5)NF (z)− eℓ(z5)NF → 0
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if z1, . . . , z5 → 0 provided that |z4| log |z5| → 0. Therefore, by the conditions (3.2) of
D,

Un(δn) =

{

(z1, . . . , z5) ∈ ∆5 |z4|n < |z5|,
|z4|, |z5| < δn, z5 6= 0

}

⊂ Eσ

if δn is sufficiently small for n ≥ 1. Here Un(δn) is a small neighborhood of
{eℓ(z5)NF | |z5| < δn}. By Example 3.1 and the definition of strong topology,

U(δ) =

(

⋃

n

Un(δn)

)

⊔ {z ∈ ∆5 | z4 = z5 = 0}

is an open neighborhood of (0, F ) in the strong topology of Eσ taking δ = {δn} and
∆ sufficiently small.

Next, we show pev(eℓ(z5)NF (z)) approaches eℓ(z5)N F̃ if z1, . . . , z5 → 0 provided
that z ∈ Un(δn), i.e. |z4| log |z5| → 0. For the Hodge decomposition for eℓ(z5)NF (z)
with (z1, . . . , z5) ∈ Un(δn), the (1,−2) component is generated by η1(z) and the
(0,−1) component is generated by

α(z) = 〈η1(z), η0(z)〉 η1(z)− 〈η1(z), η1(z)〉 η0(z)
since η1(z) ⊥ α(z). Then

pev(eℓ(z5)NF (z)) = spanC{η1(z), α(z)}.
We write

β(z5) = 〈ξ1, eℓ(z5)Nξ0〉 ξ1 − 〈ξ1, ξ1〉 eℓ(z5)ξ0,
which is in the (0,−1) component of the Hodge decomposition of eℓ(z5)NF . Then, by
Proposition 2.10,

spanC{ξ1, β(z5)} = pev(eℓ(z5)NF ) = eℓ(z5)N F̃ .

By the convergence (3.6) we have

η1(z) → ξ1, α(z)− β(z5) → 0

if z1, . . . , z5 → 0 provided that z ∈ Un(δn). Moreover we have

pev(eℓ(z5)NF (z))− eℓ(z5)N F̃ → 0

in the upper half space. Then U(δ) is contained in the neighborhood (3.5) if δn is
sufficiently small.

Corollary 3.3. pev is continuous.

Remark 3.4. The GZ(BS(σ))-admissible polyhedral decomposition ([CCK, Def-
inition 6.1]) is the fan {σ, {0}}. Then for a Γ-admissible decomposition Σtor ([CCK,
Definition 6.2]), we have an injection Σev →֒ Σtor. Therefore we have the following
commutative diagram:

Γ\DΣev

pev

%%K
KK

KK
KK

KK
K

p̃ev

// Γ\HΣev

��

⊂
// Γ\HΣtor

ζ
yyss
ss
ss
ss
ss

Γ\HS
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3.3. Boundaries for the type II. Let σm = R≥0Nm be the type II nilpotent
cone with Nme3 = −e1 and Nme4 7→ −me2 where m is a square-free positive integer.
The LMHS of this type is described as the following diagram:

(1,−1)•

N

��

(−1,1)•

N

��

(0,−2)• (−2,0)•

Then this nilpotent cone is odd-type. We define

Σod = {Ad (g)σm | g ∈ GZ, m : square-free positive integer}.

Then Σod is the fan of all nilpotent cones of odd-type by [KU, §12.3].
Let N = Nm, and let σ = σm. We write

ξ±0 =









−1
±i

√
m

0
0









, ξ±1 (w) =









0
w

±i
√
m

1









.

Then for z ∈ C

Nξ±1 (w) = ±i
√
mξ±0 , ξ±1 (w) ± zi

√
mξ±0 = exp (zN)ξ±1 (w).

We define a filtration F±(w) ∈ Ď by

F 1
±(w) = spanC{ξ±1 (w)}, F 0

±(w) = spanC{ξ±1 (w), ξ±0 }.

Then

B(σ) = {(σ, exp (CN)F+(w)) | w ∈ C} ⊔ {(σ, exp (CN)F−(w)) | w ∈ C}.

Let F = F±(w) and let σ = R≥0N . Then the (1,−1) component of the Deligne
decomposition of (W (N), F ) is generated by ξ±1 (w), and the (−1, 1) component is

F−1 ∩ (F̄ 1 + F̄ 0 ∩W−2(N)) = F−1 ∩ (F̄ 1 +NF̄ 1),

which is generated by

ω = 〈ξ±1 (w), ξ±0 〉 ξ±1 (w) − 〈ξ±1 (w), ξ±1 (w)〉 ξ±0
= ∓2i

√
m ξ±1 (w) + 2i Imw ξ±0

= ∓2i
√
m exp

(

− Imw

m
iN

)

ξ±1 (w).

The R-split MHS (W (N), F̂ ) associated to (W (N), F ) is given by

F̂ = exp

(

Imw

2m
iN

)

F.
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In fact, the (1,−1) component is generated by

ξ̂ = exp

(

Imw

2m
iN

)

ξ±1 (w)

and the (−1, 1) component is generated by

ω̂ = exp

(

Imw

2m
iN

)

ω = ∓2i
√
m exp

(

− Imw

2m
iN

)

ξ±1 (w).

Then the Hodge decomposition with respect to exp (iN)F̂ ∈ D is given by

u1 = exp (iN)ξ̂ ∈ H1,−2, ū0 = exp (iN)ω̂ ∈ H−1,0.

Here Hod is generated by u1 and ū0, and by (2.5)

exp (X)u1 = 2iNξ̂, exp (X)ū0 = 2iNω̂.

Then

pod(σ, exp (σC)F ) = exp (X)Hod = spanC{e1, e2},

which is contained in BS(σ). Moreover, the map pod : B(σ) → BS(σ) is surjective.

Now F̃ ∈ Ȟ is given by F̃ 0 = spanC{ξ̂, ω̂}. By Proposition 2.10, for Im z > 0

pod(exp (zN)F ) = exp (zN)F̃ =

(

−z ± Imw
2
√
m

± Imw
2
√
m

Rew −mz

)

.

Since exp (σC)F = exp (σC)F̂ , we have

p̃od(σ, exp (σC)F ) = (σ, exp (σC)F̃ ).

Here p̃od is not surjective.

Proposition 3.5. Let Γ be a subgroup of GZ which is compatible with Γ and
satisfies the condition (3.3) for any σ ∈ Σod. Then p̃od : Γ\DΣod

→ Γ\H Σod
is

continuous.

Proof. As in the proof of Proposition 3.2, it is sufficient to show continuity around
the boundary point (σ, exp (σC)F±(w)) in Γ\DΣod

. We write

F = F̂±(w), ξ0 = ξ±0 , ξ1 = ξ±1 (w),

and we assume F = F̂ , i.e. Imw = 0 (it is similar to show continuity for F 6= F̂ and
we omit the proof of it). We describe neighborhoods of (σ, exp (σC)F ) of Γ\DΣod

, and
show the continuity.

A neighborhood of a boundary point (σ, exp (σC)F ) in Γ\Dσ is given by Eσ and
the map φ : Eσ → Γ\DΣod

. It is sufficient to show p̃od ◦ φ is continuous. We describe
a neighborhood of (F, 0) ∈ Eσ ⊂ Ď×C. An open neighborhood of F in Ď is given by

∆4 →֒ Ď; (z1, . . . , z4) 7→ F (z)

where F 1(z) = spanC {ξ1 + θ1(z) + z4 (ξ0 + θ0(z))} ,
F 0(z) = spanC {ξ1 + θ1(z), ξ0 + θ0(z)} ,
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and

θ0(z) =









0
z2
z1
0









, θ1(z) =









0
z3
z2
0









.

Then we have an open neighborhood ∆5 →֒ Ď×C by (z1, . . . , z5) 7→ (F (z1, . . . , z4), z5).
Here

(F (z1, . . . , z4), z5) ∈ Eσ ⇔
{

z1 = z2 = 0 if z5 = 0,

exp (ℓ(z5)N)F (z1, . . . , z4) ∈ D if z5 6= 0.

For z5 6= 0, we write

η0(z) = eℓ(z5)N (ξ0 + θ0(z)) = ξ0 + eℓ(z5)Nθ0(z),

η1(z) = eℓ(z5)N (ξ1 + θ1(z)) + z4η0(z).

Then

eℓ(z5)NF 1(z) = spanC{η1(z)}, eℓ(z5)NF 0(z) = spanC{η1(z), η0(z)}.

If z1, . . . , z5 → 0 provided that |z1| log |z5| → 0 and |z2| log |z5| → 0, then we have

η1(z)− eℓ(z5)Nξ1 → 0, η0(z) → ξ0,(3.7)

〈η1(z), η1(z)〉 − 〈eℓ(z5)Nξ1, e
ℓ(z5)Nξ1〉 → 0,

〈η1(z), η0(z)〉 → 〈eℓ(z5)Nξ1, ξ0〉 = 〈ξ1, ξ0〉.

Here

eℓ(z5)NF 1 = spanC{eℓ(z5)Nξ1}, eℓ(z5)NF 0 = spanC{eℓ(z5)Nξ1, ξ0}.

Then

eℓ(z5)NF (z)− eℓ(z5)NF → 0

if z1, . . . , z5 → 0 provided that |z1| log |z5| → 0 and |z2| log |z5| → 0. Therefore, by
the conditions (3.2) of D,

Un,m(δn,m) =

{

(z1, . . . , z5) ∈ ∆5 |z1|n < |z5|, |z2|m < |z5|,
|z1|, |z2|, |z5| < δn,m, z5 6= 0

}

⊂ Eσ

if δn,m and ∆ is sufficiently small. By Example 3.1 and the definition of strong
topology,

U(δ) =

(

⋃

n,m

Un,m(δn,m)

)

⊔ {z ∈ ∆5 | z1 = z2 = z5 = 0}

is an open neighborhood of (F, 0) in Eσ for δ = {δn,m}.
As in the proof of the case for even-types, we can show that

pod(eℓ(z5)NF (z))− eℓ(z5)N F̃ → 0



BOUNDARY OF CYCLE SPACES 705

if z1, . . . , z5 → 0 provided that z ∈ Un,m(δn,m). Then p̃od ◦ φ(U(δ)) is contained in
the open neighborhood (3.5) if δn,m is sufficiently small.

Corollary 3.6. pod is continuous.

Remark 3.7. A GZ(BS(σ))-admissible decomposition Σ does not contain σ in
this case. Then we do not have a diagram like the one in Remark 3.4.
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